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Abstract

Imaging Photoplethysmography (iPPG), an optical procedure which recovers a human’s
blood volume pulse (BVP) waveform using pixel readout from a camera, is an exciting re-
search field with many researchers performing clinical studies of iPPG algorithms. While
current algorithms to solve the iPPG task have shown outstanding performance on bench-
mark datasets, no state-of-the art algorithms, to the best of our knowledge, performs test-
time sampling of solution space, precluding an uncertainty analysis that is critical for clin-
ical applications. We address this deficiency though a new paradigm named Regularized
Interpolants with Stochasticity for iPPG (RIS-iPPG). Modeling iPPG recovery as an in-
verse problem, we build probability paths that evolve the camera pixel distribution to the
ground-truth signal distribution by predicting the instantaneous flow and score vectors; and
at test-time, we sample the posterior distribution of the correct BVP waveform given the
camera pixel intensity measurements by solving a stochastic differential equation. Given
that physiological changes are slowly varying, we show that iPPG recovery can be improved
through regularization that maximizes the correlation between the residual flow vector pre-
dictions of two adjacent time windows. Experimental results on three datasets show that
RIS-iPPG provides superior reconstruction quality and uncertainty estimates of the recon-
struction, a critical tool for the widespread adoption of iPPG algorithms in clinical and
consumer settings.

1 Introduction

Vital sign estimation using cameras has recently received strong interest in the research community. Ex-
tending photoplethysmography (PPG)—the technique in which a light is shined transdermally through the
skin, the reflections of which capture volumetric changes due to blood flow—imaging Photoplethysmogra-
phy (iPPG) seeks to observe the same volumetric changes using a non-contact imager of the skin, typically
an RGB camera. The pixel intensity of the camera, under mild assumptions and noise, captures the skin
pigmentation changes due to blood flow. Current iPPG algorithms that denoise the camera signal to es-
timate the BVP signal are based on traditional signal processing or deep learning methods. Traditional
signal processing methods De Haan & Jeanne (2013); De Haan & Van Leest (2014); Poh et al. (2010);
Lewandowska & Nowak (2012); Nowara et al. (2021) recover signals in training-free paradigms by assuming
inherent signal structure and priors—whether it be statistical independence Poh et al. (2010), uncorrelated
signals Lewandowska & Nowak (2012), color demixing De Haan & Jeanne (2013); De Haan & Van Leest
(2014), or Fourier-based sparsity Nowara et al. (2020). Deep learning methods generally perform better, but
require training: supervised learning methods use synchronized facial video and contact PPG, and assume
that the pulse signal structure is best learned though a model that maps from video to PPG data. Advances
in self-supervised Gideon & Stent (2021); Sun & Li (2024); Yue et al. (2023b); Speth et al. (2023); Liu et al.
(2024) algorithms learn using facial video data only, obviating contact PPG, and achieve competitive perfor-
mance with fully supervised methods. These algorithmic advances on lab data have led to clinical validation
studies of iPPG algorithms Huang et al. (2024) in neonatal care units, or in emergency departments for
acute trauma injuries Shenoy et al. (2025).
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However, previous algorithms are deficient at rationalizing the results at test time for end users like clin-
icians. A previous study Tonekaboni et al. (2019) interviewed clinicians regarding their trust of machine
learning models, which noted that “metrics such as reliability, specificity, and sensitivity were important
for the initial uptake of an AI tool, [but] a critical factor for continued usage was whether the tool was
repeatedly successful in prognosticating patient’s condition in [the doctor’s] personal experience". Each of
the aforementioned algorithms achieved state-of-the-art performance on population level metrics, but to the
best of our knowledge, no previous algorithm samples the solution space of potential iPPG signals at test
time for each test sample. Sampling the solution space would allow for uncertainty quantification for each
individual test-time sample, a crucial tool for eventual clinical adoption of such algorithms Begoli et al.
(2019); Tonekaboni et al. (2019).

To address uncertainty quantification, we propose Regularized Interpolants with Stochasticity for imaging
Photoplethysmography (RIS-iPPG), a flow-based diffusion model framework that learns a probability path
from the distribution of camera pixel intensity signals to blood volume pulse signals, and allows for posterior
sampling and uncertainty estimation of the recovered pulse signals. We achieve such advances by formulating
pulse signal recovery as an inverse problem with coupled camera measurements and ground-truth signals.
We then learn the drift coefficient of a Stochastic Differential Equation (SDE) Albergo et al. (2023) that
maps the distribution of camera measurements to the distribution of ground-truth signals, implemented in
practice by learning flow and score vectors for the training data. However, unregularized flow models do
not typically yield best predictions. Given that physiological changes in blood volume are usually slowly
varying, we propose to regularize the predicted flow by maximizing the correlation between the residual flow
vectors (i.e. ground-truth flow minus predicted flow) from two adjacent time windows. After training our
regularized model, at inference time we extract a pulse signal estimate from facial video and repeat it N
times as our initial condition, where N is user specified, and solve for the pulse signal via the aforementioned
SDE. Given the N signal estimates, we perform an uncertainty analysis of pulse signal recovery from a facial
video.

In summary, our contributions are as follows:

• We formulate pulse signal recovery from video as a posterior sampling method using flow-based
diffusion models. Using the framework of stochastic interpolants, we learn the flow and score vectors
that, when integrated into the drift coefficient of an SDE, transform the camera pixel signal to the
blood volume pulse signal.

• We propose a Residual Correlation Loss (RCL) that maximizes the correlation between the resid-
uals of predicted flow vectors from two overlapping, adjacent time windows. We show that this
regularization can lead to better recovery results.

• We evaluate our algorithm using three datasets and perform test-time sampling of solution space.
We show that even when our final prediction is incorrect, our sampling procedure highlights other
possible solutions. We are able to capture the modes of the distribution more effectively, while also
minimizing the uncertainty around frequency bins that are not of interest.

2 Related Works

2.1 Imaging Photoplethysmography

After preliminary investigations Wu et al. (2000) showed that peripheral blood volume could be measured
using an RGB imager, signal processing algorithms and later deep learning algorithms have been proposed
to recover the blood volume signal in noise. Early signal processing methods, modeling the camera signal
as a mixture of signals one of which was the pulse, demixed the signals by assuming the pulse signal
to be statistically independent of the mixture (Independent Component Analysis) Lewandowska & Nowak
(2012) or assumed signals could be demixed along the directions of maximum variance (Principal Component
Analysis) Poh et al. (2010). Recognizing skin reflection properties were critical for pulse signal recovery, both
De Haan & Jeanne (2013) and Wang et al. (2016) performed skin tone corrections before projecting signal
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Figure 1: We first preprocess the video to extract a signal estimate from various facial regions as in Shenoy
et al. (2023). During training time, we learn the score and flow between the measurement distribution and
the ground-truth distribution, regularized based on the temporal characteristics of the signal. During test
time, we solve an SDE with the measurement as the initial condition, and sample solution space. We then
perform an uncertainty analysis.

onto an optimal plane for recovery. Other researchers viewed iPPG recovery as an optimization problem
and imposed explicit sparsity Nowara et al. (2020) and low-rank Tulyakov et al. (2016) constraints on the
recovered signal.

Recent iPPG research is dominated by deep learning methods, which have shown improved performance
compared to model-based methods. Underlying all these methods is the assumption that the non-linear
noise and imaging processes that modulate the pulse signal from the body to the camera can be learned
through sophisticated neural networks. Using paired video and ground-truth data, previous works developed
techniques such as frame differencing Chen & McDuff (2018), temporal shift modules Liu et al. (2020),
spatiotemporal CNN Yu et al. (2019), and transformers Yu et al. (2022) to extract the rPPG signals; these
architectures were further adapted by others to learn noise profiles Nowara et al. (2021); Liu & Yuen (2023)
for better signal denoising. Recent algorithmic advances have demonstrated that deep learning-based iPPG
extractors can be learned without a supervisory PPG signal Gideon & Stent (2021); Yue et al. (2023b); Sun
& Li (2024); Liu et al. (2024) and have achieved competitive performance with fully supervised methods.
Researchers have also explored newer problem domains for iPPG such as federated learning Liu et al. (2022),
few-shot learning Liu et al. (2021), and on-device iPPG recovery Liu et al. (2023).

While all previous algorithms demonstrate improved performance over their baselines, they have failed to
provide uncertainty measurements that address the needs of the healthcare professionals. We present an
algorithm that solves the iPPG problem while providing uncertainty estimates of the solution for each and
every test sample.

2.2 Flow-based Diffusion Models

The inspiration for density estimation and transport-based sampling was founded on Gaussianizing data
through some transformation, and undoing that transformation to recover the distribution Tabak & Vanden-
Eijnden (2010); Chen & Gopinath (2000). A few works obtained the transformation as the solution of an
ODE Chen et al. (2018); Grathwohl et al. (2019), of which the drift coefficient could be learned through
neural networks. However, learning the drift is intractable at large scale due to the simulation of the ODE

3



Under review as submission to TMLR

for learning. While some other works proposed to regularize the path Finlay et al. (2020); Onken et al.
(2021); Tong et al. (2020), many problems persisted.

Others took a stochastic view of the problem, modeling the transformation of a data distribution to a
Gaussian as the evolution of of an Ornstein-Ulhenbeck (OU) process. Traversing this process forward in
time simply involves adding Gaussian noise, while reversing this process can be done if the gradient of the
log of the time-dependent data density is available Hyvärinen & Dayan (2005); Vincent (2011): this quantity,
called the score function, could be estimated via least-squares regression Song & Ermon (2019). The major
drawback of this method was its reliance on the OU process and Gaussians; while some works used bridges
to map between arbitrary distributions, these formulations were complex and inexact.

Recent work has introduced simulation-free methods for mapping between two arbitrary probability distri-
butions. The key idea is that this mapping can happen gradually over time as one distribution transforms
to another Lipman et al. (2022); Tong et al. (2023). This can be generalized to stochastic dynamics as
well Albergo et al. (2023), which defines a stochastic process that maps from one point to another. In either
the deterministic or stochastic versions, the goal is to learn the instantaneous change of the time-dependent
distribution towards the target, which can be predicted via a neural network and is known as the "flow".
In the stochastic case, the score is learned as well. After both are learned, the drift coefficient of the cor-
responding ODE/SDE can be learned, after which off-the-shelf solvers can solve the differential equation
given an initial condition, mapping the point from one distribution to another. These techniques can learn
the time-dependent vital sign trajectories of patients in the ICU Zhang et al. (2025), generate new types
of inorganic crystalline materials Hoellmer et al. (2025), and learn the manifold of cellular dynamics Tong
et al. (2023).

3 Background: Stochastic Interpolants

Our goal is to link two arbitrary distributions and build a time-dependent probability path between them.
The recently proposed work of Stochastic Interpolants Albergo et al. (2023) achieves this in finite time, and
exactly, by defining a stochastic process that smoothly interpolates from one distribution’s data point to
the another distribution’s data point. The key goal is to learn, through neural networks, the instantaneous
flow and score at all points interpolated between our two distributions. If the flow and score can be learned
effectively, then we can take a series of steps (i.e. solving an SDE) that maps a point (the initial condition)
from one distribution to a point in the other distribution. Let our two arbitrary distributions be p0 and p1,
let x0 ∼ p0 and x1 ∼ p1. Then the stochastic interpolant is defined as

xt = I(t, x0, x1) + γ(t)z, where z ∼ N (0, Id), t ∈ [0, 1] (1)

The next step would be to define the instantaneous change of the interpolant at some time t. The instanta-
neous change of the interpolant xt with respect to time, b(t, x), is known as velocity, and the score of the
distribution at a time t, s(t, x), is

b(t, x) = E[ ∂

∂t
xt|xt = x], s(t, x) = ∇ log pt(x) = −γ−1(t)E(z|xt = x) (2)

It is still to be shown, however, that these quantities can be used to form a valid drift coefficient of an
SDE that maps probability mass from one distribution to another. We repeat below the theorem of Albergo
which showed that this interpolant, and associated flow and score, satisfy both the continuity equation and
a family of Fokker-Planck equations, allowing us to build the drift coefficient of an SDE that solves the
mapping between the two distributions.
Theorem 3.1. (Theorem 2.6 of Albergo et al. (2023)) The probability distribution of the interpolant xt

defined in Equation equation 7 is absolutely continuous with respect to the Lebesgue measure at times
t ∈ [0, 1] and solves the transport equation

∂

∂t
pt + ∇ · (bp) = 0 (3)
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In addition, the forward and backward Fokker-Planck equations are satisfied

∂

∂t
pt + ∇ · (bF p) = 0, bF = b(t, x) + ϵ(t)s(t, x) (4)

∂

∂t
pt + ∇ · (bBp) = 0, bB = b(t, x) − ϵ(t)s(t, x) (5)

where ϵ(t) is some noise schedule.

As a consequence of this theorem, if we can learn the flow and score of the interpolant bridging our two data
distributions, we can build a drift coefficient and solve a SDE that smoothly transform a data point from
one distribution to another.

4 Problem Formulation and Approach

4.1 The iPPG signal model

The arterial tree can be modeled as a branching system of elastic tubes that carry blood to the body Nichols
et al. (2022). Pressure differences at the ends of the tubes, induced by pump a called the heart, generate
the flow of the liquid through the tubes Nichols et al. (2022). The flow can be measured using optical
sensors which shine light transdermally and record reflection of the light corresponding to the blood volume;
this technique is called photoplethsmography Alian & Shelley (2014). Imaging Photoplethysmography or
remote Photoplethysmography aims to replicate PPG but replaces the contact-based optical sensor with a
non-contact camera McDuff (2023).

This imaging setup can be modeled as two processes. Given the volumetric flow signal x0, the first process
generates an analog signal on the skin via reflections of incident illumination on x0 modulated by physical
structures in the dermis/epidermis (known as the physiological forward process) and physiological noise.
The second process converts the analog skin signal to a digital signal; in non-contact iPPG, the analog signal
is modulated by digital camera hardware (known as the forward imaging process) and imaging noise. To
simplify the model, we unify both processes and to represent a digital camera signal x1 as:

x1 = A(x0) + n (6)

where the unknown A(·) models the unified forward processes composed of the imaging forward processes
acting on the result of the physiological forward process and noise, and n is the sum of the physiological
and imaging noise. This signal model naturally allows us to solve an inverse problem, the preliminary
investigations are detailed below.

4.2 Preliminary Investigation

Our goal, given the camera pixel intensity signal x1, is to recover the signal x0 and sample the space of
possible solutions. Our initial investigation modeled signal recovery as a regularized optimization problem,
minx

1
2 ∥x1 − A(x)∥2

2 + λ · h(x), where h(x) = −log p(x) is the log of the data distribution. This problem
can be solved with posterior sampling via the Plug-and-Play Monte-Carlo Approach of Sun et al. (2024).
After learning the score of the distribution of ground-truth pulse signals, we iteratively estimated our signal
first through a gradient descent step on the data fidelity term (where the forward model was assumed to be
the inverse Fourier Transform A = F−1 to align with Nowara et al. (2020); Shenoy et al. (2023)) followed
by the score function evaluated at the result of the gradient descent step. Our preliminary results, labeled
as PMC-iPPG, are in Table 1.

While this approach allows for test-time sampling, the performance is unsatisfactory. The key drawback
is that the score only learns the signal prior i.e. the distribution of ground-truth volumetric signals, not
the mapping A(·) from pulse to camera signals. While the approximation of the unknown A(·) ≈ F−1 was
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Table 1: Applying PMC Sun et al. (2024) to the iPPG task, and comparing against regularized optimization
methods with sparse priors Nowara et al. (2020) and learned priors Shenoy et al. (2023). Formulating the
iPPG task as regularized optimization problem with a plugged-in prior is ineffective.

Method Sampling? MAE (bpm) ↓ RMSE (bpm) ↓
AutoSparsePPG Nowara et al. (2020) ✗ 4.55 14.42
Unrolled-iPPG Shenoy et al. (2023) ✗ 1.11 2.97

PMC-iPPG ✓ 12.42 23.98

sufficient for Shenoy et al. (2023), their unrolling method implicitly corrected the approximation through
end-to-end training; PMC-iPPG has not such ability. A posterior sampling method like PMC-iPPG must
use an effective forward model to be successful, or we must turn to a different type of posterior sampling
method. We found that stochastic interpolants are effective, which are described below.

4.3 Unregularized Stochastic Interpolants for iPPG

Without an explicit forward model, we seek to learn an implicit mapping of BVP signals to camera pixel
signals. We assume that there exists a distinct BVP and camera pixel distribution, and that there exists a
mapping in distribution between them.

Figure 2: We sample a time-window
and its time-shifted version, and pre-
dict the flow for both. For two ad-
jacent and overlapping time-windows,
the residual vector between predicted
and ground-truth flows should point
in the same direction, which is pro-
moted by by minimizing the Residual
Correlation Loss.

Given these two paired data distributions, we seek to learn the drift
coefficient of a SDE that maps the camera intensity signals x1 ∼ p1
to its ground-truth pulse signal x0 ∼ p0. We first define a stochastic
process between two data points as

xt = (1 − t)x0 + tx1 +
√

2t(1 − t)z (7)

To solve a SDE, we must approximate the drift coefficient b(t, x) =
E[ ∂

∂t

(
(1 − t)x0 + tx1 +

√
2t(1 − t)z

)
] through neural networks, as

described in Section 3. In practice, however, we can decom-
pose b(t, x) = v(t, x) − γ(t) · ∂

∂t

(√
2t(1 − t)

)
· s(t, x), and fur-

ther decompose the score using Tweedie’s formula as s(t, x) =
−nz(t, x)/γ(t) Albergo et al. (2023). This simplifies the practical
implementation to learning two independent networks, one to learn
the interpolant flow vθ(t, x) ≈ ∂

∂t

(
(1 − t)x0 + tx1

)
and another to

learn the denoiser nθ(t, x) ≈ z. We can learn both of these networks
by minimizing the MSE loss; after these networks are learned, we can
build a drift coefficient and use off-the-shelf solvers to obtain a pulse
estimate given the camera measurements (i.e. initial condition).

Our goal is to build robust models, yet the data can be corrupted
by out-of-distribution, unconstrained motion noise. Our initial at-
tempts to build robust models focused on building guidance sig-
nals that capture the noise profile of a sample, yet our investiga-
tion yielded negative results (see Appendix A.1). We observed more
promising results when noticing that physiological changes are slowly
varying, leading to a temporal regularization scheme described be-
low.

4.4 Residual Correlation Loss (RCL) for temporal consistency in adjacent time windows

While guidance signals have effectively solved imaging inverse problems like inpainting, such signals tend to
be less effective for iPPG given the unpredictable motion noise and resulting specular and diffuse reflections.
Characterizing such noise, especially when training and testing domains are misaligned, is difficult; a better
approach would be to learn the physiology of the volumetric signal, particularly the steady-state behavior of
pulse signal. Medical research has discovered that physiological changes under normal conditions are often
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slowly varying Nichols et al. (2022) and changes in physiological state are often time-delayed. This implies
that in adjacent and overlapping time windows, physiological signals should be similar. A robust flow model
should ensure such temporal consistency.

We learn such temporal consistency by correlating the residual vectors between the predicted and ground-
truth flows of two adjacent time windows as shown in Figure 2. Assume we are given two pairs of data,

(x0(i), x1(i)) and (x′
0 = x0(i − δ), x′

1 = x1(i − δ)) (8)

where the latter pair is an overlapping, time-shifted version of the first pair. During training, we generate xt

and x′
t according to equation 7, after which we predict the flow at each of these points vθ(t, xt) and vθ(t, x′

t)
as described in Section 4.3. We note the predicted flows should be regressed to their corresponding targets
v(t, xt) and v(t, x′

t); however, given that adjacent and overlapping time windows should have consistent
physiological behavior, the error vector between the predicted and ground-truth flows (i.e. the residual)
should be correlated. More precisely, we would like the residual vectors to point in the same direction.

To encourage vectors to point in the same direction, we aim to maximize the normalized dot product between
the vectors. This is achieved by minimizing the proposed Residual Correlation Loss, which is equivalent to
minimizing one-minus the Pearson Correlation Coefficient Cohen et al. (2009). Let p = v(t, xt) − vθ(t, xt)
and q = v(t, x′

t) − vθ(t, x′
t). Then, the RCL loss is defined as

LRCL(p, q) = 1 − T · p⊤q − µpµq√
(T · p⊤p − µ2

p)(T · q⊤q − µ2
q)

(9)

where µp and µq are the means of the signals, and T is the length of the signal. We will show in Section 5
that minimizing this loss leads to improved iPPG recovery.

Finally, we train RIS-iPPG using the flow, denoiser, and RCL losses, with equal weighting for the flow and
denoiser loss and a scaling factor (determined by cross validation) for the RCL loss. The final loss is given
by

L = LMSE(vθ(t, x), v(t, x))︸ ︷︷ ︸
flow

+ LMSE(nθ(t, x), z)︸ ︷︷ ︸
denoiser

+λRCLLRCL (10)

4.5 Test-time Sampling

Our proposed method, as compared to all previous iPPG methods, is able to sample solution space at test
time and generate multiple realizations of the solution. Given that our iPPG interpolant satisfies both the
continuity equation and the Fokker-Planck equation from Theorem 3.1, we write a reverse SDE that, when
solved, produces an estimate of the pulse signal given the measurements i.e. initial condition. First, define
the sampling SDE as

dxt = b(t, xt)dt + σtdWt, σt =
√

2ϵ(t) (11)

where Wt is a Wiener process. The drift b(t, x) coefficient then becomes:

b(t, xt) =
[
vθ(t, xt) − γ(t) ·

( d

dt
γ(t)

)
· sθ(t, xt)

]
+ ϵ(t)sθ(t, xt) (12)

We follow Albergo et al. (2023) and set ϵ(t) to a constant for all t. While any standard solver can be used
to solve Equation 11, we chose to use the implementations of Li et al. (2020); Kidger et al. (2021). In the
next section, we present the results of our approach, and demonstrate the efficacy of both our uncertainty
quantification as well as the RCL loss for iPPG recovery.

5 Implementation Details and Experimental Results

5.1 Datasets

We evaluate our algorithm using three datasets, which are described below
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• MMSE-HR Zhang et al. (2016); Ertugrul et al. (2019): The MMSE-HR dataset recorded facial
video at 1040×1392 pixels and 25 FPS while capturing synchronized blood pressure waveforms using
a Biopac NIBP100D recording at 1000Hz (which we downsampled to 25 Hz to align with the video).
Seventeen male and twenty-three female subjects were asked to perform a variety of tasks that
induced motion as well as a change in heart rate, which resulted in 102 videos. We train and test on
10 second time windows, and evaluate using the leave-one-subject-out evaluation protocol of Nowara
et al. (2021).

• PURE Stricker et al. (2014): Recorded at 30 FPS and a resolution of 640×480 pixels, the PURE
dataset contains 10 subjects each of whom perform six task to induce facial motion. Corresponding
pulse oximetry data were captured at 60Hz, which was downsampled to 30 Hz to align with the
video data. The models were trained on 10-second time windows of pulse oximeter data, and were
evaluated on 30-second windows according to the splits of Špetlík et al. (2018).

• UBFC-rPPG Bobbia et al. (2019). The UBFC-rPPG dataset contains 43 subjects, each recording
one video captured at 640 × 480 px and 30 FPS while playing a game to induce pulse rate changes.
Simultaneous pulse waves were captured using a pulse oximeter recording at 30Hz. We train on
10-second windows with a frame stride of 2.4 seconds, and evaluate according to the protocol in Lu
et al. (2021): we evaluate on 10-second time windows for each video, and average all heart rates in
a video for a single heart rate estimate.

5.2 Evaluation Metrics

Heart Rate Estimation Metrics: We follow the protocol of previous work Shenoy et al. (2023) and
measure the predicted heart rate versus the ground-truth heart rate in the windows of interest. We compute
the heart rates by first multiplying the signal by a Hanning window, followed by taking an L = 10 ×
signal length FFT, after which we compute the power by squaring the magnitude of the FFT. We sum
the power spectra across all facial regions, and all samples from the SDE solutions, after which we chose
the frequency bin with the greatest power. We then compute the mean absolute error (MAE) and root
mean squared error (RMSE) between the predicted and ground-truth heart rates, as well as the Pearson
Correlation Coefficient between predicted and ground-truth heart rates:

MAE = 1
N

N∑
i=1

|Ri − R̂i|, RMSE =

√√√√ 1
N

N∑
i=1

(Ri − R̂i)2, ρ =
∑N

i=1(Ri − µRi
)(R̂i − µR̂i

)√∑N
i=1(Ri − µRi)2(R̂i − µR̂i

)2
(13)

where R̂i is the predicted heart rate, Ri is the ground-truth heart rate, N is the number of time windows,
and µRi and µR̂i

are the means of the predicted and ground-truth heart rates, respectively.

Uncertainty Quantification Metrics: To measure the quality of our uncertainty quantification, we follow
the work of Sun et al. (2024) and report the negative log likelihood, defined as

NLL(x̄, xgt) = 1
2σ2 (x̄ − xgt)2 + 1

2 log(2πσ2) (14)

where σ is the standard deviation of the power of a single frequency bin for all samples, x̄ is the mean of the
samples, and xgt is the ground-truth signal. This quantity is computed independently for each frequency
bin for each facial region, and assumes the power in each bin is distributed according to a Gaussian. We
compute the median across all frequency bins, for each region, and across all test samples to present a single
value of reconstruction quality.

5.3 Implementation Details

All computation, including preprocessing, was implemented on an A5000 NVIDIA GPU. To generate the pre-
processed time-series, we first pass the input video through the OpenFace Amos et al. (2016) face detector,
followed by the landmark detection using LDEQ Micaelli et al. (2023). These landmarks are interpolated
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Table 2: Heart rate estimation results on MMSE-HR, PURE and UBFC-rPPG datasets. Best results in
each column are bold; second-best are underlined. OUr method is the only one that addresses uncertainty
quantification (UQ)

Type Method
MMSE-HR PURE UBFC-rPPG

MAE↓ RMSE↓ ρ ↑ MAE↓ RMSE↓ ρ ↑ MAE↓ RMSE↓ ρ ↑

Model-Based
Unsupervised

ICA Poh et al. (2010) 5.44 12.00 - - - - 7.50 14.41 0.62
CHROM De Haan & Jeanne (2013) 3.74 8.11 0.55 2.07 9.92 - 2.37 4.91 0.89

POS Wang et al. (2016) 3.90 9.61 - 5.44 12.00 - 4.05 8.75 0.78
AutoSparsePPGNowara et al. (2020) 4.55 14.42 - - - - - - -

Model-Based
Unsupervised

HR-CNN Spetlik et al. (2018) - - - 1.84 2.37 - - - -
SynRhythm Niu et al. (2018) - - - - - - 5.59 6.82 0.72
CAN Chen & McDuff (2018) 4.06 9.51 - - - - - - -

CVD Niu et al. (2020) - 6.04 0.84 1.29 2.01 0.98 2.19 3.12 0.99
PulseGAN Song et al. (2021) - - - - - - 1.19 2.19 0.98

InverseCAN Nowara et al. (2021) 2.27 4.90 - - - - - - -
/ DualGAN Lu et al. (2021) - - - 0.82 1.31 0.99 0.44 0.67 0.99

Physformer Yu et al. (2022) 2.84 5.36 - - - - - - -
Federated Liu et al. (2022) 2.99 - 0.79 - - - 2.00 4.38 0.93

EfficientPhys-C Liu et al. (2023) 2.91 5.43 0.86 - - - - - -
ContrastPhys-100 (PAMI’24) Sun & Li (2024) 1.11 3.83 0.96 0.48 0.98 0.99 0.50 0.84 0.99

Data-Driven
Unsupervised

Gideon Gideon & Stent (2021) 3.98 9.65 0.85 2.3 2.9 0.99 3.60 4.60 0.95
Yue Yue et al. (2023a) - - - 1.23 2.01 0.99 - - -

ContrastPhys-0 Sun & Li (2024) 1.82 6.69 0.96 1.00 1.40 0.99 - - -
Ours

Data-Driver, Supervised RIS-iPPG 1.97 3.73 0.97 0.10 0.25 0.99 0.47 0.80 0.98

across the face to delineate the right and left forward, right and left cheek, and chin. In each region, we
perform per-channel averaging of all pixels, and as in Shenoy et al. (2023), we take the ratio of the red
channel to the green channel to obtain our signal estimate as in Figure 1.

Identical U-Nets, adapted from guided diffusion Dhariwal & Nichol (2021), learn both the flow and score
in our framework. We train these networks using the Adam optimizer Kingma & Ba (2014) with an initial
learning rate of 1e-3. The number of training epochs varied for each dataset. Please refer to the Appendix
Section A.3 for more information.

5.4 Results

Heart-Rate Estimation: We present the results of RIS-iPPG with the RCL loss in Table 2. The results
for the MMSE-HR dataset are aggregated over subject-independent (i.e. 40-fold) cross-validation, while the
results for PURE and UBFC-rPPG are evaluated on their test sets in accordance with previous literature.
On all three datasets, we achieve very competitive performance with previous benchmarks, and achieve a
new state-of-the-art on the PURE dataset. For the benchmarks in which we do not perform best, we still
achieve < 1bpm error on UBFC-rPPG and < 2 bpm on MMSE-HR.

Qualitative results of the power spectrum are shown in Figure 3, where the orange signals are the ground-
truth in all cases, the green signals are the measurements, and the bolded blue signals are the means from
100 realizations of our algorithm. The light blue shading represents the 95% confidence interval of the power
over each frequency bin of our spectrum. We see in the first and second rows that our algorithm is able to
regress a measurement with an incorrect heart rate to the correct heart rate while attenuating the power of
unrelated frequencies. Furthermore, we capture two modes of our distribution: in the first row of examples,
the RCL loss helps us capture the mode at the measurements as well as the mode at the ground-truth heart
rate. The second row shows similar results, with greater uncertainty around the measurements when the
RCL loss is included. In the third row, we see that the pulse rate prediction is nearly identical with and
without the RCL loss; however, the absence of the RCL loss encourages significant uncertainty at many
frequencies above the predicted heart rate, while the RCL loss encourages higher uncertainty only around
the harmonic.

Statistical Analysis: In addition to a comparison against the state-of-the-art, we perform a Bland-Altman
analysis to understand the performance of our algorithm. We plot the ground-truth heart rate in a window
against the prediction from RIS-iPPG, and plot the 95% confidence interval for the heart rate predictions.
The results from the MMSE-HR dataset show a mean difference of approximately -0.63 bpm, indicating
that our method overestimates the actual heart rate by an average of over half a beat. Our heart standard
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Figure 3: Qualitative results with and without the RCL loss. We plot the camera pixel measurements (green),
ground-truth PPG (orange), the mean of 100 realizations of sampling (bolded blue), and 95% confidence
interval of the power in each bin (light blue). Our algorithm with the RCL loss is able to predict the modes
of the distribution (first two rows), while also limiting uncertainty except in the frequency bins around the
harmonic (light blue arrow, third row).

Figure 4: Bland-Altman Plots for the predicted heart rate against the ground-truth for all time windows
on the test sets. We plot the ground-truth heart rate against the predicted heart rate, as well as the 95%
confidence intervals. We see that the mean difference is close to zero for all three datasets, with reasonable
confidence intervals.
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Table 3: Computing the negative log likelikhood for uncertainty quantification. On the PURE dataset, the
NLL and heart rate MAE are aligned. On the UBFC-rPPG dataset, we notice inferior reconstruction error
while achieving a lower MAE. This is not uncommon, as described in Appendix A.4.

Train RCL Loss? NLL ↓ MAE ↓

PURE ✗ 231.35 0.20
✓ 214.65 0.10

UBFC-rPPG ✗ 114.47 2.31
✓ 171.17 0.47

Table 4: Varying the stride δ of Equation 8 and weight λRCL of Equation 10 for the RCL loss on the
MMSE-HR Dataset. We notice best performance, on average, when using δ = 9 and λRCL = 0.1

Window Shift δ (seconds)
1 2 3 4 5 6 7 8 9 10 Average

R
C

L
w

ei
gh

t
λ

R
C

L

0.0 3.72 3.72 3.72 3.72 3.72 3.72 3.72 3.72 3.72 3.72 3.72
0.1 2.67 2.54 2.47 3.44 2.79 2.54 3.51 2.52 1.39 2.89 2.67
0.2 2.64 3.77 2.42 2.04 2.77 4.07 2.82 1.94 2.52 2.59 2.74
0.3 2.54 4.67 3.87 2.39 4.74 2.92 3.09 2.42 2.34 2.24 3.12
0.4 2.59 2.42 5.97 3.39 4.19 2.67 2.69 3.42 2.12 2.87 3.23
0.5 3.02 2.67 2.51 2.57 1.92 3.19 2.74 2.85 2.84 2.67 2.73
0.6 3.02 3.01 2.89 3.07 2.12 2.77 2.72 2.47 3.72 2.34 2.83
0.7 2.77 4.07 2.19 2.69 2.92 2.44 2.44 3.09 1.82 3.57 2.8
0.8 2.67 2.87 2.84 2.09 4.57 3.69 3.22 2.37 2.14 2.49 2.89
0.9 1.77 2.57 2.25 3.32 1.49 3.34 2.94 3.82 2.72 2.89 2.71
1.0 2.69 4.17 3.22 2.34 2.79 6.54 3.27 1.62 1.59 2.19 3.04

Average 2.73 3.34 3.12 2.82 3.09 3.44 3.01 2.74 2.44 2.79

deviation is relatively large; however, this is metric is dominated by the few large outliers produced when the
input measurements are too noisy. We see similar trends on both the UBFC-rPPG dataset and the PURE
dataset. Models on both datasets achieve a mean difference close to zero, while maintaining single-digit
standard deviations.

Uncertainty Quantification: To the best of our knowledge, this is the first method to develop an stochastic
sampling method for iPPG estimation, which allows us to perform an uncertainty analysis and establish new
baselines. Following the work of Sun & Li (2024), we report the negative log likelihood in Table 3, averaged
over all 5 facial regions and across all test samples in the dataset. In addition, we report the MAE for the
heart rate estimates, and a comparison with and without the RCL loss. We observe that on the PURE
dataset, we achieve superior NLL and MAE when using the RIS-iPPG with the RCL loss. On the UBFC-
rPPG dataset, however, we see conflicting results: the NLL is lowest without the RCL loss, but the MAE
is significantly higher. This can occur especially when we are averaging over all frequency bins for all facial
regions and test samples. See an example in Appendix A.4.

5.5 Ablation Studies

Inclusion of RCL Loss: The absence of the RCL loss is shown qualitatively in Figure 3, in which the
green signals are the measurements and the blue signals are the predictions from RIS-iPPG. The first row
clearly shows that without the RCL loss, we obtain an incorrect prediction, yet with the RCL loss we predict
a signal much more similar to the ground-truth. Furthermore, the model trained with the RCL loss shows
high uncertainty around two modes of the distribution, one at the measurements and one at the ground-
truth heart rate. In the third row, the signal predictions are nearly identical; however, the model with the
RCL loss better attenuates irrelevant frequencies while maintaining high uncertainty around the harmonic,
as indicated by the blue arrow. Quantitatively, we get best performance by including the RCL loss, as
indicated by the λRCL > 0 values in Table 4.

Effect of overlap and weight: We further explore the inclusion of the RCL loss by performing a grid-
search over the weight parameter λRCL ∈ [0.0, 1.0] and the time-shift δ ∈ [1, 10] seconds, with the results
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Table 5: Cross-dataset model evaluation. In some scenarios (e.g. MMSE-HR → UBFC-rPPG), we achieve
good performance, but in other cross-dataset experiments, our method fails.

Train Test MAE (bpm) ↓ RMSE (bpm) ↓

MMSE-HR PURE 15.52 27.26
UBFC-RPPG 1.73 4.67

PURE MMSE-HR 7.93 15.19
UBFC-rPPG 21.59 33.49

UBFC-rPPG MMSE-HR 6.59 12.26
PURE 0.26 0.53

as shown in Table 4. Note that we train our model using 10-second windows; therefore, a stride of δ = 10
corresponds to the “no-overlap” scenario. On the MMSE-HR dataset, we achieve best performance with a
stride of δ = 9 seconds and a weight of λ = 0.1. We also note that we can get significant improvements over
traditional stochastic interpolants by including the RCL loss. This experiment was conducted on a small
validation set of the MMSE-HR dataset; after selecting δ = 9 seconds and a weight of λ = 0.1, we perform
40-fold cross-validation and report the final results in Table 2. Ablations on the UBFC-rPPG dataset are
included in the appendix.

Cross-Dataset Model Evaluation We evaluate the model’s ability to generalize to unseen data. In the
experiments shown in Table 5, the columns “Train” indicates the dataset on which our flow and score models
are trained, while “Test” is the dataset on which these models are evaluated. Once again, we report the heart
rate estimation metrics from before. We note that in some scenarios, for example training on MMSE-HR and
testing on UBFC-rPPG, we perform well with an average error of 1.73 beats per minute. This suggests that
the domain of the MMSE-HR dataset (video recording conditions, motion, etc.) is statistically similar to the
test set of UBFC-rPPG. However, our experimentation show that this is not always the case; for example
training with the PURE dataset but testing on either the MMSE-HR or UBFC-rPPG datasets shows poor
performance. A visual inspection of the PURE dataset, as compared to the MMSE-HR and PURE datasets,
shows significantly different lighting, as well as limited and controlled motion. Both the MMSE-HR and
UBFC-rPPG datasets contain significantly more unconstrained motion—with tasks specifically designed to
induce such motion—indicating a significant domain shift in the data.

We surmise that this degradation is due to the learned implicit forward model. We implicitly learn a
stochastic function A(·) and noise in Equation 6, conditioned on two distributions. When performing cross
dataset evaluation, we replace one distribution (source) with another (target), resulting in large errors. One
possible solution could be to project the target domain samples into the source domain and re-run the SDE.
Addressing the domain shift issues is important, which we leave for follow-up work.

6 Conclusion

To be truly accepted by clinicians and medical personnel, machine learning algorithms for healthcare should
be “repeatedly successful in prognosticating patient’s condition in [the doctor’s] personal experience” Tonek-
aboni et al. (2019). While previous iPPG algorithms output point estimates of the pulse signal, we introduce
the first posterior sampling method that repeatedly samples likely pulse signal estimates given camera mea-
surements, permitting an uncertainty analysis that can help doctors make better decisions. We achieve this
by modeling a stochastic process between camera measurements and pulse signals, and learn the flow and
score of this process to build the drift coefficient of an SDE. We improved results by temporally regularizing
the flow, and show that this helps us capture the modes of the signal distribution. While we achieve strong
results on intra-dataset evaluation, future work should address domain shifts between training and testing
datasets.
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Table 6: Testing various guidance signals on the MMSE-HR dataset

Guidance Signal MAE (bpm) ↓ RMSE (bpm) ↓
Blue 5.79 12.71
Red 4.17 11.78

Green 4.05 11.18
No Guidance 3.72 6.55

Table 7: Varying the RCL loss weight λRCL and the stride δ on the UBFC-rPPG Dataset

Window Shift δ
1 2 3 4 5 6 7 8 9 10 Average

R
C

L
w

ei
gh

t
λ

rc
l

0.0 3.72 3.72 3.72 3.72 3.72 3.72 3.72 3.72 3.72 3.72 3.72
0.1 6.71 3.41 1.19 4.55 2.79 3.59 3.05 7.61 2.39 3.23 3.85
0.2 3.77 3.71 5.63 2.69 2.77 2.87 3.59 3.47 3.71 0.53 3.27
0.3 1.61 4.01 2.03 1.79 4.74 2.03 1.67 5.09 5.09 2.39 3.04
0.4 2.59 3.35 2.79 1.07 4.19 1.67 2.61 2.69 2.09 1.07 2.47
0.5 3.53 3.23 3.89 1.13 1.92 0.77 3.47 6.41 1.55 1.13 2.70
0.6 3.91 2.95 2.45 0.59 2.12 3.85 3.65 2.69 0.77 0.48 2.44
0.7 5.27 1.73 2.57 1.73 2.92 2.09 2.44 4.01 2.45 3.71 2.89
0.8 3.53 1.97 0.83 2.81 4.57 1.97 2.51 2.21 3.35 3.77 2.75
0.9 2.75 4.79 3.77 2.21 1.49 1.85 1.85 2.45 1.67 2.51 2.53
1.0 2.63 4.31 5.27 2.21 2.79 3.71 4.91 2.21 1.61 2.45 3.21

Average 3.63 3.37 3.10 2.31 3.09 2.55 3.04 3.86 2.58 2.27

A Appendix

A.1 Preliminary Investigation: Conditioning on a guidance signal

Many previous works solve traditional imaging inverse problems via guidance. We experimented with guid-
ance. We reasoned that our guidance signal should tell us something about the noise when extracting signal
measurements from video; therefore, we use the raw signals from the color channels of the video frames,
which we assume to capture motion noise via sharp changes in intensity. Then, we used the RIS framework
to map our extracted signal from Section 5.3 to the ground-truth. The learned flow and score networks used
the raw color channel signals as guidance when predicting flow and score. We then evaluated our learned
models with guidance as in the main paper.

We compare the heart rate estimation performance using each color channel as a guidance signal, as well
as using no guidance in Table 6. Clearly, the guidance signal made performance worse. However, we can
not conclude that guidance signals, in general, hurt iPPG performance as we did not perform a thorough
analysis of the entire design space of guidance signals. Nevertheless, we argue that a model regularized using
the RCL loss is better as it is independent of the noise profile and focuses only on the temporal correlations
of the pulse.

A.2 Additional Qualitative results

In the main paper Figure 3, we presented qualitative results on the MMSE-HR dataset. We see similar
results on the UBFC-rPPG dataset, with the results in Figure 5. The first and third rows show that both
models are able to predict similar heart rates; however, the models with regularization show significantly less
variance in prediction. The results on the PURE dataset are in Figure 6; we do not see so much difference
in the models with and without regularization.
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Figure 5: Results on the UBFC-rPPG dataset. The orange signals are the ground-truth, while the green
signals are the measurements. The heavy blue signals are the means of 100 measurements. Models with
regularization show significantly less variance in prediction.
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Figure 6: Results on the PURE dataset. The orange signals are the ground-truth, while the green signals
are the measurements. The heavy blue signals are the means of 100 measurements. We notice similar
performance with and without the RCL loss
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A.2.1 Sample-Level Gauge R&R Results

While the previous metrics capture population level metrics, we revisit the quote from Tonekaboni et al.
(2019) regarding the need for tools that are “repeatedly successful in prognosticating a patient’s condition
in [the doctor’s] personal experience”, and provide tools to answer the question: can we trust the results?
To answer this, we borrow techniques from industrial mathematics and perform an ANOVA Gauge repeata-
bility and reproducibility (R&R) test, which quantifies the amount of variability in the samples due to the
measurement system itself, and determines whether the measurement system itself is acceptable. This test
quantifies the precision of the system (as compared to accuracy, which is presented Section 5.4). In tradi-
tional industrial mathematics, a gauge (for example, a lathe) drills multiple sized holes (parts) multiple times
(samples) by a multiple people (operators), after which the diameter of the hole is measured. The diameters
are compared against each other to quantify the variance in the process (lathe) and the measurement system
themselves, after which metrics such as repeatability, reproducibility, part-to-part variation, and more are
quantified to determine whether a system is acceptable.

Source Variance % Variance
Repeatability 0.0047 1.7168
Reproducibility 1.1868×10−4 0.0434
Operator 1.1868×10−4 0.0434
Part 0.2684 98.2398

Figure 7: The measurements (green), ground-truth(orange), and mean signal and confidence intervals (heavy
blue and light blue). The Table shows the Gauge R&R test for precision.

We adopt this analysis by considering our “gauge” to be the stochastic algorithm, the “parts” to be the
frequency bins below 200bpm of the magnitude of the Fourier transform of our solution, the “samples” to
be the number of samples we generate from our SDE, and “operators” to be the different facial regions
from which we measure signals for a single subject. Since this test operates on a single test example, we
chose a sample which we know to be accurate (via heart rate absolute error), compute Gauge R&R test,
and display the results in Figure 7. We first state that our estimate is accurate; the camera measurements
themselves were close to the ground-truth, and the solution denoised this accurate spectrum. Our Gauge
R&R analysis then analyzed the precision of our system, and sources of variation. The table in Figure 7
shows to which metric we can attribute the majority of our variation; clearly, the largest variation is from
the part-to-part variation, while the smallest variation comes from repeatability (i.e. measuring the same
frequency bin multiple times) versus the reproducibility (i.e. different facial regions agreeing on the power
in the same frequency bin). Given that the largest variation is in the part-to-part model, we conclude that
the precision of our system is sufficient.
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Table 8: Hyperparameters used to train our model

Parameter MMSE-HR PURE UBFC-rPPG
Passband Frequency (bpm) 42 42 42
Cutoff Frequency (bpm) 150 150 150
Num Taps 5 5 5
Frame Stride (sec) 0.4 0.4 0.4
Frame Stride Test (sec) 10 10 10
FPS 25 30 30
Signal Length 250 300 300
Num Res Block 1 1 1
Attention Resolution [2, 4] [2, 4] [2, 4]
Learning Rate 1e-3 1e-3 1e-3
Weight Decay 0 0 0
Dropout 0 0 0
Epochs 10 15 15

A.3 Implementation Details: Hyperparameters

As mentioned in the main paper, we implement our code in PyTorch using the PyTorch Lightning Falcon
& The PyTorch Lightning team (2019) library. Our models are identical learnable UNets from Dhariwal &
Nichol (2021). The hyperparameters used to train our models are in Table 8.

A.4 Reconstruction error vs HR error

There are some scenarios in which the HR error and the reconstruction error diverge. We show an example
in Figure 8 in which the reconstruction error is better without the RCL loss, but the heart rate error is lower
with the RCL loss. The model with the RCL loss produces higher error and standard deviation, even though
on average the heart rate prediction is better.

We show a scenario in Figure 9 in which our normalized error is high even though our reconstruction is
quite good. We plot our signal and reconstruction in the first row. In the bottom row we plot the absolute
error between the mean signal and ground-truth, the standard deviation of the power measured across each
frequency bin for all samples, the normalized error across each frequency bin, and the bins which have a
normalized error greater and less than as in Sun et al. (2024). We see significant normalized error because
our signal is very confident in reconstruction (low standard deviation) relative to the absolute error, which
causes the normalized error to explode (which happens similarly in the computation of Equation 14). One
of the reasons this happens is because of the ground-truth: the ground-truth signal is captured at the finger
while we reconstruct the signal from the face. While these signals are very similar, they are not the same,
resulting in error. In fact, we do not want to reconstruct the finger signal exactly—we want to reconstruct
the signal from the face. Ideally we would capture ground-truth PPG signal from the face, but given the
data collection constraints, collecting finger PPG is the best option.
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With RCLWithout RCL

Figure 8: The reconstruction error is better without the RCL loss, but the heart rate estimation error is
worse. This scenario is not necessarily uncommon. Without the RCL loss the network is overconfident in a
wrong heart rate prediction.

Figure 9: We plot the Measurements and reconstruction in the top row, and also plot the absolute error of the
mean signal against the ground-truth and the standard deviation of the power in each frequency bin across
all samples. We use these quantities to predict the normalized error, and plot the frequency bins in which
the normalized error is greater and less than 3. Given that the ground-truth PPG signal is just an estimate
of the pulse from face, we can see large normalized error during inference even though our reconstruction is
nearly correct.
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