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Abstract
In recent years, with the increase in the compute power of GPUs, parallelized data
collection has become the dominant approach for training reinforcement learning (RL)
agents. Proximal Policy Optimization (PPO) is one of the widely-used on-policy meth-
ods for training RL agents. In this paper, we focus on the training behavior of PPO-Clip
with the increase in the number of parallel environments. In particular, we show that
as we increase the amount of data used to train PPO-Clip, the optimized policy would
converge to a fixed distribution. We use the results to study the behavior of PPO-Clip
in two case studies: the effect of change in the minibatch size and the effect of increase
in the number of parallel environments versus the increase in the rollout lengths. The
experiments show that settings with high-return PPO runs result in slower convergence
to the fixed-distribution and higher consecutive KL divergence changes. Our results
aim to offer a better understanding for the prediction of the performance of PPO with
the scaling of the parallel environments.

1 Introduction

Reinforcement Learning (RL) constitutes a fundamental paradigm in machine learning, enabling in-
telligent agents to interact with an environment and learn optimal behavior. In recent years, advances
in computing power and parallel simulation have elevated distributed training to a central topic in
machine learning research. As models grow larger and environments become more complex, model
inference increasingly becomes the primary bottleneck, further motivating a shift toward distributed
training. In distributed RL training, multiple actors generate trajectories in parallel, aggregating ex-
periences for a central learner to update the policy. A key question is whether policy training still
converges as the number of actors increases and rollouts become longer.

Parallelized data generation offers advantages such as enhanced exploration Gallici et al. (2024),
faster data collection, and greater data diversity Kapturowski et al. (2018). However, there are
inherent limitations to the performance gains obtainable simply by scaling up data generation; the
nature and significance of these limitations depend on the specific RL formulation employed.

There are two main RL optimization paradigms: off-policy and on-policy methods. Generally, the
off-policy methods rely on a replay buffer to approximate the stationary state visitation in the MDP.
On the other hand, on-policy methods aim to optimize the policy using trajectories close to the
current policy. As a result, in the context of scaling these methods, off-policy methods require
relatively larger storage to store the transitions and have a good performance. On the other hand, on-
policy methods offer simpler implementations and lower storage requirements at the cost of lower
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data reusability. In other words, the data efficiency of on-policy methods suffer greatly when the
data becomes too far from the optimized policy Huang et al. (2024); Espeholt et al. (2018) (which
is characterized as the off-policiness of the data).

In the context of scaling, off-policy methods have been well-studied Schaul et al. (2015); Kaptur-
owski et al. (2018); Rybkin et al. (2025); Badia et al. (2020); Kapturowski et al. (2022) since they
provide a better framework to understand their scaling behavior. This is due to the fact that all
transitions are stored in the replay buffer. However, scaling of on-policy algorithms pose a more
challenging problem. The main reason is the fact that the real distributed setup of training these
methods require certain assumptions regarding the environments and the distance between the be-
havior policies and the current learner policy (which is named as the policy lag Huang et al. (2022b)).
Policy lag is generally caused when we perform multiple steps of optimization on the data causing
the policy to be more and more distanced from the behaviour policy. As a result, while more gradient
updates may improve the sample efficiency of the algorithms, it inevitably causes lag in later epochs
leading to instabilities in the learning process. Policy lag is further aggravated when we consider
the real-world distributed implementation issues such as delayed communications and asynchrony
of the generated trajectories with respect to the current policy. This leads to discrepancies inside the
batches of data causing even more instabilities.

This paper aims to provide a theoretical analysis on the scaling behavior of one of the most
commonly-used on-policy methods proximal policy optimization (PPO). In particular, we show that
when using PPO in continuous action environments with Gaussian distribution action parametriza-
tion, the increase in the number of actors generating trajectories results in the convergence to a
fixed policy. Moreover, we study the performance of PPO with respect to two important parameters,
namely minibatch size and rollout length vs number of parallel actors and examine them through
the lens of the KL-divergence characteristic. The study shows that PPO would benefit from slower
convergence to the fixed policy and higher consecutive KL-divergence values in terms of the overall
performance.

2 Related Work

There has been a growing number of studies on the global convergence of RL methods in various
settings. One of the well-studied topics in that regard is the convergence analysis of RL methods
under Policy Gradient (PG) loss. For example, Yuan et al. (2020); Zhang et al. (2020; 2021); Wang
et al. (2019); Xu et al. (2020) explored the conditions under which the policy can converge to a global
solution. More importantly, Zhang et al. (2020); Fazel et al. (2018) aim to analyze the stationary
point convergence of general PG policies. Moreover, PPO-Clip theoretical analysis has also been
generally focused on its global convergence. To this end, Jin et al. (2023); Yao et al. (2022); Huang
et al. (2021) are the major works focusing on the global convergence of methods under PPO-Clip
loss. However, the major focus of the works have been on the theoretical global convergence of the
policy in the training process. In contrast, our work aims to characterize the behaviour of PPO-Clip
policies in the parallelized setting rather than their global convergence performance.

Regarding the parallelization of DeepRL algorithms, the focus has been mainly on improving their
empirical performance. To this end, off-policy distributed methods Kapturowski et al. (2018);
Schaul et al. (2015) mainly utilize a specialized replay buffer to allow and account for the asy-
chrony of the data. For that purpose, Gallici et al. (2024) theoretically demonstrated that using
LayerNorm can allow efficient and stable training of Deep Q-Networks Mnih et al. (2013) without
using a target network and replay buffer allowing for better parallelization. Furthermore, in the
context of on-policy methods, most attempts Zhang et al. (2019); Wijmans et al. (2019); Espeholt
et al. (2018); Kapturowski et al. (2022) has been to increase the robustness of the method to off-
policy data. For example, Espeholt et al. (2018) proposed v-trace which uses truncated importance
sampling to estimate the value of the learner policy from the trajectories generated from a behaviour
policy. Kapturowski et al. (2022) also added certain architectural enhancement, such as a trust region
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method for training of the value networks and temporal difference-error normalization, to achieve
better overall performance.

3 Preliminaries

3.1 MDP

A Markov Decision Process (MDP) is defined using the tuple < S,A,T ,r,µ,γ > where S and A are
the state and action space spaces, respectively, T : S ×A× S → [0, 1] is the transition probability,
r : S ×A → R is the reward function, µ is the initial state distribution, and γ is the discount factor.

The main objective of an RL policy is to maximize the expected discounted return η(π) =
Eτ∼π[

∑∞
t=0 γ

tr(st, at)]. To this end, the state and state-action value functions are defined as con-
ditioning them for the expected return:

V π(s) = Eτ∼π[

∞∑
t=0

γtr(st, at)|s0 = s] (1)

Qπ(s, a) = Eτ∼π[

∞∑
t=0

γtr(st, at)|s0 = s, a0 = a] (2)

Kakade (2001) derived the performance difference between two policies as:

V π′
(s0)− V π(s0) =

1

1− γ
Eτ∼π′ [Aπ(s, a)] (3)

where Aπ(s, a) = Qπ(s, a)− V π(s) is the advantage function.

3.2 Proximal Policy Optimization (PPO)

One of the early successful attempts at optimizing the policy using Eq. 3 was the seminal paper Trust
Region Policy Optimization (TRPO) Schulman et al. (2015a) which used a constrained surrogate
objective specified as:

max
θ∈Θ

Eτ∼πθold
[
πθ(s, a)

πθold(s, a)
Âπθold (s, a)] (4)

subject to Eτ∼πθold
[DKL[πθold(.|s)||πθ(.|s)]] ≤ δ (5)

where πθold is the policy used to generate the trajectories before updating the parameters. The main
difference between Eq. 4 and Eq. 3 is the approximation that the trajectories are generated from the
behavior policy πθold instead of the current optimized policy πθ.

The main challenge faced when optimizing the loss function in Eq. 4 is mainly regarding the impor-
tance sampling ratio πθ(s,a)

πθold
(s,a) . With more and more gradient steps the ratio converges to zero or

unboundedly grows. Hence, various algorithms aim to control the ratio so that the two policy dis-
tribution can be close to each other. In addition to that, to keep the aforementioned approximation
accurate, the two distributions need to be close enough to each other in terms of the total variation
divergence or the KL divergence Schulman et al. (2015a). For that reason, TRPO imposes the KL
divergence constraint to the optimization process.

While TRPO provides an effective framework to optimize the policy, evaluating the KL divergence
and maintaining the constraint is challenging. To address this issue, PPO Schulman et al. (2017)
proposed a clipped surrogate objective to optimize the policy.
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PPO objective is defined as:

LCLIP (θ) = Eτ∼πθold
[min(

πθ(a|s)
πθold(a|s)

Âπθold (s, a), clip(
πθ(a|s)
πθold(a|s)

, 1− ϵ, 1 + ϵ)Âπθold )] (6)

where ϵ is the trust region hyperparameter. Basically, PPO maintains a trust region by removing the
gradients with πθ(a|s)

πθold
(a|s) out of the [1− ϵ, 1 + ϵ] range.

4 Analysis

4.1 Problem Formulation

We frame the problem in as a distributed setting with a set of actors generating trajectories. Let us
denote πθT as the final updated policy which the actors use to generate trajectories. Furthermore,
DN denotes the trajectory buffer from N actors. DN will be the primary source of data used to
update πθT . For that purpose, we denote πN

θT+1
as the next updated policy using the data from N

actors. It is important to note that while in the practical implementation PPO uses a value function
and Generalized Advantage Estimation (GAE) Schulman et al. (2015b) to estimate the advantage
function, we avoid considering that in our analysis and assume that to be fixed (even though it might
not be optimal).

Furthermore, the PPO policy parametrizes the action using a Gaussian distribution:

π(a|s) = N (µθ(s), σθ) =
1

σθ

√
2π

exp(− (a− µθ(s))

2σ2
θ

) (7)

It is important to note that the parametrization of the standard deviation σ is state-independent as a
common practice to promote stability of the training process Huang et al. (2022b); Andrychowicz
et al. (2021); Huang et al. (2022a).

Moreover, we make certain structural assumptions based on the practical implementations of PPO:

Assumption 1. The policy parameters θ are ν-Lipschitz continuous w.r.t. to the outputs in
the l∞ norm. In other words, the first-order gradient of µθ and σθ w.r.t. θ are bounded:
∥∇θµ(s)∥∞, ∥∇θσ∥∞ ≤ ν ∀s ∈ S

It is important to note that in addition to the fact that Lipschitz continuity is a common and practical
assumption for the neural networks using common activation functions (such as ReLU and Tanh
which are 1-Lipschitz continuous themselves), the boundedness of the gradient allows us to formu-
late the clipping process of PPO better since in the clipped data points we would set gradient to zero.
Hence, it allows us to analyze PPO with the unconstrained surrogate loss function 4.

Assumption 2. The policy parameters are α-smooth w.r.t the outputs. In other words, the second-
order gradient of the policy parameters θ w.r.t. the outputs are bounded: |∇2

θµ(s)| ≤ α, |∇2
θσ| =

0 ∀s ∈ S

It is noteworthy that the reason for assuming ∥∇2σθ∥∞ = 0 is due to assuming the standard devia-
tion is state-independent.

Assumption 3. The ratio r(s, a) =
Aβ(s,a)

πθold
(a|s) is bounded: |r(s, a)| ≤ R.

While the assumption may not be explicitly used in the standard implementations, we can see details
that imply this fact. For example, the practice of normalizing the advantage estimation aims to bound
it as much as possible.Moreover, while the ratio may still be unbounded due to πθold(a|s) being too
small, in many cases we filter out the outliers using the clipping in PPO.
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4.2 Fixed Point Analysis

To prove the convergence of the policy to a fixed point, we first show that the PPO loss function is
L-smooth:

Lemma 1. Fixing the current policy parameters as θ (which may generally be different from the
trajectory-generating policy parameters θold), the PPO-Clip loss function in Eq. 6 is locally L-

smooth where L = max(10ην2∥σ∥−2
−∞|A|, 2ηR|A|

[
ν2√π√
2∥σ∥2

−∞
+ α

∥σ∥−∞
+ ν2

√
2∥σ∥2

−∞

]
).

The proofs to all the lemmas and theorems are included in Appendix A.

Furthermore, it is important to note that by generally assuming that the value of σ is lower bounded
throughout the optimization process (for example by clipping its value), we can conclude that the
loss function is globally L-smooth. Empirically, the lower bound can be specified as: σmin =
mink=1,...,∞{σk} where σi is the result of the optimization step at iteration i.

Furthermore, the smoothness of the loss function allows us to use the classic ε-critical convergence
of the parameters to a fixed point Agarwal et al. (2019):

Theorem 1. Denote L∗
β as minθ∈Θ Lβ

CLIP (θ) with the trajectories generated from a fixed behavior
policy β(.|s) and the starting policy parameters as θ0. By having a fixed step size η such that
η − η2L

2 > 0, for ∀ε > 0, we can achieve ∥∇θLβ(θ)∥2 ≤ ε in at most
L∗

β−Lβ(θ0)

ε2(η− η2L
2 )

iterations.

Theorem 1 implies that on the limit, the policy parameters converge to a fixed policy. We denote
this policy as π∞ to indicate that with infinite number of actors and long enough updating iterations,
it is achievable. It is noteworthy while Theorem 1 shows the convergence of the PPO loss function
to a fixed distribution, it does not argue for the superiority of the performance of the final policy
compared to the previous policies.

Next, we make the observation that by increasing the number of actors in the distributed setup, we
gain a more accurate approximation of the gradient of Eq. 6. Hence, the policy must be closer to π∞.
Therefore, we explicitly assume the aforementioned convergence in terms of the KL divergence:

Assumption 4. Denote the policy πT used to generate trajectories at timestep T . The KL-divergence
of the resultant policy πN

T+1 from N actors compared with the fixed policy distribution π∞
T+1 is finite

and γD ∈ [0, 1) contraction with the increase in the number of actors ∀s ∈ S:

DKL[π
∞
T+1(s)||πN

T+1(s)] ≤ γN
DDKL[π

∞
T+1(s)||π1

T+1(s)] <∞ (8)

While Assumption 4 has been stated as a consequence of Theorem 1, the bottom rows of Fig. 2 and
Fig. 3 aim to showcase the empirical evidence for Assumption 4 by assuming the final policy in the
optimization iterations as π∞

T+1 and comparing the previous policies with the final one.

Moreover, we can use Assumption 4 to analyze the sequential KL divergence between N -actor
policies:

Theorem 2. For any small enough ε > 0 there exists a number of actors n such that ∀N > n and
∀s ∈ S:

DKL[π
N
T+1(s)||πn

T+1(s)] ≤ O(γN−n
D , ε) (9)

Intuitively, Theorem 2 aims to show that with enough increase in the number of actors, the resultant
policy would have fewer and fewer changes in its distribution as a result of more data.

5 Experiments

In this section we aim to study the behavior of PPO with various hyperparameters and parallelized
data generation settings. To this end, we aim to answer two main question:
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BatchSize

Constant
Compute

Figure 1: The labels in the legends show (Nenv ×Nrollout : Nminibatch ×minibatch size). The
results represent the average across four independent seeds and the shaded areas showcase the

standard deviation of the runs.
(Top Row) The effect of minibatch size on the performance of PPO.

(Bottom Row) The performance of PPO in various (Nenv ×Nrollout) settings.

• Does the minibatch size affect the training performance of PPO?

• Does increasing the number of parallel actors have effect on the performance of PPO compared to
the increase in the rollout length?

In addition to the study of PPO in terms of the overall return, this section aims to study these ques-
tions from the lens of Theorem 2 and Assumption 4. To this end, we utilize the CleanRL Huang
et al. (2022b) codebase to adopt the continuous-action PPO implementation. Furthermore, we use
four commonly-used MuJoCo environments, namely Humanoid, HalfCheetah, Ant, and Walker2d,
from the Farama Gymnasium Towers et al. (2024). To have consistent results, the standard default
parameters used in CleanRL were used. During the training phase, the agent would first inter-
act with Nenv parallel environments for Nrollout steps each. After the data generation process,
PPO is then updated by estimating the advantage function using Generalized Advantage Estimation
method Schulman et al. (2015b) and then fixed-sized minibatches are sampled from the trajectories
to train the policy. The policy optimization process of PPO can effectively and efficiently imitate the
process of scaling. This is due to the fact that each policy in each updating iteration can be regarded
as a policy from some lower number of actors and rollout lengths. Hence, we effectively regard
the final policy in the series of updating iterations starting from πT as π∞

T+1 which was defined in
Section 4.1.

5.1 Effect of Change in the Minibatch Size

In this section we study the effect of minibatch size on the training of PPO. To do so, we set Nenv =
500 parallelized environments with Nrollout = 100 rollout length. Furthermore, out of the Nenv ×
Nrollout data, we split them into minibatches of various sizes.

As evident in Fig. 1, the size of the minibatches has a noticable effect on the overall performance of
the PPO. While small minibatch size is a common practice originating back to the original PPO pa-
per Schulman et al. (2017); Huang et al. (2022a) and was studied in Hilton et al. (2022); Andrychow-
icz et al. (2021), the minibatch size becomes an important factor in the scaling process of PPO. This
is due to the fact that, while smaller minibatch sizes significantly affect the performance of the al-
gorithm, they may also introduce instabilities in the training process. The experiments suggest that
making the minibatches too small can introduce significant instability and result in the collapse of
the algorithm in addition to the slow training process.
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Figure 2: KL divergence values for the minibatch size experiments. (Top Row) Sequential log KL
divergence values (Es∼π∞

T
[DKL[π

i+1
T+1∥πi

T+1]]) between policies in each optimization iteration.
(Bottom Row) Reference log KL divergence values (Es∼π∞

T
[DKL[π

∞
T+1∥πi

T+1]]) between the
policies in each iteration and the final policy in the optimization iterations. The straight and dashed

lines represent the values for 500× 100 : 1000× 50 and 500× 100 : 50× 1000 settings,
respectively (Fig 1).

Furthermore, out of the multiple runs for the 500 × 100 : 1000 × 50 and 500 × 100 : 50 × 1000
settings, two of the best runs were selected to examine the KL profile of a high-return and low-
return PPO training process in various training phase timesteps. To this end, since the number of
policy training iterations varies for these settings, the x-axis is normalized as the percentage of the
data processed by PPO (100% represents the achievement of the final policy). Fig. 2 represents KL
divergence values of two of the settings.

The bottom row of Fig. 2 confirms the monotonic reduction in the KL values in Assumption 4.
Moreover, the monotonicity can be also observe as a special case of Theorem 2 with fixed N and
variable n. An important observation in the sequential KL values in Fig. 2 is the higher values of
the sequential KL even though the minibatch sizes are smaller. Hence, it could be hypothesized that
with same amount of data, smaller minibatches provide more meaningful changes to the policy.

5.2 Effect of Change in the Number of Parallel Environments vs Rollout Length

In this section, we study whether increasing the number of parallel environments have any benefits
over increasing the rollout length. Bottom row of Fig. 1 illustrates the performance of PPO for
different variations of Nenv × Nrollout. The results indicate that the increase in the rollout length
can have similar effects in the performance compared with the increase in the number of parallel
environments. Hence, the increase in the number of environments can provide the added benefit
of CPU/GPU parallelization during the data collection phase resulting in a lower wall-clock time.
Furthermore, Fig. 3 compares the KL divergence progression of PPO in 1000 × 50 and 100 × 500
settings. The results show similar KL divergence profiles across the two settings. in the context of
updating the policy, the similarity could indicate that the exploration data as a result of the increase
in the number of parallel environments are qualitatively similar to the increase in the rollout length.

6 Conclusions

Scaling RL methods to higher number of parallel environments is an important topic with the im-
provements in GPU computing power. In this paper the parallelization scaling properties of PPO was
discussed. It was first shown that, with certain assumptions, training the policy with the PPO-Clip
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Figure 3: KL divergence values for the Nenv ×Nrollout experiments. (Top Row) Sequential log
KL divergence values (Es∼π∞

T
[DKL[π

i+1
T+1∥πi

T+1]]) between policies in each optimization
iteration. (Bottom Row) Reference log KL divergence values (Es∼π∞

T−1
[DKL[π

∞
T ∥πi

T ]]) between
the policies in each iteration and the final policy in the optimization iterations. The straight and

dashed lines represent the values for 1000× 50 and 100× 500 settings, respectively (Fig 1).

loss will converge to a stationary distribution. Furthermore, the experiments with various number
of minibatch sizes and different variations of the number of environments and the rollout lengths
showed that faster convergence of the agent to the stationary distribution results in the degradation
of the performance of the agent. In other words, the KL profiling in this paper offers a tradeoff
between stability and performance. Having lower sequential KL divergence can result in more sta-
bility at the cost of performance. Hence, the sequential comparison of the KL divergence of the
policies can offer an approach to monitor the stabillity and the optimality of training PPO-Clip as
the available data is increased.
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A Proofs

A.1 Proof to Lemma 1

As mentioned in Section 4.1, using the assumption of the Lipschitz continuity of the policy parame-
ters (Assumption 1) we can ignore the clipping mechanism of PPO. Hence, to perform the analysis
general in a general form, we consider the base policy loss function as L(θ) = Es∼β [

πθ(.|s)
β(.|s) Aβ(s, .)]

where β is the behaviour policy used to generate the trajectories.

Therefore, we would like to maximize the loss function using the loss function parameterized by a
Gaussian action distribution. Hence, the policy parameters are updated as:

θt+1 ← θt + ηEs∼β [
∇θπθ(.|s)
β(.|s)

Aβ(s, .)] (10)

= θt + η

∫
s∈S

ρβ(s)∇θ

∫ +∞

−∞

r(s, a)

σ(s)
exp(− (µ(s)− a)2

2σ2(s)
)dads (11)

where η = lr/
√
2π is the learning rate, r(s, a) = Aβ(s, a)/β(a|s), and ρβ(s) is the normalized

state visitation distribution following the behaviour policy β(a|s).

In the following , we assume the parameters of µ and σ are independent of each other. Hence, we
analyze each of them separately.

Action mean value µθ

Let us expand the loss function assuming that σ is constant. The update rule follows (we annotate
b = −1/2σ2(s)):

θt+1 ← θt + η

∫
s∈S

ρβ(s)
1

σ(s)

∫ +∞

−∞
2b.r(s, a)(µ− a)∇θµ exp(− (µ(s)− a)2

2σ2(s)
)dads (12)

Hence, for the second-order gradient∇2
θL(θ) we have:

∇2L(θ)

=

∫
s∈S

ρβ(s)
1

σ(s)

∫ +∞

−∞
2b.r(s, a)[(∇θµ)

2 + (µ− a)∇2
θµ+ 2b(∇µ)2(µ− a)2]

exp(− (µ(s)− a)2

2σ2(s)
)dads

(13)
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The bound can then be derived as:

|∇2
θL(θ)| ≤

2

∫
s∈S

ρβ(s)
|b|
σ(s)

∫ +∞

−∞
|r(s, a)|.|(∇θµ)

2 + (µ− a)∇2
θµ+

2b(∇µ)2(µ− a)2| exp(− (µ(s)− a)2

2σ2(s)
)dads

(14)

≤ 2R

∫
s∈S

ρβ(s)
|b|
σ(s)

∫ +∞

−∞
[ν2 + α|µ−a|+ 2ν2|b|(µ− a)2]

exp(− (µ(s)− a)2

2σ2(s)
)dads

(15)

= 2R

∫
s∈S

ρβ(s)
|b|
σ(s)

[
ν2
√
π√
|b|

+
α

|b|
+

ν2
√
π√
|b|

]
ds (16)

= 2R

∫
s∈S

ρβ(s)

[
ν2
√
π√

2σ2
+

α

σ
+

ν2√
2σ2

]
(17)

= 2R

[
ν2
√
π√

2σ2
+

α

σ
+

ν2√
2σ2

]
(18)

Since the bound is element-wise applied to the absolute value of the second-order gradient, we can
then apply the same bound to the l∞ norm. Therefore, the Lipschitz constant of ∇θL w.r.t. the
parameters used to output µθ will be:

Lµ = 2R

[
ν2
√
π√

2σ2
+

α

σ
+

ν2√
2σ2

]
(19)

Action standard deviation value σθ

Using the same definition of Gradient ascent we have:

θt+1 ← θt + η

∫
s∈S

ρβ(s)

∫ +∞

−∞

[(a− µ)2 − σ2]∇σ√
2πσ4

exp(− (µ(s)− a)2

2σ2(s)
)dads (20)

Therefore, for ∇2L(θ) we have:

∇2L(θ) (21)

=

∫
s∈S

ρβ(s)

∫ +∞

−∞

(σ5 − (a− µ)2σ3)∇2σ − (2σ4 + (a− µ)4 − 5(a− µ)2σ2)(∇σ)2√
2πσ7

exp(− (µ(s)− a)2

2σ2(s)
)dads

(22)
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Bounding the gradient we have:

|∇2f(θ)| ≤
∫
s∈S

ρβ(s)

∫ +∞

−∞

|2σ4 + (a− µ)4 − 5(a− µ)2σ2|ν2√
2πσ7

exp(− (µ(s)− a)2

2σ2(s)
)dads

(23)

≤
∫
s∈S

ρβ(s)

∫ +∞

−∞

(2σ4 + (a− µ)4 + 5(a− µ)2σ2)ν2√
2πσ7

exp(− (µ(s)− a)2

2σ2(s)
)dads

(24)

=

∫
s∈S

ρβ(s)[2σ
−2 + 3σ−2 + 5σ−2]ν2ds (25)

= 10ν2σ−2 (26)

where, again, we used the assumption that σ is state-independent. Therefore, the Lipschitz smooth-
ness constant will be:

Lσ = 10ν2σ−2 (27)

Finally, since µ and σ are updated together, L(θ) is locally L-smooth with the constant:

L = max(10ν2σ−2, 2R

[
ν2
√
π√

2σ2
+

α

σ
+

ν2√
2σ2

]
) (28)

A.1.1 Multi-Dimensional Action Spaces

It is important to note that the cases considered in the previous sections involved action spaces of size
one |A| = 1. While in general case extending that to vector outputs requires analyzing the Jacobian
of θ, we can avoid that in this setting. Considering that the final loss function is L(θ) =

∑|A|
i=1 Li(θ)

where i is the index of the action, we can write the operation as:

θ + η∇f(θ) = θ + η

|A|∑
i=1

∇fi(θ) (29)

Hence, for the second-order gradients we have:

∇2f(θ) =

|A|∑
i=1

∇2fi(θ) (30)

⇒|∇2f(θ)| ≤ |A| max
i=1,...,|A|

(|∇2fi|)(θ) (31)

Incorporating the bound onto µ and σ, we have:

max(10ην2∥σ∥−2
−∞|A|, 2ηR|A|

[
ν2
√
π√

2∥σ∥2−∞
+

α

∥σ∥−∞
+

ν2√
2∥σ∥2−∞

]
) (32)

A.2 Proof of Theorem 1

The L-smoothness of the loss function has the following property for ∀x, y ∈ Rn:

|L(y)− (L(x) +∇L(x)T (y − x))| ≤ L

2
∥x− y∥22 (33)

Hence, for consecutive parameters following the gradient ascent setup we have:

|L(θk+1)− (L(θk) + ηk∥∇θL(θk)∥22)| ≤
η2kL

2
∥∇θL(θk)∥22 (34)
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where ηk is the learning rate at iteration k and the two parameters follow the gradient ascent setup
θk+1 ← θk + ηk∇θL(θk).

Hence, we have:

L(θk) + (ηk −
η2kL

2
)∥∇θL(θk)∥22 ≤ L(θk+1) (35)

Therefore, in k gradient steps we have:

k−1∑
i=0

(ηi −
η2iL

2
)∥∇θL(θi)∥22 ≤ L(θk)− L(θ0) ≤ L∗ − L(θ0) (36)

Hence, by assuming a fixed step size ηk = η such that η − η2L
2 > 0 we have:

1

k

k−1∑
i=0

∥∇θL(θi)∥22 ≤
L∗ − L(θ0)
k(η − η2L

2 )
(37)

Therefore, there exists a gradient ∥∇θL(θi)∥22 ≤
L∗−L(θ0)

k(η− η2L
2 )

and, in order to have ∥∇θL(θi)∥2 ≤ ε,

we would need at least L∗−L(θ0)

ε2(η− η2L
2 )

iterations.

A.3 Proof of Theorem 2

Assumption 4 allows us to conclude that within the series ε1, ε2, ε3, . . . (where for εi we
have maxs∈S DKL[π

∞
T+1(s)||πi

T+1(s)] < εi) there exists a number of actors n such that
DKL[π

∞
T+1(s)||πn

T+1(s)] < εn ≤ ε ∀s ∈ S . Hence following that, for any N > n we have
that:

DKL[π
∞
T+1(s)||πN

T+1(s)] ≤ γN−n
D ε (38)

Using the results from Zhang et al. (2023), since ϵ is small enough, the reverse KL for multivariate
Gaussian distributions can be bounded as (annotating n′ = N − n):

DKL[π
N
T+1(s)||π∞

T+1(s)] ≤ ε′ = γn′

D ε+ 2γ1.5n′

D ε1.5 +O(γ2n′

D ε2) (39)

Using the relaxed triangle inequality of KL divergence, we have:

DKL[π
N
T+1(s)||πn

T+1(s)] ≤ 3ε+ 3ε′ + 2
√
εε′ + o(ε) + o(ε′) ≤ O(γN−n

D , ε) (40)

Therefore, with the decrease ε and the increase in the reference number of actors n, the KL diver-
gence gets closer to zero for the subsequent N actors.


