
Consensus Label Propagation with Graph Convolutional
Networks for Single-Cell RNA Sequencing Cell Type

Annotation

Daniel P Lewinsohn
Oregon Health and Science University

Colorado College
lewinsda@ohsu.edu

Donald F Conrad
Oregon Health and Science University

conradon@ohsu.edu

Cory B Scott
Colorado College

cbs@coloradocollege.edu

Abstract
Single-cell RNA sequencing (scRNA-seq) data, annotated by cell type, is useful in
a variety of downstream biological applications, such as profiling gene expression
at the single-cell level. However, manually assigning these annotations with
known marker genes is both time-consuming and subjective. We present a Graph
Convolutional Network (GCN) based approach to automate the annotation process.
Our process builds upon existing labeling approaches, using state-of-the-art tools to
find highly-confident cells through consensus and spreading these confident labels
with a semi-supervised GCN. Using simulated data and two scRNA-seq data sets
from different tissues, we show that our method improves accuracy over a simple
consensus algorithm and the average of the underlying tools. We also demonstrate
that our GCN method allows for feature interpretation, revealing important genes
for cell type classification. We present our completed pipeline, written in Pytorch,
as an end-to-end tool for automating and interpreting the classification of scRNA-
seq data.

1 Introduction
Single-cell RNA sequencing (scRNA-seq) measures the RNA from each gene present in an individual
cell, serving as a proxy for gene expression. High-quality labels of cell type based on the tran-
scriptional profile produced by scRNA-seq have proven valuable for characterizing gene expression
of cells, and for discovering cell types and genetic drivers of disease. Traditionally, these labels
are produced by unsupervised clustering followed by labeling clusters with known marker genes.
However, unsupervised clustering is limited by issues such as the size of scRNA-seq data sets as well
as subjectivity in reclustering and biological interpretation of clusters [1].

The limitations of traditional cell type annotation methods have necessitated the development of
automated methods for cell labeling. Three main categories of tools have emerged: marker gene
based, correlation based, and supervised classification based [2]. Marker based approaches employ
known marker genes for labeling, while correlation and supervised learning based approaches require
manually labeled scRNA-seq data sets with the cell types of interest. Within these broad categories,
the performance of individual tools varies widely across data sets [3]. As a result, using the consensus
of multiple classification tools could yield higher accuracy. However, there currently exist no tools
for researchers to easily apply multiple classification algorithms to their scRNA-seq data.

We address these issues in two ways. First, we provide a pipeline for annotation of scRNA-seq data
with multiple state-of-the-art annotation algorithms. Second, we implement and test a semi-supervised
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Figure 1: Starting from an scRNA-seq data set, a user can apply any number of tools which classify
cell types (for example, classification from pre-labeled reference data or from reference genetic
markers). If a majority of these underlying tools assign the same label to a cell, we say the ensemble
is confident in this label. Our GCN learns to propagate labels from confidently labeled cells to the
rest of the cells ("unconfident cells") via message passing in a K-nearest neighbor graph.

Graph Convolutional Network (GCN) as a mechanism to propagate labels from confidently labeled
cells to unconfidently labeled cells. We show our method improves overall classification accuracy
(and, more specifically, classification accuracy on unconfidently labeled cells) compared to taking the
consensus of the labels from the underlying tools. We also demonstrate the use of DeepLIFT [4] as
an effective interpretation tool for our GCN model, allowing researchers insight into classification
decisions and important cell type gene markers.

2 Our Model
Picking Confident Labels via Consensus. Our method first involves picking confident labels for
a subset of cells in a given data set. Our pipeline currently includes five different state-of-the-art
annotation methods: SCINA [5], ScType [6], ScSorter [7], SingleR [8], and ScPred [9]. These
methods classify cells via clustering, specific marker genes, similarity to a reference data set, or a
mix of all three - see Appendix D for an in-depth discussion of these tools. Our pipeline also allows
researchers to upload their own predictions and utilize other tools. We designate a cell as being
confidently labeled (and keep that cell’s label) if a majority of tools agree on that label. We also
compare all methods to a non-parametric label propagation approach (described in Appendix G).

Semi-supervised GCN. We construct a GCN with l EdgeConv [10] layers with SiLU activation
function and summation aggregation. Each layer propagates embedding vectors between each node
(featurized in PCA space) and its k nearest neighbors (including itself). A final linear layer projects
node embeddings into label space (whose dimension is the number of cell types in our data set). For
architecture details see Appendix A. We train our GCN for 150 epochs, with the Adam optimizer
[11] at a learning rate of 0.0001. Our training loss is Cross-Entropy loss on the set of confidently
labeled cells. Nearest neighbors are generated separately for each batch of each epoch.

Interpretation with DeepLIFT. We employ DeepLIFT [4] with the Rescale rule as implemented
by Captum [12]. We use the same hyperparameters batch size b, neighbors k, number of message
passing steps l, and final embedding layer size e as used during training. DeepLIFT uses the gradient
of a neural network’s outputs with respect to inputs to determine how much a given classification
depended on a given input variable (in our case, how much classification of a given cell type depends
on each gene). Calculating these attribution scores is only possible for a differentiable model, like
our GCN - not possible for any of the underlying tools. We note here that the pipeline we analyzed
with DeepLIFT included the PCA step, resulting in attribution scores per gene for each cell.

3 Data Sets
Preprocessing Data. The initial input to our pipeline is a scRNA-seq count matrix X where Xng

corresponds to observed gene counts for gene g in cell n. Cells expressing < 200 genes and genes
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Table 1: Accuracy percent scores for all data sets for both all cells and “unconfident cells”: cells for
which the underlying methods did not have consensus. GCN accuracies are the mean ± standard
deviation of accuracies from five randomly initialized trials.

Method
Simulation 0.7 Simulation 0.8 Testis PBMC

All Unconf . All Unconf . All Unconf . All Unconf .

Ours (GCN) 90.0 ± .61 66.0 ± 3.9 96.1 ± .22 83.3 ± 2.6 86.2 ± .12 80.9 ± 1.8 93.1 ± .05 70.6 ± 1.5
Max Consensus 86.4 42.9 91.2 25.9 80.8 0.0 91.2 6.8

Tool Avg. 69.3 ± 14 33.1 ± 32 76.7 ± 12 34.6 ± 28 72.1 ± 16 21.7 ± 36 75.0 ± 6.1 36.9 ± 34
ScType 64.8 13.5 79.9 29.4 84.8 63.0 85.5 81.8
ScSorter 85.8 51.3 88.7 38.8 77.5 2.2 71.5 65.9
SCINA 53.7 7.7 58.7 2.4 53.9 0.0 73.3 6.2
SingleR 83.1 80.1 85.2 77.6 NA NA 70.3 13.4
ScPred 59.2 12.8 71.0 24.7 NA NA 74.4 17.1

Non-Parametric 30.6 16.7 37.4 15.3 87.4 84.8 87.9 70.8

expressed in < 3 cells are removed, and X is row-normalized according to xi = log(1 + ((xi ∗
10000)/Σxi). Both of these steps are common scRNA-seq preprocessing steps [13][14]. Finally, we
use Principal Components Analysis (PCA) to project X down to 500 features per cell.

Simulated Data. We generated our simulated data sets with Splatter [15] and parameters estimated
from 4000 Pan T Cells from a healthy donor [16]. Each simulated data set contains 1000 cells,
evenly split between four cell types with different transcriptomic profiles. To demonstrate that our
pipeline can also incorporate reference-based tools (like SingleR and ScPred), we also generated 1000
reference cells for each data set with the same gene profiles (separated from the original data with a
batch.facScale of 0.5 to simulate batch effects). Simulated data sets vary by the de.facScale parameter
which determines the magnitude of variation in gene expression profile between cell type groups.
Five markers were selected randomly from the top ten differentially expressed genes from each cell
type. The 0.7 de.facScale and 0.8 de.facScale simulated data sets had 156 and 85 unconfidently
labeled cells respectively.

Real Data. It is not usually feasible to acquire ground truth labels for scRNA-seq data. An
alternative gold standard is Fluorescence-activated Cell Sorting (FACS), which pre-sorts cells by
markers prior to conduction of scRNA-seq [17]. We test our model on two FACS-labeled data sets.

First, we use a scRNA-seq data set generated from mouse testis cells [18]. This data contains three
cell types: 292 Spermatogonia, 244 Spermatocytes, and 156 Spermatids after filtering. Cell type
markers were selected from relevant literature [19] and no reference data set was used for this data.
There were 46 unconfidently labeled cells after prediction tool voting on the data set.

Second, we use an scRNA-seq data set generated from Human peripheral blood mononuclear cells
(PBMCs) [20]. This data contains ten cell types, however, we removed cell types not purely sorted
by FACS, combined CD4+ T cells, and combined CD8+ T Cells. This resulted in five cell types:
9,106 B Cells, 2,341 Monocytes, 7,572 Natural killer (NK) Cells, 38,006 CD4+ T Cells, and 19,856
CD8+ T Cells. We used the same markers as ScSorter [7] and used the 10X PBMC 3k data set as a
reference as in [21]. This data set contained 2,310 unconfidently labeled cells.

4 Results
4.1 Accuracy on Test Sets

Experiment Settings. For the simulated and testis data sets, 20 percent of confidently labeled cells
were masked and held out as a validation set. We performed a hyperparameter optimization search
(see Appendix A for details) for options of batch size b, neighbors k, layers l, and embedding layer
size e, selecting the GCN architecture with the highest validation accuracy. For the PBMC data set,
five percent of the data set was used for this same hyperparameter optimization process as using
the entire data set was computationally intractable. Each GCN used EdgeConv feature propagation
between each node and its k closest neighbors, with distance determined dynamically between node
features (including the PCA features at the first layer). Five random initializations of the optimal
model were then trained for 150 epochs as described above and mean accuracy was recorded. We
use max consensus, the non-parametric neighbor majority approach, and other tool accuracies as
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Figure 2: Heatmap of DeepLIFT attribution scores after absolute value and scaling by cell type
for each predicted cell type and heatmap of average log normalized gene expression scaled by gene
for each predicted cell type. a. Top five most important genes for testis data set. b. Top three most
important genes for PBMC data set. See Appendix B for extended versions of these plots.

baselines for our model. Max consensus simply chooses the cell type with the most votes. In the
event of a tie, this method returns "unknown". We report total accuracy and unconfident cell accuracy
for each data set. “Unconfident cell accuracy" refers to the accuracy on only the cells where the
underlying tools did not find consensus.

Simulated Data Sets. For both simulated data sets, the optimal model has batch size 20, 2 nearest
neighbors, and 2 EdgeConv layers. For the simulation with 0.7 de.facScale, 25-dimensional em-
bedding space was optimal, whereas for the simulation with 0.8 de.facScale the optimal value was
40. Table 1 shows our model outperforms all other methods for total accuracy and slightly under
performs SingleR for unconfident cell accuracy on the 0.7 de.facScale data.

Testis Data Set. Only marker based prediction tools were used for this data set as no labeled
reference was easily available. The optimal model for this data set used batch size 20, 2 nearest
neighbors, 2 EdgeConv layers, and embedding layer size of 25. Table 1 shows accuracy results,
demonstrating our GCN model outperforms all other methods for both total and unconfident cell
accuracy, except for the non-parametric approach.

PBMC Data Set. The optimal model for this data set used batch size 50, 2 nearest neighbors, 2
EdgeConv layers, and embedding layer size of 25. Table 1 shows accuracy results. For accuracy on
unconfident cells, the GCN model places third behind ScType and the non-parametric approach. Our
model still outperforms all other methods for overall accuracy.

4.2 Feature Interpretation

Figure 2A shows the five most important (as discovered by DeepLIFT) genes by cell type and the
expression of these same genes for the testis data set. Interestingly, all of these top genes have uniquely
high attribution in their important cell type. The highly attributed genes for a cell type also have
relatively high gene expression in that cell type. We also observe high expression of Spermatocyte
genes in Spermatid cells. DeepLIFT also indicates genes like Tnp1 that are differentially expressed
in those cell types, but not explicitly included as marker genes. Figure 2B shows the three most
highly attributed genes by DeepLIFT for each predicted cell type and the scaled gene expression
for these genes by cell type for the PBMC data. For B Cells, Monocytes, and NK Cells we see a
clear connection between the genes picked out as important by DeepLIFT and the genes expressed
by those cell types. However, for CD4 and CD8 T Cells, the expression is not clearly higher for all
genes. Importantly, we do observe CD8B as the most important gene for CD8 T Cell classification, a
key marker for the cell type. We also observe CD3E (another important marker for all T Cells) as an
important gene for both sub types of T Cells. One potential reason for less informative DeepLIFT
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scores for CD4 and CD8 T Cells is that the GCN often misclassifies CD8 T Cells as CD4 T Cells.
Importantly, the GCN is the only one of our tested methods that can be interpreted using DeepLIFT.

5 Discussion
In this work we propose a novel framework for scRNA-seq cell type annotation. Building upon
existing annotation tools, we implement an EdgeConv based GCN model to propagate consensus
based confident labels to the remaining unlabeled cells. We show an improvement in accuracy over a
baseline max consensus algorithm and the average tool accuracy. We also demonstrate the ability
to identify important genes for classification via model interpretation with DeepLIFT. The model
interpretation is especially valuable for researchers as it has the potential to uncover novel gene
markers and provide insight into the model’s decisions.
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a b

c d

Figure 3: Spread of validation accuracy scores as a function of various hyperparameters. The
hyperparameters included are number of neighbors, batch size, GCN layers, and final embedding
layer size. a. Testis data set. b. PBMC data set. c. Simulation 0.7 data set. d. Simulation 0.8 data set

A Hyperparameter Search Details

See Figure 3 for details of hyperparameter search on validation set of each data set.

Our model architecture consists of l EdgeConv layers. Each EdgeConv layer consists of one round
of message passing along edges of the graph, followed by a dense neural network model that maps
from one layer’s embedding space to the next layer’s. Each node aggregates information using the
sum of its received messages (from neighbors and itself). In all of our model architectures, the first
layer takes input embedding size 500 and outputs embedding size 1000. The middle layers accept
embedding size 1000 and output embeddings of the same size. The final layer accepts embedding
size 1000 and outputs final embedding size e. Both hyperparameters number of layers l and final
embedding size e are included in the hyperparameter search.

B Extended DeepLIFT Plots

See Figure 4 for specific gene expression of each highly important gene for all cell types in testis and
PBMC data sets.

C Github Link

The code for our pipeline used to generate results in this paper is available at https://github.
com/lewinsohndp/scSHARP.
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Figure 4: Heatmap of DeepLIFT attribution scores after absolute value and scaling by cell type for
top five most important features by predicted cell type and violin plot of log normalized expression
for each gene. a. Attribution heatmap for testis data set. b. Expression plots for testis data set by
predicted cell type. c. Attribution heatmap for PBMC data set. d. Expression plots for PBMC data by
predicted cell type.
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Figure 5: Plot showing relationship between de.facScale simulation parameter and component tool
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D Discussion of Methods
ScType employs a clustering-based approach that inputs the scRNA-seq cells by genes matrix along
with cell type gene markers, and outputs predictions [6]. ScSorter is another clustering-based
approach that inputs the scRNA-seq cells by genes matrix along with cell type gene markers. This
method recognizes that over-expression of certain marker genes is not present in populations of many
cell types and attempts to address this problem [7]. SCINA is another state-of-the-art approach that
inputs the same information as ScType and ScSorter, with the added benefit of being much faster.
SCINA uses an expectation-maximization algorithm to assign labels [5]. SingleR requires both the
input scRNA-seq cells by genes matrix and a labeled reference cells by genes matrix. This method
uses correlation between the reference and query sets to extend labels [8]. ScPred requires the same
information as SingleR. This method uses feature space reduction to pull out important cell type
features and then a machine learning probability-based prediction algorithm [9].

E de.facScale Simulation Parameter
See Figure 5 for details on how the de.facScale parameter affects classification difficulty. With
de.facScale ≤ 0.5, the generated data is too difficult for any of the component tools to analyze -
all of the component tools do poorly. On the other hand, de.facScale ≥ 0.9 is too easy - the cell
types are well-separated enough in gene space that all component methods are able to classify them
correctly. We generated simulated data with de.facScale values of 0.7 and 0.8, as these values produce
a challenging, but still attainable, benchmark for classification.

F GCN Confusion Matrices
See Figure 6 for confusion matrices from GCN predictions on all data sets. We note that nearly all of
these confusion matrices are characterized by a single cell type being the majority of unconfident
cells. It is unclear why this is the case for the PBMC and testis data. In the synthetic data, one
possible explanation is the way we choose marker genes. We randomly select five of the top ten
differentially expressed genes in the simulated data of each cell type as markers (this is standard
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Figure 6: Confusion matrices for GCN predictions in all and unconfidently labeled cells. a. Simula-
tion 0.7 b. Simluation 0.8 c. Testis d. PBMC

Table 2: Accuracy percent scores for all data sets for both all cells and “unconfident cells”: cells for
which the underlying methods did not have consensus.

Method
Simulation 0.7 Simulation 0.8 Testis PBMC

All Unconf . All Unconf . All Unconf . All Unconf .

Table 1 Best 90.0 ± .61 80.1 96.1 ± .22 83.3 ± 2.6 86.2 ± .12 80.9 ± 1.8 93.1 ± .05 81.8
Non-Parametric 30.6 16.7 37.4 15.3 87.4 84.8 87.9 70.8

practice for using Splatter). It is possible this method results in some cell types with better markers
than others. This was intentional, as in real-world data not all cell types will always have the same
strength of cell type marker. For the actual data sets, this is likely because certain cell types (such as
CD4 and CD8 T Cells) are more transcriptionally similar and likely to be misclassified. A common
theme in both of these cases is that within each data set, some cell types are inherently easier to
classify than others.

G Non-parametric Neighbor Majority Label Propagation
We implemented a non-parametric neighbor majority approach as an additional baseline to test our
GCN model. This method operates on the 500D vectors produced as the principal components of the
gene expression matrices for each data set. We use similarity in this vector space to propagate labels
from confident nodes to the remainder of the population. This is similar to the message passing step in
our GCN model, with the difference that this method does not use a neural network to encode/decode
messages. Each round of message passing, each node’s label is updated as the majority label of its k
nearest neighbors (only considering those neighbors who have been labeled thus far). We test three
strategies:

• one round of label propagation;

• iterating until less than 5 percent of labels change between epochs; and

• iterating until all cells are labeled or 50 epochs have gone by.

For this experiment, we updated cells in batches of 1000, as constructing full k-NN graphs for our
PBMC data set proved computationally intractable. It is important to note batch size 1000 leaves
both the simulated and testis data sets fully intact without batching.
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Figure 7: Number for neighbors vs accuracy percent for different convergence methods and data sets.
a. Simulation 0.7 b. Simulation 0.8 c. Testis d. PBMC

The results for this method across a variety of k values are shown in Figure 7. We then compared
this approach to the best methods from Table 1 in Table 2. To select k, we did a grid search of the
same k values and convergence approaches used in Figure 7 and selected the optimal configuration
based on a held-out validation set of 20 percent of the confidently labeled cells. For the PBMC data
set, only five percent of the data set was used for this hyperparameter search. For the Simulation
0.7, Simulation 0.8, and PBMC data set, running for one epoch with 300, 10, and 200 neighbors
respectively was optimal. For the testis data set, running until convergence with 200 neighbors was
optimal. These results show the non-parametric approach far under performs our method in the
simulated data sets. However, this approach slightly out performs our GCN method in the testis data
set. Additionally, it slightly out performs our GCN method in the PBMC unconfidently labeled cells.
Although this non-parametric neighbor majority approach does slightly out perform ours in the testis
data set and in the PBMC unconfident cells, this method is not differentiable and so does not allow
for gene-level model interpretation via DeepLIFT, as our method does. Additionally this method
of label propagation is not guaranteed to label all of the cells in the data set - for PBMC, the best
performing variant of this method left 31 cells unlabeled.
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