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ABSTRACT 

 

This paper presents an in-depth exploration of four key hyperparameters—min_child_weight, n_estimators, 

max_depth, and learning_rate—in XGBoost (eXtreme Gradient Boosting), a machine learning algorithm 

recognized for its efficacy in diverse regression and classification tasks. By evaluating these hyperparameters 

across six datasets, we assess their impact on model performance in both regression and classification contexts. 

Given the computational demands of hyperparameter tuning, especially with large datasets, we propose an 

initial search space for each parameter to balance performance gains with resource efficiency. This approach 

offers practical guidance for optimizing XGBoost while mitigating the high computational costs associated with 

extensive searches. The findings provide insights into the role of each parameter in enhancing model accuracy 

and generalization, supporting practitioners in making effective tuning decisions for real-world applications. 

 

Keywords— XGBoost, hyperparameters, min child weight, n_estimators, max depth, learning rate, regression, 
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INTRODUCTION 
 

XGBoost, short for eXtreme Gradient Boosting, is a high-performance machine learning algorithm based on the gradient 

boosting framework and designed to handle large datasets and complex model requirements efficiently. Developed with 

scalability and speed in mind, XGBoost has become a popular choice across data science applications, especially where 

predictive accuracy and computational efficiency are paramount. The algorithm has consistently demonstrated strong 

performance in various fields, from finance and healthcare to e-commerce and image recognition, making it a staple in 

both industry and academia. In essence, XGBoost leverages the principles of ensemble learning, where a series of weak 

learners (in this case, decision trees) are iteratively added to minimize prediction errors, with each successive model 

focusing on the residuals of its predecessors. This iterative refinement process enables XGBoost to produce robust, 

highly accurate models, capable of handling complex interactions and non-linear patterns. 

 

One of the standout features of XGBoost is its support for parallelized computation, making it particularly suitable for 

large-scale data applications. Additionally, XGBoost offers several algorithmic optimizations that differentiate it from 

standard gradient boosting. These include a novel, regularized objective function to prevent overfitting, weighted 

quantile sketching to handle sparse data, and a sparsity-aware algorithm for data handling. XGBoost also supports 

customizable loss functions and advanced regularization terms (L1 and L2), giving it the flexibility to perform well on 

both classification and regression tasks, even with noisy data or datasets that are prone to overfitting. These 

improvements are not only practical in real-world applications but also contribute to its popularity in machine learning 

competitions, where time and computational constraints are often decisive factors. 

 

Given its capabilities, XGBoost allows practitioners to tune a wide range of hyperparameters, which control various 

aspects of the model's structure, learning process, and regularization. Effective tuning of these hyperparameters is 

essential to achieve optimal performance, as improper settings can lead to overfitting, underfitting, or unnecessary 

computational overhead. However, hyperparameter tuning can be a costly and time-consuming endeavor, especially 

when working with large datasets, and often requires significant computational resources. For this reason, it is important 

to identify a balanced approach to tuning, where a practical yet effective initial search space is selected to avoid 

exhaustive searches that yield minimal improvements. 

 

This study focuses on four key XGBoost hyperparameters—min_child_weight, n_estimators, max_depth, and 

learning_rate—which have a major impact on model performance and generalization ability. These parameters are not 

only among the most influential but also tend to be common across various applications, making them critical to 

understand and optimize for both regression and classification tasks. We will test these hyperparameters across six 
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datasets to assess their effects on model accuracy and resource efficiency. Additionally, we propose an initial search 

space for each parameter, providing practical guidance for practitioners aiming to strike a balance between performance 

and computational cost. The findings aim to inform efficient tuning strategies for XGBoost, helping practitioners 

navigate the trade-offs associated with extensive hyperparameter optimization in resource-constrained settings. 

 

In addition to min_child_weight, n_estimators, max_depth, and learning_rate, hyperparameters like subsample and 

colsample_bytree can also be tuned to enhance model performance. These parameters control data sampling and feature 

selection, respectively, allowing practitioners to optimize for bias-variance trade-offs and improve generalization across 

diverse datasets. 

 

Key Concepts 

In XGBoost, tuning the right hyperparameters is crucial for optimizing model performance and generalization 

capabilities. The four hyperparameters we focus on—min_child_weight, n_estimators, max_depth, and learning_rate—

are not only influential but also commonly adjusted to improve outcomes in regression and classification tasks. Each of 

these hyperparameters plays a distinct role in controlling the complexity, robustness, and efficiency of the XGBoost 

model.  

 

Learning Rate 

Learning rate, sometimes referred to as the ―shrinkage‖ parameter, controls the weight given to each new tree added to 

the ensemble. By scaling the contribution of each tree, learning_rate slows down the learning process, allowing the 

model to learn more gradually and potentially reduce the risk of overfitting. Smaller values of learning_rate make the 

model less likely to overfit but require a higher number of trees (n_estimators) to reach optimal performance, which can 

increase training time. Conversely, higher learning rates can accelerate training but may result in a model that fails to 

generalize well. Properly tuning learning_rate is therefore essential to balance the learning speed and accuracy, ensuring 

the model gradually converges to a solution that generalizes well on unseen data. 

 

Max Depth 

Max depth is a parameter that limits the depth of each tree in the ensemble, controlling how much detail the model 

captures. Trees with a higher maximum depth can model more complex interactions among features, which may improve 

accuracy on the training set. However, a high max_depth can lead to overfitting, as the model starts capturing noise 

along with the signal in the data. Setting max depth to a smaller value makes the model more generalized and 

interpretable, which can be especially beneficial in applications where interpretability is critical. This parameter thus 

serves as a key control over the model’s capacity, with smaller depths often resulting in more generalized models and 

larger depths capturing complex, nonlinear patterns. 

 

Number of Estimators 

Number of estimators controls the number of trees in the XGBoost model, directly impacting the learning process and 

the final model complexity. Each tree added to the ensemble works to correct the residual errors of the previous trees, 

enhancing the model’s predictive accuracy. While more trees generally improve model accuracy by capturing finer 

patterns in the data, an excessively large number of trees can lead to overfitting and increased computational time, 

especially on large datasets. Striking the right balance is essential: too few trees may result in an underfit model, whereas 

too many can make the model unnecessarily complex. Thus, determining an appropriate range for n_estimators is critical 

in managing both model performance and training efficiency 

 

Min Child Weight 

Min child weight is a regularization parameter that specifies the minimum sum of instance weights required in a child 

node. This parameter plays an essential role in controlling the complexity of the model by determining whether or not a 

node should be further split based on its instance weight sum. A higher min_child_weight value results in fewer splits, 

effectively pruning the model and making it less likely to overfit, especially in cases where the dataset is noisy or 

contains a significant number of outliers. Lower values, on the other hand, make the model more complex by allowing 

nodes with lower instance weights to be split, which can capture more intricate patterns but may also increase the risk of 

overfitting. 

 

Experiment Design 

 

The objective of this experimental design is to systematically vary four critical hyperparameters in XGBoost—

min_child_weight, n_estimators, max_depth, and learning_rate—to investigate their impact on model performance and 

convergence speed. This study aims to establish a clear understanding of how these parameters interact and affect the 

model's ability to generalize from the training data to unseen instances. 
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TABLE I.  DATASET DETAILS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For this experiment, we focus exclusively on the following hyperparameters, using the specific ranges you've defined: 

 

min_child_weight: Ranging from 1 to 20 in increments of 0.5. Lower values allow the model to capture complex 

patterns in the data, but may increase the risk of overfitting, especially in noisy datasets. Higher values help to prune the 

tree structure and promote generalization by requiring a larger minimum weight sum for node splitting. 

 

n_estimators: This parameter defines the number of trees in the ensemble and is set in this experiment to [1, 5, 10, 20, 

30, 40] followed by increments from 50 to 500 in steps of 50. By varying this parameter, we can observe how the 

inclusion of additional trees affects model performance and convergence. While more trees generally enhance accuracy 

by capturing more details, too many trees may lead to overfitting and increased computational cost. 

 

max_depth: The maximum depth of each tree ranges from 1 to 50 in increments of 5, with an additional option of None 

(unrestricted depth). This parameter plays a critical role in balancing model complexity and generalization. A higher 

maximum depth allows the model to learn intricate relationships but can increase the risk of overfitting. Conversely, 

lower depths promote simpler models that may not fully capture underlying data patterns. 

 

learning_rate: This parameter controls the contribution of each tree to the final model and ranges from 0.01 to 1, with 

100 equally spaced values. A lower learning rate leads to a more gradual learning process, often requiring more trees 

(n_estimators) to achieve optimal performance. This parameter significantly influences how quickly the model converges 

to an effective solution. 

 

 
 

 

Fig. 1. Credit Card Fraud and Model Performance with Max Depth 
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EXPERIMENT SETUP AND EXECUTION 

 

The experimental setup consists of several key components: 

 

Datasets: We will utilize a diverse set of datasets that represent different domains and characteristics to ensure the results 

are generalizable. These datasets will vary in size, complexity, and data types. 

 

Performance Metrics: Define metrics for model evaluation, including Mean Squared Error (MSE) for regression tasks 

and accuracy or F1-score for classification tasks. These metrics will help quantify the performance of each model 

configuration. 

 

Cross-Validation: Implement a simple train-test split approach, where the model will be trained on one dataset and 

evaluated on a separate test set. This method ensures that performance estimates are unbiased and reflective of how the 

model will perform on unseen data. 

 

For each hyperparameter, we will assess its impact on model performance. For example, we will vary min_child_weight 

from 1 to 10 and observe the resulting changes in performance metrics. We will follow a similar process for 

n_estimators, max_depth, and learning_rate, systematically recording the performance outcomes for each configuration. 

 

After executing the experiments, we will collect and analyze the data related to convergence of gain and performance 

metrics. We will measure the number of boosting rounds taken for each configuration to reach optimal performance.  

 

This analysis will help us identify the configurations that yield the highest performance across datasets.  

 

RESULTS 
 

For the classification task on the credit card data, we observed that using a learning rate of 0.3 or higher leads to 

diminishing returns. Specifically, the test AUC begin to plateau and eventually decline, indicating overfitting on the 

training data and underperformance on the test data.  

 

Analyzing the gain for all splits reveals that lower learning rates yield more efficient splits, resulting in higher gains, 

especially when set below 0.4 which shows that the model converges more efficiently for smaller gains.  

 

 
 

Fig. 2. Credit Card Fraud and Model Performance with Learning Rate 
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Fig. 3. Credit Card Fraud and Model Gain Efficiency with Learning Rate 

 

 
 

Fig. 4. Credit Card Fraud and Model Gain Efficiency with Num Estimators/ Number of Boosting Rounds 

 

Additionally, we found that decision trees with a maximum depth of 10 or greater perform poorly on the test data. The 

training performance for trees with a maximum depth exceeding 10 also plateaus, suggesting we should limit our 

maximum depth to 10 or below. The gain analysis further supports this, as we see more efficient gains from trees with 

shallower depths, indicating more effective splits. 

 

Regarding the number of estimators, our observations show that there are no significant performance improvements 

when the number exceeds 100 for both the training and testing sets. Therefore, we recommend keeping the number of 

estimators between 20 and 120 to identify the optimal point. 

 

 The gain plot indicates that fewer estimators correspond to a higher density of greater gains, highlighting that more 

efficient splits occur with a smaller number of boosting rounds. 
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Fig. 5. All State Data and Model Performance with Learning Rate 

 

 

 
 

Fig. 6. All State Data and Model Gain Efficiency with Learning Rate 
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Fig. 7. All State Data and Model Performance with Min Child Weight 

 

Lastly, our analysis of the minimum child weight revealed that values between 1 and 10 are most effective for test 

performance. 

 

For the air quality regression task, we observed that learning rates greater than 0.3 resulted in higher values for root mean 

square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE). This suggests that a 

larger learning rate may hinder convergence to an optimal solution. Analyzing the gains reveals a significant density of 

larger gains at smaller learning rates, reinforcing the effectiveness of using lower rates. 

 

Regarding maximum tree depth, we noted that depths greater than 10 lead to diminishing returns and plateauing 

performance on the test set. Therefore, we recommend limiting the maximum depth to under 10. Additionally, the 

number of estimators should be kept below 100 to maximize model performance on the test set. 

 

For the Allstate claims data, a learning rate around 0.2 to 0.3 produced optimal results across various metrics on the test 

set. A maximum depth of approximately 10 yielded the highest scores, while depths exceeding this threshold indicated 

signs of overfitting on the training set. 

 

We also observed diminishing returns with an increasing number of estimators, suggesting that a more complex model 

may lead to overfitting, ultimately resulting in underperformance on the test set. Furthermore, a minimum child weight 

greater than 10 was associated with poor performance on the training set, also showing diminishing returns on the test 

set. 

 

The same trends were observed in the Parkinson’s telemonitoring prediction data, aligning with our findings from the air 

quality and Allstate claims datasets. 

 

In the classification task, optimal hyperparameter ranges were identified as a learning rate below 0.4, a maximum depth 

of 10 or lower, between 20 to 120 estimators, and a minimum child weight between 1 and 10. For the regression task, the 

best performance was observed with a learning rate around 0.2, a maximum depth under 10, fewer than 100 estimators, 

and a minimum child weight above 1.5 and less than 10. 

 

These findings establish a robust foundation for hyperparameter optimization (HPO) as we prepare to delve deeper into 

the tuning process. By pinpointing effective ranges for key parameters, we can streamline our search for optimal model 

configurations. To enhance our efficiency further, we can utilize Bayesian optimization techniques with libraries that are 

designed to intelligently explore these hyperparameter search spaces. This approach enables us to achieve greater 
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performance gains while avoiding the computational expense of exhaustively searching the entire grid of values, 

ultimately leading to more effective model optimization. 
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