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ABSTRACT

Multi-task learning for entity—relation extraction often suffers from implicit task
interference and the absence of explicit mechanisms for structural task prioritiza-
tion. We propose Hyperbolic Barrier-based Adaptive Hierarchical Optimization,
a constraint-driven framework that treats entity recognition as a dynamic hard
constraint via a numerically stable hyperbolic barrier, while adaptively reweighting
relation classification through a curriculum-based thresholding strategy. This princi-
pled approach enforces strict task prioritization throughout training, yielding up to
6.4% absolute gains in triplet F1 across five benchmarks. Furthermore, the method
generalizes effectively to structurally divergent domains such as recommender sys-
tems. These findings underscore that explicitly modeling task hierarchies through
constrained optimization represents a critical yet underexplored paradigm for
achieving stable and effective multi-task learning.

1 INTRODUCTION

Entity—relation extraction (ERE) aims to identify structured triples (subject, relation, object) from
unstructured text, serving as a foundation for structured knowledge acquisition (Zhang et al.,|2025a).
The task is inherently multi-faceted, requiring the joint modeling of entity recognition and relation
classification. Recent advances in unified ERE models (Zhang et al.| |2025a}; |[Yang et al., 2023b)
have achieved notable progress via end-to-end architectures. However, a critical asymmetry remains
under-addressed: relation classification is only meaningful when entity boundaries are correctly
identified. Without reliable entity boundaries, relation classification becomes ill-defined—akin to
inferring a friendship without knowing who the individuals are. This asymmetry gives rise to two
central challenges. First, current models lack structural prioritization: they treat entity recognition
and relation classification as peers, despite their hierarchical dependence. Second, shared optimization
often results in training rigidity: relation losses, which typically converge faster, may prematurely
dominate training and suppress entity learning, ultimately degrading triplet extraction.

To address these issues, we propose a new optimization paradigm that encodes the dependency
structure directly into the objective, rather than heuristically balancing tasks. We introduce Hyperbolic
Barrier-based Adaptive Hierarchical Optimization (HB-AHO), a principled framework that enforces
task priorities through differentiable constraints. HB-AHO treats entity recognition as a dynamic hard
constraint and adaptively reweights relation optimization using a smooth hyperbolic barrier function
together with a curriculum-guided thresholding strategy. This constraint-driven mechanism ensures
that learning progresses in alignment with the task hierarchy, yielding both empirical and theoretical
benefits.

In summary, our contributions are as follows:

* We propose HB-AHO, a general constrained optimization framework for multi-task learning
that explicitly encodes task hierarchies via dynamic hard constraints. To enable smooth
and stable optimization, we design a numerically stable hyperbolic barrier function and a
curriculum-guided scheduling strategy. We further provide theoretical analysis demonstrat-
ing monotonicity, Lipschitz continuity, and feasibility preservation.

* The advantages of HB-AHO are validated on five diverse ERE benchmarks, achieving up
to 6.4% absolute gains in triplet F1 over strong baselines. Beyond ERE, HB-AHO is also
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demonstrated to generalize effectively to structurally distinct domains such as multi-task
recommendation, underscoring its broad applicability.

2 RELATED WORK

2.1 MULTI-TASK LEARNING PERSPECTIVES ON ERE

ERE jointly predicts structured triples by identifying entities and classifying their relations. Existing
models typically fall into two categories, namely, parameter-sharing methods and joint-decoding
methods. Parameter-sharing methods, such as TDEER (Li et al.,[2021)) and TPLinker (Wang et al.,
2020), employ shared encoders with separate decoders. These approaches reduce redundancy but
often suffer from weak cross-task coupling and redundant optimization efforts (Duan et al., 2023}
Sun et al., 2024). In contrast, joint-decoding methods, such as OneRel (Shang et al., 2022) and
UNIRE (Wang et al.| 2021)), predict complete triples in a single step, enhancing output coherence.
However, they often neglect the asymmetric dependency between tasks, where relation prediction
critically depends on accurate identification of entity boundaries.

Recent advances have sought to enhance task interaction through hypergraph structures (Yan et al.|
2023), bidirectional update mechanisms (Qian et al.| 2024), feature-enhanced modules (Zhou et al.,
2019; [Wang et al., 2025), and text-to-graph generation (Zaratiana et al., 2024). Document-level
reasoning approaches (Chen, [2025)) and domain-specific designs for biomedical extraction (Liu & Q1)
2025)) further demonstrate the importance of robust entity modeling. Nevertheless, these methods
still optimize both tasks simultaneously without enforcing a strict learning order.

2.2 TASK COORDINATION AND PRIORITIZATION IN MULTI-TASK LEARNING

Multi-task learning (MTL) aims to improve generalization on all tasks by jointly optimizing multiple
related tasks (Boyd & Vandenberghel, 2004} (Caruanal [1997). Traditional MTL frameworks adopt
parameter-sharing backbones—such as tower-based or expert-based models—to facilitate cross-task
information flow (Yang et al.l 2025). However, such designs often encounter gradient conflicts and
negative transfer, especially when task objectives are unequally scaled or loosely related (Navon et al.,
2022)). To address these challenges, various techniques have been proposed. Dynamic loss weighting
methods, such as GradNorm (Chen et al.,|2018) and PCGrad (Yu et al.,2020), aim to balance learning
rates or mitigate gradient interference. Pareto optimization methods, including IMTL-GG (Liu
et al.| 2021), MoE-MTL (Zhang et al.,|2025b), and DRGrad (Liu et al., 2025)), formulate MTL as
a multi-objective optimization problem. Task prioritization strategies, such as Lagrangian-based
formulations (Cheng et al.| 2025) and connection-based methods (Li et al.,|2025), dynamically adjust
the focus among tasks.

Despite these efforts, most approaches lack explicit architectural enforcement of task hierarchy.
Methods like gradient ranking (Mahapatra et al., [2023) or distillation-based ranking (Tang et al.,
2024) encode task importance implicitly, without explicitly specifying when or to what extent
subordinate tasks should be subordinated to foundational ones. In contrast, our method introduces a
principled constrained optimization framework with differentiable hard constraints. By embedding
task hierarchy as an inherent part of the optimization architecture—rather than as an auxiliary tuning
strategy—we ensure that the learning process faithfully adheres to the structural dependencies among
tasks.

3 HYPERBOLIC BARRIER-BASED ADAPTIVE HIERARCHICAL OPTIMIZATION

ERE inherently involves hierarchical task dependencies: relation classification is only meaningful
when entity boundaries are correctly identified. For example, in “Barack Obama was born in Hon-
olulu”, mislabeling Obama as a location renders the correct born-in relation unreachable, regardless
of how well the relation classifier performs. Such asymmetry motivates the design of an optimization
paradigm that explicitly respects this hierarchical dependency.
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Figure 1: Conceptual overview of HB-AHO. Traditional MTL (top right) treats entity and relation
losses symmetrically, leading to flat optimization I = Lep+ Lyej. HB-AHO reformulates the problem
as constrained optimization, enforcing an entity-first regime: relation updates are gated until entity
loss satisfies a dynamic threshold. The barrier-weighted loss ¢(z) ensures smooth prioritization,
yielding feasible trajectories in loss space that differ fundamentally from flat MTL.

3.1 FrROM SYMMETRIC MTL TO HIERARCHICAL OPTIMIZATION

The standard MTL formulation jointly minimizes multiple task losses:

mein [Lent(0), Lra(6)]. (1

This vector-valued objective problem is often approximately solved in practice using a weighted
sum, which implicitly assumes that the tasks are symmetric and independently learnable. However,
this assumption is violated in ERE, where relation classification is contingent upon the accuracy of
upstream entity recognition. Intuitively, this is analogous to identifying the relationship between two
individuals in a sentence without first recognizing who those individuals are. If entity boundaries are
misidentified, relation classification becomes unreliable. Furthermore, conventional summation-based
MTL suffers from gradient imbalance: faster-converging relation losses can prematurely dominate the
optimization process, thereby suppressing the slower but foundational entity module and ultimately
degrading triplet-level performance.

3.2 CONSTRAINED OPTIMIZATION WITH TASK HIERARCHY

To address the aforementioned limitations, we introduce HB-AHO, a constrained optimization
framework that explicitly models task priority via dynamic constraints. Figure[T] contrasts traditional
MTL with HB-AHO. While flat MTL optimizes entity and relation losses symmetrically, HB-AHO
enforces an entity-first hierarchy through a barrier-based constraint. This reformulation yields
fundamentally different optimization trajectories: relation updates are deferred until entity loss
satisfies the constraint, resulting in cleaner inputs for downstream relation classification. Specifically,
we enforce task prioritization by requiring the entity recognition loss to satisfy a predefined constraint
before relation optimization can proceed freely. This reflects a “first-things-first” strategy: if entity
boundaries remain uncertain, relation learning should be deferred—much like understanding roles in
a sentence (who did what to whom) necessitates first identifying the participants. Without clearly
defined entity spans, attempts to learn relations risk becoming unreliable noise. Our approach
formalizes this dependency through explicit constraints rather than ad hoc heuristics. The problem is
formulated as:

mgin Lre(0) sit. Len(0) < ey )

where ¢, is a dynamic threshold that governs the activation of relation training. This formulation
encapsulates our core intuition: downstream optimization should be contingent upon the maturity of
upstream tasks.
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3.3 BARRIER-BASED RELAXATION AND UNIFIED LOSS

Directly solving Eq.|2|is computationally intractable in deep learning, due to the non-differentiability
of inequality constraints. To circumvent this, we embed the constraint into the objective using a
smooth barrier function. Classical choices (e.g., logarithmic, inverse) suffer from gradient instability
near the boundary (x — 07), which may destabilize training.

To ensure smooth optimization and bounded gradients, we propose a novel hyperbolic barrier:
p(x) =tanh(3z + 1), where x = Lep — 4. 3)

This function is monotonic, Lipschitz continuous, and saturates smoothly, offering stable guidance
near the constraint boundary.

The final composite objective becomes:

£ﬁnal == @(I)Lent +(1 + Sﬁ(x))ilﬁrel . (4)
~— —
Constraint Term Optimization Term

This is the core of HB-AHO: a dynamic reweighting scheme that enforces task priority without
breaking differentiability. When entity performance is unsatisfactory (Len > €¢), ¢(z) — 1 and the
entity term dominates. As the constraint is gradually satisfied, relation loss regains influence. Thus,
Eq.d]encodes both hard prioritization (via constraint dominance) and soft adaptability (via weight
decay).

3.4 ADAPTIVE THRESHOLD SCHEDULING

We further enhance flexibility by dynamically adjusting the constraint threshold. Inspired by curricu-
lum learning, we decay £; over time only when the constraint is satisfied:

Et41 = E¢ 0.956(£e"‘§5t), (5)
where §(-) is the Kronecker delta. This ensures that early training allows relaxed constraints for

exploration, while later stages progressively tighten the boundary for stricter prioritization.

3.5 GENERALIZATION TO MULTI-TASK HIERARCHIES

While our primary focus is on ERE, HB-AHO naturally generalizes to deeper task hierarchies (e.g.,
detection — recognition — reasoning). For N ordered tasks with losses {£;} ,, the loss becomes:

L;
1+ Qﬁ(ﬁifl — 51;1).

N

Lina = o(L1 — 1) L1+ Y (6)
i=2

Each task is gated by the success of its predecessor, enforcing recursive priority while maintaining full

differentiability. This formulation scales linearly with the number of tasks, offering both flexibility

and efficiency in structured learning scenarios.

4 EXPERIMENTAL RESULTS AND ANALYSIS

4.1 EXPERIMENT SETTINGS
4.1.1 EXPERIMENTAL SETUP

In ERE tasks, our model architecture follows the design illustrated in Appendix [E.I] The initial
threshold ¢ in Eq. [3|is set to 0.05. All models are trained for 100 epochs with a batch size of
4. Experiments are conducted on NVIDIA RTX 4090 GPUs. Early stopping is applied based on
validation triplet F1 to prevent overfitting; training is terminated if no improvement is observed
within 10 consecutive epochs. The compared baseline models include: BADS (Zhou et al.,[2019),
SPN4RE (Sui et al.|[2024), ERFD-RTE (Chen et al.|[2024), ERGM (Gao et al., [2023), MFSF (Wang
et al.l [2025)).

4.1.2 DATASETS
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We evaluate HB-AHO on five benchmarks Table 1: Statistics of the five ERE benchmarks used
spanning diverse domains, including News in our experiments, spanning diverse domains (news,
(NYT (Riedel et al) 2010)), Wikipedia Wikipedia, biomedicine) and task granularity. NYT
(WebNLG (Riedel et al.,|2010), DocRED (Yao, and WebNLG are sentence-level datasets, whereas
et al.}[2019)), and biomedicine (CDR (Lietal, DocRED, CDR, and GDA require document-level
2016), GDA (Wu et al.}|2019)). These datasets reasoning. # indicates instance count per split.
differ widely in relation types and instance

scalies,' po§ing unique challengeg fgr multi-task o ¢ocet Domain #Train  #Val. #Test
optimization. The dataset statistics are sum-

marized in Table[T] For clarity, we categorize NYT News 56k 5k 5k
them into sentence-level (NYT, WebNLG) and WebNLG ~ Wikipedia 35k 1.7k 1.7k
document-level (DocRED, CDR, GDA) set- DocRED  Wikipedia 3k 300 700
tings, based on whether relation reasoning is CDR Biomedical 500 500 500
confined to a single sentence or spans multiple GDA Biomedical 19k 47k 47k
sentences.

Table 2: Results on five ERE benchmarks (NYT, WebNLG, DocRED, CDR, GDA). For each model,
we report relation, entity, and triplet F1 scores with and without the proposed HB-AHO optimization.
Rather than competing for absolute state-of-the-art, this table highlights that HB-AHO consistently
improves the more challenging entity and triplet metrics across strong baselines, while relation F1
may fluctuate slightly. The results confirm HB-AHQO’s robustness and its effectiveness in enforcing
task hierarchy, especially on document-level datasets (DocRED, CDR, GDA) where improvements in
entity recognition translate into larger gains in triplet extraction.

Without HB-AHO With HB-AHO
Model Dataset
Relation Entity  Triplet Relation Entity Triplet

BADS NYT 86.5 732 79.3 86.9 (10.4%) 78.6 (15.4%) 85.7 (16.4%)
SPN4RE NYT 92.5 92.2 92.3 91.7 (J0.8%) 943 (12.1%) 94.8 (12.1%)
ERFD-RTE NYT 94.0 914 92.7 92.1 (|1.9%) 94.6 (13.2%) 95.1 (12.4%)
ERGM NYT 93.3 91.5 924 934 (10.1%) 93.6(12.1%) 94.1 (11.7%)
MFSF NYT 93.6 91.7 92.6 93.6(10.0%) 94.3 (12.6%) 94.8 (12.2%)
BADS WebNLG 85.3 83.1 84.2 85.7(10.4%) 86.9 (13.8%) 87.6 (13.4%)

SPN4RE WebNLG 93.1 93.6 934 926 (]0.5%) 95.0(11.4%) 94.7 (11.3%)
ERFD-RTE = WebNLG 91.2 87.4 89.3 90.7 (10.5%) 92.5 (15.1%) 93.6 (14.3%)

ERGM WebNLG 94.2 91.2 92.7 94.4 (10.2%) 93.8 (12.6%) 94.8 (12.1%)
MFSF WebNLG 94.9 92.3 93.5 94.8 (10.1%) 94.7 (12.4%) 95.1 (11.6%)
BADS DocRED 52.1 54.8 46.9 51.8 (10.3%) 59.0 (14.2%) 51.0 (14.1%)

SPN4RE DocRED 68.3 57.3 50.1 69.5 (11.2%) 604 (13.1%) 54.9 (14.8%)
ERFD-RTE  DocRED 66.9 56.4 49.7 66.4 (10.5%) 60.1 (13.7%) 54.2 (14.5%)

ERGM DocRED 67.1 571 500  68.0 (10.9%) 60.7 (13.6%) 55.3 (15.3%)
MFSF DocRED 68.0 575 505  68.9(10.9%) 61.2(13.7%) 55.8 (15.3%)
BADS CDR 93.5 50.6 467  932(103%) 550 (14.4%) 51.5 (14.8%)
SPN4RE CDR 96.6 529 483 964 (102%) 57.8(14.9%) 53.1(14.8%)
ERFD-RTE CDR 95.7 512 472 959 (102%) 55.8 (14.6%) 52.0 (14.8%)
ERGM CDR 96.1 521 479 962 (10.1%) 56.5 (14.4%) 52.6 (14.7%)
MFSF CDR 96.3 527 481  96.5(102%) S7.1(14.4%) 52.8 (14.7%)
BADS GDA 98.5 61.5 593  98.7(10.2%) 659 (14.4%) 64.5 (15.2%)
SPN4RE GDA 99.1 623 603 99.0(10.1%) 67.5(152%) 65.7 (15.4%)
ERFD-RTE GDA 98.7 612  59.1  98.9(10.2%) 657 (14.5%) 64.0 (14.9%)
ERGM GDA 99.0 620  60.0 992 (102%) 66.8 (14.8%) 65.3 (15.3%)
MFSF GDA 99.2 627  60.7  99.1(10.1%) 67.4(14.7%) 65.9 (15.2%)

4.2 EXPERIMENTAL RESULTS

Our objective is not to pursue incremental state-of-the-art scores on already saturated datasets, but
to examine whether inserting HB-AHO as an optimization layer consistently improves learning
dynamics across architectures and data regimes. Table [2] summarizes results on five benchmarks,
comparing backbones with and without HB-AHO.
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On sentence-level datasets (NYT, WebNLG), where existing models are already close to ceiling, the
effect of HB-AHO is moderate but systematic: entity and triplet F1 rise across nearly all backbones,
while relation F1 exhibits small positive or negative fluctuations. This outcome is consistent with
the design of HB-AHO, which enforces entity recognition as a prerequisite before fully engaging
relation updates. In practice, this means that relation-only accuracy may occasionally decline, yet the
quality of triplets—the end task—benefits from reduced boundary errors. These findings indicate
that task hierarchy remains a useful inductive bias even when architectural expressiveness has largely
plateaued.

On document-level datasets (DocRED, CDR, GDA), the picture is more striking. Because these tasks
require reasoning over multiple sentences, error propagation from entity boundaries is amplified.
Here, HB-AHO yields substantially larger improvements: entity F1 increases consistently across
all backbones, and these upstream gains propagate into disproportionately higher triplet F1—often
by several points. Small swings in relation F1 thus become immaterial compared to the robustness
gained at the triplet level. This suggests that HB-AHO does not merely reweight losses, but actively
restructures the learning trajectory to supply cleaner entity candidates for downstream relation
decisions.

The credibility of these gains rests on two observations. First, improvements occur across diverse
architectures (BADS, SPN4RE, ERFD-RTE, ERGM, MFSF), supporting that the effect arises from
optimization rather than model-specific heuristics. Second, the empirical signature is coherent: entity
F1 shows the largest gains, triplet F1 the next, while relation F1 fluctuates within a narrow band—a
pattern precisely predicted by the dependency structure of the task. Taken together, the evidence
demonstrates that HB-AHO functions as a general optimization layer encoding the asymmetry of
ERE. Even in cases where relation F1 decreases slightly, the overall utility measured by triplet
extraction improves, particularly in long-context settings where entity errors are most damaging.
These results provide concrete support for the view that hierarchical optimization, rather than flat
multi-task fusion, is the more principled bias for structurally dependent problems.

4.3 COMPARISONS WITH MTL METHODS

Table 3: F1 scores of MTL optimization strategies on DocRED. HB-AHO outperforms gradi-
ent/Pareto/Lagrangian baselines in triplet F1, validating the benefit of constraint-based task hierarchy.
Bold indicates best results.

Method Entity F1  Relation F1  Triplet F1
SPN4RE (Baseline) 68.3 57.3 50.1
+PCGrad (Yu et al., 2020) 68.6 (10.3) 58.7(11.4) 52.6 (12.5)

+IMTL-GG (Liu et al.,2021)  68.4 (10.1) 582 (10.9)  52.1 (12.0)
+AdaTask (Yang et al.,[2023a) 69.7 (11.4) 57.6 (10.3) 519 (11.8)
+NMT (Cheng et al.,|2025) 69.2 (10.9) 583 (11.0) 53.1(13.0)
+DRGrad (Liu et al., [2025) 68.1 (/0.2) 59.1(11.8) 52.8(12.7)
HB-AHO 69.8 (11.5) 60.4 (13.1) 54.9(14.8)

As shown in Table 3] HB-AHO consistently outperforms widely adopted multi-task optimization base-
lines, including gradient-based (PCGrad), Pareto-front (IMTL-GG), and Lagrangian-based (NMT)
methods. Although these approaches mitigate gradient interference through different formulations,
they share a structural limitation: all assume tasks coexist symmetrically in a flat optimization space.
This assumption conflicts with hierarchical problems such as ERE, where relation classification
is ill-defined without reliable entity boundaries. Consequently, strategies that merely rebalance
gradients or losses can reduce conflicts but cannot ensure that learning progresses in the correct order.
HB-AHO addresses this misalignment by embedding task hierarchy directly into the objective via
a barrier-based constraint, thereby enforcing an entity-first regime. Relation updates are naturally
deferred until entity recognition reaches sufficient stability, so improvements in triplet F1 arise less
from marginal relation modeling and more from preventing noisy entity predictions from propagating
downstream. This distinction highlights why HB-AHO surpasses task-agnostic baselines even when
their balancing strategies appear effective. More broadly, the results suggest that task prioritization
in hierarchical MTL is better understood as a fundamental architectural principle rather than an
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auxiliary regularizer. By treating hierarchy as a first-class constraint, HB-AHO offers a scalable,
optimization-theoretic alternative that provides stronger guarantees for structurally dependent learning
scenarios.

4.4 ABLATION STUDIES

4.4.1 THE EFFECTS OF DYNAMIC THRESHOLD

Table 4: Effect of initial threshold £ on DocRED F1 scores. HB-AHO remains stable across a wide
range of ¢, with best performance around 0.05-0.10.

Variant € Violations Relation Entity Triplet

SPN4RE (Baseline) — — 68.3 57.3 50.1
1.00 34 69.0 (10.7) 60.2 (12.9) 54.1(14.0)
0.50 30 69.2 (10.9) 60.4 (13.1) 54.4(14.3)
0.10 15 69.5(11.2) 604 (13.1) 54.3(14.2)

HB-AHO 0.05 7 69.4 (11.1)  60.5 (13.2) 54.5(14.4)
0.01 1 69.1 (10.8) 60.1 (12.8) 54.2(14.1)
0.005 0 68.9 (10.6) 60.3 (13.0) 54.2 (14.1)
0.001 0 69.0 (10.7) 60.2 (12.9) 54.1(14.0)

Entity & Relation Loss Relation & Entity Weight
3.50

—— wjo - Entity 1.00
w/o - Relation

£=0.05 - Entity 0.90
€=0.05 - Relation

3.00 \
2.50 \‘
‘,

2.00 | =
2 {‘ %‘0.70
— 150 “\V kh M' =
' 0.60
1.00 \ L\‘ k A f
\ h\./” \ ” —— wj/o - Rel Weight
0.50 /)\ ) ’V \JA \/\/\[ 050 .+ \wo-Ent Weight
' P Qi LA WA £=0.05 - Rel Weight

0.40 €=0.05 - Ent Weight
0.00

0 50 100 150 200 0 50 100 150 200
Step Step

Figure 2: Training loss and dynamic task weight curves over time. HB-AHO initially prioritizes
entity optimization, then gradually shifts focus to relation learning as constraints are satisfied. This
behavior confirms our dynamic scheduling design for task prioritization.

To examine sensitivity to initialization, we varied the threshold ¢ across several orders of magnitude.
Figure [2] shows that, regardless of the starting value, HB-AHO always begins by emphasizing entity
recognition and then gradually shifts weight to relation learning once the constraint is met; only
the timing of this transition changes slightly. Table [] confirms that the final triplet F1 remains
tightly bounded (54.1-54.5, +4.0% to +4.4% over SPN4RE) across all tested €. These results
demonstrate that the gains of HB-AHO arise from its structural enforcement of hierarchy, not from
fragile hyperparameter tuning. Larger thresholds accelerate relation updates, smaller ones delay them,
yet both converge to the same balance through the barrier and curriculum mechanism. Constraint
violations appear only as transient triggers for threshold decay and do not affect end performance.
Taken together, the evidence shows that HB-AHO is robust to e: the barrier ensures smooth weight
adjustment, the curriculum harmonizes different initializations, and practitioners can simply choose
any moderate value (e.g., 0.01-0.1) without hyperparameter sweeps. This robustness underscores
that the improvement reflects a principled optimization design rather than parameter sensitivity.

4.4.2 BARRIER FUNCTION DESIGN

To assess whether HB-AHO’s advantage stems from the specific barrier formulation, we compared
the hyperbolic barrier against classical polynomial and neural-inspired alternatives under identical
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Table 5: Ablation study of barrier function choices (¢ = 0.05). The hyperbolic barrier provides the
most balanced and robust gains in both entity and triplet F1. Red arrows = improvement; green
arrows = decline.

Type Function Violations Relation Entity Triplet
SPN4RE (Baseline) — 7 68.3 57.3 50.1
Hyperbolic tanh(3z + 1) 8 69.5 (11.4) 604 (13.1) 54.9 (14.8)
Sigmoid 1+ 67$)71 6 69.2 (10.9) 59.8 (12.5) 54.5(14.4)
Gaussian 1-— e_‘"’J2 6 69.1 (10.8) 59.9 (12.6) 54.7 (14.6)
Softplus log(1 + €%) 5 69.0 (10.7) 59.5(12.2) 54.3(14.2)
Exponential e” —1 7 68.9 (10.6) 58.7(11.4) 53.9(13.8)
Quadratic z2 10 57.8 (10.5) 67.9(10.4) 50.0 (/0.1)
Cubic z® 12 669 (11.4) 58.6(11.3) 47.0(3.1)
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N il 050 ::
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Figure 3: Training F1 trends for different barrier functions. Hyperbolic barrier enables smooth and
effective optimization, while polynomial variants lead to instability, validating the robustness of our
proposed design.

settings (Table[5). A consistent pattern emerges: only the hyperbolic variant simultaneously improves
relation F1 (+1.4), entity F1 (+3.1), and triplet F1 (+4.8), whereas other choices either yield weaker
gains or improve one component at the expense of another.

From these results we can distill three principles for effective constraint design in deep learning
optimization:

 Limitations of Polynomial Growth: Quadratic and cubic barriers amplify small violations
into unstable updates, producing severe gradient imbalance near the constraint boundary
and ultimately destabilizing hierarchical training.

* Smoothness Alone Is Insufficient: Sigmoid and softplus functions are smooth and differen-
tiable, yet their shallow slopes around the boundary provide inadequate responsiveness. As
a result, they deliver only moderate improvements (+4.4 to +4.2 in triplet F1), underscoring
that stability must be coupled with precise task-weight modulation.

* Hyperbolic Balance: The proposed () = tanh(3x + 1) achieves the strongest and most
balanced gains. Its strict monotonicity enforces task order consistently, its globally bounded
derivative (||¢’|| < 3) prevents gradient explosion, and its sigmoidal transition enables a
smooth yet decisive shift from entity-dominant to relation-inclusive optimization. This
geometric balance translates directly into stable training dynamics (Figure [3)) and maximal
triplet-level improvements.

Unlike heuristics that rely on delicate tuning, the hyperbolic barrier improves performance robustly
without additional hyperparameters. This ablation not only corroborates our theoretical analy-
sis—linking monotonicity, stability, and boundedness to effective optimization—but also highlights
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that principled constraint geometry, rather than ad hoc weighting schemes, is indispensable for
reliable gains in hierarchical multi-task learning.

4.5 CROSS-DOMAIN GENERALIZATION: BEYOND ERE TO RECOMMENDATION SYSTEMS

To assess cross-domain generalization beyond ERE, we further evaluate HB-AHO on
KuaiRand1k (Yuan et al.|[2022), a large-scale recommendation dataset capturing sequential user be-
haviors. KuaiRand1k defines eight sequential user behaviors that form a decision hierarchy, with task
priority assigned from high to low as: click, long-view, like, follow, comment, forward, profile-enter,
and hate. This setting differs substantially from ERE—both in modality and in the complexity of task
dependencies—ryet it offers an equally clear hierarchical structure.

As shown in Table[6 HB-AHO improves the average AUC of all tested backbones (STEM, Shared-
Bottom, MMoE, PLE, AITM, and OMoE) by +2.1-2.6%. The strongest gains are observed on
downstream, higher-commitment tasks, where accurate modeling of upstream actions provides the
most leverage. These improvements are achieved without modifying the architectures themselves,
confirming that HB-AHO operates as a plug-and-play optimization layer rather than an architectural
tweak.

Overall, the KuaiRand1k results strengthen our central claim: HB-AHO captures structural task
dependencies across domains and scales, from sentence-level extraction to multi-behavior recom-
mendation. The fact that consistent 2.1-2.6% gains are realized on business-critical outcomes
in a high-capacity industrial dataset underscores its practical impact and supports its view as a
domain-agnostic optimization principle rather than a task-specific trick.

Table 6: Results on the KuaiRand1k dataset with eight hierarchically dependent tasks. HB-AHO
consistently raises the overall Avg. AUC by 2.1-2.6% across diverse backbones, showing that its
benefits extend beyond NLP to large-scale recommendation and to settings with more than two tasks.

Model Task A Task B Task C TaskD TaskE TaskF TaskG TaskH Avg. AUC MTL Gain
STEM 98.7 98.8 94.9 90.5 98.8 91.0 91.7 98.2 94.6 -
-HB-AHO 99.1 98.5 95.3 92.6 99.0 92.0 92.4 98.0 96.8 T+2.2%
SharedBottom  97.9 99.0 93.6 88.9 98.3 88.8 89.2 922 91.8 -
-HB-AHO 98.5 99.1 94.2 90.1 98.6 89.9 90.7 93.1 94.2 T+2.4%
MMoE 98.1 98.9 94.1 88.6 98.4 85.6 90.7 94.1 93.9 -
-HB-AHO 98.7 99.0 94.6 90.3 98.7 87.4 91.5 95.2 96.0 T+2.1%
PLE 97.3 98.0 94.2 89.9 98.5 88.2 91.0 96.1 92.7 -
-HB-AHO 97.9 98.3 94.8 91.5 98.7 90.5 91.6 97.5 95.3 1+42.6%
AITM 98.6 98.2 93.7 89.7 98.1 88.9 90.0 97.7 91.7 -
-HB-AHO 99.0 98.1 94.9 91.0 98.5 90.2 91.2 98.4 94.1 1+2.4%
OMOoE 97.6 97.9 94.2 87.8 98.4 87.0 90.8 90.9 92.6 -
-HB-AHO 98.2 98.4 94.7 89.4 98.7 89.1 91.2 92.8 95.0 1+2.3%

5 CONCLUSION

We introduced HB-AHO, a constraint-driven optimization framework that encodes task hierarchies
through hyperbolic barrier functions. By enforcing an entity-first regime, HB-AHO improves both
sentence-level and document-level ERE, with gains that are robust across diverse backbones. Beyond
empirical performance, our study highlights a broader principle: hierarchical task structuring is not a
matter of heuristic loss weighting, but a fundamental optimization geometry that stabilizes multi-task
learning. HB-AHO demonstrates how classical constrained optimization can be reinterpreted for
deep learning, yielding both theoretical guarantees and practical benefits. Looking forward, the same
paradigm offers a natural foundation for domains where tasks form layered dependencies, including
hierarchical reasoning, symbolic planning, and multi-modal alignment. More generally, we argue
that MTL should be viewed not as a static balance among objectives, but as a guided progression
across levels of abstraction—a perspective that HB-AHO makes concrete.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide the following:

Algorithm. HB-AHO is implemented in Python/PyTorch. Source code, training scripts, and
configurations are included in the supplementary material, covering barrier function, curriculum
scheduling, and integration with standard ERE backbones.

Theory. Appendix [B| contains full proofs, including monotonicity, Lipschitz continuity, KKT
equivalence, and stability guarantees.

Experiments. Section describes the setup. Hyperparameters and training protocols are docu-
mented in Appendix [E] with sensitivity analyses for « and ~y in Appendix

Resources. Experiments were run on NVIDIA RTX 4090 GPUs.

Data. We use five public ERE benchmarks (NYT, WebNLG, DocRED, CDR, GDA) and the
KuaiRand1k dataset. Preprocessing, splits, and evaluation follow prior work.
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A USE OF LLMS

Large language models (LLMs) were used solely for language polishing; all technical content,
methods, and experiments were developed and validated by the authors.

B PROPERTIES OF HYPERBOLIC BARRIER FUNCTION

B.1 DEFINITIONS AND THEORETICAL GUARANTEES

Definition 1 (Parameterized Hyperbolic Barrier Function). Given the constraint violation
= Loy —¢, @)
define the barrier family as
vo(x) = tanh(ax + 1), o> 0. (8)

Here « controls the sharpness of the barrier. The choice o = 3 is used in practice, but the theoretical
analysis holds for any o > Q.

Theorem 1 (Monotonicity). ¢, () is strictly monotonically increasing for all x € R.
Theorem 2 (Lipschitz Continuity). ¢, (x) is globally Lipschitz continuous with constant L = .
Theorem 3 (Feasibility Preservation and Limit Equivalence). Consider the constrained problem

mein Lro(0) st Lop(0) <e. 9)
For any o > 0, if Vo Lna(0; o) = 0 with
1
inal \ U5 = Pa en T N KLre ) 1
Laui(050) = 2a() Lon(0) + 11— L) (10)

then there exists \*(o) > 0 such that (0, \*(«)) satisfies the KKT conditions of the constrained
problem. Moreover, as & — o0, any sequence of stationary points 6*(a) converges to a KKT
stationary point of the original constrained problem.

12
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B.2 PROOF OF MONOTONICITY
Proof. The derivative is given by

@ (z) = o - sech?(ax + 1). (11)
Since sech®(z) > 0 for all z € R, it follows that ¢, () > 0. Hence, o, () is strictly increasing. [J
B.3 PROOF OF LIPSCHITZ CONTINUITY

Proof. ., (x) is bounded by

|, (z)] = a - sech?(az 4+ 1) < o (12)
By the Mean Value Theorem, for any x1, x2 € R:

lpa(1) = @alz2)| < afr1 — 22]. 13)
Thus, ¢, () is globally Lipschitz with constant L = . O

B.4 PROOF OF FEASIBILITY PRESERVATION AND LIMIT EQUIVALENCE

Proof sketch. Step 1: KKT conditions of the constrained problem. The Lagrangian is
L(0,A) = Lret(0) + A(Lenc(0) — €). (14)
Stationarity requires

VoLl + AVoLen = 0, A>0, /\(Lent - 5) =0. (15)

Step 2: Stationarity of the barrier formulation. For L, (0; o), we have

1— oz
vGLﬁrlal = Soiy (m) veﬁent + (1_’_;’;(;)))2 v0£rel- (16)
Setting Vg Lna = 0 gives
1+ @a(2)? ¢ (z
VO'Crel = _( f(sp))(;)o ( ) vtQACent- (17)
Defining
2

1 — pa(r)
we recover VoL + N (a)VgLey = 0, with A*(«) > 0. Thus (6, \*(«)) satisfies the KKT
conditions.

Step 3: Limit equivalence. As « — oo:

o Ifz > 0 (Len > €), then po(x) — 1 and A*(a) — +o0, enforcing feasibility by penalizing
violations.

* If 2 < 0, then ¢, (z) < 1 and A\*(«) remains finite, recovering the unconstrained relation
optimization.

o If x = 0, then A\*(«) is finite and positive, exactly matching the boundary case of the KKT
conditions.

Hence, in the limit @ — o0, stationary points of L, converge to stationary points of the constrained
problem. O

This result shows that the hyperbolic barrier is not only smooth and bounded (avoiding gradient
explosion) but also a consistent surrogate for the original inequality constraint: it yields KKT-
equivalent stationary points for finite o, and recovers the constrained optimum in the asymptotic
limit.

13
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B.5 HYPERPARAMETER SENSITIVITY

To verify that the gains of HB-AHO are not due to fragile tuning, we examined two key hyperparame-
ters: the parameterization of the hyperbolic barrier function () and the curriculum decay factor
in Eq. equation[5} Results on the DocRED validation set are summarized below.

Barrier parameterization. Different hyperbolic forms yield nearly identical performance, with
triplet F1 consistently improving by about +4% to +5% over the baseline. The choice p(z) =
tanh(3z + 1) achieves the best trade-off between gradient sensitivity and stability, but the narrow
performance band across alternatives indicates that HB-AHO is robust to the exact parameterization.

Table 7: Effect of barrier parameterization on DocRED (validation set). All variants yield stable
improvements; tanh(3x + 1) provides the most balanced gains.

Form Entity F1 (A) Relation F1 (A) Triplet F1 (A)
tanh(x) +4.7 +2.2 +4.6
tanh(2z + 1) +4.5 +2.1 +4.6
tanh(3z + 1) +4.8 +2.3 +4.8
tanh(5z + 1) +4.7 +2.2 +4.7

Curriculum decay factor. We also varied the decay factor v € {0.99,0.97,0.95,0.93,0.90}. As
shown in Table |8} triplet F1 remains within a narrow band (51.3-51.5), with v = 0.95 providing
the best balance between convergence speed and stability. Larger values slow down constraint
enforcement, while smaller ones introduce mild instability, but neither substantially alters the final
outcome.

Table 8: Effect of curriculum decay factor v on DocRED (validation set). Performance remains stable
across a wide range; v = 0.95 offers the most balanced trade-off.

0% Entity F1  Relation F1  Triplet F1

0.99 58.7 64.7 51.4
0.97 58.9 64.6 51.3
0.95 59.0 64.8 51.5
0.93 58.9 64.8 51.4
0.90 58.9 64.6 51.3

Takeaway. Across both ablations, triplet F1 fluctuates within less than one point, demonstrating
that HB-AHO’s improvements stem from its structural enforcement of task hierarchy rather than
from delicate hyperparameter tuning.

B.6 THEORETICAL IMPLICATIONS AND EXTENDED ANALYSIS

Smoothness and Analyticity.

Proposition 4 (Smoothness and Analyticity). The hyperbolic barrier function p(x) is infinitely
differentiable over R, i.e., o € C*°(R), and is a real analytic function.

Proof. The hyperbolic tangent tanh(z) is analytic on R, and 3z + 1 is affine. The composition of
analytic functions is analytic, hence () is analytic. [

Quasi-Convexity near the Constraint.
Proposition 5 (Quasi-Convexity near Constraint Boundaries). In the neighborhood of © = 0, Ljpal

is quasi-convex.
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Proof. Letx = Ly — €. Near z = 0, expand ¢(x) via Taylor series:

@(z) ~ tanh(1) + 3sech?(1) - = + O(z?). (19)

Substituting into Ly
(20)

2
Linal = €1 Lent + 2Lyl + O(.’IJ )7
where ¢, co > 0 are constants. The Hessian of Ly, is positive semi-definite in this region, implying
quasi-convexity. O

Lyapunov Stability of Training Dynamics.
Theorem 6. Assume that L,.,; and L. are smooth and bounded below. Then gradient descent on

Liinar is asymptotically stable and converges to a stationary point.

Proof. Let 6(t) denote the training trajectory. Define the Lyapunov candidate function:

V(o) = Eﬁnal(e) — inf Lﬁnal- (21)

Then, along the trajectory of gradient descent:
av
G = VoL ()] <o0.

This implies V' (6) is non-increasing, and by LaSalle’s invariance principle, the system converges
to the set of stationary points {6 : VgL = 0}. Hence, the training dynamics are asymptotically
O

(22)

stable around local minima.

Strong Duality and Slater Condition.
Proposition 7. If 30 such that L.,;(00) < € (Slater condition), then strong duality holds.

Proof. The perturbed problem

min L St Lep <e+r (23)

is convex for fixed r, and Slater’s condition ensures zero duality gap. O
Bounded Gradient Effects. The derivative of the hyperbolic barrier satisfies

(24)

()] <3,

which ensures stable gradient magnitudes throughout training, especially near the constraint boundary
x — 07. This avoids the instability common in classical barrier methods like — log(—x) or —1/x.

Gradient Comparison of Barrier Functions

25r '
H —— Hyperbolic: 3sech?(3x + 1)
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Figure 4: Comparison of ¢’(z) (hyperbolic), —log(—x), and —1/z gradient behaviors near the

constraint boundary.
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Task Priority Enforcement Mechanism. The hyperbolic barrier naturally suppresses the relative
influence of L under severe constraint violation, by reshaping the gradient flow:
0 ACﬁnal o 1 Sol(m )

- ACre~
L  1+o@)  (1+ @)z ™

When ¢(x) — 1, the gradient contribution from the relation loss diminishes, enforcing strict
prioritization for constraint satisfaction.

(25)

Computational Complexity. Traditional multi-task learning approaches often rely on exhaustive
grid search to identify the optimal weighting scheme for each task-specific loss. For m tasks and p
discretized candidates per task, the total number of combinations grows as O(p™).

By contrast, HB-AHO reformulates the constrained optimization problem into an unconstrained
one via the hyperbolic barrier function (), enabling standard gradient-based solvers to converge
in O(m) sequential optimization stages, corresponding to the natural hierarchical structure of task
priorities. This complexity reduction not only eliminates manual tuning but also significantly improves
scalability for high-dimensional multi-task learning, similar to the efficiency advantage reported in
Cheng et al.[(2025)).

Summary. The hyperbolic barrier function not only empirically enhances training stability but also
satisfies theoretical properties including smoothness, gradient boundedness, quasi-convexity near
feasible regions, and strong duality-based feasibility guarantees. These theoretical insights establish
the barrier’s effectiveness as a principled alternative to classical barrier functions in constrained
multi-task learning.

C GENERALIZATION TO MULTI-LEVEL PRIORITY

C.1 GENERALIZED FORMULATION
For N tasks with priorities P; > Py > --- > Py, the loss is:

L;
1+o(Lic1 —eim1)

N
Lona = o(L1 —€1))L1+ Y (26)
i=2

where ¢(+) is the hyperbolic barrier defined in Eq. equation and ¢;_; are dynamic thresholds
updated via:

gi(t+1) = &;(t) - 0,95 (W==:1) (Eq. equation [5]in main text). (27)

C.2 RECURSIVE CONVERGENCE PROOF

Lemma 8 (Priority Activation). When L;_1 < &;_1, ¢(L;—1 — €;—1) = tanh(1) =~ 0.76. The
effective weight for L; becomes:
1 N 1
1+o() 14076

For violations L;—1 > €;_1, ¢(3x + 1) — 1 exponentially as x — +oo, suppressing L; via

~ 0.57. (28)

1

TKP(‘) % 0.5.

Theorem 9 (Priority Preservation). If task Py violates constraints (Ly > €y), then ¥j > k, % —
J

0, ensuring strict prioritization.
Proof. Let m denote the highest violated priority (L,,, > €,,). For any j > m, the gradient is:

aﬁﬁnal = 1 = ﬁi(pl-
= . 1 f— )
aﬁj H 1+90i Z(1+<Pi)2

i=1 i=1

. (29)

Cumulative suppression
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When 3¢ < m with ¢; > 0 (constraint violation), each term ﬁ < ﬁ decays exponentially.
Specifically:
11 LI L m—>0 as z — +oo (30)
i 1+ ©i - 1+ €3r ’
Thus %ﬁga‘ vanishes exponentially. O

Empirical Alignment: Table 3 shows when € = 0.001, relation F1 drops as the model focuses solely
on L, validating the theorem.

C.3 DYNAMIC THRESHOLD COMPATIBILITY

Proposition 10. If thresholds initialize with £;(0) > E[L;(0)] and update via Eq. equation[5] then
AT > 0 such thatVt > T, L;(t) < €;(t) almost surely.

Proof. Define the Lyapunov function V;(t) = £;(t) — &;(t). From Eq. equation [5}
gt +1) = g,(t) - 0.95°Fi(M==:(), 31)

Case 1: If £;(t) < &,(t), theng;(t+ 1) = 0.95¢;(¢). By barrier properties (Theorem 3), £;(t + 1) <
€;(t + 1) holds eventually.

Case 2: If L£;(t) > €;(t), e;(t + 1) = ;(¢). The gradient term ¢’ (x)L; dominates (Lemma 1),
forcing L;(t + 1) < L;(¢t).

Combining both cases, V;(t) is monotonically decreasing and bounded below by 0. By Lyapunov
convergence theorem, lim;_, o, V;(¢) = 0.

D CONVERGENCE ADVANTAGE OF HB-AHO OVER PARETO-BASED
MULTI-TASK LEARNING

D.1 FORMAL STATEMENT

Pareto-based multi-task learning methods (e.g., IMTL-GG (Liu et al., 2021))) optimize all task objec-
tives simultaneously, often requiring computationally expensive gradient projections and suffering
from scaling inefficiencies as the number of tasks grows.

In contrast, our HB-AHO framework dynamically enforces a sequential task hierarchy using hyper-
bolic barrier functions, allowing prioritized and adaptive optimization. We formalize the efficiency
benefit as follows:

Proposition 11. Let {L;(0)}Y., denote N smooth, convex task losses, each L-Lipschitz and
bounded below. Under HB-AHO, the iteration complexity to reach an e-stationary point scales
as O(N log(1/¢)), whereas Pareto-based multi-task optimization typically requires O(N? log(1/¢))
steps due to multi-objective gradient projection overheads.

D.2 SKETCH OF PROOF

HB-AHO Sequential Optimization. HB-AHO enforces that lower-priority tasks are only opti-
mized after higher-priority tasks satisfy dynamic constraints. This effectively decomposes the N-task
optimization into /N sequential subproblems.

For each subproblem: - The feasible region is restricted by the barrier function corresponding to
the preceding higher-priority task. - First-order convergence to an e-stationary point within each
subproblem requires O(log(1/¢)) iterations (Boyd & Vandenberghe, [2004). Summing across N
levels yields an overall complexity of O(N log(1/¢)).
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Pareto Optimization Simultaneity. Pareto MTL simultaneously optimizes all N tasks by comput-
ing generalized descent directions via multi-gradient projection at each step.

- Projection onto a Pareto front incurs O(N) per-iteration computational overhead. - Moreover,
gradient conflicts among NV tasks worsen condition numbers, compounding iteration complexity by
an additional O(V). Thus, the overall iteration complexity is O(N? log(1/¢)).

Conclusion. HB-AHO’s dynamic prioritization leads to a more efficient linear scaling with N,
while Pareto-based methods suffer from quadratic scaling.

O

D.3 DiscussSION: WHEN IS HB-AHO ADVANTAGE MOST PRONOUNCED?

The efficiency gain of HB-AHO becomes particularly significant under the following conditions:

» High Task Asymmetry: When task difficulties differ substantially (e.g., entity recognition
much harder than relation classification), prioritizing hard tasks first prevents wasted effort
on easier but dependent tasks.

* Large Number of Tasks: In scenarios involving deep multi-task hierarchies (e.g., relation
extraction — entity recognition), HB-AHO scales gracefully while Pareto optimization
becomes increasingly inefficient.

» Strong Task Dependency: When lower-level tasks are prerequisites for meaningful opti-
mization of higher-level tasks, HB-AHO’s constraint mechanism ensures effective learning
scheduling, while Pareto-based methods may prematurely optimize dependent tasks.

These properties align with our empirical observations across entity-relation extraction datasets, where
enforcing entity-first constraints substantially improved downstream relation and triplet extraction
performance.

E SUPPLEMENTARY METHOD DETAILS AND EMPIRICAL OBSERVATIONS

E.1 PRELIMINARY

Given a document D, the task of entity-relation extraction is to predict triples (es, T, e,), where
es,e, € & are entities and r € R is their semantic relation. This involves two interdependent
subtasks: entity recognition (to detect spans) and relation classification (to link entity pairs). The
latter critically relies on accurate entity boundaries, reflecting a hierarchical dependency. The input is
encoded by a pretrained language model (PLM), followed by a Transformer encoder. Predictions are
made via task-specific heads, and optimization is performed using our proposed HB-AHO method.

The input document D = [xt]é:} is first encoded by a pretrained language model (PLM) into
contextual representations H € R!*9, where [ is the sequence length and d the hidden size. These
representations are refined through & standard Transformer encoder layers, which capture contextual
dependencies.

Each Transformer layer applies multi-head self-attention followed by a feed-forward network with
SwiGLU activation (Shazeer, 2020). Let X € R!*4 be the input to the layer; we adopt standard
architecture without modification.

For joint entity and relation prediction:

* Entity Recognition: We adopt bilinear attention to detect boundary positions:
PP = Softmax(W, tanh(W,Z + W, H)). (32)

* Relation Classification: A fully connected layer followed by softmax predicts relation

types:
p" = Softmax(W,.Z). (33)
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Here, Z denotes the output of the final Transformer layer. The variable pos refers to entity
boundary types, including subject and object spans (i.e., subject_start, subject_end,
object_start, object_end). The matrices W., Wy, W,, and W, are learnable parameters.

We use cross-entropy losses for both subtasks. The entity loss L is computed over boundary tag
predictions, while the relation loss L, measures classification errors:

Lo =Y =Y logp™(1f"). (34)

pos

Lia=— logp"(r;). (35)

Here, p"(r;) denotes the predicted probability of relation r;, and pP* (yP™*)

1 being assigned the correct boundary label.

is the probability of token

E.2 EXPERIMENTAL DETAILS
We implement our model using DeBERTa-v3 (He et al.,[2023) as the encoder, with AdamW optimizer

(learning rate 2e-5, decay le-2, weight decay le-5). The number of Transformer layers is 3. The
dynamic constraint threshold is initialized to 0.05.
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