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ABSTRACT

Multilingual large language models (LLMs) are essential for cross-lingual appli-
cations, yet pruning them using mixed-language calibration can induce cross-
lingual interference, disproportionately affecting certain languages. We intro-
duce Lang-Prune, a drop-in, language-aware extension to structured pruning
that computes per-language importance on small calibration sets and aggregates
it to protect units critical to any language. Evaluated on aya-expanse-8b
across nine languages and multiple sparsity levels, Lang-Prune consistently im-
proves both average and worst-case performance. At 70% sparsity, it reduces
average perplexity from 188.49 (original pruning method) to 70.85, surpassing
the monolingual baseline (83.08) while lowering the worst-language error. Inter-
pretability analyses reveal higher retention of language-specific capacity (81% vs
66%). Ablations demonstrate robustness across model types (e.g., Qwen3-8B),
improved post-training headroom, and strong transfer to out-of-distribution lan-
guages. Lang-Prune is compute-efficient and deployment-friendly, requiring only
modifications to importance estimation and aggregation while preserving LLM-
Pruner’s coupled-structure mechanics.

1 INTRODUCTION

With the rapid advancement of large language models (LLMs) OpenAI et al. (2024); Touvron et al.
(2023), people worldwide are increasingly benefiting from this technology. To further broaden its
impact, researchers have devoted substantial effort to collecting low-resource language data and
developing multilingual LLMs with larger parameter scales and stronger capabilities Chen et al.
(2023); Yang et al. (2025). However, the massive size of these models imposes heavy computational
and memory demands, restricting their deployment in resource-constrained environments such as
mobile devices and causing significant latency in client–server interactions. Model pruning has
emerged as a practical solution to alleviate these challenges by removing redundant parameters while
striving to maintain performance, particularly when adapting an existing, well-aligned model to
resource-constrained deployments Wang et al. (2020); Xia et al. (2022); Muralidharan et al. (2024);
Xia et al.; Kong et al. (2025).

Currently, most existing pruning methods are evaluated primarily on monolingual or high-resource
languages, often neglecting the cross-lingual variability inherent in multilingual LLMs Sun et al.
(2024); Frantar & Alistarh (2023). Our pilot study reveals a central obstacle: cross-lingual in-
terference. When pruning with mixed-language calibration, decisions optimized for average case
disproportionately harm certain languages. Using the interference factor (IF), defined as the ratio of
mixed vs monolingual perplexity per language, we find consistent degradation across nine languages
for both structured (LLM-Pruner Ma et al. (2023)) and unstructured (SparseGPT Frantar & Alistarh
(2023)) baselines, with stronger effects under structured coupling.

We introduce Lang-Prune, a language-aware extension to LLM-Pruner that estimates importance
per language on small calibration sets and aggregates these scores to protect units critical to any
language. Lang-Prune preserves LLM-Pruner’s coupled-structure mechanics and sparsity sched-
ules, modifying only the scoring and aggregation process. Experiments across nine languages and
multiple sparsity ratios show that Lang-Prune consistently improves both average and worst-case
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performance, often surpassing monolingual pruning even when using multilingual calibration. In-
terpretability analyses indicate that it better retains language-specific capacity. Extensive ablation
studies further demonstrate that Lang-Prune (1) adapts to multiple model types, (2) preserves the
potential of pruned LLMs for post-training, and (3) exhibits strong transfer to out-of-distribution
languages. Overall, this work presents a practical framework for multilingual LLM compression,
enabling efficient deployment without compromising language coverage.
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Figure 1: Left: Illustration of three pruning strategies—Mixed-data Pruning, Monolingual Prun-
ing, and Lang-Prune. Right: Language-specific neuron-group importance under monolingual vs.
mixed-data calibration. Shaded areas indicate neurons important for a single language but less
salient under multilingual pruning.

Contributions: This paper makes the following contributions: (1) We present Lang-Prune, a
language-aware pruning framework that computes per-language importance and aggregates to mit-
igate cross-lingual interference while preserving deployment-friendly structure. (2) On nine typo-
logically diverse languages, Lang-Prune improves both average and worst-case performance across
sparsity ratios, often outperforming monolingual pruning under multilingual calibration. (3) Exten-
sive ablations show generalization across model types, compatibility with post-training, and strong
zero-shot transfer to out-of-distribution languages. (4) Interpretability analyses reveal that Lang-
Prune retains language-specific neuron groups, offering insight into multilingual capacity preserva-
tion during compression.

2 LANG-PRUNE: A MULTILINGUAL PRUNING FRAMEWORK

2.1 PILOT STUDY: CROSS-LINGUAL INTERFERENCE ON PRUNING

We conduct a pilot study to quantify how existing pruning methods behave in multilingual settings.
We evaluate a structured pruning method, LLM-Pruner Ma et al. (2023), and an unstructured prun-
ing method, SparseGPT Frantar & Alistarh (2023), on aya-expanse-8b Dang et al. (2024). The
experimental settings match those in the main experiments (see Section 3). In the Mixed-data Prun-
ing setting, we pool all nine languages (900 sequences total, uniformly sampled per language); in
the Monolingual Pruning setting, pruning is performed separately for each language using 100 se-
quences, yielding nine language-specific pruned checkpoints. To quantify cross-lingual interference,
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we report the Cross-lingual Interference Factor (IF) defined as IF(l) = PPLmixed(l)/PPLmono(l),
where values above 1 indicate performance degradation due to mixed-language calibration.

Table 1: Cross-lingual Interference Factor (IF) for multilingual pruning. Values greater than 1 indi-
cate performance degradation due to cross-lingual interference.

LLM-Pruner under 70% Sparsity
PPL score ↓ ar cs de en es id iw ru zh avg.

Monolingual 42.71 81.99 82.82 236.44 85.19 77.52 46.87 57.73 36.47 83.08
Mixed-data 80.99 164.12 245.65 378.39 227.26 173.63 71.97 127.51 226.88 188.49
IF score 1.90× 2.00× 2.97× 1.60× 2.67× 2.24× 1.54× 2.21× 6.22× 2.27×

Base Model 8.10 10.46 10.66 10.50 9.58 12.77 11.19 11.13 10.27 10.52

SparseGPT under 70% Sparsity
PPL score ↓ ar cs de en es id iw ru zh avg.

Monolingual 18.75 27.57 24.69 31.04 26.83 25.97 21.72 22.51 18.96 25.94
Mixed-data 27.72 38.46 32.51 40.53 32.57 34.26 31.16 30.97 29.72 34.84
IF score 1.48× 1.39× 1.32× 1.31× 1.21× 1.32× 1.43× 1.38× 1.57× 1.38×

Base Model 8.10 10.46 10.66 10.50 9.58 12.77 11.19 11.13 10.27 10.52

As shown in Table 1, Mixed-data Pruning consistently underperforms Monolingual Pruning across
all nine languages and both pruning paradigms. For structured pruning (LLM-Pruner), the average IF
is 2.27×, with particularly severe degradation for zh (6.22×), de (2.97×), and es (2.67×). Unstructured
pruning (SparseGPT) exhibits a smaller but systematic effect (average IF 1.38×; maximum 1.57×
for zh). Notably, the mixed-language setting uses a larger aggregate calibration budget (900 vs. 100
sequences) yet still underperforms language-specific pruning, making these results conservative.

To investigate the source of this degradation, Figure 1 visualizes LLM-Pruner saliency across neu-
ron groups for five languages. Under monolingual calibration, importance profiles show sharp,
language-specific peaks that are well-aligned with each language’s critical structures; under multi-
lingual mixed-data calibration, these peaks become attenuated, misaligned, or replaced by peaks
arising from multilingual interference. This mismatch causes language-critical groups to appear
less salient and more likely to be pruned globally—a phenomenon we term cross-lingual interfer-
ence in pruning: structures vital for certain languages may seem unimportant when pooled with
others and thus get pruned. This effect is particularly pronounced in structured pruning, where
coupled units concentrate language-specific capacity, amplifying interference.

2.2 OVERVIEW OF LANG-PRUNE

To address cross-lingual interference and achieve balanced pruning across languages, we introduce
Lang-Prune, a multilingual-aware extension to LLM-Pruner guided by language-specific impor-
tance scores. As shown in the left panel of Figure 1, unlike conventional approaches that estimate
neuron importance from a single calibration set, Lang-Prune computes importance scores per lan-
guage and aggregates them using fairness-aware policies, ensuring that structures critical to any
language are preserved during pruning.

This design is motivated by evidence that multilingual LLMs contain both universal and language-
specific mechanisms: some units encode language-agnostic patterns, while others capture script- or
morphology-dependent features Singh et al. (2019); Liu et al. (2019); Conneau et al. (2020); Zheng
et al. (2025). Building on these insights, we extend LLM-Pruner’s structured pruning pipeline to
explicitly respect per-language signals. The process consists of three stages: (1) coupled structure
discovery; (2) language-aware importance estimation; (3) multilingual importance scores aggrega-
tion and pruning.

2.2.1 COUPLED STRUCTURE DISCOVERY IN LLM-PRUNER

LLM-Pruner Ma et al. (2023) discovers valid, shape-consistent pruning units by constructing a de-
pendency graph over Transformer components and grouping parameters that must be pruned jointly
(coupled structures). This enables structured pruning of attention heads and feed-forward (MLP)
channels without breaking tensor shapes or deployment compatibility.

For example, in a feed-forward block, pruning the j-th hidden channel requires removing the j-th
column of the input projection and the j-th row of the output projection simultaneously. LLM-Pruner
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treats this pair as a single coupled structure, denoted Cj , and assigns it a score based on parameter
magnitude and activation statistics collected on calibration data. This coupled view generalizes
across modules and forms the backbone of Lang-Prune.

Lang-Prune extends this framework by modifying how scores are computed and aggregated: instead
of using global metrics, scores are calculated per language and then combined to guide multilin-
gual pruning. As our ablation study in Appendix A.7 demonstrates on Wanda, preserving per-
language importance at the level of functional components (e.g., attention heads, MLP channels)
is far more impactful than focusing on isolated weights. Therefore, the coupled structure dis-
covery mechanism inherited from LLM-Pruner is essential for Lang-Prune, as it ensures that
language-specific importance scores meaningfully influence pruning decisions while maintaining
model deployability.

2.2.2 LANGUAGE-AWARE IMPORTANCE ESTIMATION

Given the set of coupled structures {Cj}, we estimate their importance independently for each lan-
guage using a loss-sensitivity criterion computed on language-specific calibration subsets. Let L
denote the set of languages and Dℓ the calibration data for language ℓ. For a coupled structure Cj ,
let G(Cj) be the collection of learnable tensors (or parameter vectors) that constitute the structure
(e.g., paired columns/rows in coupled projections). Following the Taylor-based importance estima-
tor in LLM-Pruner Ma et al. (2023), we measure the first-order contribution of each parameter to
the next-token prediction loss.

Concretely, let L(x) denote the token-averaged negative log-likelihood (next-token prediction) for
input x. For a scalar parameter w ∈ Cj , the per-parameter, per-language importance is

sℓ(w) = Ex∼Dℓ

∣∣∣∂L(x)
∂w · w

∣∣∣ , (1)

where the absolute value ensures non-negativity and robustness to sign cancellations. The expecta-
tion is approximated by the empirical mean over the calibration subset, with the model in evaluation
mode (no dropout) and gradients computed at the current weights without updating them.

When treating an entire tensor W ∈ G(Cj) as a unit, we use the vectorized form

sℓ(W ) = Ex∼Dℓ

∣∣∣〈∂L(x)
∂W ,W

〉∣∣∣ , with ⟨A,B⟩ = tr(A⊤B), (2)

i.e., the absolute value of the Frobenius inner product between the gradient and the parameter tensor.

We aggregate the parameter- or tensor-level scores into a structure-level importance using a group
aggregator A over all elements of G(Cj). By default, we adopt the sum aggregator:

Iℓ(Cj) =
∑

u∈G(Cj)

sℓ(u), (3)

where u denotes either a scalar weight (using Eq. 1) or a tensor (using Eq. 2). Other aggregators
(e.g., max, mean, first) are supported and evaluated in ablations in Appendix A.2.

To make scores comparable across languages, we apply per-language min–max normalization over
all coupled structures:

Ĩℓ(Cj) =
Iℓ(Cj)−mink Iℓ(Ck)

maxk Iℓ(Ck)−mink Iℓ(Ck) + ε
, (4)

where the extrema are computed over all coupled structures indexed by k, and a small ε (e.g., 10−12)
ensures numerical stability. In the rare degenerate case where maxk Iℓ(Ck) ≈ mink Iℓ(Ck), this nor-
malization yields Ĩℓ(Cj) ≈ 0 for all j, effectively indicating no preference among structures for lan-
guage ℓ. This language-wise normalization mitigates the effects of tokenization, script differences,
and frequency imbalance, while preserving the importance ranking within each language.
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2.2.3 PRUNING LLMS WITH MULTILINGUAL IMPORTANCE SCORES

Lang-Prune merges per-language importances into a single score that guards against worst-case
language degradation. Given {Ĩℓ(Cj)}ℓ∈L, we use the Max aggregator:

Imax(Cj) = max
ℓ∈L

Ĩℓ(Cj). (5)

This “any-language” criterion preserves structures that are important for at least one language, di-
rectly countering the dilution effect observed in mixed-language calibration. For comparison in
ablations, we also consider the Mean and Min aggregators:

Imean(Cj) =
1

|L|
∑
ℓ∈L

Ĩℓ(Cj), Imin(Cj) = min
ℓ∈L

Ĩℓ(Cj). (6)

Structures are ranked by Imax (our default) and pruned (lowest first) until the target sparsity is
reached, strictly respecting LLM-Pruner’s coupling constraints.

By explicitly estimating importance per language and aggregating with a Max policy, Lang-Prune
avoids pruning decisions that are optimal on average yet harmful to minority or script-diverse lan-
guages. The framework is compute-efficient—importance estimation scales linearly with |L| using
small calibration subsets—and is a drop-in multilingual extension of LLM-Pruner: sparsity sched-
ules and prunable units remain unchanged, only the scoring and aggregation are revised.

3 EXPERIMENTS

Experiment Settings We evaluate Lang-Prune on aya-expanse-8bDang et al. (2024) at 30%,
50%, and 70% global sparsity and compare it against LLM-Pruner under both monolingual and mul-
tilingual calibration. For coupled structure discovery and language-aware importance estimation,
we construct a multilingual subset of mC4 Xue et al. (2021) and, for each language, sample 100
sequences of length 128: Arabic, Czech, German, English, Spanish, Indonesian, Hebrew, Russian,
and Chinese.1 Multilingual calibration uses a uniform per-language mixture (900 sequences total).
Pruning is one-shot with no recovery. Following Section 2, Lang-Prune uses per-language min–max
normalization and Max aggregator by default; Mean aggregator and Min aggregator are included as
ablations. We evaluate PPL on the mC4 validation split with the same tokenizer and context length
as calibration. All runs use a single NVIDIA A800 GPU, with each pruning instance requiring less
than one GPU hour.

3.1 RESULTS ANALYSIS

Table 2 reports per-language PPL across three sparsity levels for aya-expanse-8b 2. We analyze the
results along three key dimensions:

1. Overall performance improvement. Lang-Prune-Max consistently outperforms LLM-Pruner
under multilingual calibration for every language and sparsity. Relative to LLM-Pruner mixed-data,
Lang-Prune-Max reduces average PPL by 14.6% (30%), 41.0% (50%), and 62.4% (70%). Compared
to LLM-Pruner monolingual, Lang-Prune-Max achieves lower average PPL at all sparsities (14.90
vs 16.04 at 30%; 25.91 vs 29.16 at 50%; 70.85 vs 83.08 at 70%). On a per-language basis, Lang-
Prune-Max surpasses the monolingual baseline in 5/9 languages at each sparsity (notably de, cs,
en, es, id) while remaining competitive on the others. This improvement arises from per-language
importance estimation and Max aggregation, which preserve structures critical to any language while
pruning universally unimportant neurons.

2. Worst-case language improvement. Lang-Prune-Max also improves the worst-case perfor-
mance across languages. At 70% sparsity, the worst-language PPL decreases from 378.39 (LLM-
Pruner mixed-data, en) and 236.44 (LLM-Pruner monolingual, en) to 158.33 (Lang-Prune-Max,
en). Similar trends hold at 30% and 50% sparsity. By explicitly protecting per-language critical
structures, Lang-Prune reduces the risk that low-resource languages are disproportionately harmed
during pruning.

1Abbreviations used throughout: ar, cs, de, en, es, id, iw, ru, zh.
2Detailed results for monolingual pruning can be found in Table 6 in Appendix A.1.
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Table 2: Per-language perplexity (PPL, lower is better) after structured pruning of aya-expanse-8b.
Lang-Prune variants merge per-language importance via Max (Lang-Prune-Max), Mean (Lang-
Prune-Avg), or Min (Lang-Prune-Min) aggregator. For comparison, LLM-Pruner is evaluated
under monolingual and multilingual (mixed-data) calibration.

Method Calibration ar cs de en es id iw ru zh Avg. ↓
Original (8B) None 8.10 10.46 10.66 10.50 9.58 12.77 11.19 11.13 10.27 10.52

aya-expanse-8b with 30%

LLM-Pruner monolingual 11.10 15.54 15.10 30.50 16.38 15.60 13.58 13.76 12.84 16.04
mixed-data 11.57 16.93 16.11 30.36 18.51 17.54 14.28 14.69 16.97 17.44

Lang-Prune-Avg multilingual 11.47 15.80 14.76 24.78 16.74 16.25 14.25 14.13 15.71 15.99
Lang-Prune-Min multilingual 354.12 612.46 284.30 66.85 182.67 262.45 1925.36 675.20 562.30 547.30

Lang-Prune-Max multilingual 11.22 15.15 13.68 21.52 15.73 15.35 13.98 14.09 13.35 14.90

aya-expanse-8b with 50%

LLM-Pruner monolingual 17.48 28.34 28.39 70.76 29.64 26.71 21.10 22.09 17.93 29.16
mixed-data 21.56 37.84 43.30 103.49 49.98 40.83 24.73 29.55 43.85 43.90

Lang-Prune-Avg multilingual 20.73 31.11 32.68 71.03 35.65 31.97 24.34 24.74 38.61 34.54
Lang-Prune-Min multilingual 757.21 1606.93 864.86 229.03 666.20 1053.59 26134.73 2618.83 1924.89 3984.03

Lang-Prune-Max multilingual 17.99 25.63 23.02 49.20 26.52 25.58 22.22 22.78 20.30 25.91

aya-expanse-8b with 70%

LLM-Pruner monolingual 42.71 81.99 82.82 236.44 85.19 77.52 46.87 57.73 36.47 83.08
mixed-data 80.99 164.12 245.65 378.39 227.26 173.63 71.97 127.51 226.88 188.49

Lang-Prune-Avg multilingual 78.57 126.19 185.68 292.57 179.81 144.15 66.51 95.47 251.11 157.78
Lang-Prune-Min multilingual 1588.60 2890.65 1973.42 579.72 1334.47 5097.47 56508.07 6862.74 3904.55 8960.00

Lang-Prune-Max multilingual 44.03 69.71 64.85 158.33 72.53 70.08 51.62 60.29 46.18 70.85

3. Insights from Lang-Prune-Min (negative control). The Min aggregator, which takes the mini-
mum importance across languages, serves as a negative-control ablation to examine the behavior of
language-agnostic neurons. With Min aggregator, most languages experience severe performance
degradation, while English—the dominant language—remains relatively robust. This indicates that
even neurons considered language-agnostic carry residual bias toward dominant languages, and
highlights the necessity of a language-aware aggregation strategy (e.g., Max aggregator) to maintain
balanced multilingual performance.

Overall, these analyses demonstrate that Lang-Prune not only improves average performance but
also mitigates worst-case outcomes and explicitly addresses language bias, providing more balanced
multilingual pruning.

3.2 ANALYSIS OF PRUNING NEURON GROUPS

To compare the inner mechanisms of LLM-Pruner and Lang-Prune, we analyze the retention of
language-specific capacity at high sparsity. We first identify, on the unpruned model, the set of strong
language-related neuron groups per language and then measure their recall under different pruning
strategies. Concretely, let {Cj} denote the coupled MLP channels, where j uniquely identifies each
candidate structure, and Ĩℓ(Cj) the per-language, min–max normalized importance from Section 2.
For each language ℓ, we define a contrastive specificity score for structure Cj :

Sℓ(Cj) = Ĩℓ(Cj) − 1

|L| − 1

∑
ℓ′ ̸=ℓ

Ĩℓ′(Cj).

We construct the set of strong language-related groups by selecting the top-p% structures per lan-
guage according to Sℓ (with a fixed p across languages). The recall ratio for language ℓ under a
pruning strategy is defined as

Recallℓ =

∣∣{Cj ∈ Top-p% for ℓ} ∩ {Cj retained after pruning}
∣∣∣∣{Cj ∈ Top-p% for ℓ}

∣∣ .

This metric quantifies how well a pruning method preserves neuron groups most specialized to each
language, independent of the method’s own scoring.

Table 3 reports the recall ratio at 70% sparsity with Top-p% = 30% across nine languages. Compared
with multilingual mixed-data pruning (LLM-Pruner mixed-data), Lang-Prune consistently retains a

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Recall ratio of strong language-related neuron groups (Top-p% = 30%) under different
pruning strategies at 70% sparsity. Higher is better.

Method ru iw id es en de cs ar zh Avg.

Mixed-data 67.47% 69.20% 67.43% 65.06% 60.06% 66.22% 69.68% 66.79% 61.74% 65.96%
Lang-Prune (ours) 81.94% 82.86% 81.62% 80.68% 75.41% 81.71% 83.11% 81.27% 80.78% 81.04%

larger fraction of language-specific neurons, improving the average recall from 65.96% to 81.04%.
Gains are broad (e.g., zh: 61.74% → 80.78%; cs: 69.68% → 83.11%), indicating that Max aggre-
gation protects structures that are critical to any language rather than optimizing for average-case
activation. These retention improvements align with the perplexity results in Table 6, and are most
pronounced in languages that showed higher interference under mixed calibration.

4 ABLATION STUDIES

4.1 GENERALIZATION ACROSS MODEL TYPES

To assess model generality, we apply Lang-Prune to an additional multilingual LLM,
Qwen3-8B Yang et al. (2025), which differs in tokenizer and architectural choices from
aya-expanse-8b. For each model, we replicate the setup from Section 3: sparsities at 30%,
50%, and 70%; identical calibration/evaluation protocol and comparisons against LLM-Pruner un-
der monolingual and multilingual calibration.

Table 4: Cross-lingual Interference Factor (IF) on Qwen3-8B across sparsities. IF(l) =
PPLMulti(l)/PPLMono(l), computed relative to the LLM-Pruner monolingual baseline (lower is bet-
ter; IF< 1 indicates improvement). Rows report per-language PPL; IF rows report the ratio vs
Monolingual.

Qwen3-8B at 30% sparsity
PPL ↓ ar cs de en es id iw ru zh Avg.

LLM-Pruner (monolingual) 13.53 9.05 13.62 31.19 13.93 9.41 24.22 8.50 14.37 15.76
LLM-Pruner (mixed-data) 15.76 9.82 13.05 24.31 14.87 9.99 31.06 8.93 16.18 16.00

IF vs monolingual 1.16× 1.09× 0.96× 0.78× 1.07× 1.06× 1.28× 1.05× 1.13× 1.06×
Lang-Prune 14.19 9.24 12.00 21.24 13.39 9.20 26.23 8.46 13.13 14.12

IF vs monolingual 1.05× 1.02× 0.88× 0.68× 0.96× 0.98× 1.08× 0.99× 0.91× 0.90×

Qwen3-8B at 50% sparsity

LLM-Pruner (monolingual) 20.28 14.77 35.92 118.76 29.96 20.69 37.05 17.93 35.11 36.94
LLM-Pruner (mixed-data) 208.99 102.79 207.90 565.88 205.65 144.37 723.06 61.84 575.77 310.69

IF vs monolingual 10.31× 6.96× 5.79× 4.77× 6.86× 6.98× 19.52× 3.45× 16.40× 9.00×
Lang-Prune 22.87 14.57 19.62 44.50 22.02 14.65 44.87 13.25 22.35 24.30

IF vs monolingual 1.13× 0.99× 0.55× 0.38× 0.73× 0.71× 1.21× 0.74× 0.64× 0.66×

Qwen3-8B at 70% sparsity

LLM-Pruner (monolingual) 73.10 134.00 752.05 948.83 391.40 344.82 117.63 179.41 559.01 388.69
LLM-Pruner (mixed-data) 99441.44 35822.38 46402.90 15611.48 35874.89 28035.05 180241.13 62441.93 28241.14 53567.15

IF vs monolingual 1360.35× 267.33× 61.70× 16.45× 91.66× 81.30× 1532.27× 348.04× 50.52× 137.85×
Lang-Prune 126.94 57.09 122.29 400.39 151.12 86.70 339.80 56.10 230.26 174.74

IF vs monolingual 1.74× 0.43× 0.16× 0.42× 0.39× 0.25× 2.89× 0.31× 0.41× 0.45×

Observations. (i) At 30% sparsity, Lang-Prune improves average IF to 0.90 and reduces PPL in
most languages versus the monolingual baseline, while LLM-Pruner (mixed-data) slightly degrades
(avg IF 1.06). (ii) At 50%, LLM-Pruner (mixed-data) suffers severe cross-lingual interference (avg
IF 9.00), whereas Lang-Prune maintains IF well below 1 on average (0.66), indicating robustness
under tighter budgets. (iii) At 70%, LLM-Pruner (mixed-data) exhibits pathological degradation
on Qwen3-8B (extreme PPL), suggesting instability of mixed-language scoring with strongly cou-
pled structures on this model. By contrast, Lang-Prune remains stable and substantially below the
monolingual baseline on average (avg IF 0.45), though a few languages (e.g., iw) still show IF > 1.

Takeaway. These results demonstrate that Lang-Prune generalizes effectively across model fam-
ilies with different tokenization and architectural designs. While LLM-Pruner under multilingual
calibration becomes increasingly unstable—especially at higher sparsity—Lang-Prune consistently
suppresses cross-lingual interference and maintains robust performance, validating its portability
and resilience beyond a single model backbone. We further evaluated Lang-Prune across a broader
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range of model scales, confirming that its benefits persist from mid-size to large models; detailed
results are provided in Appendix A.8.

4.2 POST-TRAINING POTENTIAL AFTER PRUNING
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(b) Few-shot Evaluation for Post-training

Figure 2: Post-training recovery of pruned models: (a) Training loss during continued pre-training of
Qwen3-8B at 70% sparsity. Lang-Prune consistently achieves lower loss than LLM-Pruner (mixed-
data) across steps; (b) Few-shot accuracy before and after LoRA post-training for models pruned
by LLM-Pruner (mixed-data) and Lang-Prune. Lang-Prune yields higher pre- and post-training
accuracy and larger recovery across languages.

We evaluate whether Lang-Prune preserves the capacity of pruned models to benefit from short
post-training. Starting from 70% sparse Qwen3-8B pruned checkpoints, we apply an identical
fine-tuning budget to each method and measure: (1) language-modeling recovery, using ∆PPL =
PPLpre − PPLpost, as shown in Figure 2a; and (2) downstream task recovery, using ∆Acc =
Accpost − Accpre on the 3-shot multilingual benchmark translated-HellaSwag Dac Lai et al. (2023);
Zellers et al. (2019) (Figure 2b). Detailed few-shot results are provided in Table 7 in Appendix A.1.

Continued pre-training setup (shared across methods): Parameter-efficient: LoRA with rank
r = 16 and α = 32, applied to all MLP and attention modules, with base weights frozen. Training
protocol: Models are trained on Wikipedia Foundation with a sequence length of 256; an effective
batch size of 1M tokens per step is achieved via gradient accumulation. Training is run for 1,000
steps (1B tokens in total) using the HuggingFace Trainer with identical default optimization settings.

Observations. (i) Lang-Prune consistently achieves higher few-shot accuracy than LLM-Pruner
across all reported languages, both before and after continuous post-training, indicating better
preservation of trainable capacity after pruning (see Figure 2b). (ii) With LoRA post-training, Lang-
Prune further improves over LLM-Pruner, consistent with the lower training loss in Figure 2a. Pro-
tecting language-critical structure enables more efficient adaptation under parameter-efficient tun-
ing. (iii) Gains are largest in languages that previously exhibited higher cross-lingual interference
(e.g., en, ru, id), aligning with Lang-Prune’s objective of mitigating interference while retaining
recoverable capacity.

Takeaway. Lang-Prune not only reduces cross-lingual interference during pruning but also pre-
serves the model’s post-training potential. Even under a limited fine-tuning budget, Lang-Prune
checkpoints recover more quickly and achieve higher downstream performance than LLM-Pruner,
demonstrating that language-aware structure preservation yields pruned models that remain adapt-
able and robust across languages. The additional multilingual benchmarks reported in Appendix A.6
further confirm these conclusions.

4.3 GENERALIZATION TO OUT-OF-DISTRIBUTION LANGUAGES

We evaluate zero-shot generalization to languages absent from calibration (OOD). Using the
70% structured pruning setting, we compare: (i) LLM-Pruner with mixed-language calibration
(mixed-data), (ii) the best monolingual proxy among the nine in-distribution languages (Best-
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mono), and (iii) Lang-Prune. We report per-language PPL and the generalization ratio GR(l) =
PPLLang-Prune(l)/PPLData-mixed(l), where values below 1 favor Lang-Prune.

Table 5: OOD languages at 70% sparsity. Family/Script tags are included for interpretability.

Language Family / Script Best mono
source

PPL
(Mixed-data)

PPL
(Best-mono)

PPL
(Lang-Prune) GR ↓

fa (Persian) Indo-Iranian / Arabic ar 154.37 92.90 62.26 0.40
ur (Urdu) Indo-Aryan / Arabic iw 273.27 107.91 31.08 0.11
am (Amharic) Semitic / Ethiopic zh 258.83 12.25 11.90 0.05
bg (Bulgarian) Slavic / Cyrillic ru 128.64 91.21 71.05 0.55
uk (Ukrainian) Slavic / Cyrillic ru 152.68 67.09 57.91 0.38
pl (Polish) Slavic / Latin cs 199.85 104.12 68.24 0.34
nl (Dutch) Germanic / Latin en 410.68 178.78 104.86 0.26
sv (Swedish) Germanic / Latin en 404.02 291.75 144.52 0.36
da (Danish) Germanic / Latin en 440.81 280.81 160.90 0.37
fr (French) Romance / Latin id 318.40 143.33 78.00 0.25
it (Italian) Romance / Latin id 268.33 148.46 78.04 0.29
pt (Portuguese) Romance / Latin id 333.11 127.94 81.01 0.24
my (Malay) Austronesian / Latin zh 14.46 8.06 7.64 0.53
ja (Japanese) Japonic / Jpn (CJK) zh 608.95 158.51 155.66 0.26
ko (Korean) Koreanic / Hangul zh 346.27 89.62 76.57 0.22
vi (Vietnamese) Austroasiatic / Latin zh 303.86 149.50 76.76 0.25

Observations. (i) Strong OOD gains: Lang-Prune substantially outperforms the mixed-data
baseline for every OOD language (GR average 0.30; ∼ 70% mean reduction in PPL). The largest
improvements occur for ur (0.11×), am (0.05×), ko (0.22×), and vi (0.25×). (ii) Outperforming
best monolingual proxies: On average, Lang-Prune reduces PPL by ∼ 32% compared to the best-
of-mono proxy per OOD language (mean ratio ∼ 0.68), indicating that preserving structures im-
portant to any in-distribution language transfers better than committing to a single source. (iii)
Family/script affinity patterns: (1) Slavic/Cyrillic OOD languages (bg, uk) are best served by ru,
and West Slavic (pl) by cs, matching family and script. (2) Germanic/Latin OOD (nl, sv, da) favor
en, consistent with lexical and tokenization overlap in Latin scripts. (3) CJK/East Asian (ja, ko)
and several SE-Asian cases (vi, my) favor zh; for ja, this is plausibly aided by shared Kanji; for
vi/my, the effect likely stems from tokenization and segmentation biases rather than genealogical
relatedness. (4) Arabic-script OOD (fa, ur) align with ar/iw proxies, reflecting script directionality
and character set effects. (5) Romance/Latin OOD (fr, it, pt) favor id rather than es; this suggests
that script-level overlap and morphological simplicity (shorter subwords, reduced inflection) can
dominate genealogical proximity under pruning.

Takeaway. Lang-Prune’s language-aware importance scoring provides robust OOD generaliza-
tion, outperforming both mixed-language pruning and the best single-language proxy. Proxy selec-
tion correlates more with script and tokenization overlap than strict language family, highlighting
that preserving diverse language-specific structures benefits transfer to unseen languages.

4.4 CONCLUSION ON ABLATION STUDIES

Across all ablations, Lang-Prune demonstrates robust and consistent improvements beyond stan-
dard perplexity comparisons. First, in model-type generalization (Section 4.1), the method transfers
effectively to architectures and tokenizers distinct from aya-expanse-8b (e.g., Qwen3-8B),
consistently reducing both average and worst-case PPL at 30%, 50%, and 70% sparsity while keep-
ing IF well below 1, whereas mixed-language LLM-Pruner exhibits severe degradation at higher
sparsity. Second, under identical post-training budgets with LoRA (Section 4.2), Lang-Prune
preserves greater headroom for adaptation, yielding higher few-shot accuracies across languages
and more efficient recovery per token, supporting the hypothesis that protecting language-critical
structures facilitates downstream tuning. Third, in zero-shot transfer to out-of-distribution lan-
guages (Section 4.3, Table 5), Lang-Prune substantially outperforms mixed-language pruning (mean
GR ≈ 0.30) and even surpasses the best monolingual proxy on average. Proxy analysis indicates
that transfer is driven more by script and tokenization overlap than by strict genealogical relatedness,
highlighting the value of preserving diverse, language-specific structures during pruning.
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Besides the ablation studies discussed above, we also observe the following: (i) Applying Lang-
Prune in multi-task or multi-domain settings yields only marginal improvements, which we attribute
to the much weaker structural separation between tasks compared to languages (see Appendix A.4).
(ii) Lang-Prune achieves consistent gains across different calibration dataset sizes. Specifically,
increasing the monolingual calibration set from 100 to 900 sequences improves performance but
still falls short of Lang-Prune (see Appendix A.5).

5 RELATED WORKS

5.1 LLM PRUNING

Pruning reduces inference cost by removing parameters while preserving accuracy. Unstructured,
post-training methods such as Wanda Sun et al. (2024) and SparseGPT Frantar & Alistarh (2023)
achieve high sparsity with minimal or no retraining via activation-aware magnitude or second-order
criteria. Structured pruning removes entire components (e.g., MLP channels, attention heads) for
deployment-friendly speedups Michel et al. (2019); Lagunas et al. (2021); Fan et al. (2019); Sajjad
et al. (2023). LLM-Pruner Ma et al. (2023) formalizes structured pruning using dependency graphs
and coupled structures. Most prior methods are single-dataset and language-agnostic; Lang-Prune
extends LLM-Pruner by estimating importance per language and aggregating via a multilingual Max
rule to protect critical structures.

5.2 MULTILINGUAL PRUNING AND LANGUAGE-AWARE COMPRESSION

Multilingual pruning shows heterogeneous effects across languages and tasks Ogueji et al. (2022).
Calibration with multiple languages can help at moderate sparsity, though results vary Zeng et al.
(2024); Kurz et al. (2024). Notably, Multilingual Brain Surgeon (MBS) Zeng et al. (2024) sam-
ples calibration data in language-balanced mixtures while keeping a single shared pruning crite-
rion, which partially mitigates language bias but does not change how importance is computed.
Alignment-informed methods such as Kim et al. (2024) leverage bilingual or translation-style sig-
nals to guide pruning, targeting multilingual inference with supervision. Lang-Prune differs by
preserving per-language importance and aggregating via a worst-case Max rule, directly reducing
cross-lingual interference.

5.3 LANGUAGE-SPECIFIC AND UNIVERSAL STRUCTURE IN MULTILINGUAL MODELS

Multilingual transformers combine shared and language-specific mechanisms: lower/middle layers
encode form and morpho-syntax, while higher layers are more semantic and language-agnostic Be-
linkov & Glass (2019); Tenney et al. (2019); Pires et al. (2019); Conneau et al. (2020). Certain neu-
rons or subspaces align with scripts or linguistic features Singh et al. (2019); Liu et al. (2019). Pre-
serving language-specific subnetworks supports cross-lingual transfer Choenni et al. (2022). Lang-
Prune builds on this by protecting units critical to any language while pruning universally unim-
portant structures, outperforming uniform or MBS-style calibration sampling in one-shot structured
pruning (see Appendix A.3).

6 CONCLUSION

In this paper, we investigate cross-lingual interference in pruning multilingual LLMs and propose
Lang-Prune, a drop-in extension to LLM-Pruner that computes per-language importance (min–max
normalized) and aggregates with a Max rule to protect units critical to any language. The pilot
quantifies interference under mixed-language calibration; Lang-Prune mitigates it and consistently
improves average and worst-language performance across sparsities on aya-expanse-8b (e.g., at 70%
sparsity: average PPL 70.85 vs 188.49 for multilingual LLM-Pruner, and 70.85 vs 83.08 for mono-
lingual). Interpretability analyses show higher retention of language-specific capacity (recall 81.0%
vs 66.0%). Ablations indicate robustness across model types (e.g., Qwen3-8B), better post-training
headroom (including with LoRA), and strong transfer to OOD languages (average GR ≈ 0.30).
Lang-Prune is compute-efficient and deployment-friendly.
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LIMITATIONS

While Lang-Prune demonstrates strong multilingual performance, several limitations warrant dis-
cussion. First, our approach employs only basic aggregation strategies (max/min/mean); more so-
phisticated methods such as weighted combination based on language characteristics remain unex-
plored. Second, the framework is evaluated primarily in one-shot pruning settings without extensive
recovery, leaving combinations with quantization, distillation, or prolonged fine-tuning for future
work. Third, the method requires full model access for activation collection, limiting its applicabil-
ity to proprietary or black-box LLMs. Furthermore, Lang-Prune’s effectiveness depends on struc-
tured pruning paradigms. As shown in Appendix A.7, the method does not improve performance
with unstructured pruning approaches like Wanda, suggesting it relies on semantically meaningful
structural units rather than individual weights.

Future work should explore adaptive aggregation strategies, integration with diverse compression
techniques, and broader evaluation across languages, architectures, and pruning granularities.

ETHICS STATEMENT

This study relies exclusively on fully open-source text datasets. All datasets had been comprehen-
sively anonymized by their original providers prior to our use, ensuring the absence of any person-
ally identifiable information. Consequently, the utilization of these datasets does not involve any
infringement of individual privacy. The LLMs pruning framework introduced in this paper is de-
signed strictly for academic and scientific research purposes. Any application of this framework
must adhere to established legal regulations and ethical standards. The authors explicitly prohibit its
deployment in unlawful activities or in any manner that could cause harm to individuals or society.

REPRODUCIBILITY STATEMENT

This study is committed to ensuring the reproducibility of its findings. To guarantee full transparency
of the data, methods, and experimental procedures, all experiments are conducted using publicly
accessible datasets, as detailed in Section 2, Section 3 and Section 4. Comprehensive descriptions
of the framework design, performance evaluation, and experimental setup are provided in Section 2,
Section 3 and Section 4. Furthermore, the complete codebase (including training and inference
configurations) will be released on GitHub upon the full acceptance of this paper, enabling the
research community to replicate our results.

LARGE LANGUAGE MODELS USAGE STATEMENT

For this work, we used large language models (LLMs) as a general-purpose assistive tool to improve
clarity, grammar, and phrasing in portions of the manuscript. Specifically, ChatGPT was employed
to: (1) Suggest alternative phrasings for sentences and paragraphs to enhance readability. No part of
the research ideas, results, or technical contributions was generated by LLMs. All scientific content,
including experiments, analysis, and conclusions, was independently conceived and verified by the
authors.
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A APPENDIX

A.1 EXPERIMENT RESULT DETAILS

Table 6: Per-language perplexity after 70% structured pruning. Lang-Prune merges per-language
importance via Max (default), compared to mean and min. We also report LLM-Pruner under mono-
lingual and multilingual (mixed-data) calibration.

Method Calibration ar cs de en es id iw ru zh Avg. ↓
Original (8B) None 8.10 10.46 10.66 10.50 9.58 12.77 11.19 11.13 10.27 10.52

LLM-Pruner (70%)

ar 42.71 1933.60 1045.78 602.23 651.80 1361.45 297.98 1038.27 1121.41 899.47
cs 347.90 81.99 236.12 339.14 244.47 272.87 883.65 130.36 998.25 392.75
de 497.99 503.61 82.82 365.89 309.53 342.55 2629.72 697.91 1426.27 761.81
en 1166.51 2090.46 1165.79 236.44 705.24 2062.33 64235.58 4802.09 3246.88 8856.81
es 404.32 532.11 422.02 340.05 85.19 354.68 1764.65 631.21 1376.49 656.75
id 333.15 482.84 328.63 293.57 252.14 77.52 1418.63 594.34 713.24 499.34
iw 84.05 628.21 481.31 360.53 326.31 414.81 46.87 252.18 372.41 329.63
ru 252.89 165.36 337.70 336.58 261.16 323.61 506.07 57.73 450.77 299.10
zh 271.20 878.06 591.66 368.54 495.26 371.47 629.59 705.54 36.47 483.09

monolingual 42.71 81.99 82.82 236.44 85.19 77.52 46.87 57.73 36.47 83.08
mixed-data 80.99 164.12 245.65 378.39 227.26 173.63 71.97 127.51 226.88 188.49

Lang-Prune-Avg (70%) multilingual 78.57 126.19 185.68 292.57 179.81 144.15 66.51 95.47 251.11 157.78
Lang-Prune-Min (70%) multilingual 1588.60 2890.65 1973.42 579.72 1334.47 5097.47 56508.07 6862.74 3904.55 8960.00

Lang-Prune-Max (70%) multilingual 44.03 69.71 64.85 158.33 72.53 70.08 51.62 60.29 46.18 70.85

Table 7: 3-shot Multilingual translated-HellaSwag accuracy ↑ (%) on Qwen3-8B after identical
fine-tuning budgets. Mean±std over seeds. Lang-Prune preserves more post-training headroom
than LLM-Pruner, with consistent gains when using LoRA.

Method en ar ru de es id

Original 57.21±0.49 39.07±0.51 44.91±0.52 45.74±0.51 49.65±0.52 44.85±0.52

LLM-Pruner (mixed-data)
- w/o training 25.57±0.44 25.13±0.45 24.90±0.45 25.25±0.45 25.52±0.45 25.02±0.45
- w LoRA 29.91±0.46 27.65±0.47 27.70±0.46 28.55±0.47 28.78±0.47 28.18±0.47

Lang-Prune
- w/o training 26.88±0.44 25.92±0.46 26.13±0.46 26.41±0.46 26.48±0.46 26.55±0.46
- w LoRA 31.14±0.46 27.84±0.47 28.27±0.47 29.01±0.47 29.14±0.47 28.81±0.47

A.2 ABLATION STUDIES ON GROUP AGGREGATOR

We investigate how the choice of group aggregator A affects pruning behavior. Recall that A reduces
parameter- or tensor-level importance scores within each coupled structure. In addition to our default
sum aggregator, we evaluate A = {mean,max,first}.

• sum: accumulates the total contribution of all parameters.
• mean: normalizes by group size to reduce the effect of large structures.
• max: highlights structures where a single parameter dominates.
• first: uses the first entry as a simplified representative value.

Table 8 reports average perplexity across pruning strategies (Monolingual, Mixed-data, and Lang-
Prune) using Qwen3-8B with 50% sparsity. All other settings follow Section 3.

Table 8: Ablation on group aggregators. Lower is better.

Avg PPL ↓ sum mean max first
Monolingual 36.72 33.28 20.74 381.29
Mixed-data 310.69 126.83 29.29 6122.22
Lang-Prune (ours) 24.30 24.24 22.53 45.23

These results show that although alternative aggregators may work reasonably in certain settings,
sum and mean provide the most stable performance across multilingual scenarios. max offers
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more aggressive sparsity behavior, while first produces unstable behavior and is therefore not
recommended.

A.3 MBS-STYLE CALIBRATION COMPARISON

To evaluate the impact of multilingual calibration strategies, we approximate the Multilingual Brain
Surgeon (MBS) Zeng et al. (2024) by sampling calibration data with various language mixture ratios;
exact recipes are not available for the Qwen and Aya models. We compare these with uniform
mixtures and Lang-Prune’s language-aware Max aggregation on Qwen3-8B at 50% sparsity.

Table 9: Per-language perplexity (PPL)↓ for different calibration strategies. Bold indicates best.
Underline indicates best among MBS-style mixtures.

Avg PPL ↓ EN:Others
3:1

EN:Others
2:1

EN:Others
5:1

EN:ZH:ES:Others
3:2:2:1

EN:ZH:ES:Others
4:2:2:1 Uniform Lang-Prune

ar 506.51 110.02 298.05 313.12 331.37 208.99 22.87
cs 211.97 80.93 386.84 182.11 159.93 102.79 14.57
de 515.74 157.60 644.36 405.21 291.29 207.90 19.62
en 1055.65 364.47 829.81 976.80 753.70 565.88 44.50
es 379.91 143.36 411.79 326.87 289.16 205.65 22.02
id 366.43 100.47 229.31 270.06 230.32 144.37 14.65
iw 1226.97 539.44 3167.02 1791.35 1333.17 723.06 44.87
ru 179.46 51.07 168.75 152.53 106.46 61.84 13.25
zh 722.71 617.56 1318.28 629.44 528.75 575.77 22.35
avg 573.93 240.55 828.24 560.83 447.13 310.69 24.30

As results shown in Table 9, MBS-style rebalancing helps versus uniform mixtures, but Lang-
Prune’s per-language scoring with Max aggregation yields substantially better perplexities (avg
24.30 vs best MBS 240.55, ∼10× improvement).

A.4 MULTILINGUAL VS. MULTI-DOMAIN PRUNING

While the high-level idea behind language-aware pruning resembles task- or domain-aware pruning,
the underlying structure differs fundamentally. Human languages are highly distinct in vocabulary,
syntax, morphology, and script, whereas closely related tasks often share significant latent structure,
vocabulary, and reasoning patterns. Consequently, multilingual models naturally organize discrete,
language-specific neuron groups, as observed in prior work Tan et al. (2024); Wang et al. (2025);
Tan et al. (2024). These neuron clusters are highly separable, providing a clear signal for structure-
preserving pruning strategies such as Lang-Prune. In contrast, multi-task or multi-domain settings
typically involve subtle differences. Tasks or domains that share vocabulary and reasoning patterns
produce overlapping activations, making per-task neuron importance less stable. This structural
difference explains why techniques effective in multilingual pruning may not directly translate to
task-aware pruning.

To empirically validate this, we applied a similar per-domain importance + max aggregation strategy
to a multi-domain scenario using the Qwen3-8B model. We treat three MMLU subfields—Law,
Medical, and Finance—as domains. Calibration is performed using the respective train/dev splits,
and evaluation is conducted on the test split at 50% sparsity.

Table 10: Domain-aware pruning results on Qwen3-8B (50% sparsity). Unlike multilingual pruning,
domain-aware pruning provides only marginal improvements.

Avg Acc ↑ (stderr) Law Medical Finance

Base Model 73.1%± 13.8% 76.4%± 8.3% 78.9%± 12.7%

Mixed-data 37.6%± 6.6% 35.3%± 6.7% 37.5%± 5.3%
Lang-Prune (ours) 40.1%± 9.4% 37.7%± 7.7% 37.8%± 7.1%

As shown in Table 10, domain-aware pruning achieves only marginal improvements over mixed-data
pruning and remains far below the base model. Unlike the multilingual scenario, the differences
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between domains are not sufficiently large to yield stable per-domain importance rankings. This
instability leads to limited or inconsistent benefits from max-aggregation strategies.

These observations highlight that language-aware pruning is fundamentally different from task-
aware pruning: the strong, discrete separation of neuron groups in multilingual LLMs enables re-
liable, structured pruning strategies like Lang-Prune, which cannot be trivially generalized to multi-
domain or multi-task scenarios.

A.5 INFLUENCE OF CALIBRATION SIZE

Table 11: Comparison of multilingual and monolingual pruning with different calibration sizes. “N
each” denotes number of sequences per language. Lang-Prune uses the same total calibration size
as mixed-data (9N total).

Method (num sample) Sparsity N=10 N=30 N=50 N=80 N=100 N=150 N=200

Mixed-data (9N total) 0.3 14.55 14.29 15.02 14.91 16.00 14.58 15.19
Monolingual (N each) 0.3 18.39 16.95 15.07 14.96 15.76 14.70 15.23
Lang-Prune (ours, 9N total) 0.3 13.57 13.53 13.39 13.35 14.12 13.44 13.44

Mixed-data (9N total) 0.5 34.83 35.70 44.72 76.68 310.69 331.62 384.20
Monolingual (N each) 0.5 77.40 54.17 36.70 34.12 36.94 32.70 36.73
Lang-Prune (ours, 9N total) 0.5 23.22 21.54 21.00 20.60 24.30 21.36 21.33

Mixed-data (9N total) 0.7 736.09 707.91 2406.78 19716.96 53567.15 16444.23 91970.55
Monolingual (N each) 0.7 1668.59 1009.15 432.54 348.63 388.69 254.56 247.01
Lang-Prune (ours, 9N total) 0.7 200.12 146.17 103.90 90.31 174.74 85.28 80.13

To evaluate the effect of calibration size, we ran additional monolingual pruning experiments using
900 calibration sequences per language, keeping all other settings identical. This allows comparison
with Lang-Prune, which uses the same total calibration size across all languages. Table 11 reports
the results for Qwen3-8B (base average PPL = 11.02) at 30%, 50%, and 70% sparsity.

The results show that monolingual pruning benefits from larger calibration sets but still consistently
underperforms Lang-Prune, even when given the same per-language budget. At moderate sparsity
(30–50%), increasing monolingual calibration size reduces perplexity, yet its performance plateaus
quickly and remains notably worse than Lang-Prune across all settings. At high sparsity (70%),
monolingual pruning becomes highly unstable: although more calibration data improves robustness,
its perplexity remains 3–5× higher than Lang-Prune, which maintains strong performance even un-
der extreme compression. In contrast, mixed-data pruning shows severe degradation—especially at
higher sparsity—demonstrating that aggregating multilingual data without structure-aware separa-
tion produces highly unreliable pruning scores. These results confirm that Lang-Prune’s improve-
ment is primarily due to its design principle of protecting language-specific structures, rather than
merely benefiting from a larger total calibration size.

A.5.1 IMPORTANCE DISTRIBUTION UNDER VARYING CALIBRATION SIZE

As shown in Table 11, for both monolingual and mixed-data pruning, increasing the calibration size
eventually leads to performance degradation, especially under high sparsity. This counter-intuitive
trend raises an important question: why does more calibration data harm pruning?

To investigate this phenomenon, we analyze how the importance score distribution changes as the
calibration size varies. Specifically, we compute normalized importance scores for coupled struc-
tures across all 36 layers of Qwen3-8B, using English-only calibration data and varying N from 10
to 1800.

Figure 3 reveals a consistent pattern across layers: as N increases, the importance scores become
more uniformly distributed, with a clear increase in density in the mid-importance region (0.1–0.3).
This reduces the contrast between critical and non-critical structures, making ranking-based pruning
less discriminative. We refer to this phenomenon as importance dilution.

Under high sparsity, this dilution makes pruning unstable: if many components appear moderately
important, aggressive pruning may remove genuinely critical structures while retaining mediocre

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0

10

20

De
ns

ity

Layer 0 Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

0

50

100

150

De
ns

ity

Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11

0

10

20

30

De
ns

ity

Layer 12 Layer 13 Layer 14 Layer 15 Layer 16 Layer 17

0

10

20

30

40

De
ns

ity

Layer 18 Layer 19 Layer 20 Layer 21 Layer 22 Layer 23

0

10

20

De
ns

ity

Layer 24 Layer 25 Layer 26 Layer 27 Layer 28 Layer 29

0.0 0.1 0.2 0.3
Norm. Importance

0

10

20

30

De
ns

ity

Layer 30

0.0 0.1 0.2 0.3
Norm. Importance

Layer 31

0.0 0.1 0.2 0.3
Norm. Importance

Layer 32

0.0 0.1 0.2 0.3
Norm. Importance

Layer 33

0.0 0.1 0.2 0.3
Norm. Importance

Layer 34

0.0 0.1 0.2 0.3
Norm. Importance

Layer 35

Sample Size N
N=10
N=30
N=50
N=80
N=90
N=150
N=200
N=270
N=450
N=720
N=900
N=1350
N=1800

Figure 3: Impact of calibration size (N) on normalized importance score distribution across 36
layers (zoomed to 0–0.3). Larger N increases density in the mid-importance region, reducing score
separability.

ones, resulting in sudden performance collapse. Mixed-data pruning is even more vulnerable due to
higher topic and domain diversity, which further spreads residual importance.

In contrast, Lang-Prune remains robust because its Max aggregation selectively preserves peak
language-specific signals, maintaining importance separability even when calibration size increases.
This explains why larger calibration datasets do not yield further benefits for monolingual pruning
and instead lead to degradation, while Lang-Prune remains stable.

A.6 POST-TRAINING RECOVERY ON FEW-SHOT BENCHMARKS

We evaluate whether Lang-Prune preserves the ability of pruned models to benefit from brief post-
training. Starting from pruned checkpoints, we apply an identical LoRA fine-tuning budget to each
method and measure downstream task recovery. We follow the continued pre-training and LoRA
setup described in Section 4.2 of the main text. All methods start from 70% pruned Qwen3-8B
checkpoints and use identical LoRA fine-tuning budgets. All evaluations are performed under 3-
shot settings.

In addition to translated-HellaSwag (commonsense reasoning) Dac Lai et al. (2023); Zellers
et al. (2019), we evaluate on multilingual benchmarks covering comprehension, reasoning, and
knowledge: Belebele Bandarkar et al. (2023) (multilingual reading comprehension), translated-
ARC Dac Lai et al. (2023); Clark et al. (2018) (grade-school reasoning, multi-language), and Global-
MMLU Singh et al. (2024) (broad multilingual knowledge). The languages used for each benchmark
are listed in Table 12.
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Table 12: Languages for Few-shot Benchmarks.

Benchmark Languages

Belebele Arabic, Hebrew, Czech, Russian, German, Spanish, Indonesian, Chinese
translated-ARC English, Arabic, Russian, German, Spanish, Indonesian, Chinese
translated-HellaSwag English, Arabic, Russian, German, Spanish, Indonesian
Global-MMLU Arabic, Czech, Russian, German, Spanish, Indonesian, Chinese

Table 13: Few-shot accuracy on multilingual benchmarks for different pruning methods (Qwen3-
8B, 70% sparsity). Bold values indicate the best performance.

Accuracy↑ Belebele translated-ARC translated-HellaSwag Global-MMLU

Qwen3-8B 0.8796 0.5499 0.4691 0.6777

Mixed-data 0.2331 0.2132 0.2523 0.2617
Mixed-data + training 0.2664 0.2311 0.2846 0.2695
Lang-Prune 0.2626 0.2169 0.2639 0.2716
Lang-Prune + training 0.2686 0.2468 0.2904 0.2646

Table 13 shows that both before and after post-training, mixed-data pruned models remain substan-
tially below Lang-Prune in downstream accuracy, indicating that randomly mixing calibration data
fails to preserve structures useful for adaptation. translated-HellaSwag exhibits the largest rela-
tive improvement after post-training, whereas Global-MMLU shows smaller or inconsistent gains,
suggesting that tasks relying on broad general knowledge may be less sensitive to the structural
differences preserved by Lang-Prune.

Overall, these results highlight the task- and language-specific benefits of Lang-Prune. Post-
training recovery is most effective for tasks with high cross-lingual interference, confirming that
preserving language-specific structures during pruning produces models that remain more adaptable
across languages and tasks, even if improvements on general-knowledge-heavy benchmarks like
Global-MMLU are limited.

A.7 LANG-PRUNE GENERALITY ON WANDA

We conducted additional experiments to evaluate the behavior of Lang-Prune when applied to
Wanda Sun et al. (2024), an unstructured pruning method that removes weights or rows/columns
without preserving structured computational units. Under 30% sparsity, we compared three strate-
gies: Mixed-data Pruning (mixed 9-language calibration), Monolingual Pruning (per-language
calibration), and Lang-Prune (max aggregation) applied on top of Wanda.

Table 14: Perplexity (PPL) of Wanda under 30% sparsity. Lang-Prune shows poor performance,
consistent with its reliance on structured pruning units.

Wanda Base Model Mixed-data Monolingual Lang-Prune

Avg. PPL↓ 11.02 11.26 11.25 16.56

Lang-Prune performs poorly under Wanda, which is consistent with the design of multilingual im-
portance estimation. Wanda operates at the level of individual weights or rows/columns, which do
not correspond to coherent functional components such as MLP channels or attention heads. Pre-
serving individual weights, even if important for a specific language, does not preserve the functional
behavior of the network. In contrast, Lang-Prune is intended for settings where pruning is applied
over semantically meaningful structures. Methods such as LLM-Pruner, head-pruning, channel-
pruning, or block-level structured pruning expose units that correspond to functional submodules.
In these cases, per-language importance can be translated into actionable preservation across lan-
guages.

Overall, these results demonstrate that Lang-Prune is compatible with any structured pruning
method, but unstructured methods like Wanda fall outside this scope by design. Effective multi-
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lingual pruning requires preserving importance at the level of functional components rather than
individual weights, which explains the performance difference observed with Wanda.

A.8 LANG-PRUNE PERFORMANCE ACROSS MODEL SCALES

We conducted additional experiments to evaluate Lang-Prune across a broader range of model sizes
within the Qwen3 family, spanning from 0.6B to 14B parameters. This includes both compact
models with minimal redundancy and larger-scale LLMs with richer representational capacity.

Table 15: Perplexity (PPL)↓ across Qwen3 model sizes under 50% sparsity. Lower is better. Lang-
Prune consistently performs best for mid-to-large models.

Model Size 0.6B 1.7B 4B 8B 14B

Base Model 23.95 16.52 14.28 11.02 9.50

Mixed-data 52.38 80.96 40.72 310.69 555.36
Monolingual 47.59 36.47 32.72 36.72 69.10
Lang-Prune 56.07 45.68 31.43 24.30 31.60

Across mid-to-large model scales (4B, 8B, and 14B), Lang-Prune achieves the lowest perplexity
among the pruning strategies. This indicates that modeling cross-lingual importance becomes in-
creasingly beneficial as representational capacity grows and more structured redundancy exists in
the network. At the smallest scale (0.6B), Lang-Prune performs worse than the other methods,
likely due to the severely limited redundancy of tiny models; removing entire structured units under
50% sparsity substantially reduces capacity that these models cannot afford to lose. For the 1.7B
model, the differences between methods are smaller and exhibit higher variance, suggesting a tran-
sitional regime where cross-lingual structure begins to emerge but remains fragile under structured
pruning.

Overall, the results reveal a clear trend: the advantages of Lang-Prune amplify with increasing model
size, demonstrating that language-sensitive aggregation generalizes across scales and is particularly
effective for realistic multilingual deployment settings (4B parameters and above).

These findings also contextualize the relationship between pruning and training smaller dense mod-
els. In a zero-shot setting, a dense model trained from scratch at a given parameter scale (e.g.,
Qwen3-4B) typically achieves lower perplexity than a larger model pruned to the same effective
size (e.g., 8B at 50% sparsity). This difference largely stems from data regimes: dense models are
trained with full-scale curated corpora and task objectives, whereas one-shot pruning focuses purely
on structural compression using minimal calibration data. Consequently, pruned models should be
viewed as strong initializations that preserve the parent model’s tokenizer, alignment, and behav-
ioral characteristics, rather than direct substitutes for fully trained dense models. When further
post-training is applied (Section 4.2), pruned variants recover substantial capability, supporting their
practical role in adapting a single high-quality parent model to multiple deployment constraints.
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