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1 TEMPORALLY SPARSE BIOMARKER DATA

Haematological biomarkers from clinical chemistry tests are widely used in medical practice, gen-
erating large-scale molecular data that can support health and disease research (Uttley et al., 2016;
Foy et al., 2025). Many of these biomarker values and their dynamics are known to be strong in-
dicators of health-related traits. Emerging evidence indicates that many complex diseases, such as
immune-mediated diseases (IMIDs), exhibit pre-diagnostic stages that can be inferred from these
biomarkers (Vestergaard et al., 2023; Deane et al., 2010). A pre-diagnostic stage refers to a phase
where a patient has not yet met the clinical criteria for diagnosis, yet subtle, systemic changes in
their biomarker profiles suggest an elevated risk of disease onset.

Detecting early dysregulation in biomarker patterns is crucial for enabling timely preventative in-
terventions. Unfortunately, routine clinical sampling is guided by medical needs rather than stan-
dardized research protocols, introducing confounding noise. As such, similar biomarker values may
be observed across multiple conditions, making it difficult to distinguish disease-specific patterns
and reducing predictive specificity. More importantly, it results in irregular sampling intervals, in-
troducing sparsity into the data’s temporal dimension. All this makes it difficult to apply standard
time-series models, which often rely on interpolation or imputation to fill in missing data (Herbers
et al., 2021; Ahmed et al., 2023). Such preprocessing can obscure true biological signals, distorting
learning patterns, reducing predictive accuracy, and compromising interpretability.

2 DETECTING DISEASE ONSET FROM SPARSE BIOMARKERS WITH
INTERPRETABLE GRAPH LEARNING

Our ultimate goal is to identify biomarker dysregulation periods predictive of disease onset. To
address the sampling challenges, we model biomarker trajectories as time-weighted directed graphs,
preserving temporal structure without imputation or zero-inflation. In this framework, detecting
dysregulation reduces to identifying the key nodes that correspond to critical periods.

For each individual, we define a graph composed of multiple longitudinal trajectories, one for each
of the biomarkers measured throughout their history. These trajectories are represented as directed
line graphs Gk = (V,E), where V = {v1, v2, . . . , vT } is the set of nodes, with each node vt
representing a sampling event at time t, and where E = {(v1, v2), (v2, v3), . . . , (vT−1, vT )} is the
set of edges. To encode the temporal structure of the data, each edge (vt, vt+1) ∈ E is assigned a
weight wt = ρ(∆t), computed as a function of the time interval ∆t = tt+1−tt between consecutive
sampling events, where ρ is a weighting function that maps the time interval ∆t to a scalar.

Since our problem formulation aims to detect important nodes, we leverage and extend the recently
proposed interpretable GNAN (Bechler-Speicher et al., 2024). Unlike black-box deep learning mod-
els, GNANs provide intrinsically interpretable predictions by constraining the use of feature cross-
products and graph topology, resulting in a transparent architecture which provides node and feature
importance metrics. This allows us to trace which biomarkers and time points contribute most to
a classification decision, shifting the focus to explaining when and how disease-related changes

1



Published at LMRL Workshop at ICLR 2025

Figure 1: Diagram illustrating node-level interpretability of synthetically generated data. The size
of each biomarker node corresponds to the importance that the model assigned to it. Individual-level
trajectories cannot be provided due to Danish data protection laws.

emerge. We extend the original GNAN formulation to generate node representations as shown in
Figure 1:

[hi]k =
∑
j∈V

ρ

(
1

0.1 + ∆tji

)
fk(x

(k)
j ), (1)

where [hi]k is the k-th entry of the representation of node i, denoted as hi. This formulation simpli-
fies the distance function of the original GNAN by leveraging symmetries to make the computation
of node distances efficient. Additionally, we incorporate a one-dimensional representation of the
biomarker’s one-hot encoding to capture categorical information alongside continuous trajectories.
For the full formulation see Appendix A.1.

We demonstrate our approach using binary classification of the pre-diagnostic trajectories of pa-
tients and age-matched controls. We select a set of 2,500 Crohn’s Disease (CD) patients and 2,500
controls, sampling the trajectories of three routine clinical biomarkers: haemoglobin, albumin, and
C-reactive protein. These biomarkers were chosen for their widespread use in routine clinical testing
and their statistical association with the pre-CD disease state (Vestergaard et al., 2023).

As a work-in-progress, the model’s current performance is not yet sufficient for practical application,
indicating the need for further development and optimization. However, early results suggest that
the model is learning to capture at least some meaningful signals, as shown in Appendix A.3. In
order to understand whether the representations of the graphs that the model learns are biologically
coherent, we freeze the model and compute the importance of each node in patients’ graphs after
a single forward pass. To comply with privacy and data-sharing regulations we provide diagrams
from synthetic data of node-level interpretability plots in Figure 1.

Our initial results suggest that the model assigns varying importance to nodes, potentially distin-
guishing between biomarkers and across time. Notably, there is anecdotal evidence that it prioritizes
clusters near the trajectory’s end, implying that recent biomarker dynamics could matter more than
distant history. This aligns with previous findings that the association strength of the pre-diagnostic
signal peaks in the 1–2 years preceding diagnosis (Vestergaard et al., 2023).

3 CONCLUSION

We introduce a novel GNAN-based representation for sparse, temporal biomarker trajectories. Our
approach, still in early development, shows promise in learning sparse representations of haema-
tological biomarkers and providing insights into node-level feature importance. This is crucial for
clinical and biological applications, where interpretability and efficient representation are key for
decision-making and detecting early disease signs. Future work will explore extending the GNAN
model further by using recurrent architectures to model temporal nodes, expand support for a broader
set of biomarkers, integrate non-biomarker features (e.g., comorbidities), and model interactions
across multiple omics layers.
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MEANINGFULNESS STATEMENT

Understanding health and disease requires models that extract biologically relevant patterns from
complex, sparse, and available data. Patient medical history contains an incomplete yet invaluable
imprint of one of the most important aspects of life: our health. In this work, we propose using
data from routine blood tests, something that each of us has experienced in our lifetime, to learn
biomarker trajectories representative of our health. While we demonstrate our approach on CD, its
potential extends far beyond, offering a versatile framework for uncovering critical health patterns
in any longitudinal setting.
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A APPENDIX

A.1 TIME-DELTA GNAN FORMULATION

Given a node feature vector consisting of d individual features, each feature is treated as a separate
univariate series and processed by its corresponding function fk. For node i, the feature representa-
tion is:

[hi]k =
∑
j∈V

ρ

(
1

0.1 + ∆tji

)
fk(x

(k)
j ), (2)

where ρ is a distance weighting function and fk processes the corresponding feature set Sk.

This simplifies the original GNAN formulation in two ways:

1. The original #disti(j) function is replaced with ∆tji, which is computationally more effi-
cient to calculate.

2. Since ∆tji represents the difference in time between two dates in a directed graph, every
valid path between two nodes is equal in length. As such, we can remove the normalisation
term 1

#disti(j)
.

In addition to processing each biomarker feature independently, we introduce an additional one-
dimensional, node-level feature derived from the one-hot encoding of the biomarker. This feature is
computed using a multivariate function Foh, which takes as input the one-hot encoded representation
of the biomarker across nodes and aggregates it accordingly. Specifically, for node i, this additional
feature is given by:

[hi]oh =
∑
j∈V

ρ

(
1

0.1 + ∆tji

)
Foh(x

(oh)
j ), (3)

where x(oh)
j represents the one-hot encoding of the biomarker at node j. This ensures that GNAN

captures categorical biomarker information alongside continuous biomarker trajectories.

The final node representation is:

hi =
(
[hi]1, [hi]2, . . . , [hi]d, [hi]oh

)
. (4)

For graph-level tasks, we apply sum pooling:

hG =
∑
i∈V

hi, (5)

followed by a readout function for prediction:

σ

(
d∑

k=1

[hG]k

)
, (6)

where σ is an activation function (e.g., sigmoid for classification). Importantly, GNAN enables
interpretability by quantifying the influence of node j on feature set Sk:

Influence(j, Sk, G) = fk(x
(k)
j )

∑
i∈V

ρ

(
1

0.1 + ∆tji

)
, (7)

allowing us to identify critical time points that contribute most to the prediction. The total contribu-
tion of node i to the graph-level decision is:

TotalContribution(i) =
∑
j∈V

ρ

(
1

0.1 + ∆tji

) d∑
k=1

fk(x
(k)
j ). (8)

This formulation ensures that GNAN not only models sparse biomarker trajectories effectively, but
also provides an interpretable framework for identifying critical phases in disease progression.
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A.2 EXPERIMENTAL DETAILS

A.2.1 MODEL TRAINING

We trained a series of FeatureGroupGNAN models, all with ReLU activations, layers in the {3,5}
and hidden channels in the {100, 64} range. We used an Adam optimizer over 10 epochs with
a custom CosineAnnealingWarmRestartsDecay scheduler, with T0 in the {10, 50} range, decay
factor in the {0.3, 0.8} range, learning rate in the {1e-5, 5e-5} range and minimum learning rate in
the {5e-8, 5e-9} range.

All models were trained on a single NVIDIA Tesla V100-PCIE-16GB GPU.

A.2.2 DATASET

We train and experiment on a dataset of 2,500 individuals who eventually develop CD and 2,500
controls. The patients are sampled at random from a larger nation-wide cohort of CD patients.
Similarly the controls are sampled at random from a cohort of around 9 million individuals who
were never diagnosed with CD. All data referenced has been obtained from the Danish healthcare
registries. We select only the pre-diagnostic trajectories of patients, meaning the biomarkers that
were sampled before a formal diagnosis. We then downsampled blood tests from controls to align
with the typical age of onset in CD, ensuring a comparable testing frequency between controls
and patients. The resulting distributions over the number of tests per-person is displayed in Figure
2. To comply with privacy and data-sharing regulation we exclude all samples with less than 5
measurements before computing the adjusted distributions and producing the plots.

(a) Patient Data Distribution

(b) Control Data Distribution

Figure 2: Comparison of patient and control data distributions after downsampling controls by age.
Values below n=5 were excluded due to Danish data protection rules.
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A.3 INITIAL PERFORMANCE DETAILS

Although still in early development, our model achieves performance comparable to baseline meth-
ods reported in UK Biobank (UKBB) studies for similar biomarkers (Sazonovs* et al., 2025). How-
ever, a key distinction is that these baseline models were evaluated on data with homogeneous time-
point sampling, whereas our model was developed and tested on temporally sparse trajectories. Fur-
thermore, UKBB data is subject to higher informational bias, as control participants were generally
healthier due to the requirement to attend one of the recruitment facilities. In contrast, control data
in our Danish cohort was hospital-sampled, likely representing a population with a worse overall
health profile.

(a) Higher learning rate decay and faster restart

(b) Lower learning rate decay and slower restart

Figure 3: Logspace of batch training loss (BCEWithLogitsLoss). The plots demonstrate the model
is capable of learning some initial signal, before finding a local minimum early on and stabilising.
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(a) Test Area under the curve (AUC)

(b) Test Accuracy

Figure 4: Test AUC and Accuracy across training. The two lines in each plot correspond to different
segments of the same training run, where training was resumed from a checkpoint after reaching the
initial stopping point

(a) Test Confusion Matrix after 1 epoch (b) Test Confusion Matrix after 40 epochs

Figure 5: Comparison of test set confusion matrices. Despite not yet being performant enough to
be clinically relevant, the model does seem to learn some initial signal that is discriminative of CD
patients and controls.
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