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Abstract

We consider the problem of learning a target function corresponding to a single
hidden layer neural network, with a quadratic activation function after the first layer,
and random weights. We consider the asymptotic limit where the input dimension
and the network width are proportionally large. Recent work [Cui et al., 2023]
established that linear regression provides Bayes-optimal test error to learn such
a function when the number of available samples is only linear in the dimension.
That work stressed the open challenge of theoretically analyzing the optimal test
error in the more interesting regime where the number of samples is quadratic in
the dimension. In this paper, we solve this challenge for quadratic activations and
derive a closed-form expression for the Bayes-optimal test error. We also provide an
algorithm, that we call GAMP-RIE, which combines approximate message passing
with rotationally invariant matrix denoising, and that asymptotically achieves the
optimal performance. Technically, our result is enabled by establishing a link
with recent works on optimal denoising of extensive-rank matrices and on the
ellipsoid fitting problem. We further show empirically that, in the absence of
noise, randomly-initialized gradient descent seems to sample the space of weights,
leading to zero training loss, and averaging over initialization leads to a test error
equal to the Bayes-optimal one.

1 Introduction

Learning with multi-layer neural networks brought impressive progress and applications in many
areas. It is well established that a large enough non-linear neural network can represent a large class
of functions [Cybenko, 1989]. Yet the conditions under which the values of the weights can be found
efficiently, and from how many samples of the data, remain theoretically elusive. While one may
hope that a detailed understanding of these fundamental limitations will eventually allow for a more
efficient training, answering such questions for general data and target function remains, however,
beyond the reach of current theoretical methods.

In an early attempt to overcome the difficulty of the above generic question, a long line of work
originating in Gardner and Derrida [1989], Sompolinsky et al. [1990] proposed to study the optimal
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sample-complexity in the so-called teacher-student setting, where the target function corresponds
to a “teacher” neural network. The architecture of this teacher neural network is chosen to be fully
connected feed-forward with a given number of layers, their widths, and activations. The values of
each of the weights are generated independently, from a Gaussian distribution. This teacher neural
network is then used to generate an output label yi ∈ R for each input data sample xi ∈ Rd. Given the
architecture of the teacher networks (but not the values of the teacher-weights W∗) and the training set
of input-output pairs {yi, xi}ni=1, the smallest achievable test error can then be obtained by averaging
the output of a student-neural network (with the same architecture as the teacher) over the values
of weights drawn from the posterior distribution. We will refer to the accuracy reached this way as
the Bayes-optimal one. It yields the fundamental limitations in learning such tasks, by any possible
means, and can therefore serve as a benchmark.

In the so-called high-dimensional limit [Donoho, 2000], when the input training data are
d-dimensional Gaussian vectors, in the limit d → ∞, the above research program has been carried
out in detail over the last decades for small neural networks having only m = Od(1) hidden units,
and learning from n = αd data samples, where α = Od(1) (see, e.g. Györgyi [1990], Opper and
Haussler [1991], Seung et al. [1992], Watkin et al. [1993], Schwarze [1993], Barbier et al. [2019],
Aubin et al. [2019b]). In the more recent literature, this setting is sometimes referred to as learning
single-index and multi-index functions [Damian et al., 2022, Bietti et al., 2023, Collins-Woodfin
et al., 2023, Dandi et al., 2023, 2024b, Damian et al., 2024]. While early works in this line originated
in statistical physics and used the heuristic replica method [Mézard et al., 1987] to derive the
closed-form expressions for quantities of interest in the high-dimensional limit (with d → ∞,
m = Od(1) and n = Od(d)), a mathematical establishment followed using rigorous probabilistic
methods [Barbier et al., 2019, Aubin et al., 2019b].

Reaching a closed-form expression for the Bayes-optimal sample complexity for target functions
corresponding to multi-layer teacher neural networks is the next open and very challenging task.
Among the recent work is Cui et al. [2023], that established (non-rigorously, using the replica
method) the Bayes-optimal error for a target function corresponding to a multi-layer neural network
of extensive width (i.e. linearly proportional to the dimension) from a number of samples also
linear in the dimension. Interestingly, in this limit, the Bayes-optimal error resulted in a quite poor
approximation of the function, which can be achieved as well by a simple linear regression on
the input-output pairs. No method, be it a multi-layer neural network (or even refinements like a
transformer), will be able to achieve better performance. [Cui et al., 2023] further argue, based on
numerical evidence, that quadratically many samples in the dimension are necessary in order to
be able to learn the target function with non-linear activations1 to an infinitesimally small test error.
This is perhaps intuitive as, with an extensive width, the number of parameters/weights in the teacher
network is quadratic in dimension. However, such a regime is challenging for current theoretical
tools. Reaching an analytical explicit expression for the Bayes-optimal performance in this regime,
for the target function in the form of a neural network of extensive width, is an open, challenging,
theoretical problem that has not yet been solved even for a single hidden layer architecture.

Our contributions – In this paper, we step up to this challenge and derive a closed-form expression
for the Bayes-optimal test error for a target/teacher function corresponding to a one-hidden layer
neural network of extensive width, from quadratically many samples, for a particular case where the
activation function (after the hidden layer) is quadratic. In particular, our main contributions are:

• We provide a closed-form expression for the Bayes-optimal error of learning an extensive-width
neural network from quadratically many samples, which is the first type of such result to the
best of our knowledge. Such a form is enabled by the high-dimensional limit and corresponding
concentration of quantities of interest. It notably follows from our formula that, in the absence of
noise in the target function, zero test error is achievable for a sample complexity α = n/d2 larger
than a perfect-recovery threshold α > αPR where

αPR = κ− κ2

2
if κ ≤ 1; αPR =

1

2
if κ ≥ 1, (1)

with κ = m/d the ratio between the width m and the dimension d. We further notice that this
matches a naive counting of the number of degrees of freedom in the target function.

1Note that for linear activations, the target functions reduces to linear regression and can be learned from
linearly many samples.
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• We introduce the GAMP-RIE algorithm that combines generalized approximate message passing
(GAMP) [Donoho et al., 2009, Rangan, 2011, Zdeborová and Krzakala, 2016] with a matrix
denoiser that is based on so-called rotationally-invariant estimators (RIE) [Bun et al., 2016], and
show that in the large size limit, this algorithm reaches the Bayes-optimal error for all α, κ = Θ(1).

• On the technical level, our result is enabled by combining results from the analysis of single-layer
neural networks [Barbier et al., 2019] and extensive-rank matrix denoising [Maillard et al., 2022b].
The derived formula involves the asymptotics of the Harish-Chandra-Itzykson-Zuber integral of
random matrix theory [Harish-Chandra, 1957, Itzykson and Zuber, 1980]. Our approach is notably
inspired by recent results on the ellipsoid fitting problem [Maillard and Kunisky, 2024, Maillard
and Bandeira, 2023]. These tools are of independent interest to the machine learning community,
and we anticipate they will have other applications in the theory of learning.

• We empirically compare the Bayes-optimal performance to the one obtained by gradient descent. In
the noiseless case we observe a rather unusual and surprising scenario, as randomly-initialized gra-
dient descent seems to be sampling the space of interpolants, and leads to twice the Bayes-optimal
error. When averaged over initialization the gradient descent reaches an error that is very close to
the Bayes-optimal. The rigorous establishment of these properties of gradient descent is left open.

Our experiments are reproducible, and accessible freely in a public repository [Maillard et al., 2024].

Further related works – The problem studied in this work is known as phase retrieval in the case of
a single hidden unit (m = 1). Many works considered this problem in the high-dimensional limit
d → ∞, in the regime of n = O(d log d) samples; see e.g. Candes et al. [2013], Chen et al. [2019],
Demanet and Hand [2014]. A subsequent line of work established that the problem can be solved
with only O(d) samples [Candès and Li, 2014, Chen and Candes, 2015, Cai et al., 2022].

Eventually, for Gaussian i.i.d. input data and i.i.d. teacher weights, the optimal sample complexity
for learning phase retrieval in the high-dimensional limit has been established down to the constant
in α = n/d. Authors of Mondelli and Montanari [2019] derived the weak recovery threshold for
the noiseless case to be αWR = 1/2 for phase retrieval, and optimal spectral methods were shown
to match this threshold in Luo et al. [2019], Maillard et al. [2022a]. The information-theoretically
optimal accuracy and the one achieved by an approximate message passing algorithm were then
derived in Barbier et al. [2019] for a general i.i.d. prior for the teacher weights. In the absence
of noise, these results imply sample complexities αIT = 1 and αAMP ≈ 1.13 needed to achieve
perfect learning for a Gaussian prior. Authors of Song et al. [2021] proposed a non-robust polynomial
algorithm capable of solving noiseless phase retrieval for α ≥ αIT. Algorithms based on gradient
descent were argued not to achieve the optimal sample complexity in Sarao Mannelli et al. [2020a],
Mignacco et al. [2021]. Maillard et al. [2020] derived the MMSE for more general input data
distributions, including the complex-valued case. Phase retrieval with generative priors was studied
in Hand et al. [2018], Aubin et al. [2020]. We refer to a recent review [Dong et al., 2023] for an
overview of the relations between these theoretical studies and practical applications of phase retrieval
in imaging.

The case with different numbers of hidden units m⋆ in the teacher and m in the student model, was
also discussed in the literature. For m∗ = Od(1), the problem is a special case of a multi-index model
that has been recently actively considered, e.g. in Aubin et al. [2019b], Bietti et al. [2023], Damian
et al. [2022, 2024], Collins-Woodfin et al. [2023], Dandi et al. [2023, 2024b]. This line of work has
not focused on the quadratic activations, as it does not bring particular simplification in this case.

The geometry of loss landscapes of one hidden-layer networks with quadratic activations was studied,
and the absence of spurious local minima was established for m ≥ d (when the read-out layer is
fixed as in our setting) in Du and Lee [2018]. Similar results were established in Soltanolkotabi et al.
[2018], Venturi et al. [2019] for a slightly more general setting where the readout layer is learned.

Establishing results about sample complexity required for generalization in cases where m (or both
m and m∗) are Θ(d) is technically challenging, and so far, only a handful of works made progress
in that direction. In particular, Gamarnik et al. [2019] considered m∗ ≥ d and m ≥ d, and have
shown that a sample complexity n ≥ d(d + 1)/2 is sufficient for perfect recovery of the target
function. Sarao Mannelli et al. [2020b] considered the overparametrized case with m∗ = Od(1)
and m > d, and showed that gradient descent reaches exact recovery for a sample complexity
n > d(m∗ + 1)− (m∗ + 1)m∗/2, again considering the high-dimensional limit. Gradient descent
of the population risk has been studied for general values of (m∗,m) in Martin et al. [2024], along
with a discussion of the role of overparametrization.
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2 Setting

As discussed above, we are studying the Bayes-optimal accuracy in the teacher-student setting. More
concretely, we consider a dataset of n samples D = {yi, xi}ni=1 where the input data is normal

Gaussian of dimension d: (xi)
n
i=1

i.i.d.∼ N (0, Id). We then draw i.i.d. d-dimensional teacher-weight

vectors (w∗
k)

m
k=1

i.i.d.∼ N (0, Id), and noise (zi)ni=1
i.i.d.∼ N (0, Im). Finally, the output labels (yi)ni=1

are obtained by a one-hidden layer teacher network with m hidden units and quadratic activation:

yi = fW∗(xi) :=
1

m

m∑
k=1

[
1√
d
(w∗

k)
⊺xi +

√
∆zi,k

]2
. (2)

Crucially, we assume we know the form of the (stochastic) target function fW∗(·) (i.e. the value of
m, ∆, and the form of eq. (2), including the fact that the activation function is quadratic) but we do
not know the realization of neither the teacher weights W∗ = (w⋆

1, · · · ,w⋆
m) nor the noise zi.

Universality over the noise and weights distribution – While we consider Gaussian distributions
for the sake of our theoretical analysis, we expect our results to hold under more general i.i.d. models
on both the noise and the teacher weights, under mild conditions of existence of moments. This is
related to a recent conjecture of Semerjian [2024], see Sections 3 and 4.

Bayes-optimal test error – Since we know the law of the dataset D, we can study the Bayes-optimal
(BO) estimator, which minimizes the test error over all possible estimators. To do this, we use Bayes’
theorem to obtain the posterior distribution P(W|D) of the weights W given the dataset:

P(W|D) =
1

Z(D)
Pprior(W)P(y|W, {xi}ni=1)

where Pprior(W) is a prior distribution on the teacher weights W∗, and the likelihood P(y|W,X)
can be seen as a probabilistic channel that generates the labels given the input data (xi)ni=1 and the
teacher weights W∗, and Z(D) is a normalization constant. The Bayes-optimal (BO) estimator of the
labels for a test sample xtest not seen in the training set D then involves the average over the posterior
distribution as follows (where Ez denotes the expectation over z1, · · · , zk)

ŷBO
D (xtest) := E [ytest|xtest,D] =

∫
Ez[fW(xtest)]P(W|D) dW . (3)

We will evaluate the BO estimator in terms of its average generalization error, i.e. the mean squared
error (MSE) achieved on a new sample. We define it in the following way:

MMSEd :=
m

2
EW∗,DEytest,xtest

[(
ytest − ŷBO

D (xtest)
)2]−∆(2 +∆) . (4)

We denote it MMSEd, standing for minimum-MSE, as it is the minimum MSE achievable given the
setting of the model, and we call MMSE := limd→∞ MMSEd.

Conventions for the MMSE – Notice the peculiar multiplicative factor (m/2) and the additive term
−∆(2 + ∆) in eq. (4). As we detail in Appendix F.1, these factors ensure that MMSE → 1 for
α → 0 (i.e. in the absence of data), and MMSE → 0 if the posterior concentrates around the true
W⋆ (i.e. if ŷBO

D (x) = Ez[fW⋆(x)]). Moreover, as we also detail in Appendix F.1, eq. (4) matches the
MMSE of a matrix estimation task to which we will reduce the original problem, see Section 3.

As motivated above, our goal is to analyze the MMSE in the high-dimensional limit, with an
extensive-width architecture and quadratically many data samples:

d → ∞, α := n/d2 = Θ(1), κ := m/d = Θ(1), (5)

In all that follows, we consider the limit of eq. (5), so that n, d,m all go to infinity together when we
write e.g. limd→∞. As we will see, in this limit, the value of the MMSE for a given realization of the
randomness concentrates on the averaged value defined in eq. (4).

Empirical risk minimization estimator – A more standard way of learning the target function (2) is
to minimize the empirical loss L corresponding to a “student” neural network

L(W) =
1

n

n∑
i=1

(
yi − f̃W(xi)

)2
, where f̃W(x) :=

1

m

m∑
k=1

[
1√
d
(wk)

⊺x
]2

. (6)
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Figure 1: Left: The asymptotic MMSE of eq. (7) for the noiseless (∆ = 0) case, as a function of
the sample complexity α, for various width ratios κ. Right: Phase diagram representing the MMSE,
brighter color indicates a higher value. The red curve is the perfect recovery transition line αPR, see
eq. (1), and its origin is discussed in Section 5.

Note that this does not account for the noise, but activations in neural networks are commonly
considered deterministic, so we consider this the most natural choice.

Minimization of the loss over the weights W = (wk)
m
k=1 is commonly done using gradient descent

(GD): one initializes the weights as W(0) ∼ Pprior and then updates them to minimize the empirical
loss, for an appropriately choice of learning rate, until convergence. Denoting the weights at
convergence as Ŵ(W(0),D) the estimator for test labels reads ŷGD

W(0),D(xtest) := f̃Ŵ(W(0),D)(xtest).
As we will see, it will be interesting to consider also an estimator ŷAGD obtained by averaging the
GD estimator on the labels over the initializations W(0) of the weights.

3 Main results

Notations – We use tr(·) := (1/d)Tr[·] for the normalized trace. We denote GOE(d) the distribution
of symmetric matrices ξ ∈ Rd×d such that ξij

i.i.d.∼ N (0, (1 + δij)/d), for i ≤ j. For m = κd with
κ > 0, we denote Wm,d the Wishart distribution, and µMP,κ the Marchenko-Pastur distribution with
ratio κ. More details on classical definitions and notational conventions are given in Appendix A.

We start by stating the main result of our analysis, applied to the problem of eq. (2).
Result 1. The MMSE of eq. (4) is given in the high-dimensional limit of eq. (5) by:

MMSE =
2ακ

q̂
− κ∆̃

2
, (7)

where ∆̃ := 2∆(2 +∆)/κ, and where q̂ is a solution of the following equation:

(1− 2α) +
∆̃q̂

2
=

4π2

3q̂

∫
µ1/q̂(y)

3dy. (8)

Here, µt := µMP,κ ⊞ σs.c.,
√
t (for t ≥ 0) is the free convolution of the Marchenko-Pastur law and a

scaled semicircular density, see Appendix A for its precise definition.

Eq. (8) can be efficiently solved using a numerical scheme, which is detailed in Appendix H.1. We
present the results in Fig. 1. In what follows, we detail our approach towards deriving Result 1, which
is a consequence of our main theoretical result stated in Claim 2.

Reduction to a matrix estimation problem – We first notice that by expanding the square in
eq. (2), we can effectively reduce our learning task to an estimation problem in terms of S⋆ :=
(1/m)

∑m
k=1 w⋆

k(w⋆
k)

⊺. We give an analytical argument backing this observation in Appendix F.5.
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Its conclusion is that, at leading order, the distribution of y = fW⋆(x) can be reduced to the following
form, with ỹ :=

√
d(y − 1−∆):

ỹ = Tr[ZS⋆] +
√

∆̃ξ, (9)

with ξ ∼ N (0, 1), ∆̃ := 2∆(2 +∆)/κ, and where we defined Z := (xx⊺ − Id)/
√
d.

Generalization error and MMSE on S – This equivalent problem gives us a way to interpret the
convention we chose for eq. (4). Indeed, if we denote Ŝ

opt
= E[S|ỹ,Z] the Bayes-optimal estimator

related to the problem of eq. (9), then MMSE = κEtr[(S⋆ − Ŝ
opt

)2], as proven in Lemma F.1.

The limit of the MMSE – We now describe the general form of estimation problems covered by our
theoretical analysis, which encompasses the one described in eq. (9) (and thus the original eq. (2)).
The goal is to recover the symmetric matrix S⋆ ∈ Rd×d, which was generated from the Wishart
distribution Wm,d, from observations (yi)ni=1, generated as

yi ∼ Pout (·|Tr[ZiS⋆]) , (10)

with Zi := (xix⊺i − Id)/
√
d. The “channel” Pout accounts for possible non-linearities and noise,

encompassing the case of additive Gaussian noise in eq. (9). We define the partition function as:

Z({yi, xi}ni=1) := ES∼Wm,d

n∏
i=1

Pout (yi|Tr[SZi]) . (11)

Notice that the averaged logarithm of Z is (up to an additive constant) equal to the mutual in-
formation between the observations and the hidden variables: I(W⋆; {yi}|{xi}) = E logZ +
nE logPout(y1|Tr[Z1S⋆]). This links Z to the optimal estimation of W, an important idea be-
hind our study. We are now ready to state our main theoretical result. It gives a sharp characterization
of the Bayes-optimal error in any estimation problem of the type of eq. (10). By the reduction
described above, it can be directly applied to the original model of eq. (2), and will imply Result 1.
Claim 2. Assume that m = κd with κ > 0, and n = αd2 with α > 0. Let Q0 := 1 + κ−1. Then:

• The limit of the averaged log-partition function (sometimes called the free entropy) is given by

lim
d→∞

1

d2
E{yi,xi} logZ = sup

q∈[1,Q0]

[
I(q) + α

∫
R×R

dyDξ Jq(y, ξ) log Jq(y, ξ)

]
, (12)

where 
I(q) := inf

q̂≥0

[
(Q0 − q)q̂

4
− 1

2
Σ(µ1/q̂)−

1

4
log q̂ − 1

8

]
,

Jq(y, ξ) :=

∫
dz√

4π(Q0 − q)
exp

{
− (z −

√
2qξ)2

4(Q0 − q)

}
Pout(y|z).

(13)

Here, Σ(µ) := EX,Y∼µ log |X−Y |, and, for t ≥ 0, µt := µMP,κ⊞σs.c.,
√
t is the free convolution

of the Marchenko-Pastur distribution and a (scaled) semicircle law, see Appendix A for its definition.

• For any α > 0, except possibly in a countable set, the supremum in eq. (12) is reached in a unique
q⋆ ∈ [1, Q0]. Moreover, the asymptotic minimum mean-squared error on the estimation of S⋆,

achieved by the Bayes-optimal estimator Ŝ
BO

:= E[S|{yi, xi}], is equal to Q0 − q⋆:

lim
d→∞

Etr[(S⋆ − Ŝ
BO

)2] = Q0 − q⋆. (14)

It is related to the MMSE of eq. (4) by MMSE = κ(Q0 − q⋆).

Specifying Claim 2 to the problem of eq. (9), we derive (details are given in Appendix F.7) Result 1,
more precisely eqs. (7) and (8).

Polynomial-time optimal estimation with the GAMP-RIE algorithm – In Appendix B, we motivate
the definition of an algorithm (that we call GAMP-RIE ) to solve the problem of eq. (10). We further
argue (based on a combination of theoretical results and numerical observations) that this algorithm
is able to reach, in all regions of parameters we investigated, the optimal error described by Claim 2.

The condition q ≥ 1 – Notice that q⋆ = limd→∞ E[tr(S⋆Ŝ
BO

)] according to Claim 2. As the MMSE

decreases with α, it is clear that q⋆ ≥ q⋆(α = 0). When α = 0, we have Ŝ
BO

= E[S⋆] = Id, and thus
q⋆(α = 0) = 1. We check in Appendix F.8 that the value q⋆(α = 0) = 1 is recovered by eq. (12).

6



4 Derivation of the main results

We derive our main result (Claim 2) in two ways. First, we show how one can show Claim 2 using
the replica method, a heuristic but exact method (hence the word “claim”) which originated in
statistical physics [Mézard et al., 1987], and has been used extensively in theoretical physics, as
well as in a growing body of work in high-dimensional statistics, theoretical computer science, and
theoretical machine learning [Mezard and Montanari, 2009, Zdeborová and Krzakala, 2016, Gabrié,
2020, Charbonneau et al., 2023]. The derivation, that has an interest on its own, is performed in
detail in Appendix D and leverages recent progress on the problems of ellipsoid fitting [Maillard and
Kunisky, 2024, Maillard and Bandeira, 2023] and extensive-rank matrix denoising [Maillard et al.,
2022b, Pourkamali et al., 2024, Semerjian, 2024].

Despite the replica method being conjectured to yield exact results in a large class of high-dimensional
models, a rigorous treatment of it remains elusive. It is important, we feel, to present as well a more
mathematically sound derivation of our claims, and we thus give an alternative derivation of the
Claim 2 using probabilistic techniques amenable to rigorous treatment. In what follows, we present
a three-step sketch of a mathematical proof of Claim 2 that combines recent progress performed
on the study of a problem known as the ellipsoid fitting conjecture [Maillard and Kunisky, 2024,
Maillard and Bandeira, 2023] with the analysis of the fundamental limits of so-called generalized
linear models [Barbier et al., 2019], as well as matrix denoising problems [Bun et al., 2016, Maillard
et al., 2022b, Pourkamali et al., 2024, Semerjian, 2024]. While a complete mathematical treatment
requires more work, we detail the main challenges arising in each of these steps, outlining a fully
rigorous establishment of Claim 2.

We denote the free entropy Φd := (1/d2)E logZ({yi, xi}), cf. eq. (11). We detail three precise
results (two conjectures and a theorem), motivated by recent mathematical works, whose combination
would rigorously establish the results of Claim 2. Recall that we consider the high-dimensional limit
of eq. (5).

Step 1: Universality with a “Gaussian equivalent” problem – The first step of our approach is
inspired by recent literature on the ellipsoid fitting problem [Maillard and Kunisky, 2024, Maillard
and Bandeira, 2023]. It amounts to notice that, if Zi := (xixT

i − Id)/
√
d, by the central limit theorem,

for any symmetric matrix S, Tr[ZiS] is (under mild boundedness conditions on the spectrum of
S) approximately distributed as N (0, 2tr[S2]) as d → ∞. A large body of recent literature has
established that the free entropy is universal for all data distributions sharing the same asymptotic
distribution of their “one-dimensional projections”, see e.g. Hu and Lu [2022], Montanari and Saeed
[2022], Dandi et al. [2024a], Maillard and Bandeira [2023]. This motivates the conjecture that the free
entropy should remain identical (to leading order) if one replaces the matrices Zi with Gi ∼ GOE(d).
Conjecture 4.1 (Universality). We define

Φ
(G)
d :=

1

d2
E({y′

i,Gi}) logES∼Wm,d

n∏
i=1

Pout (y
′
i|Tr[GiS]) , (15)

where y′i ∼ Pout(·|Tr[GiS⋆]), with S⋆ ∼ Wm,d and Gi
i.i.d.∼ GOE(d). Then

lim
d→∞

|Φd − Φ
(G)
d | = 0.

Conjecture 4.1 can be seen as an extension of Corollary 4.10 of Maillard and Bandeira [2023], in the
context of a teacher-student model. In particular, we expect it to hold under mild regularity conditions
on the channel density Pout (which are satisfied by the Gaussian additive noise we consider).

Step 2: A matrix generalized linear model with a Wishart prior – By the first step above, we
can focus on Φ

(G)
d , and the corresponding estimation problem. A key observation is that one can view

this problem as an instance of a generalized linear model on S⋆, with a Gaussian data matrix whose
i-th row is the flattening of the matrix Gi. The limiting free entropy of such models has been worked
out in Barbier et al. [2019], when the “ground-truth vector” (here S⋆) has i.i.d. elements. However,
here the prior is far from being i.i.d. since S⋆ ∼ Wm,d. The results of Barbier et al. [2019] generalize
naturally to other priors, but such extensions have only been rigorously analyzed in specific settings,
e.g. for generative priors rather than i.i.d. [Aubin et al., 2019a, 2020]. In our setting, the structure

7



of the Wishart prior raises several technical difficulties preventing to directly transpose the proof
approaches of Barbier et al. [2019], so we state the following result as a conjecture.
Conjecture 4.2 (The free entropy of a matrix generalized linear model). We have

lim
d→∞

Φ
(G)
d = sup

q∈[1,Q0]

inf
q̂≥0

[
(Q0 − q)q̂

4
+ Ψ(q̂) + α

∫
R×R

dyDξJq(y, ξ) log Jq(y, ξ)

]
,

where

Ψ(q̂) :=
1

4
+ lim

d→∞

1

d2
EY logES∼Wm,d

exp

(
−d

4
Tr[(Y −

√
q̂S)2]

)
(16)

is the asymptotic free entropy of the matrix denoising problem Y =
√
q̂S⋆ + ξ, with ξ ∼ GOE(d),

and S⋆ ∼ Wm,d, and we assume that the d → ∞ limit in eq. (16) is well-defined.

Step 3: Extensive-rank matrix denoising – As a last step, we study the function Ψ(q̂) defined
in eq. (16). The optimal estimators and limiting free entropy in matrix denoising have been worked
out in Bun et al. [2016], Maillard et al. [2022b], and formally proven (under some assumptions)
in Pourkamali et al. [2024], Semerjian [2024].
Theorem 4.1 (Free entropy of matrix denoising). For any q̂ ≥ 0, the limit in eq. (16) is well-defined,
and moreover (recall the definition of Σ(µ) and µt in Claim 2)

Ψ(q̂) = −1

2
Σ(µ1/q̂)−

1

4
log q̂ − 1

8
. (17)

We provide a very short and assumption-free proof of Theorem 4.1 in Appendix F.2, which combines
a relation between Ψ(q̂) and HCIZ integrals of random matrix theory, proven in Pourkamali et al.
[2024] (without any assumptions), and fundamental results on the large deviations of the Dyson
Brownian motion [Guionnet and Zeitouni, 2002]. As a final remark, we notice that a recent conjecture2

of Semerjian [2024] states that the free entropy of matrix denoising of S⋆ = (1/m)
∑m

k=1 w⋆
k(w⋆

k)
⊺

remains the same if one considers any i.i.d. prior for w⋆
k, under the matching of its first two moments

with the Gaussian and the existence of all other moments. While the validity of this conjecture is
subject to debate (see Section VII of Semerjian [2024], and the findings of Camilli and Mézard [2023,
2024]), in the present model it would imply universality of the generalization error given by Claim 2
for any such teacher weight distribution.

The second part of Claim 2 – We briefly discuss the second part of Claim 2, concerning the large d

limit of E tr[(S⋆ − Ŝ
BO

)2]. The fact that the maximizer of eq. (12) is unique for almost all values
of α can be seen by simple convexity arguments, see Appendix F.6. The relationship of q⋆ with the
asymptotic MMSE on the estimation of S⋆ is a classical consequence of the I-MMSE theorem in
generalized linear models of which eq. (9) is an instance, see e.g. Barbier et al. [2019] and Section D.5
of Maillard et al. [2020].

5 Discussion of the main results

Analysis of the Bayes-optimal estimator – We start by discussing the noiseless case (∆ = 0),
which is described by the phase diagram in Fig. 1. Since there is no noise in the target function,
we expect a sharp transition to zero MMSE at a critical sample complexity αPR. We analytically
show in Appendix F.3 from eq. (8) that αPR is given by the expression of eq. (1), and discuss how
it is related to a naive counting argument of the “degrees of freedom” of the target function. This
transition was known for κ ≥ 1 where the problem is convex, where Gamarnik et al. [2019] shows
that there is perfect recovery as soon as α > 1/2. For all values of κ we see the MMSE is a smooth
curve going continuously from 1 at α = 0 to 0 at αPR. We derived the slope of the curve at αPR to
be (see Appendix F.4)

∂MMSE

∂α

∣∣∣
αPR

=


−2− 4

κ
+

12

1 + κ
if κ ≤ 1,

−2 +
2

κ
if κ ≥ 1.

2We mention here the “strong” conjecture of Semerjian [2024]. A weaker form of this conjecture is the
universality of the best low-degree polynomial estimator for any i.i.d. prior.
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Figure 2: Mean squared error (MSE) as a function of the sample complexity α for κ=1/2. Dots are
simulations using GD with a single initialization averaged over 32 realizations of the dataset, crosses
are averages over 64 initializations with 2 realizations of the dataset. The continuous lines are the
asymptotic MMSE given by (7). Left: noiseless ∆ = 0 case. The colors indicate the size d. We can
see how AGD appears to be well described by the theoretical MMSE. We used the learning rates 0.2
for d=200 and 0.07 for d=100. Right: Comparison of GD between the noisy

√
∆=0.25 case (red)

and noiseless ∆=0 case (blue). Adding noise makes AGD worse than the MMSE, and for sample
complexity α≳ 0.3, all the initializations of GD converge to the same point, making the GD and
AGD curves collapse.

It is interesting to observe that the convexity of the curve changes. While we are observing concave
dependence on α for small κ it becomes convex when κ increases and α is close to αPR. We also
note that the smooth limit MMSE → 1 as α → 0 supports the result of Cui et al. [2023] about a
quadratic number of samples being needed to learn better than linear regression.

We also evaluated the MMSE in the presence of noise, where we observed it to decrease smoothly as α
increases with no particular phase transition. We show an example of the theoretical prediction for the
MMSE in this case in Fig. 2 right. As expected, in the presence of noise, it decreases monotonically
and smoothly, and goes to zero as α→∞.

We considered analytically the limits κ → 0 and κ → ∞, i.e. the limits of small and large (but still
extensive in d) hidden layer. The analysis of these limits are detailed in Appendix E.

Further, in Appendix B.3 we compare the asymptotic theoretical result for the Bayes-optimal error
with the performance of the GAMP-RIE algorithm on finite-size instances. In all the cases we
evaluated, we observed that GAMP-RIE reached the Bayes-optimal error characterized by Claim 2.

Finally, while we assumed in eq. (2) that the second layer weights are fixed and equal to 1, in
Appendix G we generalize all our main results, theoretical and algorithmic, to learnable second layer
weights.

Comparison to the ERM estimator obtained by gradient descent – The results discussed so
far concern the Bayes-optimal MMSE, which requires evaluating the marginals of the posterior
distribution. We now investigate numerically the performance of empirical risk minimization via
gradient descent, which is the standard method of machine learning. It would be typical to expect a
gradient based approach to be suboptimal, as the problem is non-convex for κ < 1. In Fig. 2, we
compare (a) the MSE κtr[(S⋆ − ŜGD)

2] reached by gradient descent (GD) minimizing the loss (6)
from random initialization, (b) the MSE reached by GD averaged over initializations, and (c) the
MMSE derived from the theory.

In the noiseless case, ∆ = 0, we very remarkably observe that the MSE reached by gradient descent
is very close to exactly twice larger than the asymptotic MMSE. Such a relation is known in high-
dimensional generalized linear regression to hold between the Gibbs estimator, where test error is
evaluated for weights that are sampled uniformly from the posterior, and the Bayes-optimal estimator
that averages over the weights sampled from the posterior [Engel, 2001, Barbier et al., 2019]. In
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general, there is no reason why the randomly initialized gradient descent should be able to sample the
posterior measure. We nevertheless evaluate the average over the initialization of gradient descent
and observe that, indeed, the MSE reached this way is consistent with the MMSE. This leads us
to conjecture that in the noiseless one-hidden layer neural network with quadratic activation and a
target function matching this architecture, randomly-initialized gradient descent samples the posterior
despite the problem being non-convex, and hence its average achieves the MMSE.

Let us offer a heuristic argument for this perhaps intriguing phenomenon. It starts with the equivalent
of the representer theorem: one can write S in the span of {xixTi }ni=1, plus a matrix in the orthogonal
space, that is S =

∑n
i=1 βixixTi + Z . This means that gradient descent reaches one solution of the

minimization with one additional spurious component. The Bayes optimal procedure would be to set
this spurious reminder to zero since the data are not informative in this direction. It is reasonable
(although non-trivial) to assume that this is what is achieved by averaging over initialization.

When comparing the MMSE to the performance of GD in the noisy setting, we observe a gap between
the MMSE and the performance of gradient descent, even averaged over initialization or regularized
(as shown in Appendix H.3, Figure 5 left). In particular, for the noisy case, we see that for small
sample complexity, the averaged GD is close to matching the MMSE, but as the number of available
samples increases, the error of the averaged and non-averaged versions of GD coincide. This is
a sign of the trivialization of the landscape, in the sense that GD converges to the same function
independently of the initialization: it can be quantified using the variances of the function reached by
GD. This is investigated further in Appendix H.3, together with the effect of ℓ2 regularization. We can
characterize empirically another phase transition: for a sample complexity larger than αT (∆), GD
converges to the same function independently of the initialization. In the noiseless ∆ = 0 case, this is
simply the perfect recovery transition, and αPR = αT (∆ = 0), while increasing the noise intensity
makes the threshold lower until it reaches a plateau, which for κ = 0.5 is at αT (∆ → ∞) ≈ 0.2. We
display this numerical finding in Figure 5 (right) in Appendix H.3. A tight analytical study of the
landscape-trivialization threshold αT (∆) as a function of the noise variance ∆ is left for future work.

6 Conclusion and limitations

In this work, we provide an explicit formula for the generalization MMSE when learning a target
function in the form of a one-hidden layer neural network with quadratic activation in the limit of
large dimensions, extensive width and a quadratic number of samples. The techniques deployed to
obtain this result are novel and, we believe, of independent interest. There are many natural extensions
of the present works. While we presented, additionally to the replica derivation, a mathematically
sound derivation, a fully rigorous treatment, a technical and lengthy task, is left for an extended
version of this work. We analyzed the Bayes-optimal MMSE, presented the GAMP-RIE algorithm
that is able to reach it in polynomial time, and compared it to the performance of gradient descent
numerically. We leave for future work the theoretical analysis of the properties of gradient descent
that we discovered numerically. Of particular interest is the role played by the implicit nuclear norm
regularization when starting from small initialization, as discussed for the matrix sensing problem
e.g. in Gunasekar et al. [2017], Li et al. [2020], Stöger and Soltanolkotabi [2021]. Finally, we also
presented the natural extension of our results and techniques to the case of a learnable second layer.

The main limitations of our setting are its restriction to Gaussian input data, random i.i.d. weights
of the target/teacher neural network, quadratic activation, and a single hidden layer. Going beyond
any of these limitations would be a compelling direction of research, in particular for more generic
activation such as the ReLU or sigmoid function (we sketch this extension in Appendix C) and
multiple layers, and we hope our work will spark interest in these directions.
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A Additional definitions and conventions

Convention – Throughout this manuscript, we use EX to denote the expectation solely over the
random variable X . We denote M+

1 (R) the set of real probability distributions.

Random matrix ensembles – For any d ≥ 1, we define two standard random matrix distributions
over the space of symmetric d× d real matrices:

• A matrix ξ is distributed according to the GOE(d) distribution (standing for Gaussian Orthogonal

Ensemble) if ξij
i.i.d.∼ N (0, [1 + δij ]/d) for any 1 ≤ i ≤ j ≤ d.

• For any m ≥ 1, a matrix S is distributed according to the Wishart distribution Wm,d if S =

W⊺W/m, where W ∈ Rm×d with Wki
i.i.d.∼ N (0, 1) for k ∈ [m], i ∈ [d].

For a symmetric matrix M with eigenvalues (λi)
d
i=1, we denote µM := (1/d)

∑d
i=1 δλi

its empirical
eigenvalue distribution (ESD). It is well known that for d → ∞ the ESD of GOE(d) and Wm,d

matrices converge to (respectively) the Wigner semicircle and the Marchenko-Pastur density.
Theorem A.1. [Wigner [1955], Marchenko and Pastur [1967]] Let m = κd for κ > 0, and let
ξ ∼ GOE(d) and S ∼ Wm,d. Then, as d → ∞, the ESDs of ξ and S almost surely converge (in the
sense of weak convergence) to the following probability distributions (respectively).

• The semicircle law, with density

σs.c.(x) =

√
4− x2

√
2π

1{|x| ≤ 2}. (18)

We denote σs.c.,
√
t(x) := t−1/2σs.c.(x/

√
t) the scaled semicircle law with variance t.

• The Marchenko-Pastur law, with density

µMP,κ(x) =


(1− κ)δ(x) +

κ
√
(λ+ − x)(x− λ−)

2πx
if κ ≤ 1,

κ
√

(λ+ − x)(x− λ−)

2πx
if κ ≥ 1.

(19)

Here λ± := (1± κ−1/2)2.

Transforms of probability distributions – For any real probability measure µ, we define its Stieltjes
transform gµ(z) := Eµ[1/(X − z)] for z ∈ C. If C+ := {z ∈ C : Im(z) > 0}, then gµ(z) ∈ C+

for all z ∈ C+. Moreover, we have the Stieltjes-Perron inversion formula:
Theorem A.2 (Stieltjes-Perron inversion formula). For all a < b, we have

µ((a, b)) = lim
δ↓0

lim
ϵ↓0

1

2iπ

∫ b−δ

a+δ

[gµ(x+ iϵ)− gµ(x− iϵ)]dx.

In particular, if µ has a continuous density with respect to the Lebesgue measure then:

∀x ∈ R,
dµ

dx
= lim

ϵ↓0

1

π
Im gµ(x+ iϵ).

We often use the logarithmic potential function Σ(µ) :=
∫
µ(dx)µ(dy) log |x− y|. We further define

the R-transform of µ as:

Rµ(s) := g−1
µ (−s)− 1

s
. (20)

We refer to Tulino and Verdú [2004] for more details on the definitions of this transform, e.g.
concerning its complete domain of definition. Informally, the R transform is well-defined in a
neighborhood of 0 for all measures which have bounded support. In particular, we have for the
semicircle and the Marchenko-Pastur distributions:

Rσs.c.,
√

t
(s) = ts,

RµMP,κ
(s) =

κ

κ− s
.

(21)
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Algorithm 1: GAMP-RIE

Result: The estimator Ŝ
Input: Observations y ∈ Rn and “sensing vectors” Zi := (xix⊺i − Id)/

√
d ∈ Rd×d;

Initialize Ŝ
0
∼ Wm,d and ĉ,ω,V randomly;

while not converging do
• Estimation of the variance and mean of Tr[ZiŜ];
V t = ĉt and ωt

i = Tr[ZiŜ
t
]− gout(yi, ω

t−1
i , V t−1)V t ;

• Variance and mean of S estimated from the “channel” observations;

At =
2α

n

n∑
i=1

gout(yi, ω
t
i , V

t)2 and Rt = Ŝ
t
+

1

dAt

n∑
i=1

gout(yi, ω
t
i , V

t)Zi ;

• Update of the estimation of S⋆ with the “prior” information;

Ŝ
t+1

= fRIE

(
Rt,

1

2At

)
and ĉt+1 = 2FRIE

(
1

2At

)
;

t = t+ 1;
end

Free additive convolution – The main interest of the R-transform lies in its connection to the
(additive) free convolution of measures. Informally, we can interpret the free convolution µ⊞ ν of
two measures µ and ν as the limiting spectral measure of A + B, where A and B are symmetric
d× d random matrices, with limiting spectral distributions µ and ν, and which are asymptotically
free. While we refer to Anderson et al. [2010], Tulino and Verdú [2004] for mathematical discussions
of asymptotic freeness, we recall that in particular if B is a GOE(d) matrix independent of A, then
A and B are asymptotically free. Crucially, the R transform is additive under free convolution (see
Theorem 2.64 in Tulino and Verdú [2004] e.g.):

Rµ⊞ν(s) = Rµ(s) +Rν(s). (22)

Eq. (22) allows to efficiently compute the density of µ ⊞ ν given the ones of µ and ν, by relating
the R transform to the Stieltjes transform, and then using the Stieltjes-Perron inversion theorem
(Theorem A.2).

B The GAMP-RIE algorithm

B.1 Polynomial-time optimal estimation with the GAMP-RIE algorithm

Let us recall a crucial observation of Section 3: the learning problem of eq. (2) can be effectively
reduced to a generalized linear model (GLM) on the matrix S⋆ (cf. eq. (10)):

yi ∼ Pout(·|Tr[ZiS⋆]), (23)

with Zi := (xix⊺i − Id)/
√
d, S⋆ ∼ Wm,d, and Pout a noise channel (which would be Gaussian in

eq. (9)). An important difficulty in analyzing eq. (23) is the rather complex structure of the matrices
Zi (which can be viewed as “sensing vectors” applied to S⋆). Determining the optimal algorithm
in GLMs when the sensing vectors have arbitrary structure is in general open. Anticipating on a
universality argument for the MMSE (cf. Section 4), we “forget” momentarily about the structure of
{Zi}, and assume that the optimal algorithm takes the form it would have if the {Zi} were instead
Gaussian matrices (i.e. GOE(d)). For generalized linear models with Gaussian sensing vectors, a
class of generalized approximate message-passing (GAMP) algorithms have been extensively studied,
and argued to reach optimal performance in the absence of a computational-to-statistical gap [Donoho
et al., 2009, Rangan, 2011, Zdeborová and Krzakala, 2016]. The GAMP algorithm includes a denoiser
that is adjusted to the prior information about the signal S⋆, that is in our case a Wishart distribution.
Combining these two facts, we propose the GAMP-RIE algorithm in Algorithm 1. An implementation
of GAMP-RIE is accessible in the GitHub repository associated to this work [Maillard et al., 2024].
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The functions gout, fRIE and FRIE appearing in Algorithm 1 are defined as follows. First, we let

gout(y, ω, V ) :=
1

V

∫
dz (z − ω) e−

(z−ω)2

2V Pout(y|z)∫
dz e−

(z−ω)2

2V Pout(y|z)
. (24)

In particular, for the problem of eq. (9), we have

gout(y, ω, V ) =
y − ω

∆̃ + V
.

The two functions (fRIE, FRIE) are related to the problem of matrix denoising, in which one aims at
recovering a matrix S0 ∼ Wm,d from the observation of R = S0 +

√
∆ξ, with ξ ∼ GOE(d). We

recall some important results on this problem, and how they relate to the definition of the functions
(fRIE, FRIE).

(i) The optimal estimator (in the sense of mean squared error) of S0 has been worked out in Bun
et al. [2016], and belongs to the class of rotationally-invariant estimators (RIE). fRIE(R,∆)
is this optimal estimator, and it admits the following explicit form. If R = UΛU⊺ is
the spectral decomposition of R, and letting ρ∆ := µMP,κ ⊞ σs.c.,

√
∆ be its asymptotic

eigenvalue distribution (see Appendix A for the definition of the free convolution µ ⊞ ν
and its relation to the sum of asymptotically free matrices), then fRIE(R,∆) = Uf∆(Λ)U⊺,
where f∆(λ) = λ− 2∆h∆(λ), with h∆ the Hilbert transform of ρ∆. More precisely:

h∆(λ) := P.V.

∫
1

λ− t
ρ∆(t)dt.

ρ∆ and h∆ can be evaluated numerically very efficiently, see Appendix A for details.
(ii) FRIE(∆) is defined as the asymptotic MMSE of the same matrix denoising problem. It can

be written in the two equivalent forms (see Maillard et al. [2022b], Pourkamali et al. [2024],
Semerjian [2024]):

FRIE(∆) = ∆− 4π2

3
∆2

∫
dλ ρ∆(λ)

3 = ∆− 4∆2

∫
dλ ρ∆(λ)h∆(λ)

2. (25)

In Appendix B.2 we sketch the derivation of the state evolution of Algorithm 1, assuming a universality
result discussed in Section 4 holds as well for GAMP-RIE. Concretely, we show that one can
analytically track the performance of its iterates in the high-dimensional limit, and we draw a formal
connection with the information-theoretic predictions of Claim 2. Notably, we obtain a so-called
state-evolution of the GAMP-RIE algorithm (which turns out to follow from rigorous work on
non-separable estimation with GAMP [Berthier et al., 2020, Gerbelot and Berthier, 2023]), and show
that its fixed points agree with the fixed point equations that provide the Bayes-optimal error. In all
regions of parameters that we investigated below we observed a unique fixed point, meaning that the
GAMP-RIE algorithm asymptotically reaches the Bayes-optimal performance, see Appendix B.3

B.2 State evolution: a connection between Algorithm 1 and Result 1

We briefly sketch here the statistical-physics style derivation of the so-called state evolution of
Algorithm 1: this will draw a connection between the performance of the Bayes-optimal estimator,
characterized by Result 1, and the estimator of Algorithm 1. We define qt := tr[(Ŝ

t
)2], and

mt := tr[Ŝ
t
S⋆]. Thanks to Bayes-optimality, one can show that, along the GAMP-RIE trajectory, the

so-called Nishimori identities are preserved (see Zdeborová and Krzakala [2016] for more details), so
that we have, at leading order as d → ∞, that qt = mt.

Up to some critical differences, we can transpose the derivation of Zdeborová and Krzakala [2016] of
the state evolution of GAMP for generalized linear models with Gaussian sensing vectors, and i.i.d.
priors, to our GAMP-RIE algorithm. The differences with our setting are twofold:

(i) The “sensing vectors” Zi are not Gaussian. We conjecture that the universality arguments
discussed in Section 4 extend to the analysis of the GAMP-RIE algorithm. This allows
us to replace Zi by Gi

i.i.d.∼ GOE(d) when evaluating (qt,mt) (i.e. when studying the
high-dimensional performance of Algorithm 1). We are then able to make a direct use of
some results of Zdeborová and Krzakala [2016].
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(ii) The prior over S⋆ is not i.i.d.: as we saw, this led to a non-trivial “denoising” part in
Algorithm 1. The performance of this denoising procedure in the high-dimensional limit can
however be characterized precisely, as the function FRIE admits a closed-form expression.

We now briefly expose the derivation, transposed to our setting under the universality assumption
above. By definition of qt, we have ĉt = 2(Q0 − qt). If ω, z are centered and jointly Gaussian
variables with E[ω2] = 2qt, E[z2] = 2Q0, and E[ωz] = 2mt = 2qt, and y ∼ Pout(·|z), we define

q̂t := 4αEy,w[gout(y, ω, V
t)2], (26)

so that At = q̂t/2 in the n, d → ∞ limit. For the “channel” part of the GAMP-RIE algorithm, the
standard analysis for generalized linear model, alongside the universality phenomenon discussed
above (which allows replacing Tr[ZiŜ

t
] by Tr[GiŜ

t
] in the update of ωt

i ) shows that q̂t satisfies the
equation:

q̂t = 4α
∂

∂q

[∫
dyDξ Jq(y, ξ) log Jq(y, ξ)

]
q=qt

, (27)

where Jq(y, ξ) is defined in eq. (13). Eq. (27) is the very same as for the standard GAMP for
generalized linear models [Zdeborová and Krzakala, 2016].

We have, however, a more structured prior. After replacing Zi by Gaussian matrices Gi in Algorithm 1,
the argument is that at leading order as d → ∞ one has:

Rt d
= S⋆ +

1√
q̂t
ξ, (28)

with ξ ∼ GOE(d). Heuristic details on how to derive eq. (28) can be found again in Zdeborová and

Krzakala [2016], see Section 6.4.13 there. By definition of FRIE, this implies qt+1 := tr[(Ŝ
t+1

)2] =
Q0 − FRIE((q̂

t)−1), so that by eq. (25):

Q0 − qt+1 =
1

q̂t
− 4π2

3(q̂t)2

∫
dλµ1/q̂t(λ)

3, (29)

with µt := µMP,κ ⊞ σs.c.,
√
t. Notice that remarkably, eqs. (27) and (29) precisely match the

extremization equations of the asymptotic free entropy, as given in Claim 2 and Result 1, exactly as
for “usual” generalized linear models with i.i.d. priors [Rangan, 2011, Javanmard and Montanari,
2013, Zdeborová and Krzakala, 2016].

Mathematical consequences – The fact that, assuming the universality property above, our GAMP-
RIE algorithm can be seen as the usual GAMP algorithm in a generalized linear model with a
non-separable prior has a very interesting consequence. Indeed, the latter model admits a rigorous
state evolution thanks to the analysis of Berthier et al. [2020], Gerbelot and Berthier [2023]. To make
this point clearer, we notice that (after replacing Zi by GOE(d) matrices Gi) Algorithm 1 can be
written in the following form:ωt = Gv̂(ut,Σt)− V tgout(y,ωt−1, V t−1),

ut =
1

d
G⊺gout(y,ωt, V t) + Σ−1

t v̂(ut,Σt).
(30)

Let us clarify some notations used in eq. (30):

• ut ∈ Rp, with p :=
(
d+1
2

)
, can be seen as the flattening of the symmetric matrix AtRt of

Algorithm 1 via the following canonical mapping. For S ∈ Sd, we define vec(S) ∈ Rp

by vec(S)ii = Sii and vec(S)ij =
√
2Sij for i < j. This flattening is an isometry:

⟨vec(S), vec(R)⟩ = Tr[SR]. We have ut = vec(AtRt).
• G ∈ Rn×p is a Gaussian i.i.d. matrix, whose elements have variance 2/d.

• Σ−1
t := −2αEdiv[gout(t,ωt, V t)] is related to At by At = Σ−1

t .
• V t := 2FRIE(Σt/2).

3Section VI.D.1 in the arXiv version of Zdeborová and Krzakala [2016].
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Figure 3: Comparison of the performance of GAMP-RIE with the asymptotic MMSE (7) both in the
noiseless (∆ = 0) and in a noisy (

√
∆ = 0.25) case, with κ = 0.5. Each dot is the average over 8

runs of GAMP-RIE at a moderate size of either d = 100 (circle dots) or d = 200 (crosses). The error
bars are the standard deviations of the MSE.

• v̂t(ut,Σt) ∈ Rp is the flattening of the RIE denoiser of Algorithm 1, i.e. if we denote Rt/Σt

the matrix such that ut = vec(Rt/Σt):

v̂t(ut,Σt) := vec[fRIE(Rt,Σt/2)].

Eq. (30) is the canonical form of the GAMP algorithm, as written e.g. in Berthier et al. [2020],
Gerbelot and Berthier [2023]. In particular, we can leverage their results to write:

Theorem B.1 (State Evolution (informal) Berthier et al. [2020], Gerbelot and Berthier [2023]).
Denote qtAMP := tr[ŜtS⋆] and q̂tAMP := 4α

n

∑n
i=1 gout(yi, ω

t
i , V

t)2 (recall the definition of these
quantities in Algorithm 1). Assume that the “sensing matrices” (Zi)

n
i=1 in Algorithm 1 are replaced

by (Gi)
n
i=1, which are i.i.d. GOE(d) matrices. Then for any t ≥ 0, qtAMP and q̂tAMP follow the state

evolution equations (27) and (29) asymptotically as d, n → ∞.

Beyond the rigorous control of the GAMP-RIE algorithm, Theorem B.1 has an additional mathemati-
cal consequence: it allows to leverage a set of mathematical techniques that use AMP algorithms
to prove results on the asymptotic MMSE and on the mutual information, as Theorem B.1 implies
that they can be used verbatim in our setting. More precisely, the fact that the GAMP-RIE algorithm
achieves an MSE with value given by Claim 2 immediately yields that the latter is, at least, an
upper bound on the asymptotic MMSE (when assuming Gaussian GOE(d) “sensing vectors” Gi).
Additionally, the application of the I-MMSE theorem [Guo et al., 2005] shows that our claimed free
entropy (i.e. the limit of (1/d2)E logZ in Claim 2) is a lower bound on the real one (see e.g. section
2.C in Barbier et al. [2016]).

B.3 GAMP-RIE algorithm reaching the optimal error

In Fig. 3 we compare the asymptotic theoretical result for the Bayes-optimal error with the perfor-
mance of the GAMP-RIE algorithm for d = 100 and d = 200, in both the noiseless (blue) and noisy
(red) cases. We observe that even for such moderate sizes the agreement between the algorithmic
performance and the theory is excellent.

We also stress that in all the cases we evaluated, the state evolution of the GAMP-RIE converges to the
fixed point that corresponds to the Bayes-optimal performance. This means that the Bayes-optimal
error discussed above is reachable efficiently with the GAMP-RIE algorithm. In particular, unlike in
the canonical phase retrieval problems (i.e. when m = 1) [Barbier et al., 2019], we did not identify
a computational-to-statistical gap when learning this extensive-width quadratic-activation neural
network.
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C Generic activations

We give here a brief discussion on the extension of our work to a more generic activation function.
While our derivation (cf. Section 4) heavily relies on the non-linearity being quadratic, a first natural
extension would be to consider polynomial activations, with an output generated as (assuming a
noiseless setting):

yi =
1

m

m∑
k=1

(
(w⋆

k)
⊺xi√
d

)p

,

for some integer p ≥ 3. One could also “linearize” this model, by writing it as yi = ⟨T ⋆, Xi⟩, in
which T ⋆, Xi are now p-tensors, defined as

T ⋆ :=
1

m

m∑
k=1

(w⋆
k)

⊗p,

Xi :=
1

dp/2
x⊗p
i .

However, two main challenges arise when carrying out the program of Section 4 in this “tensor”
model:

(i) First, determining whether the universality Conjecture 4.1 holds for these models (and if yes,
in which scaling of the number of samples n with d) is a challenging open question that falls
outside the scope of our results as well as of previous works on free entropy universality
[Hu and Lu, 2022, Montanari and Saeed, 2022, Dandi et al., 2024a, Maillard and Bandeira,
2023].

(ii) Secondly, the generalized form of Conjecture 4.2 would involve the free entropy of a tensor
denoising problem. While a rich literature has studied the fundamental limits of denoising
low-rank tensors (see Lesieur et al. [2017], Ben Arous et al. [2019], Ros et al. [2019], Perry
et al. [2020], Gamarnik et al. [2022] and references therein), here T ⋆ has rank m = O(d),
and the optimal denoising of a large-rank tensor is, as far as we know, a completely open
question.

These two challenges form the basis of an exciting but very challenging research program, which we
leave for future work. Provided such a program could be carried out for any polynomial activation,
one might then hope to analyze generic activation functions, such as the ReLU or sigmoid, e.g. by
decomposition over a basis of orthogonal polynomials (such as the Hermite basis), see Ben Arous
et al. [2021], Abbe et al. [2023], Dandi et al. [2023, 2024b] for examples of such analyses in the case
m = O(1).

D Derivation of Claim 2 from the replica method

In this section, we give a non-rigorous derivation of eq. (12) using classical methods of statistical
physics. We start from the definition of the partition function in eq. (11). We denote D the standard
Gaussian measure, and S(W) = W⊺W/m.

Z(S⋆, {xi}ni=1) =

∫
Rm×d

DW
n∏

i=1

Pout (yi|Tr[ZiS(W)]) .

The replica method – We make use of the heuristic replica trick [Mézard et al., 1987]. Letting
Φd := (1/d2)E logZ , it consists in writing that limd→∞ Φd = limr→0(∂/∂r) limd→∞ Φd(r), with
Φd(r) := (1/d2) logE[Zr]. One then computes the d → ∞ limit of Φd(r) for integer r ∈ N, before
extending analytically the result to any r ≥ 0. While being non-rigorous, the replica method has
achieved a great success in the study of both spin glasses and statistical learning models, and is
widely conjectured to yield exact predictions. We refer the reader to Mézard et al. [1987] for an
introduction to the replica method in the context of the statistical physics of disordered systems,
Maillard et al. [2023], Montanari and Sen [2024] for mathematically-friendly descriptions of the
method, and to Mezard and Montanari [2009], Zdeborová and Krzakala [2016], Gabrié [2020] for
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some of its applications in the context of theoretical computer science, high-dimensional statistics,
and machine learning.

The replicated free entropy – We now compute the “replicated free entropy” Φd(r), for r ∈ N.
Thanks to Bayes-optimality, we can write it as an average over r + 1 replicas of the system, writing
S⋆ as the replica of index 0. We write Sa := S(Wa) to simplify notations. We reach:

Φd(r) =
1

d2
log

∫ r∏
a=0

DWa

[∫
dy EZ

r∏
a=0

Pout(y|Tr[SaZ])

]n
. (31)

For a fixed set of matrices {Sa}ra=0, by the central limit theorem the law of the variables
za := Tr[SaZ] approach, as d → ∞, a correlated Gaussian distribution, with mean E[za] = 0,
and covariance E[zazb] = EZ[Tr[SaZ]Tr[SbZ]] = 2tr(SaSb), as is easily checked from the fact
that Z d

= (xx⊺ − Id)/
√
d, with x ∼ N (0, Id). Since n = Θ(d2), the leading order of the term∫

dy EZ
∏r

a=0 Pout(y|Tr[SaZ]) will be the only one entering the leading order of Φd(r). This means
that we have, denoting the overlap matrix

Qab := tr(SaSb), (32)

that

Φd(r) =
1

d2
log

∫ r∏
a=0

DWa

[∫
R×Rr+1

dy dz e− 1
4 z⊺Q−1z

(4π)r+1/2
√
detQ

r∏
a=0

Pout(y|za)

]n
+ od(1),

=
1

d2
log

∫
dQ
∫ r∏

a=0

DWa

[∫
R×Rr+1

dy dz
e−

1
4 z⊺Q−1z

(4π)r+1/2
√
detQ

r∏
a=0

Pout(y|za)

]n
×
∏
a≤b

δ(d2Qab − dtr(SaSb)) + od(1). (33)

Notice that the CLT-based argument above is made formal in Conjecture 4.1, and implies the univer-
sality of Φd under the replacement of Zi by Gaussian GOE matrices Gi. Since Q ∈ R(r+1)×(r+1)

is of finite size as d → ∞, we can perform the Laplace method over Q in eq. (33), and we reach
(omitting od(1) terms as d → ∞, and recall n/d2 → α):

Φd(r) = sup
Q∈S+

r+1

[J(Q) + αJout(Q)] , (34)

where S+
r+1 is the set of positive semi-definite symmetric matrices of size r + 1, and:

J(Q) :=
1

d2
log

∫ r∏
a=0

DWa
∏
a≤b

δ(d2Qab − dTr[SaSb]),

Jout(Q) := log

∫
R×Rr+1

dy dz
e−

1
4 z⊺Q−1z

(4π)r+1/2
√
detQ

r∏
a=0

Pout(y|za).
(35)

Notice that we can rewrite J(Q) using Lagrange multipliers Q̂ ∈ Sr+1 (or equivalently using the
Fourier transform of the delta distribution, and the saddle point method on the Fourier parameters) as:

J(Q) = inf
Q̂∈Sr+1

[
1

4
Tr[QQ̂] +

1

d2
log

∫ r∏
a=0

DWa e−
d
4

∑
a,b Q̂abTr[SaSb]

]
. (36)

The replica-symmetric ansatz – An important assumption we make now is that there is a permutation
symmetry between the different replicas in eq. (34), and we assume that this symmetry is not broken
by the maximizer Q. This assumption is usually called replica symmetry, and is known to hold in
generic statistical learning problems when they are in the Bayes-optimal setting [Zdeborová and
Krzakala, 2016, Barbier et al., 2019]. Formally, we assume that the supremum over Q in eq. (34)
(and the infimum over Q̂ in eq. (36)) are reached in matrices such that, for all a, b ∈ {0, · · · , r} with
a ̸= b: {

Qaa = Q, Q̂ab = Q̂,

Qab = q, Q̂ab = −q̂,
(37)
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with 0 ≤ q ≤ Q, and Q̂, q̂ ≥ 0.

The term Jout(Q) – Under the ansatz of eq. (37), it is a classical computation [Zdeborová and
Krzakala, 2016] to reach:

Jout(Q) = log

∫
R2

dyDξ

{∫
dz√

4π(Q− q)
exp

[
− (z −

√
2qξ)2

4(Q− q)

]
Pout(y|z)

}r+1

. (38)

The term J(Q) – Using the replica-symmetric ansatz of eq. (37) in eq. (36), we get:

J(Q) = inf
Q̂,q̂

[
(r + 1)(QQ̂− rqq̂)

4
+

1

d2
log

∫ r∏
a=0

DWa e
− d(Q̂+q̂)

4

∑
a Tr[(Sa)2]+ dq̂

4 Tr
[
(
∑

a Sa)
2
]]

.

We now use the following Gaussian integration identity, for any symmetric matrix M:

Eξ∼GOE(d)

[
e

d
2Tr[Mξ]

]
= e

d
4Tr[M

2].

This allows to reach the following expression, which is analytic in r:

J(Q) = inf
Q̂,q̂

[
(r + 1)

4
QQ̂− r(r + 1)

4
qq̂

+
1

d2
logEξ

{(∫
DW e−

d(Q̂+q̂)
4 Tr[S2]+ d

√
q̂

2 Tr[Sξ]
)r+1

}]
. (39)

Recall that here S = S(W) = W⊺W/m.

The limit r → 0 – From eqs. (34), (38) and (39), we have:

Φd(r = 0) = sup
Q≥0

inf
Q̂∈R

[
1

4
QQ̂+

1

d2
log

∫
DWe−

dQ̂
4 Tr[S2]

]
. (40)

This implies that Q̂ = 0 and Q = Q0 = limd→∞ ES∼Wm,d
tr[S2] = 1 + κ−1 (recall m/d → κ), and

we correctly recover that Φd(r = 0) = 0. Taking now the derivative with respect to r, followed by
the r → 0 limit, yields:

lim
d→∞

Φd = sup
0≤q≤Q0

inf
q̂≥0

[
−qq̂

4
+ α

∫
R2

dyDξJq(y, ξ) log Jq(y, ξ) (41)

+ lim
d→∞

1

d2
Eξ∼GOE(d) [Hq̂(ξ) logHq̂(ξ)]

]
,

Hq̂(ξ) :=

∫
Rm×d

DW e−
dq̂
4 Tr[S2]+ d

√
q̂

2 Tr[Sξ], (42)

Jq(y, ξ) :=

∫
dz√

4π(Q0 − q)
exp

[
− (z −

√
2qξ)2

4(Q0 − q)

]
Pout(y|z). (43)

In order to obtain from eq. (41) the prediction of eq. (12), it therefore suffices to show that, for any
q̂ ≥ 0:

lim
d→∞

1

d2
Eξ∼GOE(d) [Hq̂(ξ) logHq̂(ξ)] =

Q0q̂

4
− 1

2
Σ(µ1/q̂)−

1

4
log q̂ − 1

8
. (44)

We focus on deriving eq. (44) in the remaining of this section. We note that we can rewrite the
left-hand side as the free entropy of the following denoising problem:

Y = S⋆ + ξ/
√

q̂, (45)

with ξ ∼ GOE(d), S⋆ ∼ Wm,d, and which we consider in the Bayes-optimal setting. Indeed, we
can define the free entropy of this problem as

1

d2
EY,S⋆ log

∫
DW exp

(
−dq̂

4
Tr[(Y − S)2]

)
= − q̂Etr[Y2]

4
+

1

d2
EY log

∫
DW exp

(
−dq̂

4
Tr[S2] +

dq̂

2
Tr[YS]

)
,

= −1 + q̂Q0

4
+

1

d2
Eξ∼GOE(d)[Hq̂(ξ) logHq̂(ξ)]. (46)
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Crucially, this auxiliary problem is again Bayes-optimal, which we will use in what follows.

Remark – Eq. (45) defines a problem known as extensive-rank matrix denoising. The limit free en-
tropy of this problem, as well as the analytical form of the Bayes-optimal estimator, for a rotationally-
invariant prior on S⋆ and a rotationally invariant noise ξ (which is here Gaussian) have both been
understood and worked out completely [Bun et al., 2016, Maillard et al., 2022b, Pourkamali et al.,
2024, Semerjian, 2024]. We will leverage these results (and partially re-derive them) in what follows.

We now use a change of variable to the singular values of W, see e.g. Proposition 4.1.3 of Anderson
et al. [2010]. We reach:∫

DW exp

(
−dq̂

4
Tr[S2] +

dq̂

2
Tr[YS]

)
= Cd,m

∫
Rm
+

m∏
k=1

dλk e
−m

2

∑m
k=1 λk

m∏
k=1

λ
d−m

2

k

×
∏
k<k′

|λk − λk′ | e−
dq̂
4

∑m
k=1 λ2

k

∫
O(d)

DO exp

{
dq̂

2
Tr[OΛO⊺Y]

}
, (47)

in which S = W⊺W/m = OΛO⊺, with Λ = Diag((λ1, · · · , λm, 0, · · · , 0)), and Cd,m > 0 is a
constant depending only on m and d. Notice that we (slightly abusively) used the notation DO to
denote here the Haar measure over the orthogonal group O(d). The large-d limit of the last term is
given by the HCIZ integral [Harish-Chandra, 1957, Itzykson and Zuber, 1980]:

IHCIZ(θ,R,Y) = IHCIZ(θ, µS, µY) := lim
d→∞

2

d2
log

∫
O(d)

DO exp
{θd

2
Tr[OSO⊺Y]

}
, (48)

where S and Y are d× d matrices with asymptotic eigenvalue distributions µS and µY. We can now
apply the Laplace method in eq. (47) on the eigenvalue distribution of S. As the problem of eq. (45)
is Bayes-optimal, it is known that the typical eigenvalue distribution of S under the distribution of
eq. (47) is µS = µS⋆ = µMP,κ, as a consequence of the so-called Nishimori identity, so that µMP,κ is
the maximizer of the variational problem obtained by the use of Laplace’s method, see Maillard et al.
[2022b] for details. Since the asymptotic distribution of Y is (by eq. (45)) µY = µMP,κ ⊞ σs.c.,1/

√
q̂ ,

we reach by eq. (46):

lim
d→∞

1

d2
Eξ∼GOE(d)[Hq̂(ξ) logHq̂(ξ)] = C(κ)− q̂Q0

4
+

1

2
IHCIZ(q̂, µMP,κ, µY), (49)

where C(κ) is a function of κ = m/d. It can be easily seen that C(κ) = 0 by considering q̂ = 0.

Fortunately, extensive-rank matrix denoising with Gaussian noise is one of the very few cases for
which an easily tractable analytical form is known for the HCIZ integral. More specifically, we know
that for any t > 0 and any ν, we have with µt := ν ⊞ σs.c.,

√
t [Maillard et al., 2022b]:

−1

2
Σ(µt) +

1

4t
Eµt

[X2]− 1

2
IHCIZ(t

−1, µt, ν)−
3

8
+

1

4
log t+

1

4t
Eν [X

2] = 0,

with Σ(µ) :=
∫
µ(dx)µ(dy) log |x− y|. Applying this formula with t = 1/q̂ we reach:

1

2
IHCIZ(q̂, µMP,κ, µY) = −1

2
Σ(µY) +

q̂

4
E[tr(Y2)]− 3

8
− 1

4
log q̂ +

q̂

4
Etr[(S⋆)2],

= −1

2
Σ(µY) +

1

4
(2Q0q̂ + 1)− 3

8
− 1

4
log q̂.

Combining it with eq. (49), we reach eq. (44) (recall that µY = µ1/q̂ with the notations of eq. (44)).

E Large and small κ limits

E.1 The small-κ limit

We consider here the limit κ → 0, i.e. the limit of small (but still extensively large) hidden layer,
and compute the limit of the MMSE curves shown in Fig. 1. Since in the noiseless setting we have
αPR = κ+O(κ2) (cf. eq. (1)), we will work in the rescaled regime α = α̃κ, with α̃ remaining finite
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Figure 4: Behavior of the asymptotic MMSE in the noiseless (∆ = 0) case as κ gets increasingly
small. The continuous lines are given by eq. (7), which we compare with the asymptotic κ → 0 curve
obtained by eq. (51). We emphasize that the horizontal axis is α/κ, which remains of order Θ(1) as
κ → 0: it corresponds to a number of samples n of the same order as the number of parameters dm.

as κ ↓ 0. By analyzing eq. (8) in this regime (details are given in Appendix E.1.1), we reach that the
MMSE satisfies, as κ → 0:

MMSE=


1 if α̃ ≤ 1 + ∆(2 +∆)

2
,

−∆(2 +∆) + 2α̃
[
1− α̃+

√
(1− α̃)2 +∆(2 +∆)

]
if α̃ ≥ 1 + ∆(2 +∆)

2
.

(50)

In particular, in the noiseless case (∆ = 0), we have:

MMSE = 1

{
α̃ ≤ 1

2

}
+ 4α̃(1− α̃)1

{
α̃ >

1

2

}
. (51)

and we reach perfect recovery for α̃ = 1. This limit is illustrated in Fig. 4.

Remarkably, eq. (51) can be computed as well by taking the limit m → ∞ when assuming that
m = O(1) as d → ∞, a setting which was studied extensively in the literature (see Aubin et al.
[2019b] and references therein). We detail this computation in Appendix E.1.2.

E.1.1 Details of the small-κ limit

Recall that by Claim 2, we have MMSE = κ(Q0 − q⋆), with Q0 = 1 + κ−1. Since the MMSE
remains finite as κ → 0, we consider the scaling q = q̃/κ, with 0 ≤ q̃ ≤ 1. We start again from
eqs. (7) and (8). We denote Λ := ∆(2 + ∆). Eq. (7), combined with the scaling of α, implies that
q̂ ∼ κ2/t for some finite t > 0, and since MMSE = 1− q̃ as κ → 0, we have

t =
κ2

q̂
=

1− q̃ + Λ

2α̃
.

Moreover, eq. (8) at order O(κ) yields:

−2α̃+
Λ

t
= ∂κ[F (t, κ)]κ=0, (52)

where

F (t, κ) :=
4π2t

3κ2

∫
µt/κ2(y)3dy.

Notice that F (t, 0) = 1 since µξ ≃ σs.c.,
√
ξ for ξ → ∞, and

∫
σs.c.,

√
ξ(y)

3dy = 3/[4π2ξ]. Thus,
the leading order of eq. (8) as κ → 0 is consistent but not informative.
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In what follows, we work out the small κ limit of F (t, κ), at first order in κ. We denote νκ(y) :=
(1/κ)µt/κ2(y/κ), so that the Stieltjes transform gκ(z) :=

∫
ν(y)/(y − z)dy of ν satisfies the self-

consistent equation (see Appendix A):

z =
κ

1 + g
− 1

g
− tg. (53)

Moreover, we notice that νκ = (κ#µMP,κ) ⊞ σs.c.,
√
t, so that the support of ν remains bounded

as κ → 0. We then proceed to expand in κ eq. (53). For any finite z ∈ C, the leading order of the
expansion is easily given by z = −1/h− th+ oκ(1), which gives that νκ → σs.c.,

√
t. However, as

mentioned above, we need to go to the next order in this expansion to compute eq. (52).

A BBP-type transition – We notice that κ#µMP,κ(x) ≃ (1 − κ)δ(x) + κδ(x − 1) when κ → 0.
More precisely, it is composed of a mass (1 − κ) in 0, and the rest of the mass κ is made up of a
continuous part supported between (1 −

√
κ)2 ≃ 1 − 2

√
κ and (1 +

√
κ)2 ≃ 1 + 2

√
κ. νκ can

thus be seen as the spectral density of the sum of a GOE matrix (with variance t) and a small-rank
perturbation matrix of rank m = κd, with all non-zero eigenvalues located close to 1. We therefore
expect by the so-called BBP transition phenomenon [Benaych-Georges and Nadakuditi, 2011] that
νκ will possess a set of m eigenvalues outside the semicircle bulk whenever the condition

1 ≥ − 1

gs.c.,
√
t(2

√
t)

(54)

is satisfied, with gs.c.,
√
t(z) := EX∼σs.c.,

√
t
[1/(X−z)] the Stieltjes transform of the semicircle. Since

one can easily show that gs.c.,√t(2
√
t) = −t−1/2, eq. (54) is equivalent to t ≤ 1. In this case, these

“spiked” eigenvalues are located around the value [Benaych-Georges and Nadakuditi, 2011]

g−1

s.c.,
√
t
(−1) = Rs.c.,

√
t(1) + 1 = 1 + t.

Moreover, as the width of the continuous part of κ#µMP,κ is of size O(
√
κ), we also expect this

“spiked” part of the spectrum to have a width O(
√
κ).

Expansion of ν – Based on the remarks of the previous paragraph, we assume the following behavior
for νκ, as κ → 0. For any y ∈ R with y ̸= 1 + t, we have

νκ(y) = σs.c.,
√
t(y) + κν(1)(y) + o(κ). (55)

Furthermore, we also have, for all y ∈ R, when t ≤ 1:
√
κνκ

(
y − (1 + t)√

κ

)
→κ→0 ρ(1)(y), (56)

for a finite density ρ(1), with
∫
ρ(1)(y)dy = 1. Eqs. (55) and (56) can be used to expand the Stieltjes

transform of νκ as a function of ν(1), ρ(1), and then eq. (53) used to find the values of these two
functions. These computations are straightforward, and yield:

ν(1)(y) =
(y − 2)

2π(1 + t− y)
√
4t− y2

1{|y| ≤ 2
√
t},

ρ(1) = ρs.c.,
√
1−t.

(57)

Notice that the second equation of eq. (57) is only valid for t ≤ 1, while the first one is valid for all
t ≥ 0. One checks for instance that

∫
ν(1)(dy) = −1{t ≤ 1}, which implies that the normalization

condition
∫
νκ(y)dy = 1 is well satisfied for all values of t ≥ 0. Using the expansion of eq. (57), we

obtain that

F (t, κ) =
4π2t

3

∫
νκ(y)

3dy,

= 1− κ

{
2− t if t ≤ 1,

1/t if t ≥ 1
+ o(κ).

So finally eq. (52) becomes

2α̃− Λ

t
=

{
2− t if t ≤ 1,

1/t if t ≥ 1,
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And recall that MMSE = 2α̃t− Λ, so that

MMSE =

{
t(2− t) if t ≤ 1,

1 if t ≥ 1,

Since t = (MMSE + Λ)/(2α̃), we reach that t = (1 + Λ)/(2α̃) if α̃ ≤ (1 + Λ)/2, and t =

1− α̃+
√
(1− tα)2 + Λ otherwise. This yields eq. (50).

E.1.2 The small-κ limit from a large but finite hidden layer

We consider here the noiseless case:

yi =
1

m

m∑
k=1

[
(w⋆

k)
⊺xi√
d

]2
,

with m = O(1) as n, d → ∞. We denote α = n/d = α̃m, and we assume that α̃ = Θ(1) as
m → ∞ (after n, d → ∞). We can write the partition function (cf. eq. (11)) as:

Z =

∫
Rd×m

DW
n∏

i=1

Pout

(
yi

∣∣∣∣w⊺
kxi√
d

)
, (58)

with Pout(y|z) = δ(y − ∥z∥2/m). We can make a direct use of the results of Aubin et al. [2019b] to
write:

lim
d→∞

1

d
E logZ = extrq,q̂

{
−1

2
Tr[qq̂] + IP +mα̃IC

}
, (59)

IP :=

∫
Rm

Dξ

∫
Rm

Dw0 exp

[
−1

2
(w0)⊺q̂w0 + ξ⊺q̂1/2w0

]
× log

[∫
Rm

Dw0 exp

[
−1

2
w⊺q̂w + ξ⊺q̂1/2w

]]
,

IC :=

∫ ∞

0

dy

∫
Rm

Dξ

∫
Rm

DZ0Pout

{
y|(Im − q)1/2Z0 + q1/2ξ

}
× log

[∫
Rm

DZPout

{
y|(Im − q)1/2Z + q1/2ξ

}]
.

Here, q, q̂ are symmetric m × m matrices, which satisfy moreover Im ⪰ q ⪰ 0 and q̂ ⪰ 0. The
informal notation “extr f” in eq. (59) means that one should zero-out the gradient of the function f
to compute the values of q, q̂.

The matrix q – Importantly, the matrix q can be interpreted as the “overlap matrix” of the model: if
we denote ⟨·⟩ the average under the posterior measure in eq. (58), then we have

qkl = E

〈
w⊺

kw′
l

d

〉
, (60)

where w,w′ are two independent samples under ⟨·⟩. Moreover, thanks to the Bayes-optimality of the
problem, it is known that the overlap concentrates [Zdeborová and Krzakala, 2016], in the sense that
the random variable (w⊺

kw′
l)/d concentrates on its average under E⟨·⟩ as d → ∞.

The “prior integral” IP can be very easily computed with Gaussian integrals, and yields:

IP =
1

2
Tr[q̂]− 1

2
log det(Im + q̂). (61)

We now focus on computing the leading order of IC in the large-m limit. We can write
IC =

∫
dyDξ Iq(y, ξ) log Iq(y, ξ),

Iq(y, ξ) =

∫
Rm

DZ δ

(
y − 1

m

∥∥∥(Im − q)1/2Z + q1/2ξ
∥∥∥2
2

)
.

(62)
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Let ỹ :=
√
m[y − tr(Im − q)− (ξ⊺qξ)/m]. We can change variables in eq. (62), and obtain:

IC =

∫
dỹDξ Jq(ỹ, ξ) log Jq(ỹ, ξ) +

1

2
logm,

Jq(ỹ, ξ) =

∫
Rm

DZ δ

(
ỹ −

√
m

[
1

m

∥∥∥(Im − q)1/2Z + q1/2ξ
∥∥∥2
2
− tr(Im − q)− ξ⊺qξ

m

])
.

(63)

Notice that the additive term (1/2) logm in IC just amounts to a renormalization of the partition
function Z , so we remove this additional constant in what follows. We proceed to simplify Jq(ỹ, ξ)
in the large-m limit. We have

Jq(ỹ, ξ)

=

∫
Rm

DZ δ

(
ỹ −

√
m

[
Z⊺(Im − q)Z

m
− tr(Im − q) + 2

Z⊺(Im − q)1/2q1/2ξ

m

])
,

=

∫
du

2π
eiuỹ+iu

√
mtr(Im−q)

∫
DZe

−iu
√
m

[
Z⊺(Im−q)Z

m +2
Z⊺(Im−q)1/2q1/2ξ

m

]
,

=

∫
du

2π
e
iuỹ+iu

√
mtr(Im−q)− 1

2 log det
[
Im+2

iu(Im−q)√
m

]
− 2u2

m ξ⊺q1/2(Im−q)1/2
[
Im+

2iu(Im−q)√
m

]−1
(Im−q)1/2q1/2ξ

,

=

∫
du

2π
eiuỹ−u2tr[(Im−q)2]− 2u2

m ξ⊺q1/2(Im−q)q1/2ξ+O(1/
√
m),

=
1√
2πσ2

ξ

e
− (ỹ)2

2σ2
ξ +O(1/

√
m),

where

σ2
ξ := 2tr[(Im − q)2] +

4

m
ξ⊺q1/2(Im − q)q1/2ξ.

Plugging it back into eq. (63) yields:

IC =

∫
dyDξ

1√
2πσ2

ξ

e
− (ỹ)2

2σ2
ξ

[
−1

2
log 2πσ2

ξ −
y2

2σ2
ξ

]
+O(1/

√
m),

= −1

2

∫
Dξ log[2πσ2

ξ]−
1

2
+O(1/

√
m).

Since ξ ∼ N (0, Im), it follows from elementary concentration of measure that σ2
ξ concentrates on its

average value σ2 given by:

σ2 := 2tr[(Im − q)2] + 4tr[(Im − q)q] = 2tr[(Im − q)(Im + q)] = 2tr[Im − q2].

All in all we reach that (up to additive constants):

IC = −1

2
log tr[Im − q2] +O(1/

√
m). (64)

Combining eqs. (61) and (64) in eq. (59), we get at leading order in m, with Φ := lim(1/d)E logZ:

1

m
Φ = extr

q,q̂

{
−1

2
tr[qq̂] +

1

2
tr[q̂]− 1

2
tr log(Im + q̂)− α̃

2
log tr[Im − q2]

}
. (65)

Eq. (65) can be easily solved, and yields:
q̂ = q(Im − q)−1,

q̂ =
2α̃

tr[Im − q2]
q.
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This implies that (recall 0 ⪯ q ⪯ Im):

q =


0 if α̃ ≤ 1

2
,

(2α̃− 1)Im if
1

2
≤ α̃ ≤ 1,

Im if α̃ ≥ 1.

(66)

Now that we have obtained q in eq. (66), we can compute the MMSE, or generalization error.
Defining it as in eq. (4):

MMSEd :=
m

2
EW⋆,DEytest,xtest [(ytest − ŷBO(xtest))

2],

the same arguments used in the proof of Lemma F.1 show that in the large m limit (but taken after
d → ∞), we have at leading order

MMSEd =
m

d
Etr[(S⋆ − SBO)2] = 1− m

d
Etr[(SBO)2],

with S := (1/m)
∑m

k=1 wkw⊺
k . Notice that SBO = ⟨S⟩, so that

MMSEd = 1− 1

m
E

∑
1≤k,l≤m

〈(
w⊺

kw′
l

d

)2
〉
,

where w,w′ are two independent samples under the posterior measure ⟨·⟩. We know that the
overlap concentrates (cf. the discussion around eq. (60)), so that at leading order, with MMSE :=
limd→∞ MMSEd:

MMSE = 1− 1

m
E

∑
1≤k,l≤m

q2kk′ = 1− tr[q2].

Combining it with eq. (66), we reach:

MMSE =


1 if α̃ ≤ 1

2
,

4α̃(1− α̃) if
1

2
≤ α̃ ≤ 1,

0 if α̃ ≥ 1.

We have recovered eq. (51) from the limit m → ∞ taken after d → ∞!

E.2 The large-κ limit

We consider here κ → ∞, with α remaining of order Θ(1) as κ → ∞. Since the MMSE remains
finite as well, we see from eq. (7) that we must have the scaling q̂ = κt, with t remaining finite
as κ → ∞. A very similar derivation to the one of Appendix E.1.1 yields that eq. (8) in this limit
becomes (with Λ := ∆(2 +∆)):

1− 2α+ Λt = lim
κ→∞

4π2

3κt

∫
µ1/[κt](y)

3dy,

=
1

1 + t
.

Combining it with eq. (7) yields that

MMSE =
1− 2α− Λ +

√
(1− 2α+ Λ)2 + 8αΛ

2
, (67)

where we recall Λ = ∆(2 + ∆). In particular, for ∆ = 0, we reach MMSE = max(1 − 2α, 0),
coherently with the behavior shown in Fig. 1.
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F Other technicalities

F.1 Properties of the MMSE of eq. (4)

Let S⋆ := (1/m)
∑m

k=1 w⋆
k(w⋆

k)
⊺, and Ŝ

BO
:= E[S|D] the Bayes-optimal estimator of S⋆. We show

here the following lemma on the MMSE of eq. (4), under the high-dimensional limit of eq. (5):

Lemma F.1. For a constant C = C(κ) > 0:∣∣∣∣MMSEd − κES⋆,Dtr

[(
S⋆ − Ŝ

BO
)2]∣∣∣∣ ≤ C(κ)

n
.

Lemma F.1 shows that we can consider the MMSE on S equivalently to the generalization MMSE of
eq. (4).

Limits – Notice that if the posterior concentrates around the true W⋆, then Ŝ
BO

= E[S|D] concen-
trates on S⋆, which implies that MMSEd → 0. Conversely, for α = 0 (i.e. in the absence of data),
the Bayes-optimal estimator becomes Ŝ

BO
= E[S⋆] = Id, so that Etr[(S⋆ − Ŝ

BO
)2] = κ−1. Thus,

we have MMSEd → 1 for α = 0.

Proof of Lemma F.1. – Notice that (cf. eq. (2)):

Ez[fW(x)] = ∆ +
x⊺Sx
d

,

with S := (1/m)
∑m

k=1 wkw⊺
k . Using this in eq. (3), and plugging it in eq. (4), we get (with

z ∼ N (0, Im) and x ∼ N (0, Id)):

MMSEd =
m

2
ES⋆,D,z,x

(∆(1− ∥z∥2

m

)
+

x⊺(Ŝ
BO

− S⋆)x
d

− 2
√
∆

m

m∑
k=1

zk

(
x⊺w⋆

k√
d

))2


−∆(2 +∆),

=
m

2
ES⋆,D,z,x

[
∆2

(
1− ∥z∥2

m

)2

+
[x⊺(Ŝ

BO
− S⋆)x]2

d2
+

4∆

m
tr(S⋆)

]
−∆(2 +∆),

(a)
=

m

2
ES⋆,D,x

[
[x⊺(Ŝ

BO
− S⋆)x]2

d2

]
,

(b)
=

m

2
ES⋆,D

[(
tr(S⋆ − Ŝ

BO
)
)2]

+ κES⋆,D tr

[(
S⋆ − Ŝ

BO
)2]

, (68)

where we used E[∥z∥4] = m2 + 2m and Etr(S⋆) = 1 in (a), and Ex∼N (0,Id)[(x⊺Mx)2] = Tr[M]2 +

2Tr[M2] in (b). It remains to bound the first term of eq. (68) to conclude the proof of Lemma F.1.

We notice that, by linearity of the trace, tr(Ŝ
BO

) is the Bayes-optimal estimator for tr(S⋆), i.e.

ES⋆,D

[(
tr(S⋆ − Ŝ

BO
)
)2]

= min
r(D)

ES⋆,D

[
(tr(S⋆)− r(D))

2
]
. (69)

In particular, considering the estimator

r(D) :=
1

n

n∑
i=1

(yi −∆),

=
1

n

n∑
i=1

{
xiS⋆xi

d
+∆

(
∥zi∥2

m
− 1

)
+

2
√
∆

m

m∑
k=1

zi,k

(
x⊺i w⋆

k√
d

)}
,

30



we have using eq. (69):

ES⋆,D

[(
tr(S⋆ − Ŝ

BO
)
)2]

≤ ES⋆,{xi},{zi}

[{
tr

[
S⋆

(
1

n

n∑
i=1

xix⊺i − Id

)]
+∆

(∑n
i=1 ∥zi∥2

nm
− 1

)

+
2
√
∆

nm

n∑
i=1

m∑
k=1

zi,k

(
x⊺
i w⋆

k√
d

)}2
 ,

(a)

≤ 3[I1 + I2 + I3], (70)

using the Cauchy-Schwarz inequality in (a), with

I1 := E

(tr[S⋆

(
1

n

n∑
i=1

xix⊺i − Id

)])2
 ,

I2 := ∆2E

[(∑n
i=1 ∥zi∥2

nm
− 1

)2
]
,

I3 := 4∆E

( 1

nm

n∑
i=1

m∑
k=1

zi,k

(
x⊺i w⋆

k√
d

))2
 .

It is a tedious but straightforward computation to compute {Ia}3a=1, as it only involves the first
moments of Gaussian random variables. We get (recall m = κd):

I1 =
2

nd
(1 + κ−1),

I2 =
2∆2

κnd
,

I3 =
4∆

κnd
.

(71)

Combining eqs. (70) and (71), and plugging it back in eq. (68), we get∣∣∣∣MMSEd − κES⋆,D tr

[(
S⋆ − Ŝ

BO
)2]∣∣∣∣ ≤ C(κ)

n
,

which ends the proof of Lemma F.1.

F.2 Proof of Theorem 4.1

First, we note that Theorem 1 of Pourkamali et al. [2024] implies that:

Ψ(q̂) =
1

2
IHCIZ(q̂, µMP,κ, µ1/q̂)−

Q0q̂

2
, (72)

and we recall the definition of IHCIZ in eq. (48). We recall then a fundamental result proven in
Guionnet and Zeitouni [2002]:
Theorem F.2 (Theorem 1.1 of Guionnet and Zeitouni [2002]). For any compactly supported proba-
bility measures ν and µ, and any t > 0:

1

2
IHCIZ(t

−1, ν, µ) = −J(ν;µ)− 1

2
Σ(ν) +

1

4t
Eν [X

2]− 3

8
+

1

4
log t+

1

4t
Eµ[X

2]. (73)

Moreover, the function J(ν;µ) satisfies the following property. Let d be a distance on the space of
probability measures on R that is compatible with the weak topology. Let X := R +

√
tW, where

W ∼ GOE(d), and R is a fixed (deterministic) matrix, with uniformly bounded spectral norm, and
a compactly supported limiting eigenvalue distribution µ. Let µX denote the empirical eigenvalue
distribution of X. Then, for any ν ∈ M+

1 (R):

lim
δ↓0

lim sup
d→∞

1

d2
logP[d(ν, µX) < δ] = lim

δ↓0
lim inf
d→∞

1

d2
logP[d(ν, µX) < δ],

= −J(ν;µ). (74)
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In other words, the function J(ν;µ) is the large deviations rate function (in the scale d2) for the
empirical spectral measure of R +

√
tW, where R is a fixed (deterministic) matrix with asymptotic

spectral distribution µ, and W ∼ GOE(d). It is a well-known property of the free convolution
[Speicher, 1993] that µX → µ ⊞ σs.c.,

√
t as d → ∞, where the convergence is meant in the weak

sense (and almost surely). Combining this result with eq. (74), we have J(µ⊞ σs.c.,
√
t;µ) = 0. This

yields by eq. (73):

IHCIZ(t
−1, µ, µ⊞ σs.c.,

√
t) = −Σ(µ⊞ σs.c.,

√
t) +

1

2
log t− 1

4
+

1

t
Eµ[X

2]. (75)

Combining eqs. (72) and (75) yields eq. (17).

Remark – The proof above can be straightforwardly extended to the free entropy of denoising any
matrix S with a rotationally-invariant distribution and a compactly-supported limiting eigenvalue dis-
tribution (beyond the Wishart ensemble), as the results of Guionnet and Zeitouni [2002], Pourkamali
et al. [2024] hold under these more general assumptions.

F.3 Perfect recovery threshold in the noiseless case

In this section, we give an analytic argument to derive the value of the perfect recovery threshold
αPR (see eq. (1)) in the noiseless setting. In the limit of perfect recovery the MMSE goes to 0, thus
by eq. (7) (with ∆ = 0) this implies q̂ → ∞. Using eq. (8), we can then write the equation satisfied
by the perfect recovery threshold as

3(1− 2αPR)

4π2
= lim

t↓0
t

∫
dy µt(y)

3, (76)

in which µt = µMP,κ ⊞ σs.c.,
√
t, see Appendix A.

F.3.1 The case κ < 1

Informal argument – Recall that in this case we can write µMP,κ(x) = (1− κ)δ(x) + κνMP,κ(x),
in which νMP,κ is compactly supported away from zero, see Appendix A. As t → 0, we thus expect
µt to have a discontinuous support, made of two parts:

(a) A small semicircular density centered around 0, of radius O(
√
t), with mass (1− κ).

(b) A smooth density, compactly supported away from zero, which has a well-defined limit as
t → 0, and a mass κ.

Because of the factor t in the right-hand side of eq. (76), only the part (a) will matter in the limit.

Formal derivation – We first rewrite by a change of variable

t

∫
dy µt(y)

3 =

∫
dz [

√
tµt(

√
tz)]3.

It is clear that for all x ̸= 0, we have µt(x) → κνMP,κ(x) as t → 0, and
∫
νMP,κ(y)

3dy < ∞, so
that we can truncate the integral above to all |z| ≤ ε/

√
t, for any ε > 0 finite as t → 0. We will now

show the following, for any x ∈ R:

lim
t→0

√
tµt(x

√
t) = (1− κ)σs.c.,

√
1−κ(x). (77)

We fix z ∈ C+ (where C+ := {z ∈ C : Im(z) > 0}). Letting y =
√
tz, we know from the

Marchenko-Pastur theorem [Marchenko and Pastur, 1967] that gt(y) := Eµt [1/(X−y)] is the unique
solution in C+ to the equation

y =
1

1 + g/κ
− 1

g
− tg.

Since y =
√
tz, it is clear that g = O(1/

√
t), and letting h :=

√
tg, we easily get the expansion

z = −1− κ

h
− h+O(

√
t),
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which can be inverted to

h =
−z ±

√
z2 − 4(1− κ)

2
+O(

√
t). (78)

Notice that if we denote Sκ(z) the Stieltjes transform of σs.c.,
√
1−κ, eq. (78) can be written as (see

e.g. Anderson et al. [2010]) h = (1− κ)Sκ(z) +O(
√
t). By considering z = x+ iε with x ∈ R and

the limit ε → 0, we reach using the Stieltjes-Perron inversion theorem (Theorem A.2) that for any
x ∈ R:

lim
t→0

√
tµt(x

√
t) = (1− κ)σs.c.,

√
1−κ(x). (79)

Coming back to eq. (76) this implies:

3(1− 2αPR)

4π2
= lim

t→0
t

∫
dy µt(y)

3,

= (1− κ)3
∫

dy σs.c.,
√
1−κ(y)

3,

= (1− κ)2
∫

dy σs.c.(y)
3,

=
3

4π2
(1− κ)2.

Equivalently:

αPR =
(1− κ)2 − 1

2
= κ− κ2

2
. (80)

We notice that this critical value of n/d2 coincides with a naive counting argument of degrees of
freedom of S⋆. Indeed, as can be seen by the spectral decomposition, the set of d × d symmetric
matrices of rank m has, to leading order in d, p(κ)d2 degrees of freedom, where p(κ)d2 is the
dimension of the Stiefel manifold of orthonormal m-frames in Rd. It is well-known that p(κ) =
κ− κ2/2 for d → ∞ [Helmke and Moore, 2012].

F.3.2 The case κ ≥ 1

The case κ > 1 is simpler to carry out. In this case, µMP,κ does not have a singular part at x = 0,
and µt has a smooth density as t → 0, and∫

dy µMP,κ(y)
3 =

3

4π2

κ2

κ− 1
,

so that
3(1− 2αPR)

4π2
= lim

t↓0
t

∫
dy µt(y)

3 = 0,

and we reach αPR = 1/2, so that αPRd
2 (asymptotically) coincides with the number d2/2 of degrees

of freedom of symmetric matrices. Since αPR is increasing with κ, and has limit 1/2 both for κ ↑ 1
and κ ↓ 1, we deduce that αPR = 1/2 for κ = 1 as well.

F.4 The derivative of the error at the perfect recovery threshold

Here, we extend the derivation of Section F.3 to compute the derivative of the MMSE with respect to
α at the perfect recovery threshold. We start again from eqs. (7) and (8). Letting t := 1/q̂, we get,
with α = αPR: (

∂MMSE

∂α

)
PR

= 2ακ

(
∂t

∂α

)
PR

,

= −3ακ

π2

[
lim
t→0

∂t

(
t

∫
µt(y)

3dy

)]−1

. (81)

We thus compute the next order of the expansion of t
∫
µt(y)

3dy as t → 0.
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F.4.1 The case κ < 1

We extend the argument made in Section F.3.1. Notice that here the smooth part of the density,
compactly supported away from zero, contributes at this order. Formally, for any small enough ε > 0:

t

∫
|y|≥ε

dy µt(y)
3 = tκ3

∫
dy νMP,κ(y)

3 + ot(t),

=
3tκ4

4π2(1− κ)
+ ot(t), (82)

On the other hand, we have around the singularity at y = 0:

t

∫
|y|≤ε

dy µt(y)
3 =

∫
|z|≤ε/

√
t

dz [
√
tµt(

√
tz)]3. (83)

We evaluate the next order of the right-hand side of eq. (83) using the same approach as in Sec-
tion F.3.1, going to next orders in the expansion as t → 0 of eq. (78). Using then again the
Stieltjes-Perron inversion theorem, we reach with tedious but straightforward computations the
generalization of eq. (79):

√
tµt(

√
tz) = (1− κ)σs.c.,

√
1−κ(z)−

√
t

zκ2

2π(1− κ)
√

4(1− κ)− z2

+ t
κ3
[
z4 − 6z2(1− κ) + 2(4− κ)(1− κ)2

]
2π(1− κ)3[4(1− κ)− z2]3/2

+O(t3/2), (84)

for any |z| ≤ 2
√
1− κ, while

√
tµt(

√
tz) = O(t3/2) if |z| > 2

√
1− κ. This then yields:

t

∫
|y|≤ε

dy µt(y)
3 =

3(1− κ)2

4π2
+

3tκ3

4π2(1− κ)
+O(t3/2). (85)

Combining eqs. (82) and (85) in eq. (81), we obtain (recall α = αPR = κ− κ2/2):(
∂MMSE

∂α

)
PR

= −2− 4

κ
+

12

1 + κ
.

F.4.2 The case κ ≥ 1

Again, we consider κ > 1. The argument of Section F.4.1 generalizes immediately, removing the
analysis of the singular part around y = 0. We get directly

t

∫
dy µt(y)

3 = t

∫
dy µMP,κ(y)

3 + ot(t),

=
3tκ2

4π2(κ− 1)
+ ot(t). (86)

Plugging it in eq. (81), we get in this case:(
∂MMSE

∂α

)
PR

= −2 +
2

κ
.

Again, the specific case κ = 1 can be tackled by continuity, as the derivative tends to 0 both as κ ↑ 1
and κ ↓ 1.

F.5 Details on the reduction to matrix estimation

We describe here how to effectively reduce the problem of eq. (2) to an estimation problem in terms
of S⋆ := (1/m)

∑m
k=1 w⋆

k(w⋆
k)

⊺.

Remark – While our argument is backed by precise probabilistic concentration arguments, we notice
that it is not a proof of the equivalence of the problems of eq. (2) and eq. (9) under all statistical
tests, as would be implied e.g. by the contiguity of distributions [Le Cam, 1960, Kunisky et al.,
2019]. Rather, we analyze the leading order of eq. (2) and argue that (with high probability over
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the distribution of the data and the teacher weights), the first non-trivial order of the observations is
characterized by the equivalent model of eq. (9). Notably, we do not claim the statistical equivalence
of the problems of eq. (2) and eq. (9), but rather only that their asymptotic MMSEs coincide. While
even this weaker statement is not formally implied by the arguments sketched below, we expect that
they form the backbone of a formal proof of this claim, which we leave for future work and would be
carried e.g. by Gaussian interpolation techniques.

Let us define Zi := (xix⊺i − Id)/
√
d, and recall that xi ∼ N (0, Id). Expanding the square, we can

rewrite the law of the output yi = fW⋆(xi) as

yi = ∆+ tr[S⋆] +
1√
d
Tr[ZiS⋆] + ∆

(
∥zi∥2

m
− 1

)
+

2
√
∆

m
√
d

m∑
k=1

zi,kx⊺
i w⋆

k, (87)

where (zi)ni=1
i.i.d.∼ N (0, Im). In what follows, we analyze the leading order of eq. (87). More

specifically, we denote ỹi :=
√
d(yi − 1−∆), and we decompose

ỹi = Tr[ZiS⋆] +
√
d(tr[S⋆]− 1)︸ ︷︷ ︸

=:I1

+∆
√
d

(
∥zi∥2

m
− 1

)
+

2
√
∆

m

m∑
k=1

zi,kx⊺
i w⋆

k︸ ︷︷ ︸
=:I2

. (88)

Let us consider the leading order of the different terms of eq. (88). Since S⋆ ∼ Wm,d, Tr[S⋆] =∑m
k=1 ∥w⋆

k∥2/m strongly concentrates on its average. More precisely, by Bernstein’s inequality (see
Corollary 2.8.3 of Vershynin [2018]) we have, for all t ≥ 0:

P[|tr(S⋆)− 1| ≥ t] ≤ 2 exp
(
−Cd2 min(t, t2)

)
,

where C > 0 depends only on κ > 0. In particular,

P[|I1| ≥ d−1/4] ≤ 2 exp(−C
√
d),

so that we can replace I1 by 0 at leading order in eq. (88).

We now tackle I2, first for fixed (xi,W⋆). Using that ∥zi∥2 strongly concentrates around its average,
and the central limit theorem applied to the fluctuations of ∥zi∥2, one can see that for all i ∈ [n], we
have (with gi ∼ N (0, Im) independently of zi, and d

= denoting equality in distribution):

√
d

[
∆

(
∥zi∥2

m
− 1

)
+

2
√
∆

m
√
d

m∑
k=1

zi,kx⊺i w⋆
k

]
d
=

√
d

[
∆

(
∥zi∥2

m
− 1

)
+

2
√
∆

m
√
d

∥zi∥
∥gi∥

m∑
k=1

gi,kx⊺i w⋆
k

]
,

∼d→∞ ξi

√
2∆2

κ

x⊺i S⋆xi

d
+

4∆

κ
, (89)

with ξi
i.i.d.∼ N (0, 1), independently of (xi,w⋆

k). The equivalence as d → ∞ is given for a fixed
i ∈ [n]: coherently with the remark above, we notice that a formal mathematical proof of equivalence
of the two problems of eq. (2) and eq. (9) would rather need to tackle the joint law of all the
observations, and to quantitatively control the deviation between the left and right-hand sides of
eq. (89) as d → ∞. We leave such a proof for future work.

We finally note that the variance term on the right-hand side of eq. (89) strongly concentrates,
uniformly in i ∈ [n], as by the Hanson-Wright inequality and the union bound, we have (see
Theorem 6.2.1 of Vershynin [2018]) for all t ≥ 0:

P{xi}

[∣∣∣∣1d max
i∈[n]

|x⊺i S⋆xi − tr(S⋆)

∣∣∣∣ ≥ t

]
≤ 2n exp

[
−Cmin

(
dt2

∥S⋆∥2op
,

dt

∥S⋆∥op

)]
, (90)

for some constant C > 0. Since the spectral norm of a Wishart matrix ∥S⋆∥op strongly concentrates
on its average under the Wishart distribution (see Theorem 4.4.5 of Vershynin [2018]), we see that,
uniformly over i ∈ [n], the leading order of the variance in the right-hand side of eq. (89) is equal to
∆̃ := 2∆(2 +∆)/κ. This ends our justification of eq. (9).
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F.6 Unique maximizer q⋆ in eq. (12)

Notice that if Jout(q) :=
∫

R×R dyDξ Jq(y, ξ) log Jq(y, ξ), then one can check that Jout is a strictly
increasing function of q under mild regularity conditions on Pout (namely assuming the presence of
an additive Gaussian noise with arbitrarily small variance), see Proposition 21 of Barbier et al. [2019].
The fact that q⋆ is uniquely defined for all values of α > 0 except possibly in a countable set follows
then from Proposition 1 of Barbier et al. [2019], see also Appendix A.2 there.

F.7 Derivation of Result 1 from Claim 2

In this section, we derive eqs. (7) and eq. (8) from Claim 2, in the case of Gaussian noise. More
precisely, we assume Pout(y|z) = exp[−(y − z)2/(2∆̃)]/

√
2π∆̃, in accordance with eq. (9). It is

then an easy computation to check (recall the definition of Jq in eq. (13)):∫
R×R

dyDξ Jq(y, ξ) log Jq(y, ξ) = −1

2
log[∆̃ + 2(Q0 − q)].

We then reach that q = q⋆ is characterized as the maximum of the following function:
F (q) = I(q)− α

2
log[∆̃ + 2(Q0 − q)],

I(q) := inf
q̂≥0

[
(Q0 − q)q̂

4
− 1

2
Σ(µ1/q̂)−

1

4
log q̂ − 1

8

]
.

(91)

Recall that here µt := µMP,κ ⊞ σs.c.,
√
t. It is known (see eqs. (77-78) of Semerjian [2024] e.g.) that

∂Σ(µt)

∂t
=

2π2

3

∫
µt(y)

3dy.

Thus, q̂ = q̂(q) can be characterized as the solution4 to

(Q0 − q)

4
+

π2

3q̂2

∫
µ1/q̂(y)

3dy − 1

4q̂
= 0. (92)

By eq. (91), q is a solution in [1, Q0] to:

q̂(q) =
4α

∆̃ + 2(Q0 − q)
. (93)

Recalling that MMSE = κ(Q0 − q) by Claim 2, eq. (93) implies eq. (7). Combining eq. (93) with
eq. (92), we reach eq. (8).

F.8 The limit α → 0

In this section, we check that the state evolution equations derived in Section F.7 yield indeed that
q → 1 as α → 0. Indeed, in this limit, SBO = E[S⋆] = Id, so that we must have q = Etr[SBOS⋆] = 1.

Recall that q̂ = 4α/[∆̃ + 2(Q0 − q)], and that q̂ is given by eq. (8). In particular, q̂ → 0 as α → 0.
Assuming the scaling q̂ ∼ q̂0α as α → 0, we get

q = Q0 −
2

q̂0
+

∆̃

2
,

−2 +
∆̃q̂0
2

= q̂0F
′(0),

(94)

where F (p) := (4π2/3)
∫
[p−1/2µ1/p(z · p−1/2)]3dz. Letting νp(z) := p−1/2µ1/p(z · p−1/2), we

know by a similar reasoning as the one of Section F.3 that the Stieltjes transform h = hp(z) of νp
satisfies the equation:

z =
κ
√
p

κ+ h
√
p
− 1

h
− h.

4Notice that one can show that q̂ is the minimizer of a convex function in eq. (91). This can be shown e.g. by
recalling the relationship of this function to the free entropy of a matrix denoising problem (Theorem 4.1) and
using the I-MMSE theorem. We refer to Barbier et al. [2019], Maillard et al. [2020] for more details.
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As p → 0, we can thus compute the expansion of hp(z) in powers of p. Applying then the Stieltjes-
Perron inversion theorem (Theorem A.2), we get the expansion of νp(z) in powers of p as:

νp(z) =

√
4− z2

2π
+
√
p
3z

√
4− z2

8π3
− 3p(2− z2)(4 + κ− z2)

8π3κ
√
4− z2

+O(p3/2),

for |z| ≤ 2, and νp(z) = O(p3/2) for |z| ≥ 2. Plugging this expansion into F (p), we get:

F (p) = 1− p

κ
+ o(p).

Coming back to eq. (94), this gives q̂0 = 4κ/[2 + ∆̃κ], and (recall Q0 = 1 + κ−1) then q = 1, so
that our equations are indeed consistent in the limit α → 0.

G Learning the second layer weights

We sketch here in a mathematically informal way the generalization of our results to the setting where
the second layer weights are also learned. The second layer weights (a⋆k)

m
k=1 are drawn i.i.d. from a

probability distribution Pa, and the student must learn (w⋆
k, a

⋆
k)

m
k=1 from the observation of {xi}ni=1

and of

yi =
1

m

m∑
k=1

a⋆k

[
1√
d
(w∗

k)
⊺xi +

√
∆zi,k

]2
. (95)

In the rest of this paper we focused on the case Pa = δ1. However, all our techniques and results
can be generalized to more generic choices of Pa, as we know show: in particular, Claim 3 is the
generalization of Claim 2 to this more general setting.

Throughout this section, we will assume for simplicity that Pa has bounded support, although we
expect our results to hold also for more general choices of Pa. We show how to extend Claim 2 to
this case, by detailing the differences in the steps outlined in Section 4. We eventually show that
Algorithm 1 can also be straightforwardly extended to this setting as well.

G.1 Generalizing the derivation

G.1.1 Reduction to matrix estimation

We first discuss the reduction to a matrix estimation problem, generalizing Section F.5 to this setting.
We define

S⋆ :=
1

m

m∑
k=1

a⋆kw⋆
k(w

⋆
k)

⊺, (96)

and we denote ma := EPa
[a] and ca := EPa

[a2]. We define the MMSE as (notice the additional
factor ca with respect to eq. (4)):

MMSEd :=
m

2
EW∗,DEytest,xtest

[(
ytest − ŷBO

D (xtest)
)2]−∆(2 + ca∆) . (97)

By repeating the (mathematically informal) arguments of Section F.5 to this setting, we find that, at
leading order as m, d → ∞:

√
d(yi −∆− tr[S⋆]) = Tr[ZiS⋆] +

√
∆̃ξi, (98)

with ξi
i.i.d.∼ N (0, 1), and ∆̃ := 2∆(2 +∆ca)/κ. We let

ỹi :=
√
d

yi − 1

n

n∑
j=1

yi

 ,

Y :=
1

n

n∑
i=1

yi.
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The observation of (yi)ni=1 is equivalent to the one of (ỹi)ni=1 and Y . Notice that by eq. (98), we have

|Y −∆− tr(S⋆)| = 1

n
√
d

∣∣∣∣∣
n∑

i=1

{Tr[ZiS⋆] +
√

∆̃ξi}

∣∣∣∣∣ . (99)

Conditionally on S⋆, the right-hand-side of eq. (99) is a sum of n independent zero-mean random
variables, which thus typically fluctuates in the scale5 O[(nd)−1/2] = O(d−3/2). Since ỹi =√
d[yi − Y ], this implies that at leading order we have

ỹi = Tr[ZiS⋆] +
√

∆̃ξi. (100)

The observer also has access to Y , alongside {ỹi}ni=1. Notice that by the argument above, Y is (up
to order d−3/2) a deterministic observation of tr[S⋆]. By eq. (97), and repeating the arguments of

the proof of Lemma F.1, we reach that again we have MMSE = κEtr[(S⋆ − Ŝ
BO

)2] as d → ∞.
Moreover:

MMSE = κES⋆,Y,{ỹi}tr[(S
⋆ − Ŝ

BO
)2],

= κEY [ES⋆,{ỹi}(tr[(S
⋆ − Ŝ

BO
)2]|Y )].

Conditioning on Y amounts to condition on the value of tr(S⋆), as detailed above. Let us make two
important remarks:

(i) As d → ∞, Y concentrates around its typical value E[Y ] = ma. Since the MMSE is

bounded, we therefore have as d → ∞ that MMSE = κES⋆,{ỹi}(tr[(S
⋆− Ŝ

BO
)2]|Y = ma).

(ii) As we will see in what follows (and exactly like in the case of fixed second layer), the
leading order of the MMSE of the inference problem of eq. (100) only depends on the
asymptotic spectral distribution of S⋆. In particular, at leading order:

MMSE = κES⋆,{ỹi}(tr[(S
⋆ − Ŝ

BO
)2]|Y = ma),

= κES⋆,{ỹi}(tr[(S
⋆ − Ŝ

BO
)2]|tr(S⋆) = ma),

(a)
= κES⋆,{ỹi}(tr[(S

⋆ − Ŝ
BO

)2]), (101)

where in (a) we used that conditioning on tr(S⋆) = ma does not change the asymptotic
spectral distribution of S⋆.

All in all, we focus on characterizing the MMSE given in eq. (101), for the inference problem of
recovering S⋆ from the knowledge of {Zi, yi} generated by eq. (100).

G.1.2 Further steps of the derivation

Here, we notice that the arguments detailed in Section 4 on how to obtain an asymptotic expression
of eq. (101) do not depend on the specific asymptotic spectral distribution of S⋆. More precisely:

A. Conjecture 4.1 can be directly extended to more general distributions of S⋆ than the Wishart
distribution. Indeed, the heuristic argument explaining this universality phenomenon does
not depend on the distribution of S⋆, and on a technical level, as mentioned in the main text,
Conjecture 4.1 is an extension of Corollary 4.10 of Maillard and Bandeira [2023], which
holds for generic choices of distributions of matrices.

B. Conjecture 4.2 is also straightforwardly extended here, simply replacing the Wishart prior
by the more generic prior of eq. (96). More generally, we expect it to hold for any prior such
that the function Ψ(q̂) of eq. (16) is well-defined [Aubin et al., 2019a, 2020].

C. Finally, the proof of Theorem 4.1 (see Appendix F.2) relies solely on the rotation invariance
of the distribution of S⋆, as well as the fact that S⋆ admits a compactly supported asymptotic
eigenvalue distribution. These two facts hold for the distribution of eq. (96) for compactly
supported Pa, see e.g. Silverstein and Choi [1995], Lee and Schnelli [2016].

5Recall that tr[(S⋆)2] = O(1) with high probability.
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G.2 Conclusion: Claim 2 when learning the second layer

We are now ready to state the generalization of Claim 2 to a learnable second layer. The effective
problem we consider is the recovery of a symmetric matrix S⋆ ∈ Rd×d, which was generated as
S⋆ = (1/m)

∑m
k=1 a

⋆
kw⋆

k(w⋆
k)

⊺, from observations (yi)ni=1, generated as
yi ∼ Pout (·|Tr[ZiS⋆]) , (102)

with Zi := (xix⊺
i − Id)/

√
d and xi

i.i.d.∼ N (0, Id).

The asymptotic spectral distribution µ⋆ of S⋆ is called a generalized Marchenko-Pastur distribution (or
a free compound Poisson distribution: it is also the free multiplicative convolution of the Marchenko-
Pastur law and Pa, see Anderson et al. [2010]). µ⋆ is compactly supported, and can be characterized
by its R transform [Marchenko and Pastur, 1967, Silverstein and Choi, 1995, Tulino and Verdú,
2004]:

Rµ⋆(s) =

∫
κa

κ− sa
Pa(a)da. (103)

Eq. (103) allows for an efficient numerical evaluation of µ⋆ given Pa. Notice that Eµ⋆ [X] = ma, and
Eµ⋆ [X2] = m2

a + ca/κ.

The partition function for the learning problem of eq. (102) is again defined as:

Z({yi, xi}ni=1) := ES

n∏
i=1

Pout (yi|Tr[SZi]) . (104)

We then obtain the following generalization of Claim 2.
Claim 3. Assume that m = κd with κ > 0, and n = αd2 with α > 0. Recall that ma := EPa [a] and
ca := EPa [a

2]. Let Q0 := Eµ⋆ [X2] = m2
a + ca/κ. Then:

• The limit of the averaged log-partition function of eq. (104) is given by

lim
d→∞

1

d2
E{yi,xi} logZ = sup

q∈[m2
a,Q0]

[
I(q) + α

∫
R×R

dyDξ Jq(y, ξ) log Jq(y, ξ)

]
, (105)

where 
I(q) := inf

q̂≥0

[
(Q0 − q)q̂

4
− 1

2
Σ(µ1/q̂)−

1

4
log q̂ − 1

8

]
,

Jq(y, ξ) :=

∫
dz√

4π(Q0 − q)
exp

{
− (z −

√
2qξ)2

4(Q0 − q)

}
Pout(y|z).

(106)

Here, Σ(µ) := EX,Y∼µ log |X − Y |, and, for t ≥ 0, µt := µ⋆ ⊞ σs.c.,
√
t is the free convolution of

µ⋆ and a (scaled) semicircle law (see Appendix A).

• For any α > 0, except possibly in a countable set, the supremum in eq. (105) is reached in a unique
q⋆ ∈ [m2

a, Q0]. Moreover, the asymptotic minimum mean-squared error on the estimation of S⋆,

achieved by the Bayes-optimal estimator Ŝ
BO

:= E[S|{yi, xi}], is equal to Q0 − q⋆:

lim
d→∞

Etr[(S⋆ − Ŝ
BO

)2] = Q0 − q⋆. (107)

It is related to the MMSE of eq. (97) by MMSE = κ(Q0 − q⋆).

Therefore, generalizing Section F.7, Result 1 holds as well in this case, with ∆̃ = 2∆(2 + ca∆)/κ,
and µt := µ⋆ ⊞ σs.c.,

√
t, where µ⋆ is characterized by eq. (103).

G.3 The GAMP-RIE algorithm

Finally, one can also generalize Algorithm 1 to this setting: the only change to perform is to adapt the
functions FRIE and fRIE. Indeed, instead of denoising a Wishart matrix (with an asymptotic spectrum
given by the Marchenko-Pastur distribution), here one must denoise a matrix S0 with asymptotic
spectral distribution given by µ⋆ defined in Appendix G.2. As mentioned, eq. (103) allows for an
efficient numerical evaluation of µ⋆ given Pa. From there, one can adapt Algorithm 1 to this case
simply by replacing in the definitions of FRIE and fRIE the distribution ρ∆ by ρ∆ = µ⋆ ⊞ σs.c.,

√
∆.
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H Details on the numerics
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Figure 5: Left: Mean squared error as a function of the sample complexity α, for κ = 1/2 and
∆ = 0.252. Dots are simulations using GD with a single initialization averaged over 32 realizations
of the dataset, crosses are averages over 64 initializations. The continuous line is the asymptotic
MMSE given by (7). The colors indicate the strength of the regularization. Right: Trivialization
threshold in the sample complexity αT as a function of the noise level ∆ in the teacher without
regularization, λ = 0. The measurement has a resolution of 0.1 on the noise level and of 0.007 on
the sample complexity

H.1 Solutions to the “state evolution” equations

We describe here how to solve eqs. (7),(8). The first step to solve is to obtain an analytical expression
for µt. We refer to Appendix A for the definition of quantities used in this section. We recall that
µt := µMP,κ ⊞σs.c.,

√
t is the free convolution of the Marchenko-Pastur law and a scaled semicircular

density. The R-transform of the scaled semicircle distribution is [Tulino and Verdú, 2004]:

Rσs.c.,
√

t
(z) = zt,

while for the Marchenko-Pastur law we have

RµMP,κ
(z) =

κ

κ− z
.

We can now use (cf. Appendix A):

Rµt(z) = R:=µMP,κ⊞σs.c.,
√

t
= Rσs.c.,

√
t
(z) +RµMP,κ(z) = zt+

κ

κ− z
.

The Stieltjes transform g(z) = Eµt
[1/(X − z)] of µt is the solution of the equation

z +
1

g(z)
= Rµt

(−g(z)),

or equivalently

z = −tg(z) +
κ

κ+ g(z)
− 1

g(z)
. (108)

Among all the solutions to this equation, g(z) must be such that Im[g(z)] > 0 if Im(z) > 0, and also
satisfies g(z) ∼ 1/z for z → ∞. Eq. (108) is a third degree polynomial in g(z), and can easily be
solved by algebraic solvers, and has a single solution satisfying the constraints we described. Finally,
µt(x) is given by the Stieltjes-Perron inversion theorem (see Appendix A):

µt(x) = lim
ε→0

Im[g(x+ iε)]

π
, (109)
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and we numerically choose ε = 10−8. We now discuss the computation of the integral of µt(x)
3

in (8). Notice that the integrand is only non-zero over at most two finite intervals. Exact values of
the edges are given by setting the discriminant of equation (108) to zero. The last step is finding
a solution in q̂ to equation (8). We find the function “root” in Scipy, which uses a variant of the
Powell hybrid method, to be performing quite well when initialized in the value 2α/Q0. This whole
procedure is quite efficient and can be reproduced easily on any machine.

H.2 Gradient descent

In our experiments with gradient descent we are minimizing the objective R(W):

R(W) :=
1

4

n∑
i=1

(yi − fW(xi))
2
+

λ

2

m∑
k=1

d∑
l=1

w2
kl. (110)

All the simulations are done in PyTorch with the student weights initialized in the prior. For “vanilla”
gradient descent we iterate until convergence, and average over several repetitions. For averaged
gradient descent (AGD) we first generate the dataset, then train the student several times with starting
weights independently sampled in the prior, and "average the weights" at the end of training. By this
we mean that for each run we train until convergence, then obtain the matrix S and average it. Finally,
we average this procedure over several repetitions. The learning rate is chosen to be suitably large, as
it’s typically better to train a networks with giant steps [Dandi et al., 2023].

In Figure 2 the gradient descent is run for zero regularization, λ = 0. In Figure 5 (left) we then study
the effect of regularization to check whether regularization helps to achieve the Bayes-optimal error,
but conclude that it does not and in fact it hurts the performance. In Figure 5 (right) we study the
effect of the noise on the landscape of GD. We will expand on this in Appendix H.3. All the error
bars reported in Figure 2 and Figure 5 (left) are standard deviations of the MSE measured on the
samples. Figure 5 (right) has a finite resolution indicated in the caption. A single run of vanilla GD
for the models we display can be completed in at most 30 minutes on an average machine without
using GPUs. For producing our figures we used around 30 000 hours of computing time.

H.3 Additional experiments with GD

Here we study in more detail the phenomenology observed in Figure 2 (right) where in the presence
of noise and at a large sample complexity all the runs of GD seem to converge to the same prediction.
In the figure we noticed that above certain sample complexity the averaged and non-averaged GD
errors are identical. This suggests that GD will eventually lead the weights of the network to the
same configuration up to the symmetries of the problem independently of the initial state. We call
this a trivialization of the landscape.

In Figure 5 (right) we study the trivialization threshold as a function of the noise level ∆. One needs
to take care of the symmetries on Ŵ, so we first define Ŝ:

Ŝ(W(0),D) :=
1

m

(
Ŵ(W(0),D)

)⊺
Ŵ(W(0),D),

where we mean that for a fixed dataset we run GD, then take a matrix product to obtain S. This
procedure allows us to define the dispersion

δGD := ED

[
tr
(

EW(0)

[
Ŝ(W(0),D)

]
− Ŝ(W(0),D)

)2]
.

If the dispersion becomes zero it means that all the runs will converge to the same value. As we
increase the sample complexity α the dispersion decreases, until it becomes zero. For each value of
the noise level ∆ we indicate the minimum sample complexity for which the dispersion is either less
than 10−2, or less than 10−3 of the maximum dispersion at fixed ∆.

In Figure 5 (left), where we studied the effect of ℓ2 regularization on the weights, we can also see
how even a relatively small λ > 0 regularization leads to a trivialization of the landscape again in the
sense that different initializations of GD provide the same prediction and averaging does not lead to a
better error.
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7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide error bars for our experiments (cf. e.g. Figure 2), and clarify how
the error bars were computed in Appendix H.2.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In Appendix H.1 and H.2 we provide an approximate description of the
infrastructure needed to reproduce the figures.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We checked that our paper and our research complies with the NeurIPS Code
of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [NA]
Justification: Our work is largely theoretical, and concerns the fundamental limits of learning
with neural networks. Moreover, our numerical experiments are limited to synthetic datasets.
As such, we do not believe our work to have societal impact besides the long-term impact
brought by a better understanding of the theory of learning.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: As discussed above, this question is not relevant to the presented work.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: We only use synthetic data in our numerical experiments, and do not rely on
any existing code.
Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide a documented code alongside the paper, as well as details on how
we implemented the algorithmic procedures used in our experiments (e.g. gradient descent)
in Appendix H.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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