
Published as a conference paper at ICLR 2023

EFFICIENT DISCRETE MULTI-MARGINAL
OPTIMAL TRANSPORT REGULARIZATION

Ronak Mehta∗
UW-Madison

Jeffery Kline
Affirm

Vishnu Suresh Lokhande
UW-Madison

Glenn Fung
Liberty Mutual

Vikas Singh
UW-Madison

ABSTRACT

Optimal transport has emerged as a powerful tool for a variety of problems in
machine learning, and it is frequently used to enforce distributional constraints.
In this context, existing methods often use either a Wasserstein metric, or else
they apply concurrent barycenter approaches when more than two distributions are
considered. In this paper, we leverage multi-marginal optimal transport (MMOT),
where we take advantage of a procedure that computes a generalized earth mover’s
distance as a sub-routine. We show that not only is our algorithm computationally
more efficient compared to other barycentric-based distance methods, but it has
the additional advantage that gradients used for backpropagation can be efficiently
computed during the forward pass computation itself, which leads to substantially
faster model training. We provide technical details about this new regularization
term and its properties, and we present experimental demonstrations of faster
runtimes when compared to standard Wasserstein-style methods. Finally, on a
range of experiments designed to assess effectiveness at enforcing fairness, we
demonstrate our method compares well with alternatives.

1 INTRODUCTION

The use of Optimal transport (OT) is now prevalent in many problem settings including information
retrieval (Balikas et al., 2018; Yurochkin et al., 2019), image processing (Bonneel et al., 2014),
statistical machine learning, and more recently, for ethics and fairness research (Kwegyir-Aggrey
et al., 2021; Lokhande et al., 2020a). OT is well-suited for tasks where dissimilarity between two or
more probability distributions must be quantified; its success was made possible through dramatic
improvements in algorithms (Cuturi, 2013; Solomon et al., 2015) that allow one to efficiently optimize
commonly used functionals. In practice, OT is often used to estimate and minimize the distance
between certain (data-derived) distributions, using an appropriately defined loss functional. When
one seeks to operate on more than two distributions, however, newer constructions are necessary to
effectively estimate distances and transports. To this end, a well studied idea in the literature is the
“barycenter,” identified by minimizing the pairwise distance between itself and all other distributions
given. The d-dimensional proxy distance is then defined as the sum of the distances to the barycenter.

Computing barycenters. Assuming that a suitably regularized form of the optimal transport loss is
utilized, the pairwise distance calculation, by itself, can be efficient – in fact, in some cases, Sinkhorn
iterations can be used (Cuturi, 2013). On the other hand, to minimize distances to the mean, most
algorithms typically operate by repeatedly estimating the barycenter and those pairwise distances,
and using a “coupling” strategy to push points toward the barycenter, or in other cases, summing
over all pairwise distances. As the number of distributions grows, robustness issues can exacerbate
(Alvarez-Esteban et al., 2008) and the procedure is expensive (e.g., for 50 distributions, 50 bins).

A potential alternative. Multi-marginal optimal transport (MMOT) is a related problem to the
aforementioned task but to some extent, the literature has developed in parallel. In particular, MMOT
focuses on identifying a joint distribution such that the marginals are defined by the input distributions
over which we wish to measure the dissimilarity. The definition naturally extends the two-dimensional
formulation, and recent work has explored a number of applications (Pass, 2015). But the MMOT
computation can be quite difficult, and only very recently have practical algorithms been identified
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Figure 1: Starting and ending state of minimizing a multi-marginal OT distance. Each iteration minimizes the
generalized Earth Mover’s objective, and then updates each histogram in the direction provided by the gradient.

(Lin et al., 2022). Additionally, even if a suitable method for computing an analogous measure of
distance were available, minimizing this distance to reduce dissimilarity (push distributions closer
to each other) is practically hard if standard interior point solvers are needed just to compute the
distance itself.

Why and where is dissimilarity important? Enforcing distributions to be similar is a generic goal
whenever one wishes some outcome of interest to be agnostic about particular groups within the
input data. In applications where training deep neural network models is needed, it is often a goal
to enforce distribution similarity on model outputs. For example, in Jiang et al. (2020), the authors
define fairness measures over the probability of the prediction, given ground truth labels. However,
these methods are rarely extended to continuous measures among internal neural network activations,
mainly due to the strong distributional assumptions needed (product of Gaussians) and the added
algorithmic complexity of estimating the barycenter. These issues limit application of these ideas
to only the final outputs of neural network models, where the distribution is typically binomial or
multinomial. MMOT solutions might be employed here, but suffer similar computational limitations.

Contributions. (1) We identify a particular form of the discrete multi-marginal optimal transport
problem which admits an extremely fast and numerically robust solution. Exploiting a recent extension
of the classical Earth Movers Distance (EMD) to a higher-dimensional Earth Mover’s objective, we
show that such a construction is equivalent to the discrete MMOT problem with Monge costs. (2)
We show that minimization of this global distributional measure leads to the harmonization of input
distributions very similar in spirit to the minimization of distributions to barycenters (see Figure 1).
(3) We prove theoretical properties of our scheme, and show that the gradient can be read directly off
from a primal/dual algorithm, alleviating the need for computationally intense pairwise couplings
needed for barycenter approaches. (4) The direct availability of the gradient enables a specific neural
network instantiation, and with a particular scaffolding provided by differentiable histograms, we can
operate directly on network activations (anywhere in the network) to compute/minimize the d-MMOT.
We establish via experiments that computing gradients used in backpropagation is fast, due to rapid
access to solutions of the dual linear program. We compare with barycenter-like approaches in several
settings, including common fairness applications.

2 RELATED WORK

Despite originating with (Monge, 1781), optimal transport continues to be an active area of research
(Villani, 2009). The literature is vast, but we list a few key developments.

Early applications. Starting in (Peleg et al., 1989), the idea of shifting “mass” around within an
image was used for comparing images to each other and applied to image retrieval (Rubner et al.,
2000), where the term “Earth Mover’s Distance” (EMD) was introduced. EMD has since been widely
used in computer vision: e.g., for image warping (Zhang et al., 2011), in supervised settings (Wang
& Guibas, 2012), matching point sets (Cabello et al., 2008) and in scenarios involving histogram
comparisons (Ling & Okada, 2007; Wang & Guibas, 2012; Haker et al., 2004).

Modern machine learning. The continuous optimal transport problem (Monge-Kantorovich prob-
lem), was originally presented in (Kantorovich, 1942; Kantorovitch, 1958). While the continuous
problem has been studied intensively (Villani, 2021), uses of optimal transport within machine
learning were possible due to (Cuturi, 2013), which showed that entropic regularization enables
fast algorithms for EMD (two distributions with discrete support), and contributed to the success of
Wasserstein distances in applications. Consequently, problems including autoencoders (Tolstikhin
et al., 2018), GANs (Arjovsky et al., 2017), domain adaptation (Courty et al., 2016), word embeddings
(Huang et al., 2016) and classification tasks (Frogner et al., 2015) have benefited via the use of optimal
transport.
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Multi-marginal optimal transport. Extending optimal transport theory to an arbitrary number
of distributions has been studied on the theoretical side (Pass, 2015), and practical extensions have
been proposed (Lin et al., 2022). But implementations that integrate directly into machine learning
pipelines rely on either heuristics or modifications that result in an approximation of the original
MMOT problem (Cao et al., 2019).

Wasserstein barycenters. One use case of our algorithms will be in formulations that involve Wasser-
stein barycenters. Given a set of probability distributions, the Wasserstein barycenter minimizes the
mean of Wasserstein distances to each probability distribution in the set: a practical definition of the
mean under the transportation distance (Luise et al., 2019; Cuturi & Doucet, 2014; Agueh & Carlier,
2011; Janati et al., 2020). Applications of Wasserstein barycenter include texture analysis (Rabin
et al., 2011), sensor data fusion (Elvander et al., 2020), shape interpolation (Solomon et al., 2015),
coupling problems (Rüschendorf & Uckelmann, 2002) and others (Ho et al., 2017). Very recently,
polynomial time algorithms have been derived (Altschuler & Boix-Adsera, 2021).

Fairness. Proposals such as (Jiang et al., 2020; Chzhen et al., 2020; Gordaliza et al., 2019; Lokhande
et al., 2022b) have all regularized models towards outcomes which have equal predictive power over
subgroups within a population, measured using optimal transport distance. Informally, the idea is
to operate on distributions that are supported on disparate groups, and ask that the distributions get
“pushed” towards a common central distribution. This requires solving an optimal transport problem.
Kwegyir-Aggrey et al. (2021)

Greedy algorithms and extensions. Hoffman et al. (1963) observed that there exists a family
of linear-time greedy algorithms that solve the classical two-dimensional transportation problem.
Later, Bein et al. (1995) extended the relevant definitions and the greedy algorithm to d-dimensional
transportation problems. More recently, the results in Kline (2019), which we will use here, further
extended this result to the dual program, and several theoretical properties of the generalized Earth
Mover’s problem were shown. A slightly different generalized d-dimensional Earth Mover’s problem
is explored in Erickson (2020), with a focus on statistical generalization properties.

3 BACKGROUND

Denote by [n] := {1, . . . , n}, the set of positive integers no larger than n. For elements x ∈ Rn, we
denote the ith entry of x as x(i), e.g., for any x ∈ Rn, x = (x(i) : i ∈ [n]). The positive orthant of
Rn is denoted Rn

+ := {x ∈ Rn : x(i) ≥ 0, i ∈ [n]}. We denote by e := (1, . . . , 1) ∈ Rn the constant

vector. For q ≥ 1, we define the q-norm as ∥x∥q :=
(∑

i∈[n] |x(i)|
q
)1/q

, and if q is suppressed, then
∥x∥ := ∥x∥2. A discrete probability distribution is a point p ∈ Rn

+ with e′p = ∥p∥1 = 1.

Given a pair of discrete probability distributions p1, p2 ∈ Rn
+, we may want to quantify similarity.

Often, we do this by selecting from many measures, including the q-norm, KL-divergence or the Earth
Mover’s Distance (EMD). The EMD for a pair of distributions has several equivalent interpretations.
First, let p1 be a source of mass, and p2 be a sink for mass, and x(i, j), where x ∈ Rn×n, represent
the flow of mass from p1(i) to p2(j). Denote by c(i, j) the cost of moving one unit of mass from
p1(i) to p2(j). The EMD between p1 and p2 is the minimal cost to transform p1 into p2, written as a
linear program (LP):

min
x∈Rn×n

+

∑
i,j

c(i, j)x(i, j) s.t.
∑
j

x(i, j) = p1(i);
∑
i

x(i, j) = p2(j), (∀i, j ∈ [n]). (1)

The source-sink interpretation is asymmetric in p1 and p2, but the LP is symmetric in p1 and p2. It
can be shown that the objective value of this LP defines a metric (Kantorovich, 1960), and the optimal
value of the objective function can be interpreted as a distance between p1 and p2, and useful to
quantify dissimilarity between pairs of distributions. In particular, p1 = p2 if and only if the optimal
objective value of the Earth Mover’s problem vanishes. The LP in (1) has an equivalent dual LP,

max
z1,z2∈Rn

z⊤1 p1 + z⊤2 p2 s.t. z1(i) + z2(j) ≤ c(i, j), (∀i, j ∈ [n]). (2)

By strong duality, the optimal value of the primal program (1) equals the optimal value of the dual
program (2). Many practical relaxations have been proposed for (1), including entropic regularization
(Cuturi, 2013). Computation of the EMD is readily available, as in the Python Optimal Transport
(POT) library (Flamary et al., 2021).
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3.1 DISCRETE MULTI-MARGINAL OPTIMAL TRANSPORT

The foregoing approach applies only to d = 2 distributions, namely p1 and p2. We briefly review the
extension to d > 2 distributions; the literature calls this multi-marginal optimal transport (MMOT).

Definition 3.1 (Discrete Multi-Marginal Optimal Transport (d-MMOT)). Let p1, . . . , pd ∈ Rn
+ be

discrete probability distributions. Let Cd : Rnd → R+. The discrete multi-marginal optimal transport
problem (d-MMOT) can be written as

min
X∈Rn×···×n

Cd(X) s.t. Xi = pi, (∀i ∈ [d]),

where Xi ∈ Rn is the i-th marginal of X ∈ Rn×···×n = Rnd

.

Following the original formulation (Kantorovich, 1942), we will restrict the cost function Cd(·) to the
linear map, Cd(X) := ⟨c,X⟩⊗, where c ∈ Rn×···×n

+ is nonnegative. Here, the d-MMOT is the LP,

min
x∈Rnd

+

∑
i1,...,id

c(i1, . . . , id)x(i1, . . . , id) s.t.
∑

i2,...,id

x(i1, . . . , id) = p1(ii), (∀i1 ∈ [n])

...∑
i1,...,id−1

x(i1, . . . , id) = pd(id), (∀id ∈ [n]).

(3)

This linear program (LP) is central to the regularization schemes that are discussed below.

4 EFFICIENT D-MMOT COMPUTATION

The linear d-MMOT problem (3) suffers from the curse of dimensionality: the LP has nd variables,
and even modest choices of n and d can result in a LP with billions of variables, making standard
LP solvers inapplicable. Alternatively, specific algorithms have been proposed (Benamou et al.,
2015), and relaxations via entropic regularization have become more widespread, with very recent
extensions to the d-MMOT setting (Tupitsa et al., 2020; Lin et al., 2022).

In practice, the cost c in (3) typically takes one of two forms. In the case where the distributions
p1, . . . , pd are over categorical variables, the cost is typically defined as c(i1, . . . , id) = 0 when
i1 = · · · = id and 1 otherwise. However, and importantly, if the distributions pi are histograms over
some ordinal or discretized space, the cost typically has a structure closer to that of a “tensorized”
distance, characterized by the Monge property.

Definition 4.1 (Monge Property). A tensor c is Monge if for all valid i1, . . . id and j1, . . . , jd,

c(s1, . . . , sd) + c(t1, . . . td) ≤ c(i1, . . . id) + c(j1, . . . , jd) (4)

where sk = min(ik, jk) and tk = max(ik, jk).

Our focus is on a specific cost, which is known to be Monge: c(i1, i2, . . . , id) := max {ik : k ∈ [d]}−
min {ik : k ∈ [d]}. When d = 2, this cost reduces to c(i1, i2) = |i1 − i2|, which agrees with the
classical EMD cost. This choice of c is called the generalized EMD cost.
Remark 4.2. Limiting our attention to this cost is not as restrictive as it may appear. Indeed, Bein
et al. (1995) shows that the optimal solution to the LP (3) is independent of the cost, as long as it is
Monge. Additionally, when c is the generalized EMD cost, Kline (2019) describes a greedy algorithm
that solves both (3) and its dual (5) in linear time. It is also shown that the optimal objective value
is a continuous nonnegative function of each probability distribution pj (i.e., small changes in one
distribution cause small changes in the objective value). Continuity is critical for numerical stability.
Next, when c is the generalized Earth Mover’s array, the optimal objective value vanishes if and only
if pi = pj for all i, j ∈ [n]. This separability property is useful in applications where we wish to
iteratively “step towards” the barycenter of a set of distributions, see Fig. 2. In order to step towards
(red arrows) a barycenter, we require a descent direction. We observe that the following result gives
us this functionality.
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Figure 2: (Left) Barycenter methods identify a center (red circle) and transport all distributions (blue circles)
toward that center along the coupling path (yellow). (Right) Our DEMD approach identifies “support” distri-
butions that lie on the convex hull (outlined circles), and only those distributions are moved in a direction that
decreases the Generalized EMD objective.

Theorem 4.3. The dual linear program of the d-MMOT problem (3) is

maximize
zj∈Rn,j∈[d]

∑
j

p′jzj subject to z1(i1) + · · ·+ zd(id) ≤ c(i1, . . . , id), (5)

where the indices in the constraints include all ij ∈ [n], j ∈ [d]. Denote by ϕ(p1, . . . , pd), the
optimal objective value of the LP in (3). Let z∗ be an optimal solution to the dual program (5). Then,

∇ϕ(p1, . . . , pd) = z∗, and for any t ∈ R, ϕ(p1, p2, . . . , pd) =
∑
j

p′j(z
∗
j + t η),

where η := (z∗1(n) e, z
∗
1(n) e, · · · , z∗d(n) e).

Proof. The main observation invokes perturbation analysis (Mangasarian & Meyer, 1979; Ferris &
Mangasarian, 1991) of LPs to assert that, under mild uniqueness conditions, small changes to a LP’s
input data does not change its optimal solution. The full proof is in Appendix 7.1.

Remark 4.4. The first part of this result provides what we require: a direction of descent. Thus, if
we can solve the d-MMOT problem and also find the optimal solution to its dual, then we can step
(or move) our distributions in the opposite direction of the dual variables to push them together, see
Fig. 2. The second claim is somewhat technical, and reconciles particular affine shifts that result in
equivalent objective values.

4.1 OPTIMIZATION OF D-MMOT

Setup. We can now instantiate d-MMOT as an add-on term in a standard machine learning formula-
tion. Concretely, it can be positioned alongside typical learning losses L(f(x), y; θ) to encourage
minimizing distances among d different distributions gi ∈ G, i ∈ [d], d-MMOT(f(x), g; θ), i.e.,
minθ L(f(x), y; θ) + d-MMOT(f(x), g; θ). Within a deep neural network (DNN) architecture, as in
some of our experiments, several properties of the d-MMOT module are useful: our results above
naturally provide clean operations for computing both the required objective in the “forward” pass
and gradients in the “backward” pass.

Using the primal and dual variables. If the optimal objective value of (3) serves in regularizing
a deep neural network, then we can train the network as follows. During the forward pass, i.e.,
computing the d-MMOT objective, we can employ a version of the aforementioned primal/dual
algorithm that solely computes the function ϕ and stores the dual variables z. As backpropagation
proceeds, when the EMD module encounters an incoming gradient, it is simply multiplied by the
stored dual variables (see Theorem 4.3 and Algorithm 1). We call our procedure the d−dimensional
Earth Mover’s Distance, or in short, the DEMD algorithm.

Complexity. Computing the DEMD distance in the forward pass is exactly O(nd): linear in the
number of distributions and number of bins. This property follows directly from the algorithm,
needing only a single pass through all of the data. Bein et al. (1995) provides this result for greedy
algorithms that solve OT programs as in Def. 3.1. In contrast to methods that derive gradients
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Algorithm 1 Our proposed method: d−Dimensional Earch Mover’s Distance (DEMD)

function FORWARD(p1, . . . , pj)
Compute

∑
sktk and (z1, . . . , zd) via the primal/dual algorithm in Kline (2019).

save (z1, . . . , zd).
return

∑
k sktk

function BACKWARD(gradOutput)
load (z1, . . . , zd)
return (z1, . . . , zd) · gradOutput

via entropic regularization schemes, i.e., relaxations of the optimal transport problem (Luise et al.,
2018; Xie et al., 2020; Cuturi et al., 2020), this approach solves the distance computation exactly
in linear time. This linear time analysis is not only provided by the theory in prior work, but is also
explicit in the number of iterations defining our algorithm (see Appendix 7.4 for more details). For
minimizing the DEMD (computing the updates, i.e., red arrows in Fig. 2), a convergence analysis
would follow from the properties of the optimization scheme chosen. Our tool can be dropped in
exactly as any other module in modern learning applications (using the observation that gradients are
easily computed, i.e., O(1) time to read stored dual variables).

A few practical adjustments. It often happens during training that the optimal solutions may, through
updates by stepping in the direction of the gradient, acquire entries that are negative. This violates
an assumption that entries must be nonnegative. However, Thm. 2.2 in Kline (2019) shows that the
optimal objective value, ϕ, possesses a type of translation invariance. Leveraging this alongside the
second part of Thm 4.3, we ensure that, in the event that a point escapes the nonnegative orthant of
Rn, an appropriately constructed constant vector may be added to the current iterate so that it again
lies in the nonnegative orthant, without changing the objective value. Further, with a relatively small
learning rate, by the continuity of ϕ, normalization is a small perturbation of the original point and
can be applied as necessary to enforce that updates result in valid distributions.
Remark 4.5. Another useful property is that if the convex hull of (p1, . . . , pd) is contained in the
convex hull of (p̂1, . . . , p̂d̂), then ϕ(p1, . . . , pd) ≤ ϕ(p̂1, . . . , p̂d̂), with strict inequality if containment
is strict. A direct consequence of this property is that points within the interior of the convex hull of the
data fed to the optimization model have vanishing gradients. Practically, this leads to sparse gradients
w.r.t. the distributions, and nonzero gradients correspond to points on the hull, i.e., distributions
which are maximally different from the rest. Minimization proceeds by iteratively moving mass such
that these maximally different distributions are pushed toward each other. Fig. 2 shows the convex
hull during minimization of the generalized EMD objective via our DEMD algorithm.

Need for Histogramming. Note that outputs f(x) and intermediate activations are continuous values
(layer shape by batch size). So, we must transform activations into normalized histograms (i.e.,
discrete distributions). While libraries such as PyTorch and Tensorflow typically provide histogram
functions, they are not differentiable. The discontinuous operation of bin assignment does not allow
for an end-to-end pipeline where we can push upstream parameters in the direction of minimizing the
EMD objective over histograms. To address this, we use a simple relaxed/differentiable histogram-
ming operation. First, all outputs are mapped to [0, 1] using a Sigmoid activation. Then, for each bin
location, the “count” in that bin is determined by a ReLU function applied to the difference between
the gap between the activation and the distance to the bin boundary. In other words, if an activation
falls in a bin, the count of that bin increases based on the distance to the bin boundary, otherwise
the count remains the same. The full procedure is detailed in Appendix 7.2. The ReLU activations
defining bin boundaries allow for gradients to move samples towards neighboring bins as needed.

5 EXPERIMENTS

We evaluate our construction in a number of settings. First, we demonstrate the computational
speedup associated with evaluating d-MMOT using our algorithm, along with speedups associated
with directly computing the gradient. Next, we compute the construction in a series of neural network
tasks associated with ensuring distributional similarity: fairness, invariant representations, and
multi-domain matching. We provide a complete PyTorch Network Module that packages the above
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Figure 3: (Left) DEMD is positioned after the final layer, prior to the activation. Activations are sorted into
distributions utilizing group labels provided alongside the input data. Computed distributions are then brought
together using our algorithm. (Right) Computation times for direct distance evaluation of EMD-like distances.
Existing methods take much more time (y-axis is exponential) as the number of distributions grow.

differentiable DEMD objective and histogram functions, and serves as a plug-and-play regularization
module. Code is available at https://github.com/ronakrm/demd.

5.1 PERFORMANCE BENCHMARKS

Figure 4 presents NumPy and Torch instantiations of both forward and backward passes using
automatic differentiation and the gradients computed using the dual as in §4.1. As expected, the
forward (distance computation) times are comparable, but the backwards computation scales poorly
with the number of distributions to be updated using automatic differentiation. Our dual setting allows
the gradients to simply be read off (based on the forward pass), leading to no additional computation
overhead during backpropagation.
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Figure 4: Forward/Backward Pass Times for 10 Bins with varying number of distributions, averaged over 10
runs. Forward wall-clock times are comparable, regardless of backend (left pair: NumPy+SciPy; right pair:
PyTorch+AutoGrad). Direct reading of the gradient via the dual leads to significant gains in backward pass
times, where automatic differentiation scales poorly with the number of distributions.

We compare our DEMD computation to what one may use given existing Optimal Transport methods
in Figure 3 (right). Using standard off-the-shelf methods as a baseline, when the cost is Monge our
algorithm provides significant speedups in computation time, on the scale of orders of magnitude!
Further, if the number of distributions and bins increases, the time-cost for existing methods using
more generic LP solvers can become significant, and may become infeasible with generic solutions via
CVXPY (Diamond & Boyd, 2016). We compare our approach to two off-the-shelf implementations
of barycenters via the Python Optimal Transport (POT) Library (Flamary et al., 2021), along with
directly solving the Earth Mover’s problem via CVXPY. Even for 10 distributions over 10 bins,
CVXPY is unable to allocate the necessary memory using a direct instantiation.

5.2 GENERALIZED EM FAIRNESS ON FAIRNESS DATASETS

With a viable tool in hand, we move to practical applications in machine learning fairness, which
naturally requires enforcing closeness in model outputs. Here, we construct networks with our
DEMD regularizer, where we discretize the final activation output prior to classification, and push the
distributions of this activation to be similar among sensitive attributes.

Data. We identify 4 common fairness datasets often used to benchmark fair machine learning
algorithms: (1) the German Credit Dataset (Hofmann, 1994), (2) the Adult Income Dataset (Dua &
Graff, 2017), (3) the Communities and Crime Dataset (Redmond, 2009), and (4) The ACS Income
dataset, recently made available as a large, population-level demographic dataset (Ding et al., 2021)
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Table 1: Fairness Experiments. Measures evaluated using standard metrics: maximum Demographic Parity
Gap (DP), maximum Equalized Odds Gap (EO), and (DEMD). For all measures, lower values are preferred.
With comparable accuracy, DEMD regularization leads to fairer representations as measured by common metrics.
DP and EO measures are scaled by 100 for ease of presentation. Best results shown in bold.

German Adult Crime ACS-Income

DP EO DEMD DP EO DEMD DP EO DEMD DP EO DEMD

None 17(5) 11(2) 1.69(0.32) 18(1) 13(0) 1.69(0.07) 38(6) 45(3) 2.86(0.38) 37(1) 25(0) 4.78(0.32)
DP-Reg. 16(6) 10(3) 1.5(0.26) 17(1) 13(1) 1.6(0.07) 38(6) 45(3) 2.83(0.39) 48(4) 28(0) 5.02(0.31)
EO-Reg. 17(5) 11(2) 1.69(0.32) 14(1) 12(1) 1.43(0.07) 38(5) 44(3) 2.83(0.39) 38(1) 26(0) 4.82(0.32)
Bary-POT 27(5) 17(1) 1.5(0.21) 18(1) 13(0) 1.64(0.07) 36(5) 44(4) 2.81(0.3) 57(37) 50(44) 4.38(0.16)
DEMD (ours) 14(7) 9(4) 1.41(0.35) 15(1) 12(1) 1.44(0.08) 36(6) 44(3) 2.69(0.44) 33(0) 24(0) 3.6(0.29)

containing as many as nine sensitive attributes. We set up a simple three-layer neural network for
classification tasks with the addition of a fairness-type regularizer. We compare our construction
with 4 off-the-shelf plug-in regularizers: (1) No regularization, (2) Demographic Parity (DP), (3)
Equalized Odds (EO), and (4) a histogrammed barycenter construction. DP and EO regularizers were
computed using a PyTorch version of FairLearn (Bird et al., 2020), and the barycenter version was
implemented using POT library (with GPU backend). Because the scale of the regularization term is
not directly comparable, we sweep regularization weights and select the best over all measures for a
each dataset/regularizer pair. We use 10 bins and replicate all experiments over three random seeds.

Models. We set up two model settings with a standard logistic regressor and a 2-layer neural network.
We compare three types of plug-in regularizers: (1) Demographic Parity (DP), (2) Equalized Odds
(EO), and (3) the Generalized EMD. DP and EO regularizers were computed using a PyTorch
implementation of FairLearn (Bird et al., 2020).

Results. In the summary in Table 1, models were selected with the largest regularization weight
before accuracy dropped significantly. When accuracies are comparable, we see good performance
(when minimizing DEMD regularizer) against baseline methods. Notably, when accuracies are
similar across methods, minimizing DEMD tends to give better (lower) fairness measures across all
datasets. Summary: DEMD on the final network layer helps control multiple fairness measures.

5.3 HARMONIZATION FOR INVARIANT REPRESENTATIONS

Having evaluated the use of the DEMD layer to constrain the neural network for fairness measures,
we will now move to a more general problem of deriving invariant representations from the datasets.
Here, invariance is sought w.r.t. the sensitive attributes. Recent works (Lokhande et al., 2022a; Akash
et al., 2021) on invariant representation learning propose leveraging an encoder-decoder architectures
to map the dataset features to latent space representations. The latent space representations are
penalized to match or harmonize the distributions across several groups in the dataset. In contrast to
the previous section, the goal here is to identify a good mapping in the latent space that is devoid of
any group-related information in the dataset. Consequently, our evaluation metrics test if the latent
representations have a lower value of (i) ADV, adversarial measure and (ii) MMD, maximum mean
discrepancy measure. The measure ADV tests to what extent can a separate neural network predict
the group information from the latent features. Alternatively, the MMD scores measure the distance
between the probability distributions across groups. Prior works such as Li et al. (2014) and Xie
et al. (2017) optimize each of these measures separately. Our experiments (Table 2) show the DEMD
layer performs competitively with the baselines when applied on the latent space. Interestingly, these
performance gains come despite not directly optimizing the harmonization measures, in contrast to
baselines, which require several practical adjustments (batch variants and secondary neural networks).
Summary: DEMD as an intermediate layer can be used to derive invariant representations efficiently.

5.4 MULTI-DOMAIN IMAGE TRANSLATION

We apply our construction to a recent multi-marginal GAN framing of multi-domain image translation.
With the goal of learning a mapping for a source image to multiple target domains, a focal point of
recent literature has been to reduce the computational requirements of training individual models
for each target, and learn a concurrent matching problem over a number of shared parameters or
networks. MWGAN (Cao et al., 2019) set up a Multiple Marginal Matching problem in this context.
Extending upon their key observation that inter-domain constraints can be measured via the gradients
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Table 2: Harmonization Experiments. Evaluations conducted along three metrics, Accuracy (ACC), Adver-
sarial measure (ADV) and Maximum Mean Discrepancy (MMD). A lower value ↓ of ADV and MMD indicate
successful harmonization across the different groups. A higher ACC with a small drop from baseline is preferred.

German Adult Crime ACS-Income

ACC ↑ ADV ↓ MMD ↓ ACC ↑ ADV ↓ MMD ↓ ACC ↑ ADV ↓ MMD ↓ ACC ↑ ADV ↓ MMD ↓

None 74(0.9) 93(1.3) 7.7(0.8) 84(0.1) 83(0.1) 9.8(0.3) 85(0.2) 77(0.5) 14(0.1) 78(0.1) 98(0.7) 160(2)
Li et al. (2014) 73(1.5) 92(1.3) 1.5(0.3) 84(0.1) 83(0.1) 3.1(0.3) 85(0.5) 76(1.6) 12(1.0) 78(0.1) 97(0.5) 17(1.2)
Xie et al. (2017) 76(1.3) 93(0.6) 1.2(0.2) 84(0.04) 81(0.7) 4.2(2.4) 85(0.2) 76(0.7) 15(0.6) 78(0.1) 94(5.6) 99(2.9)
DEMD (ours) 74(1.1) 93(0.4) 2.1(0.4) 84(0.03) 82(0.2) 5.3(1.4) 83(0.3) 72(1.0) 7.1(1.0) 77(0.4) 96(0.5) 26(3.9)

Original Blond Hair Glasses Moustache Pale Skin Original Blond Hair Glasses Moustache Pale Skin

Figure 5: Six MWGAN+DEMD CelebA image translation results. Each row corresponds to a random sample in
the validation set. The leftmost image is the original source image, and sequential columns represent translations
to (1) Blonde Hair, (2) Glasses, (3) Moustache, and (4) Pale Skin. Using DEMD as a relaxation to the Multiple
Marginal Matching problem facilitates high quality images translation. For more results see Appendix 7.3.4.

for each domain, we instantiate our DEMD layer over the gradient norms computed for each sample
in a batch per group. Specifically, DEMD minimizes the differences between the distributions over
the gradient norms across all target domains. Using a weight of 100 for both regularizers, we observe
similar performance when compared to the original MWGAN construction. In Figure 5 we show
a few samples generated over an image translation task on the CelebA dataset. Here, we aim to
translate original dataset images to ones with specific target attributes. Summary: Multi-domain
image translation can be conducted by adding a DEMD layer in the native GAN construction.

6 DISCUSSION

We presented an efficient solution for solving common practical multi-marginal optimal trans-
port problems. Significantly cheaper to compute compared to similar methods, it allows for
large numbers of distributions to be matched in common DNN pipelines. Our implementation
allows imposing fairness constraints for a variety of applications, without the need for pair-
wise measures. As such, subgroup fairness (Kearns et al., 2018) is an interesting problem set-
ting that we believe can benefit. Other properties such as Minkowski additivity that have not
been explicitly leveraged in our experiments may also be a worthwhile direction to explore.

Figure 6: Sliced DEMD across projections.

In its current form, DEMD cannot be directly applied
to distributions over multi-dimensional discrete spaces,
such as images or latent spaces in generative models.
Slicing is a heuristic that has been shown to work well.
To evaluate feasibility, we embed distributions over multi-
dimensional continuous spaces, take random projections
over 1-D spaces, and recompute our DEMD measure.
Over a 64-dimensional latent space embedding of CelebA,
we can efficiently compute our DEMD measure over all
40 attribute subgroups, and observe convergent behavior
w.r.t. the number of projections.
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7 APPENDIX

7.1 PROOF OF THEOREM 4.2

Here, we present the proof of Theorem 4.2. The main observation in the proof invokes perturbation
analysis Mangasarian & Meyer (1979); Ferris & Mangasarian (1991) of linear programs to assert
that, under mild uniqueness conditions, small changes to a linear program’s data does not change the
linear program’s optimal solution. The informal reason why such a result is possible can be explained
using a short, geometric argument as follows.

The feasible set of a nontrivial linear program is a polytope, and, as a rule, an optimal solution to a
linear program lives at the point where a hyperplane defined by the objective functional intersects a
vertex of the polytope. A small perturbation of the hyperplane does not alter the intersecting vertex.
The derivative of a linear program’s optimal objective value, treated as a function of the data fed to
the LP, has been described several times in prior work, and under a variety of conditions De Wolf &
Smeers (2019); Freund (1985); Agueh & Carlier (2011); Mills (1957).

The second claim of Theorem 4.2 is useful because dual solutions to the generalized EMD linear
program are not unique. The claim explains how one can modify a given solution (found by a direct
gradient computation or else from an interior point solver, for example) so that it agrees with the
solution yielded by the primal/dual greedy algorithm.

Proof of Theorem 4.2. Let z∗j , for j ∈ [d], denote an optimal solution to the dual linear program of
equation equation 5 in the main paper. Standard sensitivity analysis of linear programs implies that
z∗j ∈ Rn (j ∈ [d]) is also optimal for the perturbed linear program,

maximize
zj∈Rn,j∈[d]

∑
j

(xj + εhj)
′zj

subject to z1(i1) + · · ·+ zd(id) ≤ c(i1, . . . , id),

where the indices in the constraints include all ij ∈ [n], j ∈ [d], ε > 0 is sufficiently small and
hj ∈ Rn are held fixed.

If ϕ(x1+εh1, . . . , xd+εhd) represents the optimal objective value of this program, then by linearity,

ϕ(x1 + εh1, . . . , xd + εhd)− ϕ(x1, . . . , xd) =
∑
j

h′
jz

∗
j .

Thus, we can form the directional derivative of ϕ as

lim
ε→0

ϕ(x1 + εh1, . . . , xd + εhd)− ϕ(x1, . . . , xd)

ε ∥h∥
=

∑
j h

′
jz

∗
j

∥h∥
,

where ∥h∥2 :=
∑

j ∥hj∥2. From this, it follows that

∇ϕ(x1, . . . , xd) = (z∗1 , z
∗
2 , . . . , z

∗
d).

This shows the first claim of the theorem.

To see the second claim, we have from Theorem 3.1 item 2 of Kline (2019) that∑
j

z∗j (i) = 0 (6)

for all i ∈ [n]. Consequently, if one defines
η = (z∗1(n)e, z

∗
2(n)e, · · · , z∗d(n)e),

then since we assume that e′xj = 1 for all j ∈ [d],∑
j

x′
j(z

∗
j + tη) =

∑
j

x′
jz

∗
j + t x′

jη

=
∑
j

x′
jz

∗
j + t

∑
j

z∗j (n)x
′
je

=
∑
j

x′
jz

∗
j ,

where the last equality holds by equation (6). This shows the second claim.
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7.2 DIFFERENTIABLE HISTOGRAMMING

Algorithm 2 Differentiable Histograms
1: function INIT(n) // bins, (discretization)
2: r := 1/n // bin size
3: locs := arange(0, 1, r) // bin boundaries
4: function FORWARD(acts)
5: cdfs = σ(acts) // compute CDFs
6: counts = []
7: for loc in locs do
8: dist = |cdfs− loc| // dist. to boundary
9: ct =

∑
i∈[nbins]

ReLU(r − dist[i]) // soft bucket count

10: counts.append(ct)

11: out = stack(counts)
12: out = out/sum(out)
13: return out

While gradients are now readily available, typical ML pipelines do not have distributions or histograms
predefined at outputs which can be fed directly into our EMD loss. Applying existing binning
procedures over the batch to estimate histograms will break the ability to autodifferentiate: soft
thresholds are necessary at bin boundaries such that samples within a bin may move smoothly as
needed. Algorithm 2 provides a differentiable histogram implementation. Using a rectified linear
relaxation allows for samples to have a continuous gradient towards neighboring bins.

7.3 EXPERIMENTAL DETAILS

Results reported in tables in the main paper are of the form M (SD), where M is the mean and SD is
the standard deviation calculated over replications.

Setup details. Experiments were conducted using NumPy and PyTorch on a Intel(R) Xeon(R)
CPU E5-2620 v3 @ 2.40GHz with an Nvidia Titan Xp GPU. Particular parameter settings and
experimental runs can be found below or in the scripts included with the code provided at https:
//github.com/ronakrm/demd.

7.3.1 DATA AND LICENSES

The datasets Adult, Communities and Crime, and German datasets are all available under Cre-
ative Commons Attribution 4.0 International (CC BY 4.0) licenses via the UCI Machine Learn-
ing Dataset Repository https://archive.ics.uci.edu/ml/index.php. The CelebA
dataset http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html is available for non-
commercial purposes. See the website for more details.
ACS Data. The American Census Survey (ACS) has recently made available a large set of de-
mographic data. The original UCI Adult dataset Dua & Graff (2017) was curated from this
data, however recent work by Ding et al. (2021) has identified temporal shifts in demographic
data, and recommends using a more recent collection as a baseline when evaluating biases and
adjusting for fairness. Part of their contribution includes APIs to directly interface with the
data provided by the ACS, and the ability to identify and construct similar problems associated
with the original UCI-provided dataset, albeit with updated data. Data for the income predic-
tion task was downloaded from 2018, localized to Louisiana. Race is the provided group label,
which we wish to be agnostic towards, over some measure of our output. Data was accessed
using the folktables codebase https://github.com/zykls/folktables with MIT Li-
cense. The US Census data accessed is available for use so long as it is not used in combination
with other data “to identify any particular respondent to a Census Bureau survey.” See https:
//www.census.gov/data/developers/about/terms-of-service.html for more
details.
German Data. The German dataset classifies people as good or bad credit risks. There are about 20
features (7 numerical and 13 categorical). These features represent the economic status of the person,
such as, credit history, savings account, year of present employment, property and others.
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Adult Data. The Adult dataset is comprised of demographic characteristics from the UCI repository
Dua & Graff (2017). The protected attribute here is gender. It contains 44, 842 samples. The features
that were used in the experiments include “age”, “workclass”, “fnlwgt”, “education”, “education-
num”, “marital-status”, “occupation”, “relationship”, “race”, “sex”, “capital-gain”, “capital-loss”,
“hours-per-week”, “native-country”, “income”. A positve target label in this dataset is indicated by
the attribute “income-bracket” being above $50K.
Communities and Crime Data. The Communities and Crime dataset consists of summary statistics
of per-capita measures from a wide variety of communities across the United States, measured from
a number of US census and surveys from the 1990’s. The original goal of the dataset was to predict
crime rates in communities as a function of various demographic, socioeconomic, and other features.
The dataset has widely become known as the prototypical example in which using racial population
distributions can be extremely harmful in perpetuating stereotypes and lead to models that continue to
exacerbate inequity that may exist within the data. As such, the dataset has become a de facto tool in
evaluating fairness metrics and methods that attempt to account for these inequities and biases. The
preprocessed data contains 1994 samples, and we attempt to predict the violent crime rate (binarized
at 0.3 after normalization between 0 and 1), and the sensitive attribute is a similarly binarized version
of the percentage black population variable.

CelebA Data. CelebA (Liu et al., 2015) consists of 200K celebrity face images from the internet
annotated by a group of paid adult participants. There are up to 40 labels available in the dataset,
each of which is binary-valued.

7.3.2 FAIRNESS EXPERIMENT DETAILS

All experiments related to fairness use a three-layer fully-connected neural network classifier with
a hidden layer size of 100. Numbers reported in Table 1 in the main paper are means and stan-
dard deviations over three replicate runs with different seeds. Hyperparameters were selected as
described in the main paper, by taking the best result for each dataset over the parameter range
λ ∈ [1.0, 0.1, 10, 0.01, 100, 0.001]. The full results of this sweep are presented in Table 3 and
Table 4.

The |DP | and |EO| measures are the gap between the corresponding conditional probability dis-
tributions when there is a single binary group attribute, and the largest gap (max − min) when
there are more than 2 groups. The DEMD loss is computed as described in the main paper with a
discretization/bin level of 10.

7.3.3 HARMONIZATION EXPERIMENT DETAILS

For all our experiments related to harmonization, we use an encoder-decoder framework comprising
of fully-connected layers. The hidden layers comprised of 64 nodes and the latent space was of
dimension 30. We report the mean and standard deviation on unseen test datasets for three random
runs. The hyper-parameter selection has been done on a validation split obtained from the training
dataset. The model that achieves the best ADV (the adversarial evaluation measure), with the test set
accuracy remains within 5% of the vanilla (titled “None” in the paper) model, is chosen.

Recall that the harmonization experiments aimed at minimizing the distributional differences of the
latent features across the groups. Below, we will provide details on the evaluation metrics, ADV and
MMD measures, that aptly assess distributional differences of the latent features.

Evaluation Metric: Adversarial Measure (ADV) The ADV measure corresponds to the accuracy
obtained by training a separate neural network to predict groups from the latent features. This step is
conducted post harmonization. A lower value of the ADV accuracy denotes that the latent features are
free of any group related information. This implies successful harmonization and suggests minimal
distributional differences of the latent features across groups. We follow (Xie et al., 2017) for training
the adversary used for reporting ADV measure. We use a three-layered fully-connected network
with batch normalization and train it with Adam optimizer for 200 epochs. The learning rate for the
adversary is decreased multiplicatively by a factor of 0.65 every 10 epochs for convergence.

Evaluation Metric: Maximum Mean Discrepancy (MMD) We simply use the following MMD
criterion as described in (Gretton et al., 2006) and evaluate the metric on the latent features obtained
from the test set. Each group is considered as a different distribution and a lower value of this metric
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Table 3: Fairness Experiments. Measures evaluated using standard metrics: maximum Demographic Parity
Gap (—DP—), maximum Equalized Odds Gap (—EO—), and (DEMD). For all measures, lower values are
preferred. With comparable accuracy, DEMD regularization leads to fairer representations as measured by
common metrics. DP and EO measures are scaled by 100 for ease of presentation. Best results shown in bold.

German Adult

Reg. Type λ —DP— —EO— DEMD —DP— —EO— DEMD

None 0 0.17(0.05) 0.11(0.02) 1.69(0.32) 0.18(0.01) 0.13(0.01) 1.69(0.07)

DP-Reg. 0.001 0.19(0.03) 0.12(0.0) 1.79(0.27) 0.18(0.01) 0.13(0.0) 1.64(0.07)
0.01 0.27(0.05) 0.17(0.01) 1.5(0.21) 0.13(0.01) 0.14(0.01) 0.99(0.09)
0.1 0.23(0.2) 0.12(0.1) 0.99(0.86) 0.02(0.03) 0.15(0.02) 0.28(0.09)
1.0 0.0(0.0) 0.19(0.17) 0.0(0.0) 0.0(0.0) 0.2(0.0) 0.0(0.0)
10.0 0.0(0.0) 0.1(0.17) 0.0(0.0) 0.0(0.0) 0.2(0.0) 0.0(0.0)
100.0 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.2(0.0) 0.0(0.0)

EO-Reg. 0.001 0.17(0.05) 0.1(0.02) 1.51(0.34) 0.18(0.01) 0.13(0.01) 1.67(0.07)
0.01 0.14(0.07) 0.09(0.04) 1.41(0.35) 0.15(0.01) 0.12(0.01) 1.44(0.08)
0.1 0.0(0.0) 0.0(0.0) 0.47(0.21) 0.03(0.01) 0.06(0.01) 0.29(0.02)
1.0 0.0(0.0) 0.0(0.0) 0.08(0.14) 0.0(0.0) 0.0(0.0) 0.0(0.0)
10.0 0.0(0.0) 0.19(0.17) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0)
100.0 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.2(0.0) 0.0(0.0)

Bary 0.001 0.17(0.05) 0.11(0.02) 1.69(0.32) 0.18(0.01) 0.13(0.01) 1.69(0.07)
0.01 0.17(0.05) 0.11(0.02) 1.68(0.31) 0.18(0.01) 0.13(0.01) 1.69(0.07)
0.1 0.17(0.05) 0.1(0.02) 1.51(0.35) 0.18(0.01) 0.13(0.01) 1.68(0.07)
1.0 0.16(0.06) 0.1(0.03) 1.5(0.26) 0.17(0.01) 0.13(0.01) 1.6(0.07)
10.0 0.06(0.07) 0.04(0.05) 0.58(0.37) 0.09(0.01) 0.09(0.01) 1.02(0.08)
100.0 0.06(0.11) 0.03(0.06) 0.06(0.11) 0.0(0.0) 0.04(0.0) 0.39(0.05)

DEMD 0.001 0.17(0.05) 0.11(0.02) 1.69(0.32) 0.18(0.01) 0.13(0.01) 1.69(0.07)
0.01 0.17(0.05) 0.11(0.02) 1.69(0.32) 0.18(0.01) 0.13(0.01) 1.69(0.07)
0.1 0.19(0.05) 0.11(0.02) 1.32(0.18) 0.18(0.01) 0.13(0.01) 1.66(0.07)
1.0 0.2(0.09) 0.11(0.05) 1.59(0.46) 0.14(0.01) 0.12(0.01) 1.43(0.07)
10.0 0.16(0.13) 0.09(0.07) 0.5(0.12) 0.07(0.02) 0.08(0.01) 0.94(0.17)
100.0 0.06(0.08) 0.18(0.16) 0.06(0.08) 0.01(0.01) 0.01(0.01) 0.41(0.05)

Table 4: Fairness Experiments. Measures evaluated using standard metrics: maximum Demographic Parity
Gap (—DP—), maximum Equalized Odds Gap (—EO—), and (DEMD). For all measures, lower values are
preferred. With comparable accuracy, DEMD regularization leads to fairer representations as measured by
common metrics. DP and EO measures are scaled by 100 for ease of presentation. Best results shown in bold.

Crime ACS-Income

Reg. Type λ —DP— —EO— DEMD —DP— —EO— DEMD

None 0 0.38(0.06) 0.45(0.03) 2.86(0.38) 0.37(0.01) 0.25(0.0) 4.78(0.32)

DP-Reg. 0.001 0.36(0.05) 0.44(0.04) 2.81(0.3) 0.57(0.37) 0.5(0.44) 4.38(0.16)
0.01 0.35(0.02) 0.44(0.03) 2.61(0.17) 0.81(0.33) 0.76(0.42) 3.45(0.71)
0.1 0.22(0.07) 0.29(0.12) 1.58(0.28) 0.62(0.33) 0.51(0.42) 2.67(0.63)
1.0 0.0(0.0) 0.41(0.03) 0.0(0.0) 0.0(0.0) 0.67(0.58) 0.0(0.0)
10.0 0.0(0.0) 0.26(0.23) 0.0(0.0) 0.0(0.0) 0.33(0.58) 0.0(0.0)
100.0 0.0(0.0) 0.26(0.23) 0.0(0.0) 0.0(0.0) 0.33(0.58) 0.0(0.0)

EO-Reg. 0.001 0.38(0.05) 0.45(0.03) 2.85(0.38) 0.36(0.01) 0.25(0.0) 4.77(0.32)
0.01 0.36(0.06) 0.44(0.03) 2.69(0.44) 0.33(0.0) 0.24(0.0) 3.6(0.29)
0.1 0.11(0.07) 0.39(0.03) 0.61(0.23) 0.03(0.0) 0.03(0.0) 0.53(0.01)
1.0 0.0(0.0) 0.41(0.03) 0.0(0.0) 0.0(0.0) 0.0(0.0) 0.0(0.0)
10.0 0.0(0.0) 0.41(0.03) 0.0(0.0) 0.0(0.0) 0.33(0.58) 0.0(0.0)
100.0 0.06(0.1) 0.09(0.15) 0.5(0.87) 0.0(0.0) 0.33(0.58) 0.0(0.0)

Bary 0.001 0.38(0.05) 0.45(0.03) 2.86(0.38) 0.37(0.01) 0.25(0.0) 4.78(0.32)
0.01 0.38(0.06) 0.45(0.03) 2.86(0.39) 0.37(0.01) 0.25(0.0) 4.8(0.32)
0.1 0.38(0.06) 0.45(0.03) 2.83(0.39) 0.48(0.04) 0.28(0.01) 5.02(0.31)
1.0 0.37(0.06) 0.44(0.03) 2.65(0.45) 1.0(0.0) 1.0(0.0) 5.66(0.3)
10.0 0.21(0.1) 0.41(0.04) 1.36(0.32) 1.0(0.0) 1.0(0.0) 4.5(0.57)
100.0 0.01(0.01) 0.41(0.03) 0.19(0.1) 0.0(0.0) 0.33(0.58) 0.0(0.0)

DEMD 0.001 0.38(0.05) 0.44(0.04) 2.85(0.39) 0.37(0.01) 0.25(0.0) 4.78(0.32)
0.01 0.38(0.05) 0.45(0.03) 2.85(0.38) 0.38(0.01) 0.26(0.0) 4.82(0.32)
0.1 0.38(0.05) 0.44(0.03) 2.83(0.39) 1.0(0.0) 1.0(0.0) 4.33(0.42)
1.0 0.35(0.05) 0.43(0.03) 2.54(0.39) 0.93(0.12) 1.0(0.0) 2.67(0.17)
10.0 0.26(0.05) 0.39(0.02) 1.35(0.25) 0.68(0.28) 1.0(0.0) 0.9(0.47)
100.0 0.0(0.0) 0.41(0.03) 0.26(0.02) 0.0(0.0) 1.0(0.0) 0.0(0.0)
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Figure 7: Convergence Plots for MWGAN and DEMD on CelebA Multi-Domain Image Translation.

suggests minimal distributional differences across the groups. For latent feature vector ℓ and groups
i/j, we have

MMD = ∥ E
Z1∼P (ℓ))groupi

K(Z1, ·)− E
Z2∼P (Φ(ℓ))groupj

K(Z2, ·)∥H (7)

The criterion is defined using a Reproducing Kernel Hilbert Space with norm ∥ · ∥H and kernel K.

7.3.4 MWGAN DETAILS AND ADDITIONAL RESULTS

The MWGAN code https://github.com/deepmo24/MWGAN was used under the MIT
license extended from the original StarGAN codebase https://github.com/yunjey/
stargan.

The original paper constructs an inter-domain penalty added to the multi-domain GAN discriminator
loss as follows:

RMWGAN (f) = λ ·

(∑
i

Ex̃(i)∼Q̂i
||∇f(x̃(i))|| − Lf

)2

+

(8)

The sampling for expectation in practice is done by interpolating randomly between real data and
generated data for each domain. In contrast to this, we directly push the gradient norms computed
over samples from each domain to be close using our DEMD regularizer:

RDEMD(f) = λ ·DEMD
([
||∇f(x̃(i))||

]
i
, [i]
)
, (9)

where [i] indicates the domain associated with the fake samples generated in the same manner for
each domain.

Convergence comparison. Interestingly we observe that our construction tends to lead to more
stable training. In Figure 7, we can see that the variance of the total discriminator and generator loss
fluctuate much less. We suspect that this can be directly attributed to the boundedness of the gradients
of the DEMD regularizer, specific to the method where we compute the gradients via the dual of the
LP: the dual variables are bounded by definition and in this particular LP, are bounded exactly by the
number of bins used for discretization. While additional investigation is needed, smoothness has been
identified as a desirable property of GAN training (Arora et al., 2017; Chu et al., 2020; Lokhande
et al., 2020b; Ravi et al., 2019).
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Model Blond Hair Eyeglasses Mustache Pale Skin

MWGAN Cao et al. (2019) 49.91 45.74 45.49 38.67
DEMD 47.29 34.43 50.69 39.60

Table 5: Train FID Scores for CelebA Multi-Domain Image Translation.1

Quantitative Results. Using the Frechet Inception Distance we quantitatively measure the resulting
generative samples. Following the description in Cao et al. (2019), we present the FID scores of our
model and theirs in Table 5. Our metric as a drop-in replacement performs comparably.

7.4 D-DIMENSIONAL EARTH MOVER’S DISTANCE BACKGROUND AND ALGORITHM

Algorithm 3 describes the greedy algorithm that solves both primal and dual generalized Earth
mover’s programs, also see (Kline, 2019). The algorithm accepts d distributions (i.e., histograms)
p1, . . . , pd ∈ Rn

+ with e′pj = 1 for all j ∈ [d]. Although the algorithm states that all histograms
have the same number of bins, the algorithm can be easily adapted to accept as inputs pi ∈ Rni

+ with
ni ̸= nj .

Algorithm 3 EMD Primal/Dual Algorithm

input pj ∈ Rn
+ with e′pj = 1 , (∀j ∈ [d])

//iteration index, active indices, primal variables, dual variables
k := 0 ∈ Z, I := 0 ∈ Zd, x := 0 ∈ Rnd

, zj := 0 ∈ Rn, (∀j ∈ [d])
while I(j) ≤ n, (∀j ∈ [d]) do

sk := minj∈[d] pj(I(j)) // the mass to move
x(I)← sk // update the EMD solution
pj(I(j))← pj(I(j))− sk, (∀j ∈ d) // shrink the data
j∗ ← argminj∈[d] pj(I(j))
I(j∗)← I(j∗) + 1
k ← k + 1
tk ← c(I) // cost of this step
if I(j∗) ≤ n then

zj∗(I(j
∗))← tk − tk−1 + zj∗(I(j

∗)− 1) // update the dual solution
return x, (z1, . . . , zd), and the objective value

∑
k sktk.

The algorithm has explicit terminal conditions for the main while loop. In the worst case the number
of iterations can be nd.

7.5 EXTENDED ETHICS DISCUSSION

As discussed in the main paper discussion, the primary application of our proposed construction is
to reduce invariance over a particular set of features. In practice, with respect to typical machine
learning models and pipelines, this corresponds to minimizing performance difference as measured
across subgroups within the data corresponding to a minority or protected subsets of samples or
individuals. While the construction can be applied to any existing ML pipeline, we do not claim to
provide a catch-all solution for group disparity that may be inherent to the data or exacerbated by the
choice of the ML model that is being used. As always, care needs to be taken when working with
sensitive data or models which may have disparate impacts on different groups. We point interested
readers to the following extensive surveys and references therein regarding various methods and
procedures for addressing and dealing with bias and unfairness in ML problems, and the potential
danger associated with using models without care: (Mehrabi et al., 2021; Leavy, 2018; O’neil, 2016;
d’Alessandro et al., 2017; Rakova et al., 2021).

1Results presented here computed using the pytorch-fid package with code from the MWGAN repository
here: https://github.com/mseitzer/pytorch-fid. We were unable to replicate the FID scores
provided in the original paper, but expect trends to be relatively similar when compared across different scoring
methods.
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Figure 8: More qualitative results from the multi-domain image translation problem with (Left)
Cao et al. (2019), (Right) DEMD (ours). On attributes such as “Blond Hair” and “Eyeglasses”,
the generated images through our DEMD procedure appear more realistic. On other attributes, the
generated images are comparable.
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Figure 9: More qualitative results from the multi-domain image translaton problem with (Left)
Cao et al. (2019), (Right) DEMD (ours). On attributes such as “Blond Hair” and “Eyeglasses”,
the generated images through our DEMD procedure appear more realistic. On other attributes the
generated images are comparable.
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We also note that the final multi-marginal GAN image translation application could be used to
generate so-called “deepfakes.” While the results of our algorithm are comparable to existing works,
we believe that existing methods of identifying deepfakes would work well, and that the methods
provided here and in the original paper Cao et al. (2019) would require significant effort to be made
practical for much larger scale images.
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