Under review as submission to TMLR

Is Value Functions Estimation with Classification Plug-and-
play for Offline Reinforcement Learning?

Anonymous authors
Paper under double-blind review

Abstract

In deep Reinforcement Learning (RL), value functions are typically approximated using deep
neural networks and trained via mean squared error regression objectives to fit the true value
functions. Recent research has proposed an alternative approach, utilizing the cross-entropy
classification objective, which has demonstrated improved performance and scalability of RL
algorithms. However, existing study have not extensively benchmarked the effects of this
replacement across various domains, as the primary objective was to demonstrate the efficacy
of the concept across a broad spectrum of tasks, without delving into in-depth analysis. Our
work seeks to empirically investigate the impact of such a replacement in an offline RL setup
and analyze the effects of different aspects on performance. Through large-scale experiments
conducted across a diverse range of tasks using different algorithms, we aim to gain deeper
insights into the implications of this approach. Our results reveal that incorporating this
change can lead to superior performance over state-of-the-art solutions for some algorithms
in certain tasks, while maintaining comparable performance levels in other tasks, however
for other algorithms this modification might lead to the dramatic performance drop. This
findings are crucial for further application of classification approach in research and practical
tasks.

1 Introduction

In the realm of deep Reinforcement Learning (RL), the conventional approach to approximating value
functions has long relied on employing the Bellman optimality operator alongside mean squared error (MSE)
regression objectives, owing to the continuous nature of the task at hand. However, insights from other
domains of machine learning have illuminated the potential benefits of employing classification objectives
even in scenarios where regression seems as a natural choice (Rothe et al,|2018; Rogez et al., 2019). This shift
has been attributed to various hypotheses, including the stability of gradients (Imani et al.l |2024), improved
feature representation (Zhang et all 2023), and implicit biases (Stewart et al., [2023]).

While the use of regression loss has yielded remarkable results in value-based RL (Silver et al.l [2017)), it
also presents certain challenges and limitations (Kumar et al., [2020a; [2021; [Agarwal et al., |2021} [Lyle et al.|
2022). Notably, recent research |Farebrother et al.| (2024]) has demonstrated that replacing regression with
classification for training value functions offers several advantages, including enhanced scalability, feature
representation, performance, and robustness to noisy targets and non-stationarity. While this study broadly
explores the effects of this replacement, it does not delve deeply into the ease of implementation or the impact
of newly introduced hyperparameters.

Offline RL (Levine et al., 2020) represents a rapidly developing RL subfield, wherein the objective is to
train an agent using a pre-collected dataset without direct interaction with the environment. In recent
years, numerous algorithms have been developed to address this setup (Kumar et al. [2020b; |Fujimoto &
Gul, 2021} [Kostrikov et al.| 2021 [An et al., [2021} [Chen et al., 2021 [Akimov et all [2022} [Yang et al.l 2022}
Ghasemipour et al., [2022; [Nikulin et al.| 2023} [Tarasov et al., [2024a)). The majority of these algorithms fall
under the category of off-policy value-based approaches, owing to their alignment with the problem setup’s
requirements.
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Given the prevalence of off-policy value-based approaches in offline RL, it becomes imperative to delve deeper
into the potential impact of employing classification for value function training within this domain. While
Farebrother et al.| (2024) offer some experimental insights into offline RL tasks, we contend that there remain
significant gaps to be addressed. Therefore, our study seeks to contribute to this area by conducting a
thorough investigation into the utilization of classification objectives for value function training in offline RL
scenarios.

This study aims to address the following questions through large-scale experiments conducted on a large
range of tasks from the standard D4RL benchmark (Fu et al. [2020]):

o Is classification a "plug-and-play replacement" for offline RL algorithms, and how does it impact
performance?

e Does the use of classification objectives facilitate a more robust hyperparameter search?
e What is the impact of the hyperparameters introduced with classification?

e Does classification enable more efficient scaling of dense neural networks compared to regression?

2 Preliminaries

2.1 Offline Reinforcement Learning

The RL problem is conventionally framed as a Markov Decision Process characterized by a tuple S, A, P, R, 7,
where: S C R"™ denotes the state space, A C R™ represents the action space, P : S x A — S is the transition
function, R : S x A — R is the reward function, and v € (0, 1) is the discount factor. The objective RL
of is to determine a policy (agent) 7 : S — A that maximizes the expected sum of discounted rewards:
oo R(st, ar). This entails the policy learning process, where the agent interacts with its environment by
observing environmental states, taking actions in response, and receiving corresponding rewards.

Offline RL presents a departure from the traditional RL setup in that the agent relies solely on a pre-collected
dataset D collected by external agents. This paradigm introduces novel challenges, such as the estimation of
value functions for out-of-distribution state-action pairs, thus giving rise to an entire subfield dedicated to
addressing these challenges.

2.2 Q-function objective and classification

The Q-function stands as a pivotal concept in value-based RL, representing the expected return of a policy
starting from state s; and taking action a;: Q(s¢,ar) = IE,,[ZZOZO Y R(st4k,asik)|st, ar]. Typically, value
functions are trained using the Bellman optimality operator:

A ~ ~

(TQ)(s,a,0) = R(s,a) + ’VH}?«X Q(S/a a, 0)

Here, s’ denotes the state observed after executing action a at state s, and 0 (also known as target network)
represents a copy with delayed updates of the parameter § which parametrize the value function. During
each training step, parameters 6 are adjusted using temporal difference (TD) error with mean squared error
(MSE):
TDuse(6) = Ep((TQ) (51, a1,0) — Q(s¢, ar, 0))?

We adopt the framework proposed by [Farebrother et al.| (2024)) for replacing MSE with cross-entropy loss.
The approach involves parameterizing the Q-function as a distribution over returns, segmented into m bins
with widths ¢, where the first bin corresponds to the predefined v,,;, value, and the last to v,,4,. The scalar
value of the Q-function is then computed as:

Q(s,a,0) = E[Z(s,a,0)], Z(s,a,0) = zm:pi(s,a,ﬂ)éi,
i=1
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where p; represents the probability of the i-th bin, and ¢; denotes the corresponding bin value. This
formulation allows us to express the TD error using cross-entropy and utilize it for updating the value function
parameters:

m
TDcr(0) =Ep ZpZT(S, a, é) logp;(s,a,®)

i=1
Farebrother et al.| (2024) demonstrated that the HL-Gauss method (Imani & White, 2018]) is particularly
effective for mapping continuous values into bins within this framework. HL-Gauss employs a normal
distribution analog for mapping values into neighboring bins, with a hyperparameter o determining the
distribution’s breadth. The authors recommend tuning the ratio o /¢ as a more interpretable hyperparameter,
with a default value of 0.75 chosen based on statistical considerations and it has shown good empirical result.

3 Methodology

Our methodology is straightforward: we select several offline RL algorithms and adapt them for cross-entropy
loss, as outlined in Section 2:2] By default, we determine the values of vy, and vye, by computing all
possible discounted returns within a given dataset and identifying the minimum and maximum values, which
aligns naturally with the offline RL setup. Herein, we provide brief descriptions of the algorithms employed
in our study.

Revisited BRAC (ReBRAC). ReBRAC (Tarasov et all |2024a)) stands as a minimalist, state-of-the-art
ensemble-free algorithm for both offline and offline-to-online RL. It employs MSE to penalize deviations from
actions present in the dataset. Built upon TD3+BC (Fujimoto & Gul [2021), ReBRAC incorporates several
modifications that significantly enhance its performance. The Q-loss function takes the form:

]E(s,a,s/,ti/)ND,a/NTr(S')(Q(S» a, 0) - [R(S’ a) + ’7(Q<Sla a’, é) - 5(a/ - CZI)Q)])2

where (3 denotes a penalty weight. Although only the target network part differs, the bin mapping is conducted
in the same manner, with the penalty subtracted beforehand. We select ReBRAC as an exemplary algorithm
with policy regularization due to its high performance, simplicity, and its encounter with the Q-function
divergence problem while solving certain D4RL AntMaze tasks.

Implicit Q-Learning (IQL). IQL (Kostrikov et al., [2021)) represents another competitive offline and
offline-to-online RL algorithm. Its key advantage lies in its exclusion of out-of-distribution examples during
training, a departure from most other offline RL approaches. This is achieved through the training of the
V-function: V(s;) = Ex[Ypeo V¥ R(St4k, at+r)|s¢]. The Q-function loss takes the form:

E(s,a,s')ND(Q(Sa a, 9) - [R(S, a) + 7V¢(Sl)])2

Once again, the target component allows for classification without additional manipulations. Regularization
is achieved through a specially designed V-function loss, without explicit penalties for the policy or value
functions. We opt for IQL as it the best example of algorithms within this family.

Large-Batch SAC (LB-SAC). LB-SAC (Nikulin et al., |2022) is an instance of the ensemble-based SAC-N
algorithm (An et al.l |2021)), utilizing large-batch optimization to reduce ensemble size. SAC-N comprises N
Q-functions, each with the following loss:

N

E(s,a,s’)ND,a’Nw(s’)(Q(sa a, 91) - [R(Sa a) + ,yjI:nlinN Q(3/7 al7 9])])2

No additional adjustments are necessary to replace MSE with cross-entropy. The rationale behind this
objective lies in the assumption that if Q-values follow a normal distribution A (p, o) then:

. N-I
jgllileQ(S, a,6;) ~ p(s,a) — ¢ <N_Zj‘1> o(s,a)
Ensemble-based approaches are known for their efficacy across many offline RL tasks. According to the
above statement, SAC-N can be also considered as an example of offline RL algorithm with Q-function
regularization. We opt for LB-SAC instead of the original SAC-N due to computational constraints.
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4 Experimental Results

4.1 Experimental setup

We conducted our experiments using three sets of tasks from the D4RL benchmark (Fu et all 2020):
Gym-MuJoCo, AntMaze, and Adroit. We utilized all datasets within each set.

For ReBRAC in we employed the best hyperparameters as outlined in [Tarasov et al.| (2024a).
When exploring parameter search in, we utilized the same hyperparameter grids for ReBRAC and IQL and
used a custom grid for LB-SAC due to computational constraints. For a comprehensive overview of the
experimental details and hyperparameters, refer to [Appendix Al and [Appendix Bl

The evaluation protocol is taken from Tarasov et al.| (2024a)), where hyperparameters search is done using
four random seeds and separate set of seeds is used for the evaluation with the exception that we utilized
four random seeds for the final evaluation instead of ten, due to computational constraints. Note, that
because of the chosen evaluation protocol tuned hyperparameters might perform worse than non-tuned which
characterizes the sensitivity to the random initialization.

4.2 s classification plug-and-play?

Our initial goal was to substitute MSE with cross-entropy without modifying any other aspects of the
algorithms. We fixed the number of bins m to 101, representing a reasonable number of classes. We set
o /¢ = 0.75 by default as was proposed by [Farebrother et al.| (2024). Results for this modification are presented
in the CE columns of for Gym-MuJoCo, for AntMaze, and for Adroit. We also

provide rliable (Agarwal et al.l |2021)) metrics which support all of the further claims in a more readable
way in It is worth noting that, for ReBRAC in the AntMaze tasks here and further, we used
large-batch optimization, similar to that used in Gym-MuJoCo, which was previously hindered by Q-function
divergence.

The original ReBRAC algorithm exhibited minimal performance variation with the introduction of cross-
entropy in Gym-MuJoCo tasks, except for the random dataset where a notable performance drop was observed.
However, on average, the score remained relatively stable. In the case of AntMaze, where ReBRAC faced
Q-function divergence issues, the introduction of classification mitigated this problem, resulting in notable
improvement in average performance. However, in Adroit, where ReBRAC struggled with overfitting due to
small dataset sizes, classification did not alleviate this issue and led to decreased performance across most
scenarios.

In contrast, both IQL and LB-SAC experienced a significant performance drop in Gym-MuJoCo tasks. IQL’s
performance in AntMaze dramatically decreased, rendering the algorithm unable to solve medium and large
tasks with this modification. Meanwhile, LB-SAC’s performance did not change significantly for AntMaze but
improved for the umaze task. Notably, in the Adroit task, IQL’s performance was significantly boosted in the
pen environment, with relatively minor changes observed in other scenarios. However, LB-SAC’s performance
dropped across most tasks.

Our primary hypothesis for explaining the successful application of classification with ReBRAC and its
failure with IQL and LB-SAC is that ReBRAC heavily relies on policy regularization. Consequently, plugging
classification into Q networks does not strongly affect its offline RL component compared to the impact
observed in IQL or LB-SAC.

4.3 Algorithms hyperparameters search with classification

The subsequent step in our investigation involved determining whether better performance could be achieved
by tuning the hyperparameters of the original algorithms. The evaluation of the best hyperparameter sets
can be found under the CE+AT columns in [Table 1} [Table 2| and [Table 3| (see also [Appendix HJ).

1These notations are reused further.
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Table 1: Average normalized score over the final evaluation and ten (four for LB-SAC) unseen random seeds
on Gym-MuJoCo tasks. "hc" stands for "halfcheetah", "hp" stands for "hopper", "wl" stands for "walker2d", "r"
stands for 'random", "m" stands for "medium", "e" stands for "expert", "me" stands for "medium-expert", "mr"
stands for "medium-replay", "fr" stands for "full-replay"'. MISE denotes original algorithm implementation,
CE denotes the replacement of MSE with cross-entropy, CE4+ AT denotes cross-entropy with tuned algorithm
parameters, CE4CT denotes cross-entropy with tuned classification parameterd] ReBRAC original scores

are taken from |Tarasov et a1.| (]2024a|).

ReBRAC IQL LB-SAC
Task MSE CE CE+AT CE+CT ‘ MSE CE CE+AT CE+4CT ‘ MSE CE CE+AT CE+4CT
he-r 29.5 £ 1.5 134+ 08 13.4 £ 0.8 13.0 £ 08 18.9 £ 1.0 1.9+ 0.0 6.7 £ 0.9 3.9%£25 282+ 1.4 10.0 £ 0.3 11.6 £ 0.2 11.1 £ 0.7
he-m 65.6 £ 1.0 59.5 £ 0.7 63.8 £ 1.4 582+ 11.2 49.5 £ 1.1 42,5 £ 0.3 42.6 & 0.4 43.8 £ 0.3 64.5 £ 1.3 56.7 & 2.1 63.6 £ 9.7 55.5 £ 2.7
hc-e 105.9 & 1.7 103.2 £ 55 1042 £25 103.7 £ 42 95.8 £ 2.2 92,9 £ 0.2 92,9 &+ 0.4 93.5£02 | 103.0£ 1.5 103.9+ 1.0 105.0 % 1.3 1045 £ 2.2
he-me | 101.1 &£ 5.2 103.5 £ 4.3 1032 £55 101.6 £ 6.4 92.3 £+ 2.4 86.5 & 4.0 83.3 & 3.4 89.0 £ 3.8 | 104.5 £24 1054 +£20 1052400 1072 £ 1.3
he-mr 51.0 £ 0.8 50.7 £ 0.7 53.1 4+ 1.3 50.4 £ 2.3 452 £ 0.5 381+ 1.8 39.9 + 1.1 40.6 + 1.8 52.8 £ 0.7 55.4 4+ 0.9 54.4 £ 1.6 58.1 £+ 1.3
he-fr 82.1 £ 1.1 832+ 1.5 824+ 1.9 83.4 £ 0.9 75.5 £ 0.5 62.6 + 1.1 64.5 & 1.5 74.1 £ 0.6 79.0 £ 2.0 80.7 + 0.3 81.3 £ 1.0 82.3 £ 1.1
hp-r 8.1% 24 81+ 0.9 8.9 & 2.1 9.1 % 1.4 6.0 £ 2.8 142 £ 2.8 13.7 £ 3.3 13.8 £ 75 | 145+ 11.5 82%22 9.6 £ 0.4 10.9 £ 2.3
hp-m 102.0 = 1.0 98.9 £ 94 10L.7 £ 1.6 98.1 £ 7.5 54.8 & 4.4 54.1 £ 2.0 52.9 £ 3.6 53.5 £ 1.8 | 90.0 £ 27.5 7908 10.5 £ 6.2 78 £ 1.0
hp-e 100.1 &£ 8.3 1079 £ 49 1079 £49 1108 +£0.5 | 109.4 £ 1.8 110.5 £ 0.5 110.6 £ 0.3 110.2 & 1.0 1.3+£00 2164397 659£51.9 123+ 13.1
hp-me | 107.0 £ 6.4 111.6 £ 0.5 111.2 £ 0.3 111.6 £ 0.5 | 88.5 &£ 16.5 64.0 £ 10.2 69.3 £23.9 102.0 £ 86 | 111.3 £ 0.3 149+ 7.0 125 £ 7.2 54.7+ 376
hp-mr 98.1 £ 5.3 98.7 £ 3.0 94.1 £ 125 98.7 + 3.0 959 £ 6.4 71.5 £ 10.1 272 £ 4.5 67.2 £ 88 | 63.0 £ 481 66.9+42.8 100.6 £ 55 87.4 £ 29.6
hp-fr 107.1 £ 04 10824 0.3 1083 £0.2 108.3 £ 0.5 | 107.2 = 0.6 41.9 + 4.8 53.9 £ 95 1039+ 06 | 107.0 £ 0.7 65.6 £50.2 109.9 £ 0.4 109.1 £ 1.8
wl-r 184 £ 45 8.8 & 4.4 121+ 9.1 72%5.1 6.4 £ 6.3 3.9+ 2.1 93 £ 76 6.3 £ 8.1 21.7 £ 0.0 20.1 £ 29 21.8 £ 0.0 21.5 £ 0.2
wl-m 82.5 £ 3.6 85.1 £ 2.7 85.1 £ 2.7 85.7 & 1.0 832+ 1.2 79.9 £ 1.3 81.3 & 1.7 80.9 £ 1.5 89.3 £ 53 89.6 £ 10.7 93.7 £ 7.3 98.0 £ 1.3
wl-e 1123+ 02 11274+ 0.1 1127 £ 0.1 1127+ 0.1 | 113.8 £ 0.2 1085 £ 0.2 1085+ 0.2 109.5+ 0.2 | 1142+ 04 598 £ 450 107.6 £ 1.2 1125+ 0.2
wlme | 111.6 £ 0.3  111.7 £ 0.1  111.94+ 02 112.0 £ 0.3 | 1123 £ 0.6 9224+ 6.5 108.6 £ 1.0 109.4 £ 0.1 | 110.6 £ 0.4 731 £ 181 94.0 £ 33.2 109.6 + 8.8
wl-mr T3+ 7.9 85.2 £ 6.7 844+ 59 84.0 = 5.0 82.0 £ 7.9 59.1 + 8.8 67.2 & 5.1 82.6 £ 3.8 92.6 + 2.7 90.9 + 5.3 95.3 £ 6.0 99.8 £ 1.9
wl-fr 102.2 £ 1.7 101.8 £ 5.6 108.7 £50 1024 £ 2.9 97.7 £ 1.4 85.3 £ 3.3 83.9 £ 1.9 93.6 £ 1.0 | 1021 £ 1.0 1104+ 1.9 1094 £+ 1.3 110.5 £ 2.4
Avg 81.2 80.6 81.5 80.6 74.1 61.6 62.0 70.9 74.9 57.8 69.5 69.6

Table 2: Average normalized score over the final evaluation and ten (four for LB-SAC) unseen random seeds
on AntMaze tasks. "um" stands for "umaze", "med" stands for "medium', "Irg" stands for "large", "p" stands
for "play", "d" stands for "diverse". ReBRAC original scores are taken from |Tarasov et al.| (2024a).

ReBRAC IQL LB-SAC
Task MSE CE CE+4AT CE+-CT ‘ MSE CE CE+4+AT CE4CT ‘ MSE CE CE+AT CE4-CT
um 97.8 £ 1.0 98.0 £ 2.1 980+ 1.6 988+ 1.1 | 79168 500+46 496 £81 53.0£6.2 | 1825+ 358 41.0=£ 332 36.0+£ 334 575+ 127
um-d 88.3 £ 13.0 93.0 £ 4.5 91.5 £80 945+£4.1 | 725+ 45 48769 474£53 488+£53 0.0+ 0.0 0.0 £ 0.0 0.2+0.5 0.0 £ 0.0
med-p 84.0 £42 88.0+6.3 90.5 £ 3.8 88.1+£5.1 | 73.8+54 0.2+ 0.4 0.1+0.3 0.4 £ 0.6 0.0 +£ 0.0 0.0 £ 0.0 0.0+ 0.0 0.0 £ 0.0
med-d | 76.3 £ 13.5 848+ 9.3 76.6 £ 148 90.0+ 48 | 748 £ 38 0409 0.3 £ 0.6 0.3 £ 0.4 0.0 £ 0.0 0.0 £ 0.0 0.0+ 0.0 0.0 £ 0.0
Irg-p 60.4 + 26.1 859 £ 6.3 87.0 £ 4.3 87.8£34 |413£70 0.0+ 0.0 0.0+ 0.0 0.0 £ 0.0 0.0+ 0.0 0.0 £ 0.0 0.0+ 0.0 0.0 £ 0.0
Irg-d 544 4+ 251 871 +4.1 86.6 £4.6 81.9+82 |23.7+506 0.0 £ 0.0 0.0+ 0.0 0.0 £ 0.0 0.0 £ 0.0 0.0 £ 0.0 0.0+ 0.0 0.0 £ 0.0
Avg ‘ 76.8 89.4 88.3 90.1 60.8 16.5 16.2 17.0 ‘ 3.0 6.8 6.0 9.5

In Gym-MuJoCo tasks, these hyperparameter adjustments yielded slight improvements in ReBRAC’s average
performance, although random datasets remained problematic. Similarly, in Adroit tasks, performance saw
some improvement but still fell short of the original algorithm’s performance. Notably, for AntMaze tasks, the
hyperparameter adjustments did not improve performance in this domain when compared to just plugging
cross-entropy.

For IQL and LB-SAC, tuning the algorithms’ hyperparameters with a cross-entropy objective helped alleviate
underperformance in Gym-MuJoCo tasks, although random datasets remained a common issue. However, this
approach did not yield significant improvements for AntMaze tasks, and only marginally improved average
performance in Adroit.

Following the methodology outlined by [Kurenkov & Kolesnikov]| (2022), we investigated whether algorithms
utilizing classification offered superior hyperparameter search under uniform policy selection on D4RL tasks,
using Expected Ounline Performance (EOP). The results are presented in under the CE4AT rows. It
is evident that for ReBRAC, classification facilitated much better hyperparameter search in the AntMaze
domain, marginally improved search for Gym-MuJoCo, and showed slight degradation for Adroit tasks. IQL
benefited only in the Adroit domain, while LB-SAC showed a slight improvement in AntMaze tasks.
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Table 3: Average normalized score over the final evaluation and ten (four for LB-SAC) unseen random seeds
on Adroit tasks. "ham" stands for "hammer", "rel" stands for "relocate", "h" stands for "human", "c¢" stands for
"cloned", "e" stands for "expert". ReBRAC original scores are taken from Tarasov et al.| (2024al).

ReBRAC QL LB-SAC
Task MSE CE CE+AT CE+CT | MSE CE CE+AT  CE+CT | MSE CE  CE+AT  CE+CT
pen-h 1035 £ 141 1023+ 102 9584155 975+ 133 | 211 £ 168 1082+ 84 107.24+ 130  93.6 £ 8.7 45£26  71£56 201%£196  58£88
pen-c 91.8 £ 217 903+ 142 940+ 183 1006+ 162 | 1324216 125+ 147 999+ 217 111+ 150 | 261+53  20.0+45 208+50 220+80
pen-e 1541 £ 54 155058 152944 1559 £ 48 | 602 £37.7 1349+ 70 1411485 141343 | 1305 £ 168 380 £ 132 620+ 93 43.6 £ 208
door-h 0.0 +0.0 0.0+ 0.0 0.0+ 0.0 00£01| 59£25  43%10 46£29  34£21 02£01  02£01  -02£01 -02£01
door-c 1126 0.0 £ 0.0 0.2+ 04 00£00| 02+£03  03+03 24411 12£07 00£00  02£05 0510  00£00
door-e 1046 £24 1057415 103442 1050 £24 | 1054 £20 1061+05 103.0£30 105716 | 95086 70.6%338 765£55 68.7 %194
ham-h 0.2+0.2 0.1+0.1 04£03 01£01] 17£08  15£07 21419 24%16 01£00  00£00 01£00  01£00
ham-c 6.7+£37 97+ 104 3.9 449 6188 02£00  10£07 13406  26+44| 2024168 136+ 154  0.0+£00 199+21.7
ham-e 1338 £07 1229+ 107 12014249 1342+ 10 | 1295+ 02 1295+ 01 1205401 130502 | 76.6£595 9L1£105 96.0£99 892+ 11.2
rel-h 0.0 +0.0 0.0+ 0.0 0.0+ 0.0 00£00] 01£01  01£00 01£01  01£00 00£00 -01£00 00£00 -0.1£00
rel-c 09+ 1.6 0.4+ 0.5 0.3 £ 0.3 0.2 +£0.2 0.1 £ 0.1 0.1 £ 0.1 0.1 £ 0.1 0.1 +£ 0.0 0.0 £ 0.0 -0.1+£00  -0.140.0 -0.1 £ 0.0
rel-e 1066+ 32  107.8+33 1072428 1084 +25 | 1082409 1057+ 1.8 1094407 1065+ 1.8 | 267+ 188 53435 51435  25+43
Avg w/oe | 25.5 25.3 24.3 25.5 | 5.3 16.0 27.2 14.3 | 6.3 5.0 5.1 5.9
Avg | 58.6 57.8 56.5 59.0 | 37.1 50.3 58.3 425 | 31.6 20.4 23.4 20.9

4.4 \What is the impact of classification parameters?

In [Farebrother et al.| (2024)), the authors conducted a limited study on the influence of specific classification
hyperparameters, only examining if /¢ = 0.75 was suitable across varying numbers of bins m, using online
RL tasks. Drawing inspiration from their work, we selected a set of m values: 21,51,101,201,401, and a set
of o /¢ values: 0.55,0.65,0.75,0.85. Subsequently, we conducted experiments using all possible pairs of these
parameters, while maintaining the parameters of the original algorithms.

Evaluation results, presented in [Table 1| [Table 2| and [Table 3| under the CE+CT columns (see also
|Appendix H]), showcased notable differences in the impact of tuning classification parameters across algorithms.
Specifically, ReBRAC exhibited improved performance when classification hyperparameters were fine-tuned,
surpassing the original version’s efficacy and achieving new state-of-the-art performance on AntMaze. In
contrast, IQL and LB-SAC did not consistently benefit from classification parameter tuning compared to
algorithm-specific adjustments.

EOP for this hyperparameter search is also provided in under the +CE+4CT rows. It’s evident
that when having good hyperparameters for original algorithm tuning classification parameters yields greater
benefits than tuning algorithm-specific hyperparameters, as expected, with the only exception of IQL on
Adroit tasks. Additionally, this search converges quickly, with training approximately three different policies
often sufficing to achieve near-optimal performance, a highly advantageous property for real-world application
of offline RL.

We present algorithms’ performance heatmaps for the parameter grid averaged over domains in with
detailed scores per dataset available in Additionally, in we provide further insights
by fixing one parameter and averaging over the second. Our analysis indicates that setting m = 101 and
o/¢ = 0.75 may serve as a reasonable starting point and produce results better than the average. Notably,
a higher number of classes often yields improved performance, suggesting a preference for larger m values.
Regarding /¢, our findings suggest that 0.75 remains a favorable choice, especially when faced with limited
tuning resources. However, the optimal selection of classification parameters heavily depends on the specific
algorithm, environment, and dataset characteristics.

Farebrother et al.| (2024) did not investigate the impact of the v, and vy, choices, nor did they propose a
method for selecting these when the reward function is unknown. In our previous experiments, we computed
these values by taking the minimum and maximum return across all possible sub-trajectories in the dataset.
However, this approach may not be optimal because offline RL algorithms often introduce pessimism into the
Q function. Additionally, setting these limits based on extreme values may cause the values on the edges of
the support to differ from other values from the model’s perspective, potentially impacting the final results.

29 policies for LB-SAC+CE+CT.
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Table 4: Expected Online Performance (Kurenkov & Kolesnikov], 2022) under uniform policy selection
aggregated over D4RL domains across four training seeds. This demonstrates the sensitivity to the choice of
hyperparameters given a certain budget for online evaluation. +CE+ AT denotes cross-entropy with tuned
algorithm parameters, +CE+CT denotes cross-entropy with tuned classification parameters, +CE+MT
denotes cross-entropy with mixed parameters tuning.

Domain Algorithm ‘ 1 policy 2 policies 3 policies 5 policies 10 policies Bl 15 policies 18 policies 20 policies
ReBRAC 620+ 171 706 £99 733 +£55 748+ 21 75.6 + 0.8 75.8 £ 0.6 75.9 £ 0.6 76.0 £ 0.5
ReBRAC+CE+AT | 64.1 £154 71.7+87 740+48 754+19 76.2 £ 1.1 76.6 £ 1.0 76.7 £ 0.9 76.8 £ 0.8
ReBRAC+CE+CT 84+14 T7924+12 797+£1.0 80.1+0.7 80.5 £ 0.5 80.6 £ 0.4 80.7 £ 0.4 80.7 £ 0.3
ReBRAC+CE+MT | 62.0 £ 155 70.1 £10.5 73.3+£6.6 753 +£2.9 76.4 £ 0.9 76.6 £ 0.5 76.7 £ 0.3 -
IQL 623+98 676+60 69538 709+£19 71.6 £ 0.7 71.8 £0.4 71.9 £ 0.3 71.9 £ 0.3

Gym-MuJoCo IQL+4CE+AT 55.7+ 4.2 581436 593 +£28 60.5+1.8 61.4 £0.9 61.7 £0.7 61.8 + 0.6 61.8 + 0.6
IQL+CE+CT 584 +£72 625+56 644+43 66.1+26 67.2 £ 1.3 67.6 + 1.0 67.8 0.9 67.9 +£ 0.9
IQL+CE+MT 65.2+3.6 672+27 681+20 689+12 69.5 + 0.6 69.7 + 0.4 69.7 + 0.3 -
LB-SAC 525+ 138 595 +£83 620+55 64.1+38 - - - -
LB-SAC+CE+AT 489+ 113 544 +£70 564 +52 583+4.1 - - - -
LB-SAC+CE+CT 634 +£37 654+24 662+17 66910 67.3 £ 0.6 - - -
LB-SAC+4+CE+MT | 444 +11.1 505 +79 53.0+54 550=£29 56.3 £ 1.5 56.8 £ 1.2 57.0 £ 1.0 -
ReBRAC 679 +100 736+£74 761+55 783+34 79.9 £ 1.7 80.4 + 1.1 - -
ReBRAC+CE+AT 848 +49 875+£35 8.7+25 89.7+15 90.4 £ 0.8 90.7 £ 0.5 - -
ReBRAC+CE+CT | 83.8+10.3 883 +4.7 89.4+22 90.0+£0.9 90.4 £ 0.6 90.6 &+ 0.4 90.7 £ 0.4 90.7 £ 0.3
ReBRAC+CE+MT | 63.5 £33.0 79.8+223 858+ 13.7 89.2+52 90.8 £ 1.4 91.2 £ 0.9 91.3 £ 0.7 -
IQL 211 +£54 241+47 257+£42 275+3.6 29.5 £ 2.7 304 £ 2.0 30.7 £ 1.7 309 £ 1.5

AntMaze IQL+CE+AT 156 £09 161 +08 164+ 0.7 16.7+0.7 17.0 £ 0.6 172 £ 0.5 173 £ 0.4 173 £ 0.4
IQL+CE+CT 162 +0.7 166 +0.7 168+ 0.7 17.1+0.7 175 £ 0.6 17.7 £ 0.6 17.8 £ 0.5 17.8 £ 0.5
IQL+CE+MT 23.3+£93 281+99 31.2+£96 351+83 39.2 £5.1 40.6 £ 3.0 41.0 £ 2.3 -
LB-SAC 1.0+ 1.4 1.6 £ 1.6 21+16 28+14 - - - -
LB-SAC+CE+AT 3.2+£39 5.1+39 6.3 £ 3.4 7.6 £2.2 - - - -
LB-SAC+CE+CT 79+ 1.5 8.7+ 1.1 91+09 94+05 9.6 £ 0.3 - - -
LB-SAC+CE+MT 2.8 + 3.7 4.6 +4.0 6.0 + 3.8 7.6 + 3.1 9.2+ 1.7 9.7+ 1.0 9.8+ 0.8 -
ReBRAC 44.1 £184 532 +109 561 £6.1 57.8+23 58.6 £ 0.9 58.9 £ 0.7 59.0 £ 0.7 59.1 £ 0.6
ReBRAC+CE+AT | 439 £ 17.1 52.7+£10.3 55.6 £6.0 57.5+2.5 58.5 + 0.9 58.7 £ 0.6 58.8 £ 0.6 589 £ 0.5
ReBRAC+CE+CT 56.9 £ 1.7 579+13 584+10 588+0.7 59.2 +£ 04 59.3 +£ 0.3 59.4 £ 0.3 59.4 £ 0.2
ReBRACH+CE+MT | 40.8 £ 17.0 498 +12.0 53.5+81 56.3+4.1 57.8 £ 14 58.0 £ 0.6 581+ 04 -
IQL 339+23 352+17 358+15 364+12 37.1+0.9 374+ 0.6 375+ 0.6 375+ 05

Adroit IQL+CE+AT 53.0£35 55.0+31 56.1+£27 572+19 58.1 £ 0.8 58.3 £0.4 584 £ 0.3 584 £ 0.3
IQL+CE+CT 496 £1.3 504 +£09 50.7+0.7 51.0+0.6 51.3 £ 0.4 51.4 £ 0.4 51.5 £ 0.3 51.5 £ 0.3
IQL+CE+MT 542 £31 559423 56.7+1.7 574+1.0 57.8 £ 0.3 57.8 £ 0.1 57.8 £ 0.1 -
LB-SAC 15.7 £ 141 234 +12.8 27.7+10.5 31.7 £6.6 - - - -
LB-SAC+CE+AT 127+80 17.1+59 191 +43 20.6+23 - - - -
LB-SAC+CE+CT 220+£27 234+£26 242+27 252+26 26.4 + 2.2 - - -
LB-SAC+CE+MT 125+88 173 £6.5 194+46 21.1+26 223 £ 1.5 228 £1.2 23.0 £ 1.1 -

To evaluate the effect of these parameters, we computed the support size as vVyqe — Vmin from the dataset
and multiplied this size by a parameter vegpand. We then extended the support in two ways: Subtracting
Vespand (Umaz — Umin) from vy, (referred to as min), and simultaneously subtracting from v,,;, and adding
t0 Vpnag the term vVezpand(Vmaz — Umin)/2 (veferred to as both)lﬂ The experimental results, shown in
demonstrate that our initial choice of support parameters was sub-optimal and increasing the support range
may strongly benefit. Surprisingly, in some cases, reducing the support was beneficial. The both strategy
generally yielded better performance.

Our observations support the assumption about efficiency of cross-entropy for offline RL algorithms with
policy regularization compared to other types. Notably, ReBRAC exhibited less sensitivity to the classification
parameters.

4.5 Do MLPs scale better with classification?

In [Farebrother et al.| (2024)), authors emphasized the enhanced scalability of models when regression is
replaced with classification, particularly when using Transformers or ResNets. In this subsection, we delve
into whether similar scalability benefits apply to Multilayer Perceptrons (MLPs), which are commonly utilized

3The division by 2 ensures equal bin sizes across the two variants.
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Figure 2: Dependency of the algorithms performance on vezpand values averaged over domains. See

for tabular representation.

in the development of novel RL approaches. Experimental results are presented in Surprisingly,
our findings suggest that there is no consistent improvement in terms of scaling when MSE is replaced with

cross-entropy.

This discrepancy from the results reported by [Farebrother et al. (2024) could be attributed to the fundamental

architectural differences between MLPs and models like Transformers or ResNets.

architectures, vanilla MLPs typically lack residual connections (He et al.,[2016), which have been identified
as a crucial factor in enabling effective scaling with depth. Consequently, the absence of such connections in
MLPs may limit their ability to capitalize on the benefits offered by classification over regression.

Unlike these latter
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4.6 Combining the findings

We investigated whether a mixed tuning strategy for hyperparameters could enhance classification performance,
building on our previous findings. For each algorithm, we tuned the following parameters: m from the set
{201,401}, vegpana from the set of {—0.05,0.05,0.1} using the both strategy, and three values for one of
algorithm-specific parameter: 5, for ReBRAC, IQL 7 for IQL, and N critics for LB-SAC. For ReBRAC and
IQL, the second parameter was held constant across all tasks (see . o/¢ was set to 0.75. To
enhance readability, we provide detailed per-dataset results in a separate tables in and EOP

results in [Table 4f under the +CE+MT rows (see also [Appendix HJ).

Per-dataset results indicate that the proposed strategy yields better performance in most cases, performing
on par in others, with the exception of LB-SAC on Gym-MuJoCo. It makes this approach the best choice
when no prior knowledge on optimal algorithm-specific parameters is available.

EOQOP results reveal that this tuning strategy is particularly effective for IQL, especially under a low fine-tuning
budget. For ReBRAC, benefits are apparent only under a high fine-tuning budget. Conversely, this strategy
did not perform well for LB-SAC. The suboptimal performance of LB-SAC can be attributed to the strong
dependence on ensemble size; due to computational constraints, we were unable to use an ensemble size of 50,
which is optimal for many datasets.

To conclude, our experiments show that the best performance with classification can be achieved by tuning
algorithm-specific hyperparameters in conjunction with classification parameters, particularly the support
range and the number of bins.

4.7 Learned Q-functions analysis

Finally, in we present the dynamics of the Q-function learning for ReBRAC and IQL on AntMaze
datasets, as they are of the most interest based on our results. For ReBRAC, modified versions have lower
Q-function values on average, but the learning pattern remains similar, except for CE4+MT, where the
Q-values are notably lower, and the shape of the curve is different. However, these differences in the Q-function
between CE+MT and CE4AT/CE+CT do not result in significant differences in average performance.
For IQL, the plots demonstrate that the usage of classification leads to more optimistic Q-functions, with a
significant gap between MSE and others. Unfortunately, there is no consistent pattern. We cannot claim that
a more optimistic Q-function is the core issue for IQL because, for example, CE4+MT is sometimes above
CE+CT, but this has no correlation with task performance.

5 Related Work

Prior research beyond the realm of RL has demonstrated the potential performance enhancements associated
with replacing regression with classification objectives (Van Den Oord et al., 2016; [Kendall et al.l 2017}
Rothe et al., [2018} Rogez et al., [2017). Within the RL domain, some studies have experimented with
employing classification objectives as a workaround, albeit without conducting comprehensive analyses of
this modification (Schrittwieser et al., [2020; [Hafner et al.l |2023; Hessel et al.l |2021; Hansen et al., |2023)).
Categorical distributional RL (Bellemare et al 2017)) works are also relevant for the considered topic, where
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Figure 4: Q-value functions behaviour for ReBRAC and IQL on AntMaze tasks. Shaded area demonstrates
standard deviation across ten random seeds.

the classification is also used, however usage of classification instead of regression is not a central topic in
this reseach direction. Additionally, several works in offline RL have demonstrated the benefits of utilizing
classification objectives for various tasks, albeit lacking in-depth analyses of this specific component and its
elements (Kumar et all 2022; [Springenberg et al., 2024)).

To the best of our knowledge, (Farebrother et al. [2024)) represent the first and only study to make regression
replacement with classification a central research question. The authors compared different methods of
converting regression targets into classification targets, providing experimental results across a diverse array
of tasks encompassing Atari games, robotics, and natural language processing problems in online and offline
RL setups. Their study revealed that HL-Gauss (Imani & White| 2018) represents the optimal approach
for representing RL regression targets with categorical distributions while this was not the case for the
supervised regression tasks (Imani & White) [2018). The authors assert that cross-entropy serves as a "drop-in"
replacement for MSE in RL, leading to a more stable training process and enhanced scalability with deep
neural network architectures such as Transformers (Vaswani et al.l |2017) or ResNets 2016). Our
work draws primary inspiration from (Farebrother et al [2024) and aims to provide a more in-depth analysis
of this phenomenon in offline RL, which we believe holds significant potential benefits for both offline RL
researchers and practitioners.
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6 Conclusion

In this study, we explored the impact of integrating classification objectives into offline RL algorithms.
Our findings provide nuanced insights into the efficacy of classification in improving offline RL algorithm
performance. Initially, we examined whether classification objectives could be seamlessly integrated into
existing algorithms without altering other aspects. While some algorithm with policy regularization (ReBRAC)
demonstrated promising results across various tasks , other algorithms with implicit regularization (IQL) and
algorithm with Q function regularization (LB-SAC) faced challenges. And the only case when classification
have high chances to bring improvement without much effort is the divergence of Q function with MSE loss.

Next, we explored the impact of different hyperparameter tuning with classification objectives. Notably, we
observed performance improvements for ReBRAC, when tuning classification hyperparameters over algorithm-
specific ones. Other results underscore the importance of carefully selecting both types of hyperparameters:
algorithm-specific and classification-specific, when employing classification.

Furthermore, our investigation into the scalability of MLPs with classification revealed mixed results.
Contrary to previous findings with architectures like Transformers and ResNets, we did not observe consistent
improvements in scaling when using classification objectives with MLPs. This highlights the importance of
considering the architectural nuances of different models when assessing the potential benefits of classification
objectives.

Looking ahead, several avenues for future research emerge. One promising direction involves examining how
classification affects the performance of offline algorithms in offline-to-online RL setup. Understanding how
classification objectives impact the transferability of learned policies to online settings could provide valuable
insights into the practical applicability of classification usage. Another theoretically promising direction is
leveraging classification-specifics for uncertainty estimation in offline RL. For example, the entropy provided
by the @Q function could be used to incorporate pessimism into offline RL algorithms.

In conclusion, our study underscores the need for a nuanced understanding of the interplay between algorithm
design, task characteristics, and the integration of classification objectives in RL. While classification
holds promise in certain contexts, its efficacy is highly dependent on factors such as algorithm design and
hyperparameter selection. Future research could further explore these nuances and develop approaches that
leverage classification objectives optimally across a diverse range of RL tasks and algorithms.
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A Experimental Details

For results with original algorithms and algorithms hyperparameters search in [Table 1|[Table 2] and [Table 3]
we conducted a hyperparameter search and selected the best results from the final evaluations for each dataset.
We used the JAX implementation of ReBRAC from the Clean Offline RL (CORL) library (Tarasov et al.,
2024b)) and used the same code template for IQL and LB-SAC. Algorithmic part of IQL implementation is
based on the original codebase from Kostrikov et al.| (2021)) and in case of LB-SAC we have adapted SAC-N
implementation from https://github.com/Howuhh/sac-n-jax.

The experiments were conducted on RTX Titan, Quadro RTX 6000 and Quadro RTX 8000.

Our study utilized the v2 version of datasets for Gym-MuJoCo and AntMaze, and v1 for Adroit. The agents
were trained for one million steps in all domains and evaluated over ten episodes for Gym-MuJoCo and
Adroit and over one hundred episodes for AntMaze. Following |Chen et al.| (2022)), AntMaze reward function
is multiplied by 100.

For ReBRAC, we fine-tuned the (; parameter with 0.001,0.01,0.05,0.1 values and the [ parameter
with 0,0.001,0.01,0.1,0.5 values for Gym-MuJoCo and Adroit. For AntMaze the corresponding ranges
are 0.0005,0.001,0.002,0.003 and 0,0.0001,0.0005,0.001. When replacing regression with classification for
AntMaze we also set batch size to 1024 and learning rates to 0.001 as it is was done for Gym-MuJoCo in
original algorithm which slightly improves the performance.

For IQL in all domains, we selected /5 value from 0.5,1,3,6,10 and IQL 7 from 0.5,0.7,0.9, 0.95.
For LB-SAC we selected the number of critics in the range of 2,5, 10, 25, 50. Note, that for LB-SAC we used

sub-optimal parameters of the batch size and learning rate due to the computational constraints.

A.1 Mixed tuning hyperparameters choice

For ReBRAC, we fine-tuned the 3 parameter with 0.001,0.01,0.05 values and the (5 parameter was set to
0.001.

For 1QL, we selected IQL 7 from 0.5,0.7,0.9 and set 3 value to 3.
For LB-SAC we selected the number of critics in the range of 2,10, 25.

14
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B Hyperparameters

B.1 ReBRAC
Table 5: ReBRAC’s general hyperparameters.
Parameter ‘ Value
optimizer Adam Kingma & Ba/ (2014))
batch size 1024 on Gym-MuJoCo and AntMaze (for classification), 256 otherwise

learning rate (all networks)

tau (1)

hidden dim (all networks)
num hidden layers (all networks)

le-3 on Gym-MuJoCo and AntMaze (for classification), 3e-4 otherwise

5e-3
256
3

gamma () 0.999 on AntMaze, 0.99 otherwise
nonlinearity ReLU
Table 6: ReBRAC’s best hyperparameters.
Task Name | 81 (MSE) | 8> (MSE) | 81 (CE+AT) | B2 (CE+AT) | m (CE+CT) | ¢/¢ (CE+CT) | Bi (CE+MT) | m (CE+MT) | veapana (CE+MT)
halfcheetah-random 0.001 0.1 0.001 0.1 101 0.85 0.001 201 0.05
halfcheetah-medium 0.001 0.01 0.001 0.5 21 0.75 0.001 201 0.1
halfcheetah-expert 0.01 0.01 0.01 0.01 201 0.85 0.01 201 0.05
halfcheetah-medium-expert 0.01 0.1 0.01 0.001 101 0.85 0.01 201 0.1
halfcheetah-medium-replay 0.01 0.001 0.001 0.001 201 0.65 0.001 201 0.1
halfcheetah-full-replay 0.001 0.1 0.001 0.001 21 0.75 0.001 201 -0.05
hopper-random 0.001 0.01 0.001 0.5 201 0.85 0.001 401 -0.05
hopper-medium 0.01 0.001 0.01 0.001 201 0.75 0.01 201 -0.05
hopper-expert 0.1 0.001 0.1 0.1 401 0.65 0.05 401 0.1
hopper-medium-expert 0.1 0.01 0.1 0.0 101 0.75 0.05 401 0.05
hopper-medium-replay 0.05 0.5 0.05 0.0 101 0.75 0.01 401 -0.05
hopper-full-replay 0.01 0.01 0.01 0.0 101 0.65 0.01 201 0.05
walker2d-random 0.01 0.0 0.05 0.1 101 0.65 0.05 201 0.05
walker2d-medium 0.05 0.1 0.05 0.1 101 0.55 0.05 201 0.1
walker2d-expert 0.01 0.5 0.01 0.5 101 0.75 0.01 401 0.05
walker2d-medium-expert 0.01 0.01 0.01 0.5 401 0.85 0.05 401 0.05
walker2d-medium-replay 0.05 0.01 0.05 0.0 201 0.65 0.01 401 -0.05
walker2d-full-replay 0.01 0.01 0.001 0.001 201 0.55 0.001 201 0.1
antmaze-umaze 0.003 0.002 0.003 0.0 401 0.75 0.05 401 0.1
antmaze-umaze-diverse 0.003 0.001 0.003 0.002 201 0.75 0.01 201 0.1
antmaze-medium-play 0.001 0.0005 0.003 0.0005 201 0.65 0.001 401 0.05
antmaze-medium-diverse 0.001 0.0 0.003 0.002 201 0.85 0.01 401 0.1
antmaze-large-play 0.002 0.001 0.003 0.0005 101 0.75 0.01 401 0.1
antmaze-large-diverse 0.002 0.002 0.003 0.0005 401 0.75 0.01 401 0.1
pen-human 0.1 0.5 0.1 0.001 51 0.85 0.05 201 -0.05
pen-cloned 0.05 0.5 0.1 0.001 401 0.75 0.05 401 0.05
pen-expert 0.01 0.01 0.01 0.0 401 0.85 0.01 401 -0.05
door-human 0.1 0.1 0.1 0.1 401 0.85 0.001 401 -0.05
door-cloned 0.01 0.1 0.1 0.001 101 0.55 0.05 201 0.1
door-expert, 0.05 0.01 0.05 0.001 401 0.75 0.05 401 -0.05
hammer-human 0.01 0.5 0.1 0.001 51 0.85 0.05 201 -0.05
hammer-cloned 0.1 0.5 0.05 0.1 21 0.85 0.05 401 0.05
hammer-expert 0.01 0.01 0.01 0.5 401 0.55 0.01 401 0.1
relocate-human 0.1 0.01 0.1 0.01 201 0.55 0.05 201 0.05
relocate-cloned 0.1 0.01 0.1 0.0 401 0.75 0.05 201 0.1
relocate-expert 0.05 0.01 0.05 0.5 21 0.55 0.05 401 0.05
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Table 7: IQL’s general hyperparameters.

Parameter ‘ Value

optimizer Adam |Kingma & Bal 42014D

batch size 256

learning rate (all networks) 3e-4

tau (7) 5e-3

hidden dim (all networks) 256

num hidden layers (all networks) | 2

gamma () 0.99

nonlinearity ReLU

learning rate decay Cosine

dropout rate 0.1 for Adroit, 0 otherwise

Table 8: IQL’s best hyperparameters.

Task Name | IQL 7 (MSE) | 8 (MSE) | IQL 7 (CE+AT) | 8 (CE+AT) | m (CE+CT) | 0/¢ (CE+CT) | IQL 7 (CE4+MT) | m (CE+MT) | verpana (CE+MT)
halfcheetah-random 0.95 10.0 0.5 3.0 401 0.55 0.7 401 -0.05
halfcheetah-medium 0.95 3.0 0.5 10.0 401 0.55 0.7 401 0.1
halfcheetah-expert 0.7 6.0 0.7 1.0 401 0.55 0.5 401 0.1
halfcheetah-medium-expert 0.5 0.5 0.5 3.0 401 0.75 0.7 401 0.1
halfcheetah-medium-replay 0.9 6.0 0.5 6.0 401 0.55 0.7 401 0.1
halfcheetah-full-replay 0.5 0.5 0.5 6.0 401 0.55 0.5 401 0.1
hopper-random 0.95 10.0 0.95 6.0 51 0.85 0.9 201 -0.05
hopper-medium 0.7 0.5 0.7 10.0 51 0.85 0.5 201 0.05
hopper-expert 0.9 0.5 0.7 3.0 201 0.75 0.9 201 -0.05
hopper-medium-expert 0.7 10.0 0.5 3.0 201 0.85 0.5 401 0.05
hopper-medium-replay 0.7 0.5 0.5 6.0 401 0.85 0.7 401 0.05
hopper-full-replay 0.7 3.0 0.5 3.0 401 0.55 0.5 401 -0.05
walker2d-random 0.9 0.5 0.95 3.0 21 0.65 0.9 401 0.1
walker2d-medium 0.5 1.0 0.5 0.5 101 0.55 0.7 401 0.1
walker2d-expert 0.7 6.0 0.7 10.0 401 0.55 0.7 401 0.05
walker2d-medium-expert 0.7 3.0 0.5 6.0 401 0.85 0.5 401 0.1
walker2d-medium-replay 0.7 1.0 0.5 6.0 401 0.75 0.7 401 0.05
walker2d-full-replay 10.0 0.7 0.5 1.0 401 0.55 0.7 401 0.1
antmaze-umaze 0.7 10.0 0.5 3.0 101 0.65 0.9 201 0.05
antmaze-umaze-diverse 0.9 10.0 0.9 6.0 51 0.75 0.5 201 0.05
antmaze-medium-play 0.9 6.0 0.9 1.0 51 0.75 0.9 401 0.1
antmaze-medium-diverse 0.9 6.0 0.95 6.0 51 0.75 0.9 401 0.1
antmaze-large-play 0.9 10.0 0.9 10.0 101 0.75 0.9 401 0.1
antmaze-large-diverse 0.9 6.0 0.95 3.0 201 0.55 0.9 201 0.05
pen-human 0.7 0.5 0.7 1.0 201 0.85 0.9 201 -0.05
pen-cloned 0.9 10.0 0.5 0.5 401 0.65 0.5 401 0.1
pen-expert 0.9 0.5 0.5 10.0 401 0.75 0.5 401 -0.05
door-human 0.95 1.0 0.9 6.0 401 0.75 0.9 201 0.1
door-cloned 0.7 1.0 0.9 0.5 21 0.75 0.7 201 0.1
door-expert 0.9 10.0 0.9 6.0 101 0.55 0.7 201 0.05
hammer-human 0.9 10.0 0.7 3.0 21 0.55 0.7 401 -0.05
hammer-cloned 0.7 6.0 0.7 10.0 21 0.65 0.7 201 0.1
hammer-expert 0.95 0.5 0.95 0.5 401 0.65 0.9 401 -0.05
relocate-human 0.7 10.0 0.7 1.0 101 0.75 0.9 401 0.05
relocate-cloned 0.7 1.0 0.7 1.0 201 0.65 0.9 401 0.05
relocate-expert 0.5 0.5 0.95 0.5 401 0.75 0.9 401 0.1
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B.3 LB-SAC
Table 9: LB-SAC’s general hyperparameters.

Parameter ‘ Value

optimizer Adam Kingma & Ba (2014])

batch size 1024

learning rate (all networks) Ge-4

tau (1) 5e-3

hidden dim (all networks) 256

num hidden layers (all networks) | 3

gamma () 0.99

nonlinearity ReLU

Table 10: LB-SAC’s best hyperparameters.

Task Name N critics (MSE) | N critics (CE+AT) | m (CE+CT) | 0/¢ (CE+CT) | N critics (CE+MT) | m (CE4+MT) | vezpana (CE+MT)
halfcheetah-random 2 50 51 0.75 2 201 0.1
halfcheetah-medium 2 5 101 0.75 10 201 -0.05
halfcheetah-expert 5 5 51 0.85 10 201 0.05
halfcheetah-medium-expert 5 5 201 0.85 10 201 -0.05
halfcheetah-medium-replay 5 5 201 0.85 10 201 0.1
halfcheetah-full-replay 2 2 201 0.75 2 401 -0.05
hopper-random 5 25 201 0.85 25 401 -0.05
hopper-medium 25 25 201 0.75 25 401 0.1
hopper-expert 50 50 201 0.65 25 401 0.05
hopper-medium-expert 50 50 51 0.75 25 201 0.1
hopper-medium-replay 5 5 101 0.85 10 201 0.05
hopper-full-replay 5 5 51 0.75 10 201 0.05
walker2d-random 50 5 51 0.75 10 201 0.05
walker2d-medium 10 10 101 0.85 10 201 -0.05
walker2d-expert 25 50 201 0.65 25 401 -0.05
walker2d-medium-expert 10 25 201 0.85 10 401 0.05
walker2d-medium-replay 5 5 101 0.85 10 201 0.1
walker2d-full-replay 5 5 201 0.85 10 201 0.1
antmaze-umaze 5 5 201 0.65 2 201 0.1
antmaze-umaze-diverse 25 2 101 0.75 2 401 0.05
antmaze-medium-play 25 5 101 0.75 2 401 0.05
antmaze-medium-diverse 25 5 101 0.75 2 401 0.05
antmaze-large-play 25 25 101 0.75 25 201 0.1
antmaze-large-diverse 25 25 101 0.75 25 201 0.1
pen-human 5 10 51 0.75 10 201 0.05
pen-cloned 50 50 51 0.65 25 201 -0.05
pen-expert 25 25 201 0.85 25 201 0.1
door-human 2 50 51 0.75 25 201 0.05
door-cloned 50 50 201 0.85 25 201 0.05
door-expert 50 50 201 0.75 25 401 0.05
hammer-human 5 50 101 0.75 2 201 -0.05
hammer-cloned 50 25 51 0.85 10 201 -0.05
hammer-expert 25 25 201 0.85 10 401 0.05
relocate-human 2 50 101 0.65 25 401 0.1
relocate-cloned 50 50 101 0.85 25 201 -0.05
relocate-expert 50 25 101 0.75 25 401 -0.05
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C Computational Costs

Table 11: Computational costs for all experiments. Note, ReBRAC computational costs are taken from
Tarasov et al.| (2024al). The total amount of compute is approximately 23497 hours (979 days).

Algorithm ‘ Number of runs Approximate hours per run
ReBRAC+MSE, tuning 2784 0.39
ReBRAC+CE+AT, tuning 2784 0.34
ReBRAC+CE+CT, tuning 2880 0.48
ReBRAC+CE+MT, tuning 2592 0.50
IQL4+MSE, tuning 2880 0.3
IQL4+CE+AT, tuning 2880 0.26
IQL+CE+CT, tuning 2880 0.27
IQL+CE+MT, tuning 2592 0.30
LB-SAC+MSE, tuning 720 1.29
LB-SAC+CE+AT, tuning 720 1.61
LB-SAC+CE+CT, tuning 1296 2.32
LB-SAC+CE+MT, tuning 2592 1.56
ReBRAC+MSE, eval 360 0.36
ReBRACH+CE, eval 144 0.45
ReBRAC+CE+AT, eval 144 0.47
ReBRACH+CE+CT, eval 144 0.47
ReBRAC+CE+MT, eval 144 0.34
IQL+MSE, eval 144 0.35
IQL+CE, eval 144 0.33
IQL+CE+AT, eval 144 0.24
IQL+CE+CT, eval 144 0.34
IQL+CE+MT, eval 144 0.34
LB-SAC+MSE, eval 144 1.25
LB-SAC+CE, eval 144 1.34
LB-SAC+CE+AT, eval 144 1.69
LB-SAC+CE+CT, eval 144 2.21
LB-SAC+CE+MT, eval 144 1.89
ReBRAC+MSE, depth scale 720 0.61
ReBRAC+HCE, depth scale 720 0.38
IQL+MSE, depth scale 720 0.35
IQL+CE, depth scale 720 0.38
ReBRAC, Vegpand 1440 0.45
IQL+CE, Vezpand 1440 0.34
LB-SACHCE, vegpand 1440 2.53
Sum (w/o ReBRAC MSE) ‘ 34032 0.69
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D MLPs Scale

Table 12: Dependency of the algorithms performance on the number of additional layers averaged over
domains.

Domain Algorithm \ 40 layers +1 layer +2 layers -3 layers 44 layers
ReBRAC 80.3 81.4 79.7 79.1 80.1
Gym-MuJoCo ReBRAC+HCE 80.3 79.2 78.8 78.7 80.0
IQL 74.0 72.3 68.1 68.3 70.7
IQL+CE 62.4 56.5 57.7 57.0 534
ReBRAC 76.4 75.8 61.2 55.8 52.2
ReBRAC+HCE 89.2 88.2 86.4 87.8 81.0
AntMaze
IQL 64.5 52.4 52.0 46.2 49.1
IQL+CE 17.0 18.6 15.0 16.8 18.2
ReBRAC 58.1 59.5 55.0 53.4 52.6
. ReBRAC+HCE 55.2 55.9 55.3 58.8 56.0
Adroit
IQL 33.0 374 35.2 33.3 26.4
IQL+CE 48.9 50.9 50.9 48.7 51.7

E Impact of m and o/(

Table 13: Average performance on different domains for a fixed m value and averaged over o /(.

Domain Algorithm ‘ 21 51 101 201 401
ReBRACHCE | 776 78.0 80.2 795 76.7
Gym-MuJoCo IQL4-CE 484 52.6 589 654 66.6
LB-SACHCE - 59.0 65.9 652 -
ReBRACHCE | 63.7 87.1 894 89.1 89.2
AntMaze IQL+CE 155 164 16.8 159 16.1
LB-SACHCE - 60 82 93 -
ReBRAC+CE | 56.2 569 55.5 57.9 58.0
Adroit IQL+4-CE 49.3 475 49.8 50.3 50.9
LB-SACHCE - 19.8 225 235 -
Average (w/o LB-SAC) | 51.7 56.4 584 59.6 59.5
Average | - 470 496 50.6 -
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Table 14: Average performance on different domains for a fixed o/¢ value and averaged over m.

Domain Algorithm | 0.55 0.65 0.75 0.85
ReBRAC+CE | 78.7 784 784 780
Gym-MuJoCo IQL+CE 59.2 581 583 57.8
LB-SAC+CE - 590 659 652
ReBRAC+CE | 853 830 838 827
AntMaze IQL+CE 161 165 163 15.7
LB-SAC+CE - 60 82 93
ReBRAC+CE | 56.8 56.8 57.3 56.6
Adroit IQL+CE 494 49.7  49.7 494
LB-SAC+CE - 198 225 235
Average (w/o LB-SAC) | 575 570 573  56.7
Average |- 474 489 486

F Impact of v,,;, and v,,.,

Table 15: Dependency of the algorithm’s performance on the vezpand parameter.

Domain Algorithm | -0.05 0.0 0.05 0.1 0.2

ReBRAC, both 81.0 79.9 804 798 80.2
ReBRAC, min 71.2 799 80.6 80.7 79.0

Gym-MuJoCo IQL, both 61.3 62.7 61.1 60.2 61.1
IQL, min 61.4 62.7 582 57.7T 56.7

LB-SAC, both 59.9 64.0 66.1 675 65.6
LB-SAC, min 65.8 64.0 64.7 66.1 64.5

ReBRAC, both 90.1 86.3 89.0 89.3 83.6
ReBRAC, min 90.2 86.3 87.5 89.8 86.4

AntMaze IQL, both 16.7 16.6 348 33.0 228
IQL, min 169 16.6 162 162 16.2
LB-SAC, both 35 81 60 6.0 4.25

LB-SAC, min 10.3 8.1 75 72 35

ReBRAC, both 56.5 54.3 555 599 552
ReBRAC, min 56.7 54.3 56.6 57.7 56.8

Adroit IQL, both 49.7 49.2 51.8 51.1 51.0
IQL, min 494 49.2 50.9 50.0 47.6

LB-SAC, both 23.5 223 245 228 19.1
LB-SAC, min 21.3 223 193 188 21.0
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G Mixed Tuning Results

Table 16: Average normalized score over the final evaluation and ten (four for LB-SAC) unseen training seeds
on Gym-MuJoCo tasks. CE4+MT denotes cross-entropy with mixed hyperparameters tuning.

ReBRAC 1QL LB-SAC
Task MSE CE CE+MT | MSE CE CE+MT | MSE CE CE+MT
he-r 295+ 15 134408 92406 | 189+1.0  19+00  90+£30] 282+14 100£03 99402
hem | 65.6+£ 1.0 595407  62.0+£05 | 495+ 1.1 425+03 468+ 0.1 | 645+13 56.7+£21 655£05
hee | 1059+ 1.7 103.2455 1045431 | 958422 929402 944+03 | 1030+ 1.5 1039+ 1.0 982+ 1.6
heme | 101.1£52 1035+ 43 1044 £27 | 9234+24  865+40 90.7+36 | 1045+ 24 1054 £20 103.2£ 20
hemr | 51.0£08  50.7+0.7 521456 | 452405 381+18 433+£02 | 528£07 554+£09 545+ L1
he-fr 821+ 1.1 832415  82+1.7| 755+£05 626+ 11 732£05| 79.0+£20 80.7+03 766+ 9.7
hp-r 81424  81%09 85+£40| 6.0£28 142428  95+05|145+115  82+22 148+£110
hpm | 102.0£ 1.0 9894094 1020+ 04 | 5484+ 44 541+20 50.1+58|900+£275  79+£08 156+ 135

hp-e 100.1 £ 8.3 1079 £ 4.9 110.5 £ 0.4 | 109.4 £ 1.8 110.5 £ 0.5 110.7 £ 0.2 1.3+ 00 21.6+39.7 128+ 128
hp-me | 107.0 £ 6.4 111.6 £ 0.5 105.4 £ 84 | 885 £ 16.5 640+ 102 794 £29.0 | 111.3 £ 0.3 149 £ 7.0 9.1£55
hp-mr 98.1 + 5.3 98.7 £ 3.0 100.2 £ 6.4 95.9 £ 6.4 715+ 10.1 837+ 11.2 | 63.0 £ 481 66.9 & 42.8 66.7 & 32.7
hp-fr 1071 £ 04 1082 £ 0.3 108.5 £ 0.4 | 107.2 £ 0.6 419+ 48 1057+ 0.3 | 107.0 £ 0.7 65.6 = 50.2 100.3 £ 2.6

wl-r 184+45  88%44 71£54 | 64+£63  39+21  93+57| 2L7+£00 201+£29 21.7£0.1
wkm | 825436 8.1+27 845426 | 832+12 799£13 80642 | 89.3+53 89.6+107 959+ 33
whke | 1123 4+02 1127+0.1  1123+£03 | 1138 £02 1085+ 02 1095+ 0.2 | 1142+ 04 598 £450 109.8 £ 1.2
whkme | 111.6 £ 0.3 1117+ 0.1 1101402 | 1123 £06 922465 1109+ 03 | 110.6 £ 04 731+ 181 1113 £ 2.5
whkmr | 77.3+79 852+ 67 83+ 147 | 820+79 59.1+£88 833£30| 926+27 90.9+53 843 +89
whfr | 10224+ 1.7 101.8+56 1008 +19.5 | 97.7+ 14 853433 937+ 1.1 | 1021410 1104+1.9 957+ 4.0
Avg | 81.2 80.6 80.4 | 74.1 61.6 71.3 | 74.9 57.8 63.6

Table 17: Average normalized score over the final evaluation and ten (four for LB-SAC) unseen training seeds
on AntMaze tasks.

ReBRAC IQL LB-SAC
Task | MSE CE CE+MT | MSE CE CE+MT | MSE CE CE+MT
um 978+ 1.0 98.0+21 975+20|79.1+68 50.0+46 80.0+£52 | 1825 +35.8 41.0+332 61.0 % 137
um-d | 883 +£13.0 93.0+45 89.0£63 | 725+£45 487+£69 458 £55 0.0£00  00£00  1L0£20
med-p | 840+42 830+63 89.7+50|73.8+54 02£04 51.4=£100 0.0£00  00£00 0000
med-d | 763+ 135 848+93 898+ 54| 748+38 04£09 439+£71 00£00  00£00 80160
Irgp |604+261 859+63 86.2+66|41.3+70 00£00 118%19 00£00  00£00 0000
Irg-d | 544£251 871441 809+68|237+56 00%£00  43%3.1 0.0£00  00£00 0000
Avg | 76.8 89.4 88.8 | 60.8 16.5 395 | 3.0 6.8 11.6
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Table 18: Average normalized score over the final evaluation and ten (four for LB-SAC) unseen training seeds

on Adroit tasks.

ReBRAC IQL LB-SAC
Task MSE CE  CE+MT | MSE CE  CE+MT | MSE CE  CE+MT
pen-h 103.5 & 141 102.3 £ 102 86.0+ 145 | 21.1 £ 168 1082+ 84 105.0 + 13.3 45+£26  71£56 6.2+85
pen-c 91.8 £21.7 9034 142 10224204 | 13.24£21.6 125+ 147 1008+ 11.9 | 261+53 200+£45 166 £85
pen-e 1541 £ 54 1550 £58 1579 £ 1.2 | 60.2£37.7 1349+ 70 147.0 £ 66 | 1305 £ 168 380 £ 132  55.3 £ 50.6
door-h 0.0 £ 0.0 0.0 £ 0.0 00£00| 59+25  43+£10 0.8+ 0.5 02+01 02401 0201
door-c 11+£26 0.0 +0.0 00+£00| 02£03  03£03 6.3+ 138 00£00  02%05 0.0 £ 0.0
door-e 104.6 £ 24 105.7+ 1.5 1057+ 1.4 | 1054+ 2.0 106.1+05 1058+00 | 95086 70.6+338  80.6 % 6.2
ham-h 02402 0.140.1 21427 | 1.7£08  15£07 3.8 452 01£00  00%00 0.1+ 0.0
ham-c 6.7+£37  97+£104 29424 | 02+£00  1L0+07 0.9£06 | 202+168 13.6+£ 154 03+05
ham-e 133.8 £ 0.7 12294197 1305+ 11.9 | 1295+ 02 1295+ 0.1 1288+ 0.1 | 76.6+59.5 911+ 105 129.3 £ 14.7
rel-h 0.0 £ 0.0 0.0 £ 0.0 00£02] 0101 0.1+0.0 0.1+ 0.0 00£00 -0.1+£00 0.0 £ 0.0
rel-c 0.9+ 16 0.4+05 . 20 01401 01401 0.1+ 0.1 00£00 -01+00 0.0+ 0.0
rel-e 106.6 =32 1078 £33  1085+22 | 1082409 1057+ 1.8 1100+ 07 | 267+ 188 53 %35 0.6 £ 0.2
Avg w/oe | 25.5 25.3 24.1 | 5.3 16.0 272 | 6.3 5.0 2.8
Avg | 58.6 57.8 58.0 | 37.1 50.3 59.1 | 31.6 204 24.0
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H rliable Metrics
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Figure 5: rliable (Agarwal et al., [2021) metrics for ReBRAC, IQL, and LB-SAC averaged over all
Gym-MuJoCo, AntMaze and Adroit datasets. Ten evaluation seeds are used for ReBRAC and IQL and four
seeds for LB-SAC.
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I Classification Parameters Performance Heatmaps

1.1 ReBRAC, Gym-MulJoCo

ot

Figure 6: Heatmaps for the impact of the classification parameters on Gym-MuJoCo datasets for ReBRAC.
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1.2 ReBRAC, AntMaze
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Figure 7: Heatmaps for the impact of the classification parameters on AntMaze datasets for ReBRAC.

1.3 ReBRAC, Adroit
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1.4 1QL, Gym-MulJoCo
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Figure 9: Heatmaps for the impact of the classification parameters on Gym-MuJoCo datasets for IQL.
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1.5 IQL, AntMaze
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Figure 10: Heatmaps for the impact of the classification parameters on AntMaze datasets

1.6 IQL, Adroit

1QL pen-human-v1

11440 106.52
112,97 10051
106.24
105.85 100.84

51
Number of classes

IQL door-human-v1

51 201
Number of classes

1QL hammer-human-v1

51 101 201
Number of classes

1QL relocate-human-vl

51 2
Number of classes

Figure 11:

1QL pen-cloned-v1

21.55

1671  16.00

51 101 201
Number of classes

1QL door-cloned-v1

51 201
Number of classes

IQL hammer-cloned-v1

51
Number of classes

1QL relocate-cloned-v1

51 201
Number of classes

27

16.25

QL pen-expert-vl

122.14 [136.62

51 101 201
Number of classes

1QL door-expert-v1

103.12 102.89 99.78

51 101 201
Number of classes

1QL hammer-expert-v1

107.79

106.24

51 101 201
Number of classes

1QL relocate-expert-v1

105.12 105.70

106.35 105.82

102.24 [106.05 N106:58

51 101 201
Number of classes

96.56

401

Scores.

104
102
100
98

for IQL.

Heatmaps for the impact of the classification parameters on Adroit datasets for IQL.



Under review as submission to TMLR

1.7 LB-SAC, Gym-MuJoCo
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Figure 12: Heatmaps for the impact of the classification parameters on Gym-MuJoCo datasets for LB-SAC.
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1.8 LB-SAC, AntMaze
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Figure 13: Heatmaps for the impact of the classification parameters on AntMaze datasets for LB-SAC.
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1.9 LB-SAC, Adroit
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Figure 14: Heatmaps for the impact of the classification parameters on Adroit datasets for LB-SAC.
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