

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

DICHOTOMOUS DIFFUSION POLICY OPTIMIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Diffusion-based policies have gained growing popularity in solving a wide range of decision-making tasks due to their superior expressiveness and controllable generation during inference. However, effectively training large diffusion policies using reinforcement learning (RL) remains challenging. Existing methods either suffer from unstable training due to directly maximizing value objectives, or face computational issues due to relying on crude Gaussian likelihood approximations, which require a large amount of sufficiently small denoising steps. In this work, we propose *DIPOLE* (Dichotomous diffusion **P**olicy improvement), a novel RL algorithm designed for stable and controllable diffusion policy optimization. We begin by revisiting the KL-regularized objective in RL, which offers a desirable weighted regression objective for diffusion policy extraction, but often struggles to balance greediness and stability. We then formulate a greedified policy regularization scheme, which naturally enables decomposing the optimal policy into a pair of stably learned dichotomous policies: one aims at reward maximization, and the other focuses on reward minimization. Under such a design, optimized actions can be generated by linearly combining the scores of dichotomous policies during inference, thereby enabling flexible control over the level of greediness. Evaluations in offline and offline-to-online RL settings on ExORL and OGBench demonstrate the effectiveness of our approach. We also use *DIPOLE* to train a large vision-language-action (VLA) model for end-to-end autonomous driving (AD) and evaluate it on the large-scale real-world AD benchmark NAVSIM, highlighting its potential for complex real-world applications.

1 INTRODUCTION

Due to the strong capability of diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020) in modeling multi-modal action distributions and controllable generation during inference (Dhariwal & Nichol, 2021; Ho & Salimans, 2022), modeling policies using diffusion models has become a popular choice in solving complex decision-making tasks such as embodied robotics (Chi et al., 2023; Octo Model Team et al., 2024; Liu et al., 2025) and autonomous driving (Zheng et al., 2025; Liao et al., 2025). Although proven to be effective in imitation learning-based settings, training large diffusion/flow matching policies that surpass data-level performance with reinforcement learning (RL) (Sutton et al., 1998) has remained an important yet challenging direction.

Training diffusion policies with RL faces numerous challenges, most notably, learning stability and computation efficiency. A naïve approach to train diffusion policies with RL is to directly optimize the reward or value objective via gradient backpropagation through the multi-step denoising process (Xu et al., 2023b; Clark et al.), which often suffers from noisy and unstable gradient updates, while also being extremely costly. To avoid this, some studies adopt a compromise by freezing the diffusion model and instead searching for optimized noises (Wagenmaker et al., 2025; Hansen-Estruch et al., 2023), a strategy often referred to as inference-time scaling (Ma et al., 2025; Singhal et al.). However, these approaches rely heavily on well-pretrained diffusion policies and are fundamentally limited by their performance upper bound. Another explored direction is to adopt policy gradient methods (such as PPO (Schulman et al., 2017)) for diffusion policy optimization, which models the denoising process as a multi-step Markov decision process (MDP) and uses isotropic Gaussian approximations to compute the log-likelihood of intermediate denoising steps (Black et al., 2024b; Ren et al., 2025). However, the crude Gaussian-based approximation only provides reasonable likelihood information when adopting sufficiently small denoising steps, which inevitably results in large exploration spaces and prolonged training, making such methods difficult to scale and

prone to approximation error accumulation in practice. Therefore, a critical research question arises: *Can we build a more effective and stable RL method for diffusion policy optimization?*

To answer this question, we turn our attention to the KL-regularized RL objective, which offers a nice, closed-form weighted regression objective for optimal policy extraction (Peng et al., 2019). We can thus optimize a diffusion policy by incorporating an exponential reward- or value-based weighting term, scaled by a temperature parameter, into the standard diffusion regression loss (Lee et al., 2023; Kang et al., 2023; Zheng et al., 2024; Ma et al.). Although promising, this approach also suffers from several limitations. A fundamental issue is that weighted regression can only achieve greedy reward maximization when the temperature parameter is set to a large value, which easily leads to exploding loss and training instability. Moreover, the learning loss becomes dominated by a small number of high-reward samples, which severely undermines training effectiveness and scalability even with increased data (Park et al., 2024). To address the previous challenges, we propose **DIPOLE** (**D**ichotomous **I**mprovement **P**olicy **O**ptimization), a novel RL framework designed for highly stable and controllable diffusion policy optimization. Specifically, we introduce a greedified KL-regularized RL objective, which regularizes policy learning towards a value-reweighted reference policy. Interestingly, we show that the original unstable exponential weighting term in the optimal policy can be decomposed into two bounded smooth dichotomous terms. This naturally allows us to decompose the optimal policy into a pair of stably learned dichotomous policies: one aims at reward maximization and the other focuses on reward minimization. Moreover, the optimized policy can be recovered through a linear combination of the scores from both dichotomous policies, which closely aligns with the widely used classifier-free guidance mechanism in diffusion models (Ho & Salimans, 2022), enabling perfect controllability over the greediness of action generation.

Extensive experimental results demonstrate the effectiveness of **DIPOLE** across a wide range of locomotion and manipulation tasks in ExORL (Yarats et al., 2022) and OGBench (Park et al., 2025a) benchmarks, evaluated under both offline and offline-to-online RL settings. Furthermore, we scale our learning approach to a large vision-language-action (VLA) model and evaluate it on the large-scale real-world autonomous driving benchmark NAVSIM (Dauner et al., 2024), showcasing significant performance improvements over the pre-trained baseline. These results highlight the strong applicability of **DIPOLE** for complex, real-world decision-making scenarios.

2 PRELIMINARY

Reinforcement learning. We consider the RL problem presented as a Markov Decision Process (MDP), which is specified by a tuple $\mathcal{M} := (\mathcal{S}, \mathcal{A}, \mathcal{P}, r, \gamma)$. \mathcal{S} and \mathcal{A} represent the state and action space; $\mathcal{P} : \mathcal{S} \times \mathcal{A} \rightarrow \Delta(\mathcal{S})$ is transition dynamics; $r : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ is the reward function; and $\gamma \in (0, 1)$ is the discount factor. We aim to find a policy $\pi : \mathcal{S} \rightarrow \Delta(\mathcal{A})$ that maximizes the expected return: $\mathbb{E}_\pi [\sum_{k=0}^{\infty} \gamma^k \cdot r(s_k, a_k)]$. We define the discounted visitation distribution as: $d^\pi(s) = (1 - \gamma) \sum_{k=0}^{\infty} \gamma^k p(s_k = s | \pi)$, which measures how likely to encounter s when interacting with the environment using policy π . We also consider a replay buffer $\mathcal{D} = \{s_i, a_i, r_i, s'_i\}_{i=1}^N$, which can be a static dataset in the offline setting or dynamically updated with new samples in the offline-to-online setting. The state-value function and action-value functions are defined as: $V^\pi(s) = \mathbb{E}_\pi [\sum_{k=0}^{\infty} \gamma^k \cdot r(s_k, a_k) | s_0 = s]$ and $Q^\pi(s, a) = \mathbb{E}_\pi [\sum_{k=0}^{\infty} \gamma^k \cdot r(s_k, a_k) | s_0 = s, a_0 = a]$, and the advantage function is defined as $A^\pi(s, a) = Q^\pi(s, a) - V^\pi(s)$. Their optimal counterparts under the optimal policy π^* are denoted as V^* , Q^* , and A^* .

Diffusion/flow matching policies. Diffusion and flow matching models have attracted significant attention due to their strong expressiveness in capturing multi-modal data distributions, making them popular policy classes for complex decision-making tasks such as robotics (Chi et al., 2023; Black et al., 2024a) and autonomous driving (Zheng et al., 2025; Liao et al., 2025). The action generation can be formulated as a state-conditional generation problem in which a probability path transforms a source distribution (typically a standard Gaussian) into a target action distribution. A neural network ϵ_θ is trained to predict the noise along the path using the objective over a given dataset \mathcal{D} :

$$\mathcal{L}_{\epsilon_\theta} = \mathbb{E}_{t \sim U[0,1], \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), (s, a) \sim \mathcal{D}} \left[\|\epsilon - \epsilon_\theta(a_t, s, t)\|^2 \right], \quad (1)$$

where $a_t = \alpha_t a + \sigma_t \epsilon$ (we use the subscript t to distinguish diffusion steps from MDP steps k), with α_t and σ_t being predefined noise schedules commonly used in score-based diffusion models (Song

108 et al., 2021) or flow matching models (Lipman et al.). The multi-step diffusion process endows
 109 diffusion models with strong distribution-fitting capabilities. However, it also poses challenges for
 110 RL fine-tuning: gradient propagation through the entire diffusion process is costly and unstable; the
 111 exact likelihood computation with diffusion models is intractable, causing a series of problems when
 112 optimizing with existing policy gradient RL methods due to approximation error.

3 METHODS

116 In this section, we revisit the KL-regularized objective for diffusion policy optimization, revealing its
 117 strengths and limitations. We then introduce *DIPOLE*, a novel RL framework that decomposes the
 118 optimization problem into dichotomous policy learning objectives, thereby enabling stable training
 119 and greedy diffusion policy extraction.

3.1 KL-REGULARIZED OBJECTIVE IN RL

123 Reinforcement learning with KL regularization is a highly flexible framework that has been widely
 124 used in various RL settings, which constrains policy optimization to remain close to a reference
 125 policy μ , and has the following general form:

$$\max_{\pi} \mathbb{E}_{s \sim d^{\pi}(s)} \left[\mathbb{E}_{a \sim \pi(a|s)} [G(s, a)] - \frac{1}{\beta} D_{\text{KL}}(\pi(\cdot|s) \parallel \mu(\cdot|s)) \right], \quad (2)$$

126 where $\beta > 0$ is the temperature parameter, and $D_{\text{KL}}(p\|q) = \mathbb{E}_{x \sim p} [\log(p(x)/q(x))]$. $G(\cdot)$ is the
 127 evaluated return to be maximized, which can either be the reward function $r(s, a)$ as in single-step
 128 problems such as LLM RL fine-tuning (Korbak et al., 2022; Shao et al., 2024), or the action-value
 129 function $Q^{\pi}(s, a)$ or advantage function $A^{\pi}(s, a)$ as in standard multi-step settings. The specific
 130 choice of reference policy μ gives rise to different RL task settings. For example, setting μ to be the
 131 uniform distribution, we recover maximum entropy RL as in SAC (Haarnoja et al., 2018); setting
 132 μ to be the behavior policy in offline datasets \mathcal{D} , we obtain many offline RL algorithms (Wu et al.,
 133 2019; Xu et al., 2023a; Garg et al., 2023); lastly, setting μ to be a pre-trained policy π_0 or the
 134 recently updated policy π_{k-1} , it corresponds to offline-to-online fine-tuning scenarios (Nakamoto
 135 et al., 2023; Li et al., 2023) or trust-region style online policy optimization (Schulman et al., 2015).

136 The flexibility of the KL-regularized RL framework makes it an ideal choice for diffusion policy
 137 optimization. The best part is, it is known that the optimization objective in Eq. (2) also provides a
 138 closed-form solution for optimal policy π^* as follows (Nair et al., 2020):

$$\pi^*(a | s) \propto \mu(a | s) \cdot \exp(\beta G(s, a)), \quad (3)$$

139 Intuitively, the optimal policy is a reweighted version of the reference policy μ , in which actions with
 140 higher values are assigned greater probability density. As shown in several existing studies (Kang
 141 et al., 2023; Zheng et al., 2024), if given a pre-trained diffusion policy ϵ_{θ} trained with Eq. (1) as the
 142 reference policy μ , we can further optimize it with the weighted diffusion loss in Lemma 1 to extract
 143 the optimal diffusion policy ϵ^* .

144 **Lemma 1.** *We can generate optimal $a \sim \pi^*(a|s)$ in Eq. (3) by optimizing the weighted diffusion
 145 loss in Eq. (4) and solving the diffusion reverse process with obtained ϵ^* (Zheng et al., 2024).*

$$\mathcal{L}_{\epsilon_{\theta}} = \mathbb{E}_{t \sim U[0,1], \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), (s, a) \sim \mathcal{D}} \left[\exp(\beta G(s, a)) \cdot \|\epsilon - \epsilon_{\theta}(a_t, s, t)\|^2 \right]. \quad (4)$$

146 Compared to diffusion-based RL methods that rely on unstable reward/value maximization (Xu
 147 et al., 2023b; Clark et al.) or biased likelihood approximation (Black et al., 2024b; Ren et al., 2025),
 148 Eq. (4) offers a simple and scalable training scheme for policy optimization, requiring only the
 149 addition of a weighted term to the base diffusion learning objective in Eq. (1). Despite its simplicity,
 150 we do not observe the adoption of this scheme in many recent diffusion-based RL methods. Why is
 151 that? Actually, there exist several limitations for this exp-weighted regression scheme:

- 152 • *Optimality-stability trade-off.* As the exponential function $\exp(\cdot)$ grows rapidly, a high-quality
 153 action with a large $G(s, a)$ value can lead to an extremely large weight term when β is large, caus-
 154 ing the explosion of learning loss and destabilizing the training process (illustrated in Figure 1).

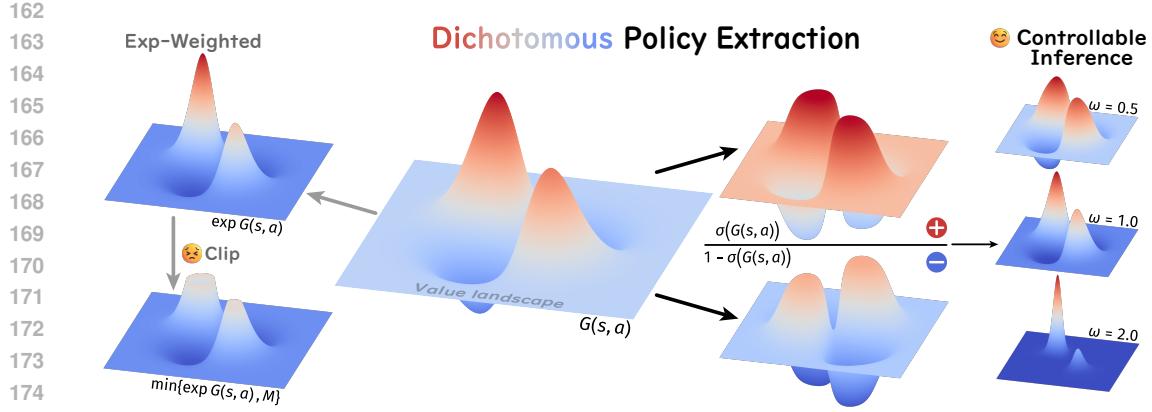


Figure 1: Illustration of the policy weighting scheme in *DIPOLE*. Based on our greedified policy optimization objective, the regression weight of the optimal policy can be decomposed into a pair of dichotomous terms, and the greediness for reward/value maximization can be flexibly controlled by ω .

In practice, many methods mitigate this issue by either using a small β or clipping the weighting term (Garg et al., 2023; Xu et al., 2023a; Hansen-Estruch et al., 2023). However, these treatments compromise the optimality of the extracted policy.

- *Inefficient learning.* The training loss becomes dominated by a small number of high-return samples, which is inefficient for policy optimization (Park et al., 2024). Additionally, poor-quality samples still retain positive weight, which can adversely affect policy learning. The constrained optimization objective also makes the learning process highly dependent on the quality of the reference policy μ , thereby limiting the potential for greedy policy optimization.

3.2 DICHOTOMOUS DIFFUSION POLICY IMPROVEMENT

To address the drawbacks of the previous weighted regression scheme while preserving its simplicity and scalability, we instead consider a greedified KL-regularized RL objective.

Greedified policy optimization. We begin by formulating a greedier learning objective compared to Eq. (2), presented in Eq. (5). At first glance, it appears to be complex; however, as we will show in the later derivation, its resulting closed-form optimal solution can lead to a remarkably elegant form for effective diffusion policy optimization.

$$\max_{\pi} \mathbb{E}_{s \sim d^{\pi}(s)} \left[\mathbb{E}_{a \sim \pi(a|s)} [G(s, a)] - \frac{1}{\omega \beta} D_{\text{KL}} \left(\pi(\cdot|s) \parallel \mu(\cdot|s) \cdot \frac{\sigma(\beta G(s, a))}{Z(s)} \right) \right], \quad (5)$$

In this revised objective, we instead regularize policy π with a greedified, value-aware reference policy weighted by $\sigma(\beta G(s, a)) / Z(s)$, where $Z(s)$ denotes the normalization factor and $\sigma(x) = 1 / (1 + \exp(-x))$ is the sigmoid function. This design shares a similar spirit with some offline RL methods that enhance policy performance by regularizing towards a greedier behavior policy or reward-weighted datasets (Singh et al., 2022; Hong et al., 2023; Xu et al., 2025). It is worth noting that we use a bounded and smooth sigmoid function as the weighting function, which greedily assigns high weights to high-return samples while avoiding numerical instability. Moreover, we introduce a new hyperparameter ω , termed the greediness factor, which provides an additional interface for adjusting the greediness of policy extraction. We will reveal its role in the later derivation. Based on the optimization objective in Eq. (5), we can get its closed-form solution as follows:

Theorem 1. *The optimal solution for Eq. (5) satisfies:*

$$\pi^*(a | s) \propto \mu(a | s) \cdot \sigma(\beta G(s, a)) \cdot \exp(\omega \cdot \beta G(s, a)). \quad (6)$$

Proof of this theorem can be found in Appendix B. The optimal solution corresponds to a value-aware reference policy with a special weighting scheme, where both β and the greediness factor ω control the level of greediness in the resulting policy. Next, we will show how this solution enables natural decomposition into a pair of dichotomous policies.

216 **Dichotomous policy extraction.** Leveraging the property of the sigmoid function, it's easy to show:
 217

$$\begin{aligned} 218 \quad \pi^*(a | s) &\propto \mu(a | s) \cdot \sigma(\beta G(s, a)) \cdot \exp(\omega \cdot \beta G(s, a)) \\ 219 \quad \Leftrightarrow \quad \pi^*(a | s) &\propto \mu(a | s) \cdot \sigma(\beta G(s, a)) \cdot \left(\frac{\sigma(\beta G(s, a))}{1 - \sigma(\beta G(s, a))} \right)^\omega \\ 220 \quad \Leftrightarrow \quad \pi^*(a | s) &\propto [\mu(a | s) \cdot \sigma(\beta G(s, a))]^{1+\omega} / [\mu(a | s) \cdot (1 - \sigma(\beta G(s, a)))]^\omega. \end{aligned} \quad (7)$$

223 Eq. (7) suggests that the optimal policy can actually be expressed as the ratio of two weighted
 224 reference policies with distinct exponents and weighting functions. Specifically, we can define a
 225 positive policy π^+ and a negative policy π^- as:

$$226 \quad \pi^+(a | s) \propto \mu(a | s) \cdot \sigma(\beta G(s, a)), \quad \pi^-(a | s) \propto \mu(a | s) \cdot (1 - \sigma(\beta G(s, a))), \quad (8)$$

228 where the positive policy π^+ aims to maximize the return and the negative policy π^- minimizes
 229 it. We call π^+ and π^- *dichotomous policies*, as they share similar form but with opposite focuses.
 230 With this definition, the optimal policy can be simply expressed as $\pi^* \propto [\pi^+]^{(1+\omega)} / [\pi^-]^\omega$. Careful
 231 readers will notice that both π^+ and π^- are weighted by strictly bounded sigmoid weight functions,
 232 instead of the unstable and unbounded exponential weight term $\exp(\beta G(s, a))$ in the optimal solution
 233 of the original KL-regularized objective Eq. (3). This means that the decomposed dichotomous
 234 policies can be stably trained, precluding loss explosion as discussed in Section 3.1. Moreover,
 235 as the positive policy π^+ prioritizes learning from high-return samples, while the negative policy
 236 π^- prioritizes learning from low-return samples, we can thus simultaneously utilize both good and
 237 bad data for policy optimization, completely resolving the issue of being dominated by high-return
 238 samples as in exp-weighted regression, and enabling more efficient learning.

239 Following Lemma 1, we can train the positive and negative policies π^+ and π^- using two diffusion
 240 models with their bounded sigmoid weight functions, parameterized as $\epsilon_{\theta_1}^+$ and $\epsilon_{\theta_2}^-$:

$$\begin{aligned} 241 \quad \mathcal{L}_{\epsilon_{\theta_1}^+} &= \mathbb{E}_{t \sim U[0,1], \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), (s, a) \sim \mathcal{D}} \left[\sigma(\beta G(s, a)) \cdot \left\| \epsilon - \epsilon_{\theta_1}^+(a_t, s, t) \right\|^2 \right] \\ 242 \quad \mathcal{L}_{\epsilon_{\theta_2}^-} &= \mathbb{E}_{t \sim U[0,1], \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), (s, a) \sim \mathcal{D}} \left[(1 - \sigma(\beta G(s, a))) \cdot \left\| \epsilon - \epsilon_{\theta_2}^-(a_t, s, t) \right\|^2 \right]. \end{aligned} \quad (9)$$

245 **Controllable generation.** To sample from the optimal policy π^* , note that based on Eqs. (7–8),
 246

$$\begin{aligned} 247 \quad \log \pi^*(a | s) &= (1 + \omega) \log \pi^+(a | s) - \omega \log \pi^-(a | s) + \log C \\ 248 \quad \Rightarrow \quad \nabla_a \log \pi^*(a | s) &= (1 + \omega) \nabla_a \log \pi^+(a | s) - \omega \nabla_a \log \pi^-(a | s), \end{aligned} \quad (10)$$

250 where C is a constant. This shows that the score function of the optimal policy π^* can be expressed
 251 as a linear combination of scores of the dichotomous policies, weighted by ω . Due to the inherent
 252 connection between the score function and the noise predictor in diffusion model (Ho et al., 2020),
 253 we can use $\tilde{\epsilon}(a_t, s, t) = (1 + \omega)\epsilon_{\theta_1}^+(a_t, s, t) - \omega\epsilon_{\theta_2}^-(a_t, s, t)$ in the reverse process of diffusion or
 254 flow matching for action sampling.

255 Interestingly, the formulation in Eq. (10) is remarkably similar to classifier-free guidance (CFG) (Ho
 256 & Salimans, 2022), a popular method for enhanced conditional diffusion generation, which has the
 257 form of $\tilde{\epsilon}(x_t, c, t) = (1 + \omega)\epsilon_\theta(x_t, c, t) - \omega\epsilon_\theta(x_t, t)$, where $\epsilon_\theta(x_t, c, t)$ is a conditioned version of
 258 $\epsilon_\theta(x_t, t)$ with conditioning signal c . This reveals the inherent connection between our greedified
 259 KL-regularized RL objective and the CFG mechanism. Intuitively, our method further strengthens
 260 the positive distribution by pushing the negative distribution in the opposite direction, thus enabling
 261 flexible control of the optimality level of generated actions with the greediness factor ω (see il-
 262 lustration in Figure 1). Our final formulation also has some similarity with CFGRL (Frans et al.,
 263 2025), which can be perceived as setting $\pi^+ \propto \mu \cdot \mathbb{I}_{A \geq 0}$ and $\pi^- = \mu$ (A is the advantage function).
 264 However, their method lacks theoretical backing, and using identical weights for both positive and
 265 negative samples limits the greediness of policy optimization, leading to suboptimal performance.

266 3.3 PRACTICAL IMPLEMENTATIONS

268 **Offline and offline-to-online RL.** For standard multi-step RL settings, we can set $G(s, a)$ as the
 269 advantage function $A(s, a)$. In the offline RL setting, the reference policy μ in Eq. (5) corresponds
 to the behavior policy π_β of the offline datasets. In the offline-to-online setting, the reference policy

270 is set as the policy updated in the previous step π_{k-1} (π_0 is the offline pre-trained policy). The
 271 algorithm pseudocode and additional implementation details are provided in Appendix C and D.
 272

273 **End-to-end autonomous driving.** We also implement *DIPOLE* to train a large end-to-end au-
 274 tonomous driving model to demonstrate its scalability to solve real-world complex tasks. Specif-
 275 ically, we employ a non-reactive pseudo-closed-loop simulation based on real-world datasets for
 276 policy training. In this setup, the return $G(s, a)$ is defined by a reward function that evaluates trajec-
 277 tory quality based on safety, progress, and comfort. We employ a vision-language model (Florence-
 278 2 (Xiao et al., 2024)) as the encoder and a diffusion action head as the decoder (Zheng et al., 2025).
 279 The model processes images from the left-front, front, and right-front cameras, along with lan-
 280 guage instructions such as "turn left", "turn right", and "go straight". This architecture results in
 281 a 1-billion parameter model, which we name *DP-VLA*, and is pre-trained using imitation learning.
 282 Subsequently, two separate LoRA modules are applied to the decoder to construct the positive and
 283 negative policies, allowing us to leverage Eq. (9) for training. We follow the offline-to-online RL
 284 setting to fine-tune the VLA model. Further implementation details are provided in Appendix E.

285 4 EXPERIMENTS

287 4.1 EXPERIMENTS ON RL BENCHMARKS

289 **Experimental setup.** We evaluate our approach on two commonly-used benchmarks, OGBench
 290 (Park et al., 2025a) task suite and ExORL (Yarats et al., 2022) benchmark. OGBench
 291 provides challenging robotic locomotion and manipulation tasks, including complex whole-body
 292 humanoid control, maze navigation, and object manipulation. We use the default dataset collected
 293 by RND (Burda et al., 2019), including tasks in complex high-dimensional state-based domains:
 294 Walker, Quadruped, Jaco, and Cheetah. Our evaluation encompasses 30 tasks across 6 domains on
 295 OGBench and 9 tasks across 4 domains on ExORL for offline learning, totaling 39 tasks. Finally, we
 296 select 4 default tasks across 4 domains on OGBench for offline-to-online validation. Further details
 297 are provided in Appendix D.1.

298 **Baselines.** We use representative baselines across policy types for comprehensive comparison:

- 299 • *Gaussian policy.* Standard RL uses Gaussian policies by default. In comparison with standard
 300 methods, we select 1) *IQL* (Kostrikov et al., 2022): a typical weighted regression offline RL
 301 method. 2) *ReBRAC* (Tarasov et al., 2023): an effective behavior-regularized actor-critic approach
 302 incorporates several specific designs tailored for offline learning.
- 303 • *Diffusion/Flow policy.* We also include offline RL baselines built on diffusion or flow poli-
 304 cies according to the following learning strategies: 1) *IDQL* (Hansen-Estruch et al., 2023) and
 305 *IFQL* (Park et al., 2025b): both approaches employ expectile regression for value learning and
 306 utilize imitation pre-trained diffusion or flow models with rejection sampling during inference. 2)
 307 *FQL* (Park et al., 2025b): a behavior-regularized actor-critic variant that uses flow policy distilla-
 308 tion and shows strong performance on OGBench. 3) *CFGRL* (Frans et al., 2025): a recently pro-
 309 posed policy improvement framework relies on classifier-free guidance, which uses high-quality
 310 actions for conditional policy training and unconditional behavior cloning.

311 For the offline RL setting, we compare our approach with *IQL*, *ReBRAC*, *CFGRL*, *IFQL*, and *FQL*
 312 on the ExORL benchmark. We also include a variant, *DIPOLE* w/o rs , which does not use rejection
 313 sampling during inference for clear comparison. For *IFQL*, we utilize the default hyperparameters,
 314 and for *FQL*, we select the hyperparameter α reported in previous work (Park et al., 2025b) with
 315 optimal performance in ExORL. Additionally, we compare with *IQL*, *ReBRAC*, *IDQL*, *IFQL*, and
 316 *FQL* on OGBench to demonstrate our method's effectiveness against state-of-the-art approaches in
 317 challenging benchmark.

318 **Evaluation results.** We evaluate the performance of each method after a fixed number of offline
 319 updates for the offline RL setting. Specifically, we report the average return on ExORL and the
 320 success rate on OGBench, following the standard evaluation assessment methods (Yarats et al.,
 321 2022; Park et al., 2025a). For the offline-to-online evaluation, we assess the final performance on
 322 a fixed number of online updates following the formal offline pretraining stage. All evaluations are
 323 averaging over 8 random seeds, with \pm indicating standard deviations in tables. We present our
 324 results by answering the following questions:

324 Table 1: **ExORL Results.** We report the average score over 8 random seeds. *DIPOLE* achieves the best
 325 performance. (w/o rs: without reject sampling)

327 328 Domain	329 330 331 332 333 334 335 336 337 338 339 Task	327 Gaussian Policy			327 Diffusion/Flow Policy			
		IQL	ReBRAC	CFGRL	IFQL	FQL	DIPOLE w/o rs	DIPOLE
Walker	stand	603 \pm 8	461 \pm 3	782 \pm 8	873 \pm 6	801 \pm 4	799 \pm 12	953 \pm 4
	walk	444 \pm 4	208 \pm 6	608 \pm 32	844 \pm 11	755 \pm 12	679 \pm 16	910 \pm 5
	run	247 \pm 10	98 \pm 2	282 \pm 6	406 \pm 8	294 \pm 11	256 \pm 12	442 \pm 9
Quadruped	walk	776 \pm 15	344 \pm 7	762 \pm 25	883 \pm 12	739 \pm 25	819 \pm 18	928 \pm 55
	run	485 \pm 7	344 \pm 3	571 \pm 25	595 \pm 18	503 \pm 5	563 \pm 12	657 \pm 10
Cheetah	run	168 \pm 7	97 \pm 13	216 \pm 15	269 \pm 16	222 \pm 14	194 \pm 9	274 \pm 12
	run-backward	146 \pm 8	85 \pm 4	262 \pm 26	310 \pm 24	231 \pm 12	239 \pm 11	350 \pm 15
Jaco	reach-top-right	33 \pm 2	38 \pm 13	72 \pm 6	193 \pm 9	224 \pm 17	89 \pm 13	119 \pm 23
	reach-top-left	30 \pm 8	59 \pm 5	46 \pm 6	181 \pm 11	222 \pm 42	83 \pm 13	113 \pm 8 ^a

340 Table 2: **OGBench Results.** We report the aggregate score on all single tasks for each category, averaging over
 341 8 random seeds. DIPOLE achieves best or near-best performance against other baselines across 6 challenging
 342 task categories. See appendix D.1 for full results.

344 345 Task Category	344 Gaussian Policy			344 Diffusion/Flow Policy		
	IQL	ReBRAC	IDQL	IFQL	FQL	DIPOLE
humanoidmaze-medium-navigate (5 tasks)	33 \pm 2	2 \pm 8	1 \pm 0	60 \pm 14	58 \pm 5	68 \pm 3
humanoidmaze-large-navigate (5 tasks)	2 \pm 1	2 \pm 1	1 \pm 0	11 \pm 2	4 \pm 2	6 \pm 2
antsoccer-arena-navigate (5 tasks)	8 \pm 2	0 \pm 0	12 \pm 4	33 \pm 6	60 \pm 2	57 \pm 7
cube-single-play (5 tasks)	83 \pm 3	91 \pm 2	95 \pm 2	79 \pm 2	96 \pm 1	97 \pm 2
cube-double-play (5 tasks)	7 \pm 1	12 \pm 1	15 \pm 6	14 \pm 3	29 \pm 2	44 \pm 7
scene-play (5 tasks)	28 \pm 1	41 \pm 3	46 \pm 3	30 \pm 3	56 \pm 2	60 \pm 2

- *Can DIPOLE outperform prior state-of-the-art RL algorithms in offline setting?* Table 1 reports per-task comparison results on ExORL. DIPOLE outperforms other baselines in most domains, indicating its capability to fully utilize valuable data in dataset. Specifically, DIPOLE fully surpasses *IQL*, indicating its strong improvement over the Gaussian policy-based weighted regression method. Furthermore, DIPOLE w/o rs demonstrates better performance compared to *CFGRL*, highlighting the importance of our design for achieving more greedy policy optimization. Finally, Table 2 summarizes the aggregate benchmarking results on OGBench. In most task categories, DIPOLE achieves better performance compared to other baselines, demonstrating its strong capability in solving challenging long-horizon tasks. These results confirm that weighted regression can effectively achieve greedy policy extraction across robotic locomotion and manipulation RL tasks.
- *How does DIPOLE perform with online finetuning?* Table 3 reports the exact performance variation after 1M of online updates. We demonstrate that our method can be successfully applied to online fine-tuning settings. Compared to *IFQL*, it achieves a higher performance upper bound. When compared to the direct value maximization approach in *FQL*, our method shows competitive performance, demonstrating the effectiveness of our design for achieving both greedy and stable policy optimization. Moreover, we provide pixel-based online fine-tuning results in end-to-end autonomous driving later, further demonstrating the effectiveness of our approach.

372 Moreover, we refer to Appendix D.4 for ablation studies.

374 4.2 EXPERIMENTS ON AUTONOMOUS DRIVING BENCHMARK

376 **Experimental setup.** Our method is evaluated on the large-scale real-world autonomous driving
 377 benchmark NAVSIM (Dauner et al., 2024) using closed-loop assessment. Following the official eval-
 uation protocol, we report the PDM score (higher indicates better performance), which aggregates

378 Table 3: **OGBench Offline-to-Online Results.** We report the score on the default task for each category,
 379 averaging over 8 random seeds. (humanoidmaze-m: humanoidmaze-medium-navigate)

Task Category	Gaussian Policy		Diffusion/Flow Policy		
	IQL	ReBRAC	IFQL	FQL	DIPOLE
humanoidmaze-m	21 \pm 13 \rightarrow 16 \pm 8	16 \pm 20 \rightarrow 1 \pm 1	56 \pm 35 \rightarrow 82 \pm 20	12 \pm 7 \rightarrow 22 \pm 12	61 \pm 10 \rightarrow 97 \pm 2
antsoccer-arena	2 \pm 1 \rightarrow 0 \pm 0	0 \pm 0 \rightarrow 0 \pm 0	26 \pm 15 \rightarrow 39 \pm 10	28 \pm 8 \rightarrow 86 \pm 5	43 \pm 4 \rightarrow 90 \pm 3
cube-double	0 \pm 1 \rightarrow 0 \pm 0	6 \pm 5 \rightarrow 28 \pm 28	12 \pm 9 \rightarrow 40 \pm 5	40 \pm 11 \rightarrow 92 \pm 3	41 \pm 6 \rightarrow 89 \pm 10
scene	14 \pm 11 \rightarrow 10 \pm 9	55 \pm 10 \rightarrow 100 \pm 0	0 \pm 1 \rightarrow 60 \pm 39	82 \pm 11 \rightarrow 100 \pm 1	97 \pm 4 \rightarrow 100 \pm 0

387 Table 4: **NAVSIM Closed-Loop Results.** We scale up *DIPOLE* to a large VLA model, demonstrating its
 388 potential for real-world applications. (navtrain/navtest represent different data splits used for trajectory rollout)

Method	Input	NC \uparrow	DAC \uparrow	TTC \uparrow	Comf. \uparrow	EP \uparrow	PDMS \uparrow
Constant Velocity	-	68.0	57.8	50.0	100	19.4	20.6
Ego Status MLP	-	93.0	77.3	83.6	100	62.8	65.6
UniAD	Cam	97.8	91.9	92.9	100.0	78.8	83.4
PARA-Drive	Cam	97.9	92.4	93.0	99.8	79.3	84.0
LFT	Cam	97.4	92.8	92.4	100	79.0	83.8
Transfuser	Cam & Lidar	97.7	92.8	92.8	100.0	79.2	84.0
Hydra-MDP	Cam & Lidar	98.3	96.0	94.6	100.0	78.7	86.5
DP-VLA (ours)	Cam	98.0	97.0	94.3	100.0	82.5	88.3
DP-VLA w/ DIPOLE navtrain (ours)	Cam	98.2	98.0	95.2	100.0	83.6	89.7
DP-VLA w/ DPPO navtest	Cam	97.9	97.6	94.1	100.0	83.5	89.0
DP-VLA w/ BDPO navtest	Cam	97.9	97.3	93.9	100.0	83.1	88.6
DP-VLA w/ DIPOLE navtest (ours)	Cam	99.2	98.7	95.6	99.8	94.2	94.8

403 five key metrics: *NC* (no-collision rate), *DAC* (drivable area compliance), *TTC* (time-to-collision
 404 safety), *Comfort* (acceleration/jerk constraints), and *EP* (ego progress). All methods are tested under
 405 the official closed-loop simulator, and results are averaged over the public test split. We also
 406 consider an RL application scenario where RL can be applied in human take-over situations or
 407 complex environments lacking ground-truth supervision. To address this, we provide a variant of our
 408 model trained on the test split without using any ground-truth.

409 **Baselines.** We select several baselines: 1) *UniAD* (Hu et al., 2023): integrates multiple auxiliary
 410 tasks such as tracking, mapping, prediction, and occupancy prediction using transformer blocks, and
 411 employs latent representations for planning. 2) *PARA-Drive* (Weng et al., 2024): adopts a parallel
 412 architecture design compared to *UniAD*. 3) *Transfuser* (Chitta et al., 2023): fuses image and LiDAR
 413 information through a dual-branch architecture and incorporates detection and BEV semantic maps
 414 for auxiliary supervision. Its latent variant, *LFT*, replaces LiDAR inputs with learnable embeddings.
 415 4) *Hydra-MDP* (Li et al., 2024): winner of the CVPR2024 Challenge, which uses trajectory anchors
 416 and a learned reward model for anchor selection. Moreover, we also consider baselines where the
 417 agent either maintains its current state or uses a simple MLP for trajectory regression. For our
 418 imitation pre-trained VLA model, which directly generates trajectories without post-processing, we
 419 denote it as *DP-VLA*. When fine-tuned with *DPPO*(Ren et al., 2025) and *BDPO*(Gao et al.), we refer
 420 to them as *DP-VLA w/ DPPO* and *DP-VLA w/ BDPO*. When fine-tuned with our RL algorithm, we
 421 refer to it as *DP-VLA w/ DIPOLE*. As mentioned above, we also provide two variants trained on the
 422 navtrain and navtest splits.

423 **Evaluation results.** We present the experimental results in Table 4. Notably, our imitation-based
 424 VLA model significantly outperforms other baselines, providing a strong foundation for RL fine-
 425 tuning. Building on this, fine-tuning with *DIPOLE* on the navtrain dataset improves the PDMS score
 426 by 1.4 points (from 88.3 to 89.7), with gains observed in both safety and progress metrics. Further-
 427 more, *DIPOLE* fine-tuning on navtest scenarios yields a substantial 6.5-point PDMS improvement
 428 (from 88.3 to 94.8), demonstrating its potential for real-world autonomous driving applications.
 429 These results confirm that even for large-scale policies exceeding 1 billion parameters, *DIPOLE*
 430 consistently delivers significant performance improvements through stable and greedy policy
 431 optimization. To further illustrate the efficacy of the *DIPOLE* fine-tuned model, we present several
 432 cases in Figure 2, where the pretrained model fails but succeeds after *DIPOLE* fine-tuning. Notably,

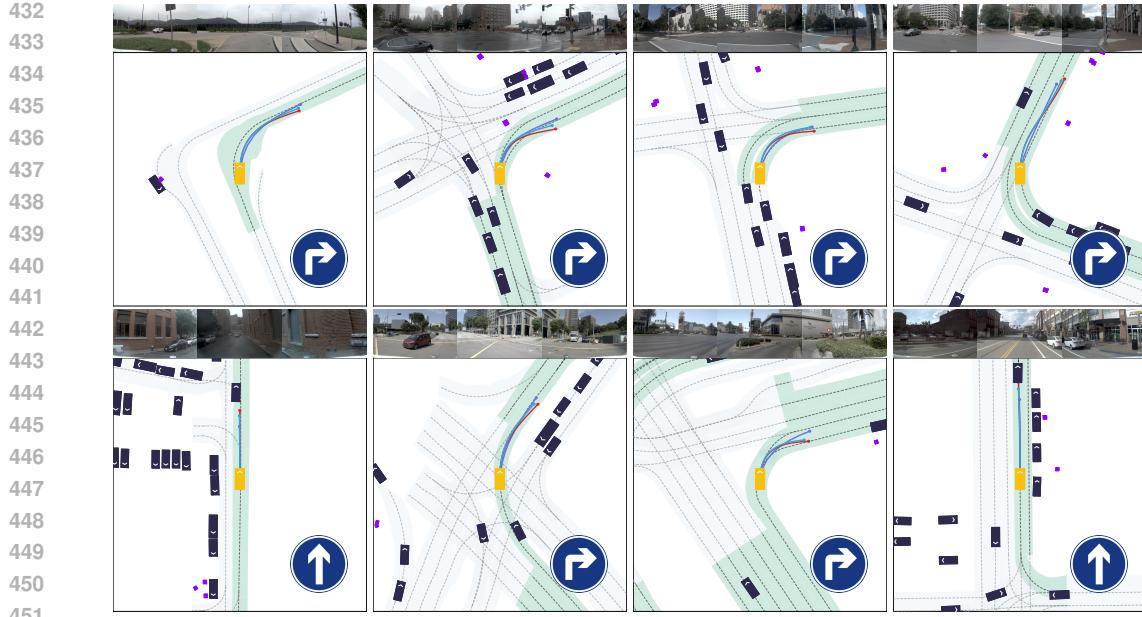


Figure 2: NAVSIM Results: *DP-VLA w/ DIPOLE* fine-tuned model trajectory; *ground truth* ego trajectory; *DP-VLA* imitation pretrained model trajectory.

DIPOLE enables *DP-VLA* to mitigate compounding errors and low-level controller tracking errors, effectively correcting trajectories to prevent collisions and erratic driving behavior.

5 RELATED WORK

Reinforcement fine-tuning of diffusion models remains challenging due to their multi-step diffusion process, primarily in terms of learning stability and computational efficiency. A brute-force solution involves directly optimizing the reward via gradient backpropagation. ReFL (Xu et al., 2023b) optimizes human preference scores for image generation by backpropagating gradients at specific single steps during the reverse process. DRaFT (Clark et al.) extends this approach by applying gradient optimization across multiple steps at the end of the reverse process. Such methods are widely used in motion generation (Karunratanakul et al., 2024), image generation (Prabhudesai et al., 2023), and decision-making tasks (Wang et al.), but suffer from instability due to noisy gradient backpropagation during the denoising process. Some methods avoid gradient computation and instead search for the optimal noise to maximize reward, a strategy referred to as inference-time scaling (Hansen-Estruch et al., 2023; Ma et al., 2025; Singhal et al.). Recent approaches also utilize RL to directly search for the best noise (Wagenmaker et al., 2025). In both cases, performance remains constrained by the capabilities of the pre-trained model. Moreover, DDPO (Black et al., 2024b) treats each noise step as a Gaussian distribution, enabling likelihood estimation and optimization via the RE-INFORCE (Mohamed et al., 2020) algorithm. DPPO (Ren et al., 2025) optimizes this approach and extends it to multi-step MDPs using PPO (Schulman et al., 2017) for policy improvement. These methods rely on Gaussian approximations that require sufficiently small sampling steps, resulting in inefficient training. Some methods (Lee et al., 2023; Kang et al., 2023; Zheng et al., 2024; Ma et al.) use KL-regularized RL (Kostrikov et al., 2022; Peng et al., 2019), whose solution leads to a simple weighted regression loss. However, these approaches often face a trade-off between greediness and stability.

6 CONCLUSION

We propose *DIPOLE*, an RL method that enables stable and controllable diffusion policy optimization. We revisit KL-regularized RL, which suffers from a trade-off between greediness and stability, and introduce a greedified policy regularization scheme. This scheme decomposes the optimal pol-

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
icy into dichotomous policies with stable training losses. During inference, actions are generated by linearly combining the scores of these policies, enabling controllable greediness. We evaluate *DIPOLE* on widely used RL benchmarks to demonstrate its effectiveness and also train a large VLA model for end-to-end autonomous driving, highlighting its potential for real-world applications. Due to space limit, more discussion on limitations and future direction can be found in Appendix F.

540 REFERENCES
541

542 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
543 Fusai, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke,
544 Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xiaoyang Shi,
545 James Tanner, Quan Vuong, Anna Walling, Haohuan Wang, and Ury Zhilinsky. π_0 : A vision-
546 language-action flow model for general robot control, 2024a. URL <https://arxiv.org/abs/2410.24164>.

547 Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
548 models with reinforcement learning. In *International Conference on Learning Representations*,
549 2024b.

550 James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
551 Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
552 Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL <http://github.com/jax-ml/jax>.

553 Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
554 distillation. 2019.

555 Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran
556 Song. Diffusion policy: Visuomotor policy learning via action diffusion. In *Proceedings of
557 Robotics: Science and Systems (RSS)*, 2023.

558 Kashyap Chitta, Aditya Prakash, Bernhard Jaeger, Zehao Yu, Katrin Renz, and Andreas Geiger.
559 Transfuser: Imitation with transformer-based sensor fusion for autonomous driving. *Pattern Anal-
560 ysis and Machine Intelligence (PAMI)*, 2023.

561 Kevin Clark, Paul Vicol, Kevin Swersky, and David J Fleet. Directly fine-tuning diffusion models
562 on differentiable rewards. In *The Twelfth International Conference on Learning Representations*.

563 Daniel Dauner, Marcel Hallgarten, Tianyu Li, Xinshuo Weng, Zhiyu Huang, Zetong Yang,
564 Hongyang Li, Igor Gilitschenski, Boris Ivanovic, Marco Pavone, Andreas Geiger, and Kashyap
565 Chitta. Navsim: Data-driven non-reactive autonomous vehicle simulation and benchmarking. In
566 *Advances in Neural Information Processing Systems (NeurIPS)*, 2024.

567 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances
568 in neural information processing systems*, 34:8780–8794, 2021.

569 Kevin Frans, Seohong Park, Pieter Abbeel, and Sergey Levine. Diffusion guidance is a controllable
570 policy improvement operator. *arXiv preprint arXiv:2505.23458*, 2025.

571 Chen-Xiao Gao, Chenyang Wu, Mingjun Cao, Chenjun Xiao, Yang Yu, and Zongzhang Zhang.
572 Behavior-regularized diffusion policy optimization for offline reinforcement learning. In *Forty-
573 second International Conference on Machine Learning*.

574 Divyansh Garg, Joey Hejna, Matthieu Geist, and Stefano Ermon. Extreme q-learning: Maxent rl
575 without entropy. In *The Eleventh International Conference on Learning Representations*, 2023.

576 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
577 maximum entropy deep reinforcement learning with a stochastic actor. In *International confer-
578 ence on machine learning*, pp. 1861–1870. Pmlr, 2018.

579 Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
580 Idql: Implicit q-learning as an actor-critic method with diffusion policies. *arXiv preprint
581 arXiv:2304.10573*, 2023.

582 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance, 2022. URL <https://arxiv.org/abs/2207.12598>.

583 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
584 neural information processing systems*, 33:6840–6851, 2020.

594 Zhang-Wei Hong, Aviral Kumar, Sathwik Karnik, Abhishek Bhandwaldar, Akash Srivastava, Joni
 595 Pajarinen, Romain Laroche, Abhishek Gupta, and Pukkit Agrawal. Beyond uniform sampling:
 596 Offline reinforcement learning with imbalanced datasets. *Advances in Neural Information Pro-*
 597 *cessing Systems*, 36:4985–5009, 2023.

598 Yihan Hu, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima, Xizhou Zhu, Sqi Chai, Senyao Du,
 599 Tianwei Lin, Wenhui Wang, et al. Planning-oriented autonomous driving. In *Proceedings of the*
 600 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 17853–17862, 2023.

601 Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies for
 602 offline reinforcement learning. *Advances in Neural Information Processing Systems*, 36:67195–
 603 67212, 2023.

604 Korrawe Karunratanakul, Konpat Preechakul, Emre Aksan, Thabo Beeler, Supasorn Suwajanakorn,
 605 and Siyu Tang. Optimizing diffusion noise can serve as universal motion priors. In *Proceedings*
 606 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1334–1345, 2024.

607 Tomasz Korbak, Ethan Perez, and Christopher Buckley. RL with kl penalties is better viewed as
 608 bayesian inference. In *Findings of the Association for Computational Linguistics: EMNLP 2022*,
 609 pp. 1083–1091, 2022.

610 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
 611 learning. In *International Conference on Learning Representations*, 2022.

612 Michael Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin Lu, Catherine Cang, Lerrel
 613 Pinto, and Pieter Abbeel. URLB: unsupervised reinforcement learning benchmark. In *Proceed-
 614 ings of the Neural Information Processing Systems Track on Datasets and Benchmarks I, NeurIPS
 615 Datasets and Benchmarks 2021, December 2021, virtual*, 2021.

616 Kimin Lee, Hao Liu, Moonkyung Ryu, Olivia Watkins, Yuqing Du, Craig Boutilier, Pieter Abbeel,
 617 Mohammad Ghavamzadeh, and Shixiang Shane Gu. Aligning text-to-image models using human
 618 feedback. *arXiv preprint arXiv:2302.12192*, 2023.

619 Jianxiong Li, Xiao Hu, Haoran Xu, Jingjing Liu, Xianyuan Zhan, and Ya-Qin Zhang. Proto: Iterative
 620 policy regularized offline-to-online reinforcement learning. *CoRR*, 2023.

621 Zhenxin Li, Kailin Li, Shihao Wang, Shiyi Lan, Zhiding Yu, Yishen Ji, Zhiqi Li, Ziyue Zhu, Jan
 622 Kautz, Zuxuan Wu, et al. Hydra-mdp: End-to-end multimodal planning with multi-target hydra-
 623 distillation. *arXiv preprint arXiv:2406.06978*, 2024.

624 Bencheng Liao, Shaoyu Chen, Haoran Yin, Bo Jiang, Cheng Wang, Sixu Yan, Xinbang Zhang,
 625 Xiangyu Li, Ying Zhang, Qian Zhang, et al. Diffusionondrive: Truncated diffusion model for end-
 626 to-end autonomous driving. In *Proceedings of the Computer Vision and Pattern Recognition
 627 Conference*, pp. 12037–12047, 2025.

628 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow match-
 629 ing for generative modeling. In *The Eleventh International Conference on Learning Representa-
 630 tions*.

631 Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu,
 632 Hang Su, and Jun Zhu. Rdt-1b: a diffusion foundation model for bimanual manipulation. In *The
 633 Thirteenth International Conference on Learning Representations*, 2025.

634 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
 635 ode solver for diffusion probabilistic model sampling in around 10 steps. *Advances in Neural
 636 Information Processing Systems*, 35:5775–5787, 2022.

637 Haitong Ma, Tianyi Chen, Kai Wang, Na Li, and Bo Dai. Efficient online reinforcement learning
 638 for diffusion policy. In *Forty-second International Conference on Machine Learning*.

639 Nanye Ma, Shangyuan Tong, Haolin Jia, Hexiang Hu, Yu-Chuan Su, Mingda Zhang, Xuan Yang,
 640 Yandong Li, Tommi Jaakkola, Xuhui Jia, et al. Inference-time scaling for diffusion models beyond
 641 scaling denoising steps. *arXiv preprint arXiv:2501.09732*, 2025.

648 Shakir Mohamed, Mihaela Rosca, Michael Figurnov, and Andriy Mnih. Monte carlo gradient esti-
 649 mation in machine learning. *Journal of Machine Learning Research*, 21(132):1–62, 2020.
 650

651 Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
 652 forcement learning with offline datasets. *arXiv preprint arXiv:2006.09359*, 2020.

653 Mitsuhiro Nakamoto, Simon Zhai, Anikait Singh, Max Sobol Mark, Yi Ma, Chelsea Finn, Aviral
 654 Kumar, and Sergey Levine. Cal-ql: Calibrated offline rl pre-training for efficient online fine-
 655 tuning. *Advances in Neural Information Processing Systems*, 36:62244–62269, 2023.
 656

657 Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
 658 Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
 659 policy. *arXiv preprint arXiv:2405.12213*, 2024.

660 Seohong Park, Kevin Frans, Sergey Levine, and Aviral Kumar. Is value learning really the main
 661 bottleneck in offline rl? *Advances in Neural Information Processing Systems*, 37:79029–79056,
 662 2024.

663 Seohong Park, Kevin Frans, Benjamin Eysenbach, and Sergey Levine. Ogbench: Benchmarking
 664 offline goal-conditioned rl. In *International Conference on Learning Representations (ICLR)*,
 665 2025a.

666 Seohong Park, Qiyang Li, and Sergey Levine. Flow q-learning. In *International Conference on
 667 Machine Learning (ICML)*, 2025b.

668 Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
 669 Simple and scalable off-policy reinforcement learning. *arXiv preprint arXiv:1910.00177*, 2019.

670 Mihir Prabhudesai, Anirudh Goyal, Deepak Pathak, and Katerina Fragkiadaki. Aligning text-to-
 671 image diffusion models with reward backpropagation. *arXiv preprint arXiv:2310.03739*, 2023.

672 Allen Z Ren, Justin Lidard, Lars Lien Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Ma-
 673 jumdar, Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy opti-
 674 mization. In *International Conference on Learning Representations*, 2025.

675 John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
 676 policy optimization. In *International conference on machine learning*, pp. 1889–1897. PMLR,
 677 2015.

678 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 679 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

680 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 681 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 682 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

683 Anikait Singh, Aviral Kumar, Quan Vuong, Yevgen Chebotar, and Sergey Levine. Offline rl with
 684 realistic datasets: Heteroskedasticity and support constraints. *arXiv preprint arXiv:2211.01052*,
 685 2022.

686 Raghav Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown, and
 687 Rajesh Ranganath. A general framework for inference-time scaling and steering of diffusion
 688 models. In *Forty-second International Conference on Machine Learning*.

689 Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
 690 vised learning using nonequilibrium thermodynamics, 2015.

691 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 692 Poole. Score-based generative modeling through stochastic differential equations. In *Inter-
 693 national Conference on Learning Representations*, 2021. URL [https://openreview.net/](https://openreview.net/forum?id=PxTIG12RRHS)
 694 [forum?id=PxTIG12RRHS](https://openreview.net/forum?id=PxTIG12RRHS).

695 Richard S Sutton, Andrew G Barto, et al. *Reinforcement learning: An introduction*, volume 1. MIT
 696 press Cambridge, 1998.

702 Denis Tarasov, Vladislav Kurenkov, Alexander Nikulin, and Sergey Kolesnikov. Revisiting the minimalist approach to offline reinforcement learning. *Advances in Neural Information Processing Systems*, 2023.

703
704
705
706
707
708 Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Buden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Riedmiller. Deepmind control suite, 2018. URL <https://arxiv.org/abs/1801.00690>.

709 Andrew Wagenmaker, Mitsuhiro Nakamoto, Yunchu Zhang, Seohong Park, Waleed Yagoub, 710 Anusha Nagabandi, Abhishek Gupta, and Sergey Levine. Steering your diffusion policy with 711 latent space reinforcement learning. *arXiv preprint arXiv:2506.15799*, 2025.

712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2419
2420
2421
2422
2423
2424
2425
2426
242

756 **A LLM USAGE**
757758 In this paper, we employed Large Language Models (LLMs) solely for polishing the writing. No
759 parts of the technical content, experimental results, or conclusions were generated by LLMs.
760761 **B THEORETICAL INTERPRETATIONS**
762763 We define our problem under the reinforcement learning problem presented as a Markov Decision
764 Process (MDP) (Sutton et al., 1998) given by $\mathcal{M} = (\mathcal{S}, \mathcal{A}, \mathcal{P}, r, \gamma)$, which comprises a state space
765 \mathcal{S} , an action space \mathcal{A} , a state transition \mathcal{P} , a reward function r and a discount factor γ . In this setting,
766 a policy is a probability distribution of actions conditioned on a state. In addition, we assume that
767 all policies induce an irreducible Markov Chain, with any two states reachable from each other by a
768 sequence of transitions that have positive probability. Our goal is to find a policy π that maximizes
769 a predefined action evaluation criteria G , constrained on a reference policy.
770771 **Theorem 1.** *The optimal solution for Eq. (5) satisfies:*

772
$$\pi^*(a | s) \propto \mu(a | s) \cdot \sigma(\beta G(s, a)) \cdot \exp(\omega \cdot \beta G(s, a)). \quad (6)$$

773

774 *Proof.* Consider the optimization problem Eq. (5) with constraints on the probability distribution:

775
$$\begin{aligned} \max_{\pi} \mathbb{E}_{s \sim d^{\pi}(s)} \left[\mathbb{E}_{a \sim \pi(a|s)} [G(s, a)] - \frac{1}{\omega\beta} D_{\text{KL}}(\pi(\cdot | s) \| \mu(\cdot | s) \frac{\sigma(\beta G(s, a))}{Z(s)}) \right] \\ \text{s.t.} \quad \int_a \pi(a | s) da = 1, \quad \forall s \\ \pi(a | s) \geq 0, \quad \forall s, a \end{aligned} \quad (11)$$

776
777
778
779
780

781 The Lagrangian is given by:

782
$$\begin{aligned} \mathcal{L}(\pi, \alpha_s, \gamma_{s,a}) = \int_s d^{\pi}(s) \int_a \pi(a | s) G(s, a) da ds \\ - \int_s d^{\pi}(s) \left[\frac{1}{\omega\beta} \int_a \pi(a | s) \log \left(\frac{\pi(a | s) Z(s)}{\mu(a | s) \sigma(\beta G(s, a))} \right) da \right] ds \\ + \int_s \alpha_s \left(\int_a \pi(a | s) da - 1 \right) ds + \int_{s,a} \gamma_{s,a} \pi(a | s) da ds \end{aligned} \quad (12)$$

783
784
785
786
787
788
789

790 Take the derivative over $\pi(a | s)$ and set to zero:

791
$$\begin{aligned} \frac{\partial \mathcal{L}}{\partial \pi(a | s)} &= G(s, a) - \frac{1}{\omega\beta} \left(\log \pi(a | s) + 1 - \log \frac{\mu(a | s) \sigma(\beta G(s, a))}{Z(s)} \right) + \alpha_s + \gamma_{s,a} \\ &= 0 \end{aligned} \quad (13)$$

792
793
794

795 Solve the equation and one can obtain the optimal policy as:

796
$$\pi^*(a | s) = \mu(a | s) \sigma(\beta G(s, a)) \exp(\omega \beta G(s, a)) \cdot \exp \left(\omega \beta \frac{\alpha_s + \gamma_{s,a}}{d^{\pi}(s)} - 1 - \log Z(s) \right) \quad (14)$$

797
798

799 Note that since we assume all policies induce irreducible Markov chain, thus $d^{\pi}(s) > 0, \forall s$. Con-
800 sider the support of μ with positive probability and the final resulted optimal policy satisfies:

801
$$\pi^*(a | s) \propto \mu(a | s) \cdot \sigma(\beta G(s, a)) \cdot \exp(\omega \cdot \beta G(s, a)) \quad (15)$$

802
803
804
805
806
807
808
809

□

810 C ALGORITHM PSEUDOCODE
811812 **Algorithm 1** Training
813

```

814     while not converged do
815         Collect data, or use offline data  $\mathcal{D}$ .
816          $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ ,  $t \sim U[0, 1]$ 
817          $a_t \leftarrow$  diffusion/flow forward process
818          $\theta_1 \leftarrow \theta_1 - \lambda \nabla_{\theta_1} \left[ \sigma(\beta G) \cdot \|\epsilon - \epsilon_{\theta_1}^+(a_t, s, t)\|^2 \right]$ 
819          $\theta_2 \leftarrow \theta_2 - \lambda \nabla_{\theta_2} \left[ (1 - \sigma(\beta G)) \cdot \|\epsilon - \epsilon_{\theta_2}^-(a_t, s, t)\|^2 \right]$ 
820     end while

```

822 **Algorithm 2** Sampling
823

```

824      $a_1 \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 
825      $t \leftarrow 1$ 
826     for  $n \in [1, \dots, N]$  do
827          $\tilde{\epsilon} = (1 + w)\epsilon_{\theta_1}^+(a_t, s, t) - w\epsilon_{\theta_2}^-(a_t, s, t)$ 
828          $t \leftarrow t - (n/N)$ 
829          $a_t \leftarrow$  diffusion/flow reverse process, given  $\tilde{\epsilon}$ 
830     end for
831     return  $a_0$ 

```

834 D DETAILS ON RL BENCHMARKS
835836 D.1 EXPERIMENTAL DETAILS
837

838 In this section, we provide the experimental details, including benchmarks, datasets, and tasks. Our
839 experiments span two primary benchmarks: ExORL (Yarats et al., 2022) and OGBench (Park et al.,
840 2025a)

841 **ExORL.** ExORL consists of datasets collected by multiple unsupervised RL agents (Laskin et al.,
842 2021) on the DeepMind Control Suite (Tassa et al., 2018). We utilize datasets collected by unsuper-
843 vised RL algorithms *RND* (Burda et al., 2019) across four domains (*Walker*, *Jaco*, *Quadruped*, and
844 *Cheetah*). For each environment, we use the full dataset with all transitions from each dataset.

845

- 846 • **Walker** (locomotion): A bipedal robot with 24-dimensional states (joint positions/velocities) and
847 6-dimensional actions. Test tasks include *run*, *stand*, and *walk*. Rewards combine dense objec-
848 tives: maintaining torso height (*stand*) and achieving target velocities (*Run/Walk*).
- 849 • **Quadruped** (locomotion): A four-legged robot with 78-dimensional states and 12-dimensional
850 actions. Tasks include *run* and *walk*, with rewards for torso stability and velocity tracking.
- 851 • **Jaco** (goal-reaching): A 6-DoF robotic arm with 55-dimensional states and 6-dimensional ac-
852 tions. Tasks involve reaching four target positions (*Top Left/Right*) using sparse rewards based on
853 proximity to goals.
- 854 • **Cheetah** (locomotion): A running planar biped with 17-dimensional states consisting of positions
855 and velocities of robot joints, and 6-dimensional actions. The reward is linearly proportional to
856 the forward velocity. We consider tasks *run* and *run backward* for evaluation.

857 **OGBench.** OGBench is designed for offline goal-conditioned RL, containing multiple challenging
858 tasks across robotic manipulation, navigation, and locomotion. We use 30 state-based manipula-
859 tion and navigation tasks from 6 domains (humanoidmaze-medium-navigate, humanoidmaze-large-
860 navigate, cube-single-play, cube-double-play, scene-play, and antsoccer-arena-navigate). Each do-
861 main contains 5 different tasks, and one is set as the default task. To be compatible with standard
862 offline RL settings, we leverage its single-task variant. We evaluate offline performance on all single
863 tasks and online fine-tuning performance on the default tasks of the selected 4 challenging domains.

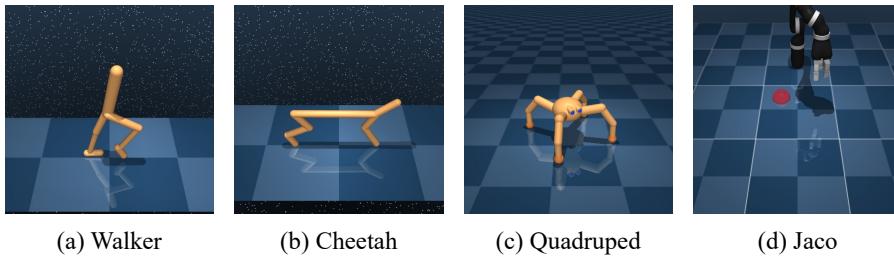


Figure 3: **ExORL environments.** We experiment on 4 high-dimensional complex domains: Walker, Cheetah, Quadruped, and Jaco Arm.

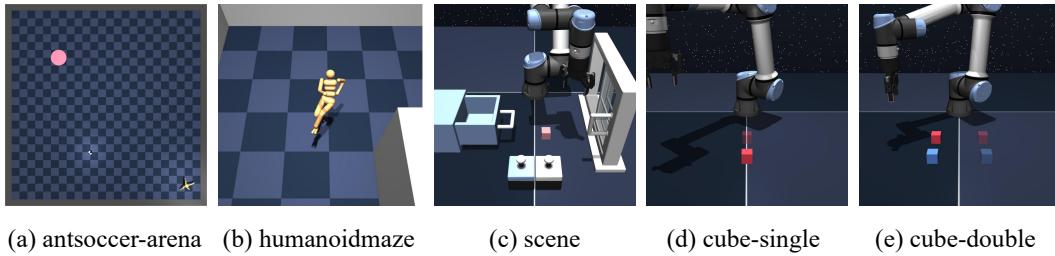


Figure 4: **OGBench environments.** We experiment on 5 complex domains: antsoccer-area, humanoidmaze, scene, cube-single, and cube-double.

- **humanoidmaze** (navigation): Controlling a 21-DoF Humanoid agent to reach a goal position in a given maze.
- **cube-play** (manipulation): Controlling a robot arm to pick and place cube-shaped blocks in order to assemble designated target configurations.
- **scene-play** (manipulation): Long-horizon control of multiple objects, including cube block, a window, a drawer, and two button locks.
- **antsoccer-area** (navigation): Controlling an Ant agent to dribble a soccer ball. The agent must also carefully control the ball while navigating the environment.

D.2 IMPLEMENTATION DETAILS

We implement DIPOLE in JAX (Bradbury et al., 2018) on top of FQL (Park et al., 2025b) and CFGRL (Frans et al., 2025).

Architectures. We separately train 5 neural networks practically: two policy networks (positive policy and negative policy), and three value networks (two Q-value estimators and one V-value estimator). We use three-layer multi-layer perceptron (MLP) with 512 hidden dimensions for both the policy networks and the value networks. We select the flow policy for the evaluation of our approach due to its efficient training process. Our flow policy is based on linear paths and uniform time sampling, with a 10-step Euler method.

Value Learning. In ExORL, we select the IQ-L style upstream value learning method. We modify the expectile hyper-parameter according to different tasks. In OGBench, we leverage the traditional temporal difference (TD) Q-learning method. We separately select the mean value or the minimum value of the Q function as the value estimation according to different tasks. Full details of hyperparameter settings are provided in Table 5.

Policy extraction and action reweighting. In RL setting, one of the critical selections of $G(s, a)$ in Eqs. (7) is the advantageous function, i.e. $Q(s, a) - V(s)$. To induce a more flexible and controllable learning process, we additionally introduce a tunable hyperparameter to shift the distribution of $G(s, a)$. Specifically, the weighting function becomes $\sigma(\beta G(s, a) + k)$ for positive policy and $1 - \sigma(\beta G(s, a) + k)$ for negative policy. The full details of per-task hyperparameters are provided in Table 6.

918 We implement reject sampling for inference time policy output. Specifically, we sample N actions
 919 for a single state input and select the action that has the highest Q-value:
 920

$$921 \quad a^* \triangleq \arg \max_{a \in \{a^{(1)}, \dots, a^{(N)} \sim \pi(s)\}} Q(s, a). \quad (16)$$

923 **Evaluation.** We report the average return on ExORL and the success rate on OGBench, following
 924 the standard evaluation assessment methods (Yarats et al., 2022; Park et al., 2025a). For offline RL
 925 performance evaluation, we fix the gradient to be 1M and report the final score. For the offline-to-
 926 online RL performance evaluation, we report both the 1M offline score and the 1M online score.
 927

928 **Computation resource.** We train our model on NVIDIA A6000 GPUs. Training a single task on
 929 one GPU takes approximately 0.5 hours on ExORL and 1.5 hours on OGBench.
 930

931 D.3 HYPERPARAMETERS

933 In this section, we provide the detailed hyperparameter setup in Table 5 and Table 6. In our experiments,
 934 the model architecture and basic algorithm hyperparameters remain unchanged, as detailed in
 935 Table 5. To encourage a better trade-off between greediness and stability, we adopt domain-specific
 936 hyperparameters, including expectile parameters τ , beta β , shift factor k , and discount factor γ , as
 937 detailed in Table 6.

938 Table 5: General hyperparameters used for DIPOLE
 939

	Hyperparameter	Value
DIPOLE Hyperparameters	Policy learning rate	3e-4
	Value learning rate	3e-4
	Offline learning steps	1,000,000
	Online fintuning steps	1,000,000
	Mini-batch	512 (ExORL), 256 (OGBench)
	Soft update factor λ	0.005
	Diffusion/Flow steps T	10
Architecture	Policy MLP hidden dimension	[512, 512, 512]
	Value MLP hidden dimension	[512, 512, 512]
	Activation function	tanh

954 D.4 ABLATION STUDY

956 **Hyperparameter.** Both hyperparameters beta β , shift factor k , expectile factor τ , and rejection
 957 sampling action number N are important for DIPOLE’s performance. In Figure 5, we present the
 958 performance changes when fixing single action sampling, and present the performance changes for
 959 the default action sampling number when tuning the expectile factor. We further ablate the influence
 960 of beta β and CFG scale ω on DIPOLE. We conducted experiments on ExORL benchmark, average
 961 over 3 random seeds. Both the impact of β and ω are within a similar pattern, which shows a
 962 easy-tuning property of DIPOLE.
 963

964 D.5 ADDITIONAL RESULTS

965 **OGBench full results.** In this section, we provide the full experimental results for all single tasks
 966 on the OGBench, as shown in Figure 7. All results are averaged over 8 random seeds. We report the
 967 mean and standard deviation of the final score, after 1M gradient steps.
 968

969 **OGBench offline-to-online learning curves.** We also present the training curves of DIPOLE, in-
 970 cluding both the 1M offline gradient steps and 1M online gradient steps, as shown in Figure 6.
 971 DIPOLE possesses steady improvement after online interaction. Comparing with other offline RL
 methods, DIPOLE achieves better performance after the full finetuning process.
 972

Table 6: Task-specific hyperparameters for DIPOLE.

Task Category	beta β	shift factor k	discount γ	expectile τ	sample actions N
OGBench-humanoidmaze-medium-navigate	1	0	0.99	0.9	4
OGBench-humanoidmaze-large-navigate	1	0	0.995	0.9	8
OGBench-antsoccer-arena-navigate	1	0	0.995	0.9	4
OGBench-cube-single-play	0.5	1	0.99	0.9	2
OGBench-cube-double-play	0.5	0.5	0.99	0.9	2
OGBench-scene-play	1	1	0.99	0.9	2
ExORL-walker-walk	3.5	-2	0.99	0.95	32
ExORL-walker-stand	4.5	-2	0.99	0.99	32
ExORL-walker-run	4.5	-2	0.99	0.9	32
ExORL-quadruped-walk	3	0	0.99	0.9	32
ExORL-quadruped-run	4	-2	0.99	0.9	32
ExORL-jaco-reach-top-left	1	0	0.99	0.9	32
ExORL-jaco-reach-top-right	1	-1	0.99	0.9	32
ExORL-cheetah-run	4	-1	0.99	0.9	32
ExORL-quadruped-run-backward	4	-1	0.99	0.9	32

walker_walk			cheetah_run			walker_walk			cheetah_run		
-2	493.0	563.0	580.0	-2	139.0	181.0	210.0	0.5	780	900	950
-1	480.0	591.0	635.0	-1	119.0	186.0	185.0	0.7	780	900	950
2	541.0	603.0	705.0	0	116.0	218.0	196.0	0.8	800	900	950
	0.8	2	3.5		1	3	5		800	900	950
	beta				beta				Expectile	Expectile	
	0.8	2	3.5		1	3	5		Expectile	Expectile	

Cheetah-Run					Cheetah-Run_backward						
4	209	217	215	205	203	4	264	270	255	253	243
β 2	106	121	158	144	114	β 2	98	101	128	128	115
1	78	101	123	119	95	1	72	87	106	102	105
	1	1.5	3	5	10		1	1.5	3	5	10
	w						w				
	1	1.5	3	5	10		1	1.5	3	5	10

Figure 5: Top-left: ablation on β and k ; Top-right: ablation on expectile τ ; Bottom: ablation on w and β

E DETAILS ON E2E AD BENCHMARKS

E.1 MODEL ARCHITECTURE

We employ the pretrained Florence-2-large model (Xiao et al., 2024) as the visual-language encoder, paired with a 475M-parameter Diffusion Transformer as the action decoder. The visual input comprises images from Front, Front-Left, and Front-Right perspectives, while the language input consists of driving commands provided by the dataset. Encoder output tokens are processed by the action decoder through a cross-attention block, which ultimately generates the predicted trajectory.

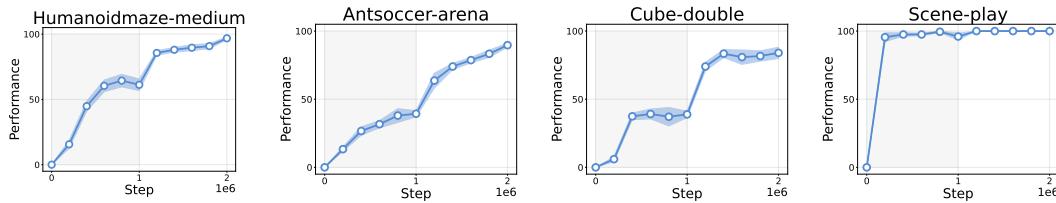
Figure 6: **Offline-to-online visualization.** DIPOLE presents a stable fine-tuning process on OGBench.

Table 7: OGBench full results.

Task Category	Gaussian Policy		Diffusion/Flow Policy			
	IQL	ReBRAC	IDQL	IFQL	FQL	DIPOLE
1026 humanoidmaze-medium-navigate-singletask-task1	32 \pm 7	16 \pm 9	1 \pm 1	69 \pm 19	19 \pm 12	63 \pm 6
1027 humanoidmaze-medium-navigate-singletask-task2	41 \pm 9	18 \pm 16	1 \pm 1	85 \pm 11	94 \pm 3	91 \pm 2
1028 humanoidmaze-medium-navigate-singletask-task3	25 \pm 5	36 \pm 13	0 \pm 1	49 \pm 49	74 \pm 18	88 \pm 4
1029 humanoidmaze-medium-navigate-singletask-task4	0 \pm 1	15 \pm 16	1 \pm 1	1 \pm 1	3 \pm 4	1 \pm 1
1030 humanoidmaze-medium-navigate-singletask-task5	66 \pm 4	24 \pm 20	1 \pm 1	98 \pm 2	97 \pm 2	96 \pm 2
1031 humanoidmaze-large-navigate-singletask-task1	3 \pm 1	2 \pm 1	0 \pm 0	6 \pm 2	7 \pm 6	20 \pm 5
1032 humanoidmaze-large-navigate-singletask-task2	0 \pm 0	0 \pm 0	0 \pm 0	0 \pm 0	0 \pm 0	0 \pm 0
1033 humanoidmaze-large-navigate-singletask-task3	7 \pm 3	8 \pm 4	3 \pm 1	48 \pm 10	11 \pm 7	7 \pm 3
1034 humanoidmaze-large-navigate-singletask-task4	1 \pm 0	1 \pm 1	0 \pm 0	1 \pm 1	2 \pm 3	1 \pm 1
1035 humanoidmaze-large-navigate-singletask-task5	1 \pm 1	2 \pm 2	0 \pm 0	0 \pm 0	1 \pm 3	2 \pm 4
1035 antsoccer-area-navigate-singletask-task1	14 \pm 5	0 \pm 0	44 \pm 12	61 \pm 25	77 \pm 4	82 \pm 7
1036 antsoccer-area-navigate-singletask-task2	17 \pm 7	0 \pm 1	15 \pm 12	75 \pm 5	88 \pm 3	74 \pm 5
1037 antsoccer-area-navigate-singletask-task3	6 \pm 4	0 \pm 0	0 \pm 0	14 \pm 22	61 \pm 6	55 \pm 8
1038 antsoccer-area-navigate-singletask-task4	3 \pm 2	0 \pm 0	0 \pm 1	16 \pm 9	39 \pm 6	40 \pm 10
1038 antsoccer-area-navigate-singletask-task5	2 \pm 2	0 \pm 0	0 \pm 0	0 \pm 1	36 \pm 9	32 \pm 5
1039 cube-single-play-singletask-task1	88 \pm 3	89 \pm 5	95 \pm 2	79 \pm 4	97 \pm 2	97 \pm 2
1040 cube-single-play-singletask-task2	85 \pm 8	92 \pm 4	96 \pm 2	73 \pm 3	97 \pm 2	98 \pm 2
1041 cube-single-play-singletask-task3	91 \pm 5	93 \pm 3	99 \pm 1	88 \pm 4	98 \pm 2	99 \pm 2
1042 cube-single-play-singletask-task4	73 \pm 6	92 \pm 3	93 \pm 4	79 \pm 6	94 \pm 3	94 \pm 5
1042 cube-single-play-singletask-task5	78 \pm 9	87 \pm 8	90 \pm 6	77 \pm 7	93 \pm 3	96 \pm 3
1043 cube-double-play-singletask-task1	27 \pm 5	45 \pm 6	39 \pm 19	35 \pm 9	61 \pm 9	68 \pm 7
1044 cube-double-play-singletask-task2	1 \pm 1	7 \pm 3	16 \pm 10	9 \pm 5	36 \pm 6	44 \pm 10
1045 cube-double-play-singletask-task3	0 \pm 0	4 \pm 1	17 \pm 8	8 \pm 5	22 \pm 5	51 \pm 6
1046 cube-double-play-singletask-task4	0 \pm 0	1 \pm 1	0 \pm 1	1 \pm 1	5 \pm 2	6 \pm 2
1046 cube-double-play-singletask-task5	4 \pm 3	4 \pm 2	1 \pm 1	17 \pm 6	19 \pm 10	50 \pm 8
1047 scene-play-singletask-task1	94 \pm 3	95 \pm 2	100 \pm 0	98 \pm 3	100 \pm 0	100 \pm 0
1048 scene-play-singletask-task2	12 \pm 3	50 \pm 13	33 \pm 14	0 \pm 0	76 \pm 9	96 \pm 3
1049 scene-play-singletask-task3	32 \pm 7	55 \pm 16	94 \pm 4	54 \pm 19	98 \pm 1	99 \pm 1
1050 scene-play-singletask-task4	0 \pm 1	3 \pm 3	4 \pm 3	0 \pm 0	5 \pm 4	5 \pm 6
1050 scene-play-singletask-task5	0 \pm 0	0 \pm 0	0 \pm 0	0 \pm 0	0 \pm 0	0 \pm 1

E.2 TRAINING PROCEDURE

The training process consists of two phases: pretraining and reinforcement learning fine-tuning. In the pretraining phase, we utilize trainval frames from the NAVSIM dataset to jointly train the encoder and decoder using a diffusion loss objective. During the RL fine-tuning phase, the encoder is frozen, and two Low-Rank Adaptation (LoRA) adapters—a positive adapter and a negative adapter—are incorporated into every linear projection of the attention and MLPs. The NavSim benchmark’s PDMS score serves as the direct optimization target. Every 10 epochs, the replay buffer is cleared, and new model rollout trajectories and corresponding rewards are collected based on one epoch of data samples. For each data sample, the model generates g trajectories, which are used to train the LoRA adapters over the subsequent 9 epochs. For each trajectory, we obtain its PDMS score vector $\mathbf{r} = \{r_1, r_2, \dots, r_g\}$, enabling estimation of the advantage function (Shao et al., 2024):

$$G(s, a) = A(s, a) = \frac{r_i - \text{mean}(\mathbf{r})}{\text{std}(\mathbf{r})} \quad (17)$$

E.3 INFERENCE AND EVALUATION

During inference, the *DP-VLA* encoder extracts features from the input images and driving commands. The denoising process is solved using the DPM-Solver(Lu et al., 2022), with the action decoder iteratively predicting the denoised trajectory over 10 steps to produce the final clean trajectory. For evaluation on the NAVSIM benchmark, the proposed trajectory is fed into an LQR tracker and dynamics model to compute the posterior trajectory. The final PDM score is derived from this posterior trajectory, satisfying the benchmark’s evaluation criteria (Dauner et al., 2024).

1080 E.4 HYPERPARAMETERS
1081
1082
1083
1084

Table 8: DIPOLE hyperparameters used in DP-VLA

	Hyperparameter	Value
Pre-train Hyperparameters	Optimizer	AdamW
	Learning rate	1e-4
	Learning epochs	100
	Mini-batch	16
DIPOLE navtrain Hyperparameters	Optimizer	AdamW
	Learning rate	1e-4
	Learning steps	2.069k
	Mini-batch	56
DIPOLE navtest Hyperparameters	Group size g	10
	Optimizer	AdamW
	Learning rate	1e-4
	Learning steps	11.52k
LoRA Hyperparameters	Mini-batch	4
	Group size g	25
	Rank	16
	Alpha	16
LoRA Hyperparameters	Dropout	0.0
	Num. params(Each/Total)	6.68M/13.37M
LoRA Hyperparameters	Ratio params(Each/Total)	1.4%/2.8%

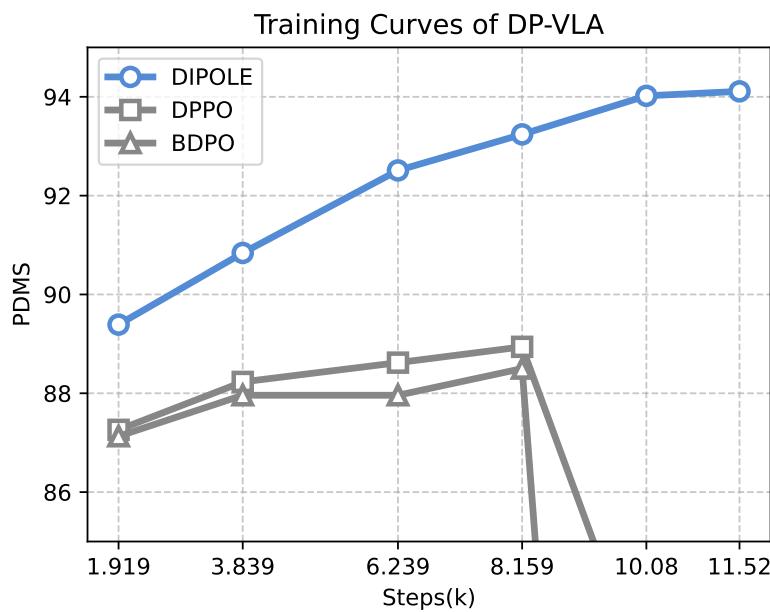
1109 E.5 TRAINING CURVES
1110
1111
1112
1113
1114

Figure 7: Training curves of DIPOLE, DPPO and BDPO on navtest.

E.6 MORE CASES



Figure 8: NAVSIM Results: *DP-VLA w/ DIPOLE* fine-tuned model trajectory; *ground truth* ego trajectory; *DP-VLA* imitation pretrained model trajectory.

F LIMITATION & DISCUSSION & FUTURE WORK

Here, we discuss the limitations, potential solutions, and promising future directions of our work. While this paper presents a policy optimization method for achieving both greedy and stable policy training, we observe that performance is highly dependent on the quality of the value function. Developing effective value function estimation methods for diffusion-based reinforcement learning remains an important direction for future research. Additionally, our approach remains within the behavior-regularized optimization framework, which inherently constrains the policy relative to a reference policy. We attempt to address this limitation through controllable greediness and a greedified optimization objective. While our method has demonstrated applicability in complex autonomous driving tasks, we anticipate its potential extension to other domains.