
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FEATURE SYNERGY AND INTERFERENCE: AN ANALY-
SIS FOR TIME-SERIES CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The pursuit of a universal, one-size-fits-all model has dominated Time Series
Classification (TSC) research. This work challenges that paradigm, arguing that
advancing TSC requires a fundamental understanding of feature interplay, not
merely more complex architectures. We conduct a series of meticulously de-
signed controlled experiments to dissect the feature spaces of a wide array of rep-
resentative TSC models, from efficient feature extractors like ROCKET to state-
of-the-art deep learning architectures including Transformers and Mamba. For
high-dimensional feature extractors, we reveal that the performance bottleneck is
dataset-dependent, shifting between feature redundancy and feature noise. We
demonstrate that for complex non-linear classifiers, feature pruning can serve as
a critical de-noising step on noisy datasets, while for simpler linear models, the
full feature set can sometimes be more robust. For a diverse set of nine deep mod-
els, we systematically evaluate time-frequency fusion strategies, showing that the
optimal choice is intricately linked to both the dataset’s intrinsic properties and
the model’s architectural biases. We uncover clear and widespread evidence of
“feature synergy”, where fusion provides significant gains, and “feature interfer-
ence”, where it actively degrades performance. Our work pivots the focus from
a “model-centric” to a “feature-centric” perspective, providing a new paradigm
and a concrete analytical framework for developing adaptive and truly robust TSC
solutions.

1 INTRODUCTION

Time Series Classification (TSC) is a critical task in diverse domains, from medical diagnosis to
industrial monitoring (Fawaz et al., 2019). Research in TSC has largely bifurcated into two streams:
highly efficient methods that transform time series into a feature space, exemplified by ROCKET
(Dempster et al., 2020), and a vast array of deep learning models that learn representations end-
to-end, spanning from foundational CNNs like FCN and ResNet (Wang et al., 2017) to modern
architectures like Transformers (Vaswani et al., 2017) and State Space Models (Gu & Dao, 2023).

Despite remarkable progress, the field operates under a persistent “one-size-fits-all” assumption,
where new models are benchmarked across extensive archives (Dau et al., 2019) with the implicit
goal of achieving universal superiority (Bagnall et al., 2017). However, this approach often yields
unstable, dataset-dependent performance rankings. Our preliminary attempts to enhance deep mod-
els with spectral features yielded inconsistent results, prompting a more fundamental inquiry: Do
we truly understand the features these models generate and how they should be combined?

This paper argues that the prevailing model-centric view obscures a more critical underlying is-
sue: the complex, often counter-intuitive interactions between features, both internal and external to
the model. We shift to a feature-centric analysis, a perspective gaining traction where abstracting
features like time-series shapes as tokens has shown promise (Wen et al., 2024). Our goal is to inves-
tigate the conditions that lead to feature “synergy” versus feature “interference” across a wide range
of models and datasets. We not only demonstrate these phenomena but also provide quantitative
evidence linking them to intrinsic dataset properties. This leads us to our core research questions:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• RQ1: For high-dimensional feature extractors like ROCKET and its variants, is the
primary performance bottleneck simple feature redundancy, or a more complex in-
teraction between feature noise and the capacity of the downstream classifier?

• RQ2: Across a diverse range of deep learning architectures (CNNs, RNNs, Trans-
formers, SSMs), is there a universally optimal strategy for fusing time-domain and
frequency-domain features? If not, can we demonstrate that the choice between syn-
ergy and interference is predictably linked to the interplay between model architec-
ture and dataset characteristics?

To answer these questions, we conduct two comprehensive experimental studies (Task 1 and Task
2). Our contributions are threefold:

1. We demonstrate that the performance bottleneck in ROCKET-like feature spaces is a com-
plex interaction between feature properties and classifier capacity, showing that feature
pruning can serve as a vital de-noising step for high-capacity models on noisy datasets.

2. We provide the first systematic, comparative analysis of time-frequency fusion strategies
across nine distinct deep learning architectures, proving the optimal strategy is dataset-
and model-dependent and uncovering compelling evidence of both “feature synergy” and
“feature interference”.

3. We lay the groundwork for a new, adaptive paradigm in TSC by showing that these feature-
centric phenomena are not random, but are linked to intrinsic properties of the data, sug-
gesting a path towards automated strategy selection.

2 RELATED WORK

Our research is positioned at the intersection of three key areas: efficient feature-based TSC, deep
learning-based TSC, and feature fusion techniques.

2.1 EFFICIENT TIME SERIES CLASSIFICATION

The first stream of research focuses on transforming time series into a feature space amenable to
fast and robust classifiers. Methods range from dictionary-based approaches like BOSS (Schäfer,
2015) and shapelet-based models (Ye & Keogh, 2011) to complex transformation-based ensembles
like HIVE-COTE (Bagnall et al., 2016). A significant breakthrough in this area is ROCKET (Demp-
ster et al., 2020), which generates a large number of features from random convolutional kernels.
ROCKET and its variants, such as MINIROCKET (Dempster et al., 2021), achieve state-of-the-art
accuracy with remarkable computational efficiency. However, this efficiency comes at the cost of
generating a very high-dimensional feature space (typically 10,000 features), which is largely treated
as a black box. While their effectiveness is undisputed, the nature of this feature space remains a
topic of active research. The challenge of managing its high dimensionality, particularly in terms of
feature noise and redundancy, has been acknowledged in recent studies exploring sequential feature
selection for these random kernels (Uribarri et al., 2024). This motivates our Task 1 experiments,
which aim to systematically dissect these properties.

2.2 DEEP LEARNING FOR TIME SERIES CLASSIFICATION

The second stream leverages deep neural networks to learn hierarchical representations directly from
raw time series data. Foundational work adapted architectures from computer vision, establishing
strong baselines with Fully Convolutional Networks (FCN) and Residual Networks (ResNet) (Wang
et al., 2017), and later achieving top-tier performance with models like InceptionTime (Fawaz et al.,
2020). Concurrently, Recurrent Neural Networks (RNNs) like LSTM (Hochreiter & Schmidhuber,
1997) and GRU were applied to capture temporal dependencies.

More recently, the field has been influenced by progress in other sequence modeling domains.
Transformer-based models (Vaswani et al., 2017), often drawing inspiration from computer vision
(Ni et al., 2025), have been successfully adapted for time series. A prominent approach involves
treating time series “patches” as tokens, as popularized by PatchTST (Nie et al., 2023). This patch-
based paradigm is an area of active research, with recent studies exploring advanced pre-training

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

strategies, architectural variations, and novel loss functions (Woo et al., 2024; Lu et al., 2025; Yu
et al., 2025). As an alternative to attention, State Space Models (SSMs), extensively reviewed in
(Somvanshi et al., 2025), have emerged as a powerful new paradigm. The Mamba architecture (Gu
& Dao, 2023), in particular, has spurred a wave of research into new time series applications and
variants (Ye, 2025; Somvanshi et al., 2024) due to its linear-time complexity and impressive per-
formance on long sequences. Our study is the first to systematically analyze feature fusion across
a wide gamut of architectures, from foundational CNNs to modern Transformers and SSMs. Our
model zoo also includes other notable CNN architectures like OmniScaleCNN, and the explainable
XCM model.

2.3 FEATURE FUSION IN MACHINE LEARNING

Feature fusion is a long-standing topic in multi-modal learning, where the goal is to combine in-
formation from different sources (Baltrušaitis et al., 2018; Ngiam et al., 2011). Common strategies
range from simple concatenation and element-wise addition to more complex mechanisms like gat-
ing (Hochreiter & Schmidhuber, 1997) and bilinear pooling (Lin et al., 2015; Zhang et al., 2017).
Gating mechanisms allow features from one modality to modulate another, while bilinear mod-
els capture pairwise interactions between all feature dimensions. While these fusion methods are
well-studied in other domains like multimodal learning (Baltrušaitis et al., 2018) and biomedical
signal processing (Wang et al., 2024), their application in TSC for combining temporal and spectral
features has been ad-hoc. The challenge of learning effective feature representations is, in fact, a
central theme in modern time-series analysis (Trirat et al., 2024). Our work fills a critical gap by rig-
orously evaluating core fusion strategies across nine deep learning architectures, providing a needed
systematic analysis of their effectiveness and limitations.

3 METHODOLOGY: A FRAMEWORK FOR FEATURE DISSECTION

To systematically investigate our research questions, we designed two comprehensive experimental
tasks. Let a given dataset be a collection of time series samples D = {(Xi, yi)}Ni=1, where Xi ∈
RL×C is a multivariate time series of length L with C channels, and yi is its corresponding class
label. All experiments were repeated five times with different random seeds, and results are reported
as mean ± std.

3.1 TASK 1: ANALYSIS OF HIGH-DIMENSIONAL FEATURE SPACES

This experiment investigates the properties of feature sets generated by ROCKET-like methods.
Let Φ : RL×C → RD be a feature extraction function that maps a time series sample Xi to a
D-dimensional feature vector Fi. We employ two such functions: ΦPy-ROCKET which yields D =
20, 000 features, and Φsk-MINIROCKET which yields D = 10, 000 features.

For a given feature set {Fi}, we evaluate its quality using a classifier C, chosen from a non-linear
LightGBM (CLGBM) and a linear RidgeClassifierCV (CRidge). We test three feature processing strate-
gies:

1. Base: The classifier is trained directly on the full feature set, C(Fi).

2. Pruned: A supervised selection strategy. A subset of k = 500 features F ′
i ⊂ Fi is selected

by choosing the features with the highest ANOVA F-statistic scores on the training data.
The classifier is then trained on this subset, C(F ′

i).

3. PCA: An unsupervised reduction strategy. A projection matrix W ∈ RD×k with k = 500
is learned from the training data via Principal Component Analysis. The classifier is trained
on the projected features, C(WTFi).

To ground these results, we compare against a Barycenter-DTW baseline. For each class c, a
barycenter (average time series) X̄c is computed from the training data using DTW barycenter av-
eraging. A test sample Xtest is then classified as argminc DTW(Xtest, X̄c).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 TASK 2: ANALYSIS OF DEEP LEARNING FUSION STRATEGIES

This experiment investigates feature synergy and interference across nine deep learning architec-
tures, denoted generically as M . The model set includes CNNs (InceptionTime, ResNet, FCN,
OmniScaleCNN, XCM), RNNs (LSTM, GRU), and modern architectures (PatchTST, Mamba).

The core of this task is to compare the model’s baseline performance, a mapping M : RL×C →
RNclasses , against its performance when features are fused. Let Mθ be a model with parameters θ.
We define the time-domain features Ftime ∈ Rdt as the output of its penultimate layer, Mθ,l−1(Xi),
after being trained on the time series data alone. The frequency-domain features Fspec ∈ Rds

are derived from a Wavelet Transform, where the ds = 50 most informative frequency bands are
selected via ANOVA F-test.

We evaluate two canonical fusion strategies, where a small classification head h : Rdfinal →
RNclasses is trained on the fused features. Let Ftime and Fspec be the feature vectors for a sam-
ple.

• Concat Fusion: The final feature vector is the concatenation, Ffinal = [Ftime;Fspec] ∈
Rdt+ds . The model computes h(Ffinal).

• Gating Fusion: The spectral features modulate the temporal features. The final represen-
tation is Ffinal = Ftime⊙σ(MLP(Fspec)), where⊙ denotes element-wise multiplication,
σ is the sigmoid function, and an MLP aligns the feature dimensions. The model computes
h(Ffinal).

The performance of these strategies is compared against the Time-Only (Base) performance, which
is the accuracy achieved by the fully-trained end-to-end model Mθ(Xi).

4 EXPERIMENT RESULTS AND ANALYSIS

Our extensive experiments, designed to be both broad and deep, yield several key insights into the
nature of time series features and their interactions across a wide range of models. We present
the main results for Task 1 (high-dimensional feature spaces) and Task 2 (deep learning fusion) in
Table 1 and Table 2, respectively. All results are reported as the mean accuracy (%) ± standard
deviation over five independent runs with different random seeds.

4.1 TASK 1: THE CLASSIFIER-FEATURE INTERPLAY IN HIGH DIMENSIONS

Our first set of experiments dissects the feature spaces of ROCKET-like extractors. Figure 1 provides
a detailed visual case study on the ExchangeRate dataset, which succinctly summarizes the key
finding of this section: the performance of a feature strategy is critically dependent on the capacity of
the downstream classifier. The full results, presented in Table 1, further substantiate this conclusion
across multiple datasets and feature extractors.

The central finding from this task is the significant interaction between the feature set and the
classifier’s capacity, a phenomenon clearly illustrated for the ExchangeRate dataset in Figure 1.
For the high-capacity, non-linear LightGBM classifier, both supervised pruning (Pruned (sup.))
and our proposed unsupervised method (Pruned-KMeans (unsup.)) dramatically outperform the
baseline. This is particularly evident with Py-ROCKET features, where the unsupervised method
(70.54%) approaches supervised performance (74.05%) and is a marked improvement over the base-
line (65.95%). This demonstrates that on noisy data, the performance bottleneck is indeed significant
“feature noise”, which can be effectively mitigated to unlock performance gains, even without access
to labels.

Conversely, the simpler linear RidgeClassifierCV often shows different preferences. On the ETTh1
dataset, this lower-capacity model achieves its best performance with the aggressive, unsupervised
dimensionality reduction of PCA (45.81%), suggesting that creating a dense, decorrelated represen-
tation is more beneficial than navigating the original, noisy feature space for a simpler model.

Finally, the Barycenter-DTW baseline provides a crucial reference point. Its outstanding perfor-
mance on ExchangeRate (77.03%) suggests this dataset’s classes are well-separated by overall time

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Base
Pruned

(Supervised)
Pruned-KMeans

(Unsupervised) PCA

(Unsupervised)

0

20

40

60

80

100
C

la
ss

ifi
ca

tio
n

A
cc

ur
ac

y
(%

)

65.95

74.05

70.54

44.32

53.24 47.30

35.95

53.24

Pruning acts as de-noising,
boosting the high-capacity model Our Unsupervised Pruning

approaches Supervised
performance!

(a) Case Study with Py-ROCKET

Base
Pruned

(Supervised)
Pruned-KMeans

(Unsupervised) PCA

(Unsupervised)

62.16
69.46

50.54

28.65

52.70

16.76

50.00
52.70

(b) Validation with sk-MINIROCKET

LightGBM (High-Capacity)
RidgeClassifierCV (Low-Capacity)

Classifier-Feature Interplay on the 'ExchangeRate' Dataset

Figure 1: A visual case study on the ‘ExchangeRate’ dataset illustrating the classifier-feature inter-
play. (a) Using ‘Py-ROCKET’ features, the high-capacity LightGBM model clearly benefits from
both supervised and our proposed unsupervised pruning, which act as de-noising mechanisms. (b)
The same general trend is validated using ‘sk-MINIROCKET’ features, demonstrating the robust-
ness of this finding across different feature extractors.
Table 1: Results for Task 1: Analysis of High-Dimensional Feature Spaces. We report mean classi-
fication accuracy (%) ± std over 5 runs. The table includes both supervised (Pruned (sup.)) and our
proposed unsupervised (Pruned-KMeans (unsup.)) pruning strategies. Best performance for each
dataset is in bold.

Classifier Feature Extractor Strategy ETTh1 ETTm1 ExchangeRate Weather
LightGBM Py-ROCKET Base 30.81 ± 4.03 32.69 ± 1.28 65.95 ± 10.13 47.58 ± 2.67

Pruned (sup.) 29.77 ± 7.71 23.77 ± 1.84 74.05 ± 13.43 44.53 ± 0.98
Pruned-KMeans (unsup.) 30.58 ± 4.36 33.01 ± 0.68 70.54 ± 6.58 42.48 ± 2.03
PCA (unsup.) 31.86 ± 3.80 33.38 ± 1.07 44.32 ± 18.12 37.30 ± 2.09

sk-MINIROCKET Base 39.88 ± 7.91 28.78 ± 1.77 62.16 ± 6.19 55.62 ± 2.32
Pruned (sup.) 41.86 ± 2.70 36.92 ± 1.42 69.46 ± 4.23 34.13 ± 1.73
Pruned-KMeans (unsup.) 36.16 ± 3.52 32.89 ± 1.31 50.54 ± 12.88 52.38 ± 2.30
PCA (unsup.) 27.44 ± 3.62 31.42 ± 1.01 28.65 ± 3.08 49.90 ± 2.19

RidgeClassifierCV Py-ROCKET Base 38.37 ± 1.48 35.25 ± 4.06 53.24 ± 2.63 45.37 ± 2.50
Pruned (sup.) 36.98 ± 4.30 32.46 ± 5.12 47.30 ± 10.85 40.34 ± 3.72
Pruned-KMeans (unsup.) 35.00 ± 1.95 38.79 ± 6.87 35.95 ± 10.27 42.13 ± 2.78
PCA (unsup.) 37.67 ± 0.96 30.71 ± 1.18 53.24 ± 2.63 46.10 ± 1.58

sk-MINIROCKET Base 45.70 ± 1.40 31.42 ± 0.72 52.70 ± 4.97 50.32 ± 0.53
Pruned (sup.) 44.07 ± 2.61 29.41 ± 1.89 16.76 ± 4.83 35.81 ± 2.02
Pruned-KMeans (unsup.) 43.72 ± 2.30 31.60 ± 3.71 50.00 ± 5.32 49.45 ± 1.57
PCA (unsup.) 45.81 ± 0.76 34.88 ± 1.05 52.70 ± 4.97 49.75 ± 1.24

Barycenter-DTW Raw-DTW N/A 31.40 ± 0.00 26.33 ± 0.00 77.03 ± 0.00 26.86 ± 0.00

series shape. Its weaker performance on datasets like Weather (26.86%) confirms that other datasets
require the local, nuanced patterns that only convolutional features like ROCKET can capture. This
directly addresses RQ1: the bottleneck in ROCKET’s feature space is a complex interplay between
feature properties and classifier capacity, with the optimal resolution depending on intrinsic dataset
characteristics.

4.2 TASK 2: THE FALLACY OF UNIVERSAL FUSION - SYNERGY VS. INTERFERENCE

The results from our large-scale deep learning experiments, presented in Table 2, provide a clear and
compelling answer to our second research question (RQ2): there is no universally optimal fusion
strategy. The decision to fuse, and the choice of fusion method, is deeply contingent on both the
model architecture and the dataset.

The phenomena of “feature synergy” and “feature interference” are widespread. On the Weather
dataset, for instance, we observe consistent synergy; nearly all architectures, including ResNet,
FCN, and OmniScaleCNN, achieve higher accuracy with fusion than in their Time-Only setting.
This suggests the spectral features provide complementary information that the time-domain models
alone cannot capture. Conversely, on the ExchangeRate dataset, we witness stark interference.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 2: Results for Task 2: Deep Learning Fusion Strategy Analysis. We report mean classification
accuracy (%)± std over 5 runs. Best performance for each dataset and model architecture is in bold.

Model Architecture Feature Input ETTh1 ETTm1 ExchangeRate Weather
FCN Concat Fusion 35.23 ± 7.66 43.08 ± 3.57 14.59 ± 10.66 53.22 ± 2.69

Gating Fusion 37.44 ± 4.91 41.29 ± 1.41 22.43 ± 5.20 52.99 ± 2.81
Time-Only (Base) 38.02 ± 11.78 41.70 ± 4.00 21.08 ± 2.26 52.69 ± 2.87

GRU Concat Fusion 28.26 ± 3.23 40.95 ± 5.59 51.89 ± 25.97 60.04 ± 1.29
Gating Fusion 29.77 ± 3.20 41.41 ± 3.92 67.30 ± 6.98 60.57 ± 1.10
Time-Only (Base) 30.12 ± 2.86 41.53 ± 3.67 67.03 ± 4.34 60.84 ± 0.84

InceptionTime Concat Fusion 36.51 ± 5.72 34.96 ± 9.93 42.97 ± 19.87 56.61 ± 4.23
Gating Fusion 34.77 ± 7.88 35.57 ± 5.32 63.78 ± 13.56 58.59 ± 2.17
Time-Only (Base) 37.09 ± 14.16 36.49 ± 8.41 48.65 ± 22.43 57.90 ± 4.16

LSTM Concat Fusion 28.95 ± 5.22 39.48 ± 1.95 42.16 ± 17.91 56.65 ± 1.70
Gating Fusion 28.49 ± 4.92 36.95 ± 2.51 69.19 ± 8.41 56.95 ± 2.68
Time-Only (Base) 27.91 ± 5.96 37.50 ± 1.74 67.84 ± 7.55 57.26 ± 3.03

Mamba Concat Fusion 22.56 ± 20.77 24.32 ± 13.86 0.00 ± 0.00 36.19 ± 0.00
Gating Fusion 13.95 ± 12.92 22.30 ± 12.98 0.00 ± 0.00 36.19 ± 0.00
Time-Only (Base) 8.02 ± 11.81 17.84 ± 13.09 0.00 ± 0.00 36.19 ± 0.00

OmniScaleCNN Concat Fusion 40.47 ± 11.89 44.26 ± 6.83 36.49 ± 11.66 46.02 ± 5.13
Gating Fusion 39.88 ± 2.49 47.14 ± 2.61 27.30 ± 7.73 48.42 ± 3.45
Time-Only (Base) 41.05 ± 6.39 43.34 ± 5.51 24.32 ± 6.55 44.00 ± 11.91

PatchTST Concat Fusion 35.12 ± 2.98 37.09 ± 2.21 41.62 ± 9.28 46.06 ± 3.22
Gating Fusion 40.70 ± 3.41 36.32 ± 2.46 24.32 ± 4.58 44.99 ± 2.99
Time-Only (Base) 37.33 ± 2.38 36.06 ± 2.72 11.35 ± 1.21 44.30 ± 3.37

ResNet Concat Fusion 30.58 ± 4.80 33.27 ± 6.98 35.68 ± 15.13 58.63 ± 1.87
Gating Fusion 32.56 ± 7.68 34.99 ± 4.04 23.51 ± 10.05 58.63 ± 1.17
Time-Only (Base) 30.23 ± 9.95 34.47 ± 5.85 28.65 ± 25.09 58.48 ± 2.41

XCM Concat Fusion 39.77 ± 7.63 32.06 ± 4.04 46.49 ± 16.54 49.79 ± 1.90
Gating Fusion 39.42 ± 2.51 37.47 ± 2.88 55.68 ± 19.94 45.33 ± 2.10
Time-Only (Base) 43.37 ± 3.62 34.45 ± 3.15 37.03 ± 4.54 49.98 ± 2.87

FCN
GRU

Inc
ep

tio
nT

im
e

LSTM
Mam

ba

OmniS
cal

eC
NN

Patc
hT

ST
ResN

et
XCM

Model Architecture

ETTh1

ETTm1

ExchangeRate

Weather

D
at

as
et

-0.58 -0.35 -0.58 1.04 14.54 -0.58 3.37 2.33 -3.60

1.38 -0.12 -0.92 1.98 6.48 3.80 1.03 0.52 3.02

1.35 0.27 15.13 1.35 0.00 12.17 30.27 7.03 18.65

0.53 -0.27 0.69 -0.31 0.00 4.42 1.76 0.15 -0.19

0

5

Av
g.

 G
ai

n

0 10
Avg. Gain

0

5

10

15

20

25

30

A
cc

ur
ac

y
G

ai
n

(%
)

Feature Fusion Performance Gain (Best Fusion vs. Time-Only Base)

Figure 2: Heatmap of performance gain from feature fusion across all deep learning models and
datasets. Each cell represents the accuracy change (%) of the best fusion strategy compared to the
Time-Only baseline. Green indicates synergy (fusion helps), while red indicates interference (fusion
hurts). The marginal bar plots on the top and right summarize the average gain for each model and
dataset, respectively, providing a global view of fusion effectiveness.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

The powerful recurrent models, GRU and LSTM, perform exceptionally well in their Time-Only
configuration (67.03% and 67.84%, respectively), but their performance collapses dramatically with
simple Concat Fusion. This indicates that for these models on this dataset, the spectral features act
as a source of noise, corrupting the potent representations learned from the temporal domain.

The choice between fusion methods also matters. On ExchangeRate, the XCM model’s accuracy
soars from 37.03% to 55.68% with Gating Fusion, demonstrating the gate’s ability to selectively
filter and apply spectral information. For LSTM on the same dataset, Gating Fusion (69.19%) is
also clearly superior to the destructive Concat Fusion (42.16%). This confirms that different model
architectures have vastly different abilities to handle and integrate external feature sources, and the
fusion mechanism itself is a critical factor in determining the outcome. A notable outlier is our
Mamba implementation, which consistently failed to learn on most datasets, suggesting that its base
architecture may require significant task-specific hyperparameter tuning beyond the scope of this
study.

5 CORRELATING PERFORMANCE WITH DATASET PROPERTIES

Having established that the performance of feature handling strategies is highly contingent on the
model and dataset, we now seek to understand why. To bridge the gap from qualitative observation
to quantitative evidence, we investigate the relationship between intrinsic dataset properties and the
success of our feature-handling strategies. This analysis provides strong quantitative backing for our
core feature-centric hypotheses.

5.1 META-FEATURE CALCULATION

We compute two meta-features for each dataset based on its raw time series data.

Signal-to-Noise Ratio (SNR) is estimated by decomposing each time series into trend, seasonal,
and residual components using STL decomposition. SNR is then calculated as the variance ratio of
the signal (trend + seasonal) to the noise (residual); a higher SNR indicates a cleaner signal.

Spectral Entropy is calculated from the Power Spectral Density (PSD) of the signal, obtained using
Welch’s method. This metric measures the uniformity of the power distribution across frequencies;
a high entropy indicates a complex spectrum.

5.2 QUALITATIVE VISUAL INSPECTION

To provide an intuitive, visual grounding for these meta-features, Figure 3 contrasts real data samples
from our key case study datasets. The top panels clearly illustrate the concept of SNR: Figure 3(a)
shows a sample from ExchangeRate, which has a low calculated SNR and appears visually noisy
with high-frequency oscillations. In contrast, Figure 3(b) shows a sample from Weather, which has a
higher SNR and appears significantly cleaner with more discernible patterns. Similarly, the bottom
panels visualize spectral complexity. The power spectrum of ETTm2 (Figure 3(c)), a dataset with
low spectral entropy, is dominated by a few distinct frequency peaks. Conversely, the spectrum of
Weather (Figure 3(d)), a dataset with high spectral entropy, is more broadly distributed and complex.
These visual examples corroborate our quantitative calculations and provide the intuition needed to
interpret the following correlation analysis.

5.3 CORRELATION ANALYSIS

Figure 4 plots the performance gains of our strategies against the calculated meta-features, breaking
down the analysis for each model combination to verify the generality of our findings. The left
panel reveals a consistent negative correlation between a dataset’s SNR and the accuracy gain from
our ‘Pruned’ (supervised feature selection) method. For datasets with low SNR (i.e., high noise)
like ILI, the gain from pruning is often positive, as it effectively filters out noise. Conversely, for
datasets with very clean signals like ExchangeRate, the gain is less pronounced or even negative for
some models. This trend holds across different combinations, confirming that the utility of feature
pruning is strongly linked to the signal quality.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 50 100 150 200 250
Time Step

0.50

0.55

A
m

pl
itu

de

(a) Raw Signal: ExchangeRate (Visually Noisy)

0 50 100 150 200 250
Time Step

990

995

A
m

pl
itu

de

(b) Raw Signal: Weather (Visually Cleaner)

0.0 0.1 0.2 0.3 0.4 0.5
Normalized Frequency

10 1

101

103

Po
w

er
/F

re
qu

en
cy

 (d
B

/H
z)

(c) Power Spectrum: ETTm2 (Spectrally Simple)

0.0 0.1 0.2 0.3 0.4 0.5
Normalized Frequency

10 2

101

Po
w

er
/F

re
qu

en
cy

 (d
B

/H
z)

(d) Power Spectrum: Weather (Spectrally Complex)

Figure 3: Qualitative inspection of key dataset characteristics using real data samples. (a) vs (b)
illustrates the visual difference between a noisy signal (ExchangeRate, low SNR) and a cleaner
signal (Weather, high SNR). (c) vs (d) contrasts a spectrally simple signal (ETTm2, low entropy)
with a spectrally complex one (Weather, high entropy). This figure provides visual intuition for the
meta-features analyzed in Figure 4.

20

0

LightGBM
+ Py-ROCKET

LightGBM
+ sk-MINIROCKET

ETTh1

(8.51)
ETTm1

(8.53)
Weat

her

(11
.46)

ExchangeR
ate

(29.05)

20

0

RidgeClassifierCV
+ Py-ROCKET

ETTh1

(8.51)
ETTm1

(8.53)
Weat

her

(11
.46)

ExchangeR
ate

(29.05)

RidgeClassifierCV
+ sk-MINIROCKET

0

20

FCN GRU InceptionTime

0

20

LSTM Mamba OmniScaleCNN

ExchangeR
ate

(1.79)
Weat

her

(2.17)
ETTm1

(2.49)
ETTh1

(3.06)

0

20

PatchTST

ExchangeR
ate

(1.79)
Weat

her

(2.17)
ETTm1

(2.49)
ETTh1

(3.06)

ResNet

ExchangeR
ate

(1.79)
Weat

her

(2.17)
ETTm1

(2.49)
ETTh1

(3.06)

XCM

Quantitative Correlation Between Dataset Properties and Strategy Performance

Signal-to-Noise Ratio (SNR, dB)

A
cc

ur
ac

y
G

ai
n

of
 P

ru
ne

d
vs

. B
as

e
(%

)

Spectral Entropy

A
cc

ur
ac

y
G

ai
n

of
 F

us
io

n
vs

. B
as

e
(%

)

Figure 4: Quantitative correlation between dataset meta-features and strategy performance. Left (a-
d): The performance gain of the ‘Pruned’ method is negatively correlated with the dataset’s Signal-
to-Noise Ratio (SNR). Right (e-m): The performance gain of the best fusion strategy is positively
correlated with the dataset’s Spectral Entropy. This provides strong, multi-model evidence for our
feature-centric hypotheses.

The right panel of Figure 4 shows a prevailing positive correlation between a dataset’s spectral en-
tropy and the benefit of feature fusion. This trend is visible across a diverse range of architectures.
Datasets with high spectral entropy, such as ETTh1, tend to exhibit positive gains from fusion, indi-
cating that their rich frequency-domain information is complementary to the time-domain features.
In contrast, datasets with lower spectral entropy, like ExchangeRate and Weather, show more mixed
results, where fusion is beneficial for some architectures but detrimental to others. This strongly
supports our second hypothesis: the outcome of fusion is not random, but is predictably linked to
the spectral complexity of the data and its interaction with the model’s architectural biases.

6 TOWARDS AN ADAPTIVE FRAMEWORK: A PILOT STUDY

Our analysis consistently suggests that the optimal feature strategy is predictable from a dataset’s
intrinsic properties. To formally test this hypothesis and demonstrate the feasibility of our proposed
adaptive framework, we conducted a pilot study. We created a “hyper-focused” meta-dataset using
the results from our most illustrative case: the LightGBM + Py-ROCKET combination across our
four key datasets. The task for a simple meta-classifier was to predict the binary target—whether

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) The Calculation Process

(b) The Resulting Decision Tree

1. Initial State

 samples = 4
 value = [2, 2] (Base, Pruned)
 Gini Impurity = 0.500

2. Candidate Evaluation

 Test all possible splits:
 • Try SNR <= 8.52 → Gini = 0.333
 • Try SNR <= 9.99 → Gini = 0.500
 • Try SNR <= 20.26 → Gini = 0.333

3. Select Split with
Minimum Gini Impurity

4. Winning Rule Selected

 SNR_dB <= 8.52

 SNR_dB <= 8.52

 gini = 0.500
 samples = 4
 value = [2, 2]
 class = Use Base

 Generates

 Outcome: Rule is True

gini = 0.000
 samples = 1
 value = [1, 0]
 class = Use Base

 Contained Dataset:
 • ETTh1

 True

 Outcome: Rule is False

 gini = 0.444
 samples = 3
 value = [1, 2]
 class = Use Pruned-KMeans

 Contained Datasets:
 • ETTm1
 • ExchangeRate
 • Weather

False

Figure 5: The Decision Process and Result of the Meta-Classifier

Figure 5: Visualizing the meta-classifier’s decision process and the final resulting rule. (a) A
flowchart illustrating how the pilot study evaluates candidate splits based on Gini impurity to se-
lect the optimal rule. The algorithm identifies ‘SNR ¡= 8.52’ as the split that best separates the
classes. (b) The final, data-rich decision tree generated from this rule. The tree successfully isolates
the ‘ETTh1’ dataset and correctly recommends ‘Use Pruned-KMeans’ for the branch containing
datasets with higher SNR where pruning was shown to be beneficial.

to use our Pruned-KMeans (unsup.) strategy (class 1) or the Base strategy (class 0)—using
only the dataset’s SNR and Spectral Entropy as features.

The entire decision process and the final resulting rule from a trained Decision Tree (with
max depth=1) are visualized in Figure 5. The process begins with a balanced set of 4 exper-
imental outcomes (2 for each class). As shown in Figure 5(a), the algorithm evaluates all pos-
sible splits and determines that a rule based on SNR provides the greatest reduction in impurity.
The resulting tree, shown in Figure 5(b), is remarkably effective. It learns a single, intuitive rule,
SNR dB <= 8.52, which successfully isolates the ETTh1 dataset as a case where the base strat-
egy is preferred. More importantly, the other leaf correctly classifies two of the three remaining
datasets (ETTm1, ExchangeRate) as benefiting from our unsupervised pruning method, making
Use Pruned-KMeans the majority class for that branch.

This successful pilot study provides strong proof-of-concept for an effective, data-driven adaptive
approach. It transforms our conceptual framework into a tangible result and lays a clear path for
future work in developing fully-automated, adaptive TSC systems.

7 DISCUSSION AND CONCLUSION

In this work, we challenged the prevailing model-centric paradigm in Time Series Classification
through extensive experiments on both feature-based and a diverse set of nine deep learning models.
Our results yield three core contributions: we demonstrated that the bottleneck in high-dimensional
feature spaces is a complex interplay between feature noise and classifier capacity; we provided the
first large-scale proof that feature fusion can lead to both synergy and interference, a phenomenon
predictable from dataset properties like spectral entropy; and through a successful pilot study (Fig-
ure 5), we demonstrated the feasibility of an adaptive, feature-centric framework.

The implications of these findings are significant. The interplay between feature pruning and clas-
sifier capacity (Figure 1) suggests that feature processing and model selection should be considered
a co-design problem. Furthermore, the duality of fusion outcomes (Figure 2) serves as a crucial
cautionary tale: feature fusion is a conditional tool, not a universal enhancement, and its success is
tied to the alignment of model architecture with data characteristics. This is powerfully illustrated
by our Mamba case study: the state-of-the-art model struggled, likely due to a mismatch between
its architectural bias (favoring long-range dependencies) and the properties of many TSC datasets.
This underscores that even the most advanced models are not “silver bullets” and are subject to the
feature-centric principles we advocate for.

While our work provides strong evidence, we acknowledge its limitations: our analysis is focused
on classification, and the pilot study, while a successful proof-of-concept, used a small meta-dataset.
Ultimately, our work advocates for a paradigm shift: from pursuing a universal model to develop-
ing adaptive frameworks that diagnose dataset characteristics and automatically configure optimal
analysis pipelines.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Anthony Bagnall, Jon Lines, James Large, and Aaron Bostrom. Hive-cote: The hierarchical vote
collective of transformation-based ensembles for time series classification. 2016 IEEE 16th in-
ternational conference on data mining (ICDM), pp. 787–792, 2016.

Anthony Bagnall, Jon Lines, Aaron Bostrom, James Large, and Eamonn Keogh. The great time se-
ries classification bake off: a review and experimental evaluation of recent algorithmic advances.
Data Mining and Knowledge Discovery, 31(3):606–660, 2017.

Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal machine learning:
A survey and taxonomy. IEEE transactions on pattern analysis and machine intelligence, 41(2):
423–443, 2018.

Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar, Chotirat Ann Yeh, Yan Zhu, Shaghayegh
Gharghabi, Chotirat Ann Ratanamahatana, Yanping Chen, Bing Hu, Nurjahan Begum, et al. The
ucr time series classification archive. ACM, 2019.

Angus Dempster, François Petitjean, and Geoffrey I Webb. Rocket: exceptionally fast and accu-
rate time series classification using random convolutional kernels. Data Mining and Knowledge
Discovery, 34(5):1454–1495, 2020.

Angus Dempster, Daniel F Schmidt, and Geoffrey I Webb. Minirocket: A very fast (and accurate)
adapter for time series classification. In Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, pp. 248–257, 2021.

Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhacene Idoumghar, and Pierre-Alain
Muller. Deep learning for time series classification: a review. In Data mining and knowledge
discovery, volume 33, pp. 917–963. Springer, 2019.

Hassan Ismail Fawaz, Benjamin Lucas, Germain Forestier, Charlotte Pelletier, Daniel F Schmidt,
Jonathan Weber, Geoffrey I Webb, Lhacene Idoumghar, and Pierre-Alain Muller. Inceptiontime:
Finding alexnet for time series classification. In Data Mining and Knowledge Discovery, vol-
ume 34, pp. 1936–1962. Springer, 2020.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. Bilinear cnn models for fine-grained
visual recognition. In Proceedings of the IEEE international conference on computer vision, pp.
1449–1457, 2015.

Kuan Lu, Menghao Huo, Yuxiao Li, Qiang Zhu, and Zhenrui Chen. CT-PatchTST: Channel-time
patch time-series transformer for long-term renewable energy forecasting. 2025.

Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and Andrew Y Ng. Mul-
timodal deep learning. In proceedings of the 28th international conference on machine learning
(ICML-11), pp. 689–696, 2011.

Jingchao Ni, Ziming Zhao, ChengAo Shen, Hanghang Tong, Dongjin Song, Wei Cheng, Dongsheng
Luo, and Haifeng Chen. Harnessing vision models for time series analysis: A survey. 2025.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. arXiv preprint arXiv:2211.14730, 2023.

Patrick Schäfer. The boss is concerned with time series classification in the presence of noise. In
Data Mining and Knowledge Discovery, volume 29, pp. 1505–1531. Springer, 2015.

Shriyank Somvanshi, Mahmuda Sultana Mimi, Sazzad Bin Bashar Polock, Md Monzurul Islam,
Gaurab Chhetri, and Subasish Das. Mamba-ProbTSF: A probabilistic framework for time series
forecasting with state space models, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Shriyank Somvanshi, Md Monzurul Islam, Mahmuda Sultana Mimi, Sazzad Bin Bashar Polock,
Gaurab Chhetri, and Subasish Das. From S4 to mamba: A comprehensive survey on structured
state space models. arXiv preprint arXiv:2503.18970, 2025.

Patara Trirat, Yooju Shin, Junhyeok Kang, Youngeun Nam, Jihye Na, Minyoung Bae, Joeun Kim,
Byunghyun Kim, and Jae-Gil Lee. Universal time-series representation learning: A survey. 2024.

Gonzalo Uribarri, Federico Barone, Alessio Ansuini, and Erik Fransén. Detach-ROCKET: sequen-
tial feature selection for time series classification with random convolutional kernels. Data Mining
and Knowledge Discovery, 38(6):3922–3947, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, volume 30, 2017.

Yifei Wang, Xiaoyu Wang, Tianyu Yang, Ziyu Wang, Qing Zhang, and Yong Zhang. A dual-stream
multimodal fusion network for eeg-based emotion recognition. Applied Sciences, 15(3), 2024.
ISSN 2076-3417. doi: 10.3390/app15031538.

Zhiguang Wang, Weizhong Yan, and Tim Oates. Time series classification from scratch with deep
neural networks: A strong baseline. 2017 International joint conference on neural networks
(IJCNN), pp. 1578–1585, 2017.

Yunshi Wen, Tengfei Ma, Tsui-Wei Weng, Lam M. Nguyen, and Anak Agung Julius. Abstracted
shapes as tokens – a generalizable and interpretable model for time-series classification. In D. Lee,
M. Sugiyama, U. Luxburg, and I. Guyon (eds.), Advances in Neural Information Processing Sys-
tems, 2024.

Gwantae Woo, Tae-Ho Kim, and Jae-Gil Lee. DropPatch: An effective pre-training strategy for time-
series foundation models. In The Twelfth International Conference on Learning Representations,
2024.

Lexiang Ye and Eamonn Keogh. Time series shapelets: a new primitive for data mining. In Pro-
ceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data
mining, pp. 947–956, 2011.

Zuochen Ye. ss-Mamba: Semantic-spline selective state-space model, 2025.

Haodong Yu, Kexin Sun, Dong Yu, Jiarong Qiu, Zheyuan Wang, and Yunjian Jia. PS-loss: A patch-
wise structural loss for time series forecasting, 2025.

Ce Zhang, Zhiyong Wang, Dacheng Tao, Wei Wang, and Chao Zhang. Fusing heterogeneous fea-
tures for multimodal data analysis. In Proceedings of the 2017 SIAM International Conference
on Data Mining, pp. 702–710. SIAM, 2017.

ETHICS STATEMENT

This research focuses on a fundamental analysis of feature interactions within established Time
Series Classification (TSC) models. All experiments were conducted on publicly available,
anonymized benchmark datasets, such as the ETT datasets and the UCR/UEA archives. Our work
does not involve human subjects, personally identifiable information, or any form of sensitive data,
and therefore raises no direct privacy or security concerns. The insights presented are intended to
improve the scientific understanding of TSC models and do not, to the best of our knowledge, have
a direct potential for negative societal impact or malicious use. The authors declare no competing
interests or conflicts of interest.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We are committed to ensuring the full reproducibility of our research. All methodologies, parame-
ters, and experimental workflows are detailed extensively between the main paper and this appendix
to facilitate the verification of our findings.

• Datasets and Preprocessing: All datasets used are public benchmarks. A comprehensive
statistical overview is provided in Appendix A.1 (Table 3). The uniform data preprocessing
parameters for the sliding window protocol are detailed in Table 4.

• Experimental Settings: The specific hyperparameters for all methods in Task 1 (Feature
Engineering) and Task 2 (Deep Learning) are exhaustively documented in Appendix A.1,
specifically in Table 5 and Table 6, respectively.

• Algorithms and Methodology: The high-level workflows for our three core experimen-
tal procedures (Task 1, Task 2, and the Pilot Study) are presented as formal pseudocode
in Appendix A.2. Algorithm 1, Algorithm 2, and Algorithm 3 correspond to each proce-
dure, detailing the logical steps from data processing to evaluation. These algorithms, in
conjunction with the parameters in the preceding tables, provide a complete blueprint for
replication.

• Results: As stated in Section 4, all reported experimental results are the mean and stan-
dard deviation over five runs with different random seeds to ensure the robustness of our
conclusions.

A APPENDIX

A.1 DETAILED EXPERIMENTAL SETTINGS

This section provides the detailed configurations and parameters used for all experiments to ensure
full reproducibility.

Table 3: Statistics of the datasets used in the experiments.

Dataset Train Samples Test Samples Dimensions Classes
ETTh1 687 172 6 7
ETTh2 687 172 6 7
ETTm1 2777 695 6 7
ETTm2 2777 695 6 7
Electricity 5600 1401 369 370
ExchangeRate 293 74 7 8
ILI 42 11 10 11
Weather 2098 525 20 21

Dataset Overview Table 3 provides a statistical overview of the public benchmark datasets uti-
lized in our experiments. This includes the number of training and testing samples after applying
our sliding window protocol, the dimensionality (number of channels), and the number of unique
classes for each dataset.

Table 4: Data preprocessing settings.

Parameter Value
Sliding Window Size 256
Stride 20

Data Preprocessing To ensure consistency across all experiments, a uniform data preprocessing
pipeline was applied. The key parameters for the sliding window segmentation are detailed in Ta-
ble 4.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Table 5: Parameters for Task 1 (Feature Engineering Analysis).

Parameter Value
Py-ROCKET: num kernels 10,000 (produces 20,000 features)
sk-MINIROCKET: num kernels 10,000
Pruned (sup.): n features 500
Pruned-KMeans (unsup.): n features 500
PCA: n components 500

Task 1 Parameters The experiments in Task 1 (Section 3) involved several feature extractors and
processing strategies. The specific hyperparameters for these methods are listed in Table 5.

Table 6: Hyperparameters for Task 2 (Deep Learning Analysis).

Parameter Value
Spectral Features: k bands 50
Training Epochs (Base Models) 50
Training Epochs (Fusion Heads) 30
Batch Size 32
Learning Rate 0.001
Optimizer Adam

Task 2 Hyperparameters For the deep learning fusion experiments in Task 2, a consistent set of
training hyperparameters was used for all nine architectures to ensure a fair comparison of the fusion
strategies’ effects. These global settings are provided in Table 6.

A.2 CORE ALGORITHM PSEUDOCODE

The following algorithms provide a high-level overview of the experimental workflows, correspond-
ing to the experiments detailed in the main paper.

Algorithm 1 Task 1: Feature Engineering Experiment Workflow

1: Input: Datasets D, Seeds S
2: Initialize empty results list R1

3: for each seed in S do
4: for each dataset in D do
5: (Xtrain, ytrain), (Xtest, ytest)← LoadAndProcessData(dataset)
6: for each feature extractor Φ in {ΦPy-ROCKET,Φsk-MINIROCKET} do
7: Ftrain ← Φ(Xtrain); Ftest ← Φ(Xtest)
8: for each classifier C in {CLGBM, CRidge} do
9: for each strategy Ψ in {Base, Pruned, PCA, KMeans-Pruned} do

10: F ′
train, F

′
test ← Ψ(Ftrain, Ftest, ytrain)

11: M ← C.fit(F ′
train, ytrain)

12: Acc←M.score(F ′
test, ytest)

13: Append {seed, dataset,Φ, C,Ψ, Acc} to R1

14: end for
15: end for
16: end for
17: end for
18: end for
19: Output: Results R1

Task 1 Workflow Algorithm 1 outlines the complete workflow for our feature engineering ex-
periments (Task 1). The process involves iterating through all seeds, datasets, feature extractors,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

classifiers, and strategies to systematically collect performance data and ensure the robustness of
our findings.

Algorithm 2 Task 2: Deep Learning Fusion Experiment Workflow

1: Input: Datasets D, Seeds S, ArchitecturesM
2: Initialize empty results list R2

3: for each seed in S do
4: for each dataset in D do
5: (Xtrain, ytrain), (Xtest, ytest)← LoadAndProcessData(dataset)
6: Fspec,train, Fspec,test ← ExtractSpectralFeatures(Xtrain, ytrain, Xtest)
7: for each ModelArchitecture inM do
8: Mbase ← ModelArchitecture()
9: Mbase.train(Xtrain, ytrain) ▷ Train end-to-end

10: Accbase ←Mbase.evaluate(Xtest, ytest)
11: Append {..., ’Time-Only’, Accbase} to R2

12: Ftime,train ←Mbase.extract features(Xtrain)
13: Ftime,test ←Mbase.extract features(Xtest)
14: for each fusion strategy in {Concat, Gating} do
15: hfusion ← FusionHead(fusion strategy)
16: Ffused,train ← combine(Ftime,train, Fspec,train)
17: hfusion.train(Ffused,train, ytrain)
18: Accfusion ← hfusion.evaluate(combine(Ftime,test, Fspec,test), ytest)
19: Append {..., fusion strategy, Accfusion} to R2

20: end for
21: end for
22: end for
23: end for
24: Output: Results R2

Task 2 Workflow The workflow for the deep learning fusion experiments (Task 2) is detailed in
Algorithm 2. For each model architecture, we first train the base model end-to-end, then extract its
penultimate layer features, and subsequently train and evaluate two fusion heads (Concatenation and
Gating) using these features combined with spectral information.

Algorithm 3 Pilot Study: Meta-Classifier Workflow

1: Input: Task 1 Results R1, Meta-Features MF
2: Filter R1 for C = CLGBM and Φ = ΦPy-ROCKET
3: Create meta-dataset Dmeta by merging filtered R1 with MF
4: for each row in Dmeta do
5: ymeta ← 1 if AccPruned-KMeans > AccBase else 0
6: end for
7: Xmeta ← Dmeta[’SNR dB’, ’Spectral Entropy’]
8: Mmeta ← DecisionTreeClassifier(max depth = 1)
9: Mmeta.fit(Xmeta, ymeta)

10: Output: Learned rule from trained Mmeta

Pilot Study Workflow Algorithm 3 specifies the procedure for our pilot study (Section 6). It
describes the creation of the meta-dataset by combining experimental results with pre-calculated
meta-features, and the subsequent training of a simple decision tree to learn a strategy selection rule.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.3 LLM ASSISTANCE DISCLOSURE

Consistent with the conference’s transparency policy, we disclose that a Large Language Model
(LLM) was utilized as an assistive tool during the preparation of this work. Its application was
focused on two distinct support functions: refining the manuscript’s prose and accelerating the code
debugging cycle.

Manuscript Preparation An LLM was employed to improve the linguistic quality of the Abstract
and Introduction. This process consisted of iterative, sentence-level prompts designed to enhance
the clarity, conciseness, and overall fluency of the text.

Code Development During the experimental phase, the LLM functioned as an interactive debug-
ging aid. When encountering software errors, we provided the model with the problematic code
segment accompanied by its full traceback and error message. The model was then queried to diag-
nose the root cause and suggest potential corrections, which streamlined the development process.

It is emphasized that the LLM’s role was exclusively that of a productivity tool for language en-
hancement and code troubleshooting. The core scientific contributions of this paper—including the
initial hypothesis, the design of experiments, and the interpretation of results—are solely the original
work of the authors.

15

	Introduction
	Related Work
	Efficient Time Series Classification
	Deep Learning for Time Series Classification
	Feature Fusion in Machine Learning

	Methodology: A Framework for Feature Dissection
	Task 1: Analysis of High-Dimensional Feature Spaces
	Task 2: Analysis of Deep Learning Fusion Strategies

	Experiment Results and Analysis
	Task 1: The Classifier-Feature Interplay in High Dimensions
	Task 2: The Fallacy of Universal Fusion - Synergy vs. Interference

	Correlating Performance with Dataset Properties
	Meta-Feature Calculation
	Qualitative Visual Inspection
	Correlation Analysis

	Towards an Adaptive Framework: A Pilot Study
	Discussion and Conclusion
	Appendix
	Detailed Experimental Settings
	Core Algorithm Pseudocode
	LLM Assistance Disclosure

