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ABSTRACT

The field of graph learning has been substantially advanced by the development of
deep learning models, in particular graph neural networks. However, one salient
yet largely under-explored challenge is detecting Out-of-Distribution (OOD) nodes
on graphs. Prevailing OOD detection techniques developed in other domains like
computer vision, do not cater to the interconnected nature of graphs. This work
aims to fill this gap by exploring the potential of a simple yet effective method –
OOD score propagation, which propagates OOD scores among neighboring nodes
along the graph structure. This post hoc solution can be easily integrated with
existing OOD scoring functions, showcasing its excellent flexibility and effective-
ness in most scenarios. However, the conditions under which score propagation
proves beneficial remain not fully elucidated. Our study meticulously derives
these conditions and, inspired by this discovery, introduces an innovative edge
augmentation strategy with theoretical guarantee. Empirical evaluations affirm the
superiority of our proposed method, outperforming strong OOD detection baselines
in various scenarios and settings.

1 INTRODUCTION

Graph-like data structures are ubiquitous in many domains, such as social networks (Zafarani et al.,
2014; Li & Goldwasser, 2019), molecular chemistry (Gasteiger et al., 2019a; Yan et al., 2019), and
recommendation systems (Ying et al., 2018; Liu et al., 2021b). As graph neural networks increasingly
serve as powerful tools for navigating this complex data landscape, a compelling yet under-explored
issue emerges: Out-of-Distribution (OOD) node detection. Imagine a recommender system suggesting
irrelevant or even harmful products to users, or a bioinformatics algorithm misusing an unknown
protein. This gives rise to the importance of OOD detection in graph data, which determines whether
an input is in-distribution (ID) or OOD and enables the model to take precautions.

While existing OOD detection methods have shown promising results in computer vision (Sun
et al., 2022b; Jaeger et al., 2022; Galil et al., 2022; Djurisic et al., 2022; Zhu et al., 2022), nat-
ural language procession (Colombo et al., 2022; Ren et al., 2022) and tabular data analytics (Ul-
mer et al., 2020), their effectiveness diminishes when applied to graph data (Wu et al., 2022).
These conventional techniques operate under the assumption that data points are independently
sampled, which misaligns with the interconnected nature of graphs. For example, in a social
network, nodes (people) do not exist in isolation but are linked through friendships, interests, etc.
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Figure 1: Illustration of the propagation procedure
for OOD scores and two questions to be answered.

Applying traditional OOD detection methods
such as KNN (Sun et al., 2022b) or Maha-
lanobis (Lee et al., 2018; Sehwag et al., 2021;
Ren et al., 2021) distances to the learned node
embeddings without fully considering the node
dependencies can be inadequate.

To leverage abundant structural knowledge in
graph data, we investigate one straightforward
method for graph OOD detection through OOD
score propagation – aggregating the OOD
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scores from connected neighbor nodes (as shown in Figure 1). This strategy offers several no-
table benefits: (a) it can seamlessly integrate with all existing OOD scoring functions, ensuring
compatibility and flexibility across a wide array of use cases (Zhu et al., 2003); (b) it obviates the
need for cumbersome retraining procedures, offering a flexible post hoc approach to OOD detection.
In light of its potential, our research embarks on addressing two pivotal research questions related to
OOD score propagation:

• Question 1: "Will naive OOD score propagation always help graph OOD Detection?" Our
investigation, as detailed in Section 3, provides theoretical insights into this query. We reveal
the essential condition for propagation to be beneficial: the ratio of intra-edges (ID-to-ID and
OOD-to-OOD) must surpass that of inter-edges (ID-to-OOD). This finding naturally paves the
way for our subsequent inquiry.

• Question 2: "How to augment the propagation strategy for better graph OOD detection?" Build-
ing on our prior findings, we propose a graph augmentation strategy as presented in Section 4.
Specifically, our strategy selects a subset G of the training set and puts additional edges to the
nodes within G. Beyond its practical implications, our solution is also theoretically supported:
When G predominantly connects to ID data over OOD data, our strategy can provably enhance the
post-propagation OOD detection outcomes.

We summarize our contributions as below:

• Theoretical understanding: We delve deeply into the mechanism of score propagation to under-
stand its potential for graph OOD detection. Our research not only validates the efficacy of this
approach but also elucidates the conditions under which it thrives, providing an understanding that
extends beyond existing knowledge.

• Practical solution: To counter the identified challenge of improving post-propagation OOD
detection performance, we propose GRaph-Augmented Score Propagation (GRASP), an innovative
edge augmentation strategy with theoretical guarantee. By strategically adding edges to a chosen
subset G of the training set, as detailed in Section 4, our method aims to enhance the intra-edge
ratio, thereby boosting OOD detection outcomes post-propagation.

• Empirical studies: We demonstrate the superior performance of the proposed method on extensive
graph OOD detection benchmarks, different pre-trained methodologies (Kipf & Welling, 2017;
Zhu et al., 2020), and different OOD scoring functions. Under the same condition, our proposed
strategy substantially reduces the FPR95 by 8.43% compared to the strongest graph OOD detection
baselines. Extensive ablation studies are also provided to show the superiority of the proposed
methodology designs and the validity of the theoretical findings.

2 PRELIMINARIES

Problem setup. We consider a traditional semi-supervised node classification setting with the
additional unlabeled nodes from the out-of-distribution class. Let G = {V, E} denote the graph
with nodes V and edges E , where the node set V with size N are attributed with data matrix
X ∈ RN×d. The structure of graph G is described by the adjacency matrix A ∈ {0, 1}N×N . We
let the corresponding row-stochastic matrices as Ā = D−1A, where D is the diagonal matrix with
Dii =

∑
j Aij . The N nodes are partially labeled, so we let Vl and Vu represent the labeled and

unlabeled node sets respectively, i.e, V = Vl ∪Vu. Given a training set Dtr =
{
(xi, yi)

}
i∈Vl

with xi

as the i-th row of X and yi ∈ Y ≜ {1, · · · , C}, the goal of node classification is to learn a mapping
f : V → RC from the nodes to the probability of each class.

Out-of-distribution detection. When deploying a model in the real world, a reliable classifier should
not only accurately classify known in-distribution (ID) nodes, but also identify “unknown” nodes or
OOD nodes. Formally, we can represent the unlabeled node set by Vu = Vuid ∪ Vuood where Vuid

and Vuood represent the in-distribution (ID) node and OOD node respectively. The goal of the graph
OOD detection is to derive an algorithm to decide if a node i ∈ Vu is from Vuood or Vuid.

This can be achieved by having an OOD detector, in tandem with the node classification model f .
OOD detection can be formulated as a binary classification problem. At test time, the goal of OOD
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detection is to decide whether an unlabeled node i ∈ Vu is from ID or OOD. The decision can be
made via a level set estimation:

FOODD(i,G;λ) =
{

ID g(xi) ≥ λ

OOD g(xi) < λ
,

where nodes with higher scores g(xi) are classified as ID and vice versa, and λ is the threshold
commonly chosen so that a high fraction (e.g., 95%) of ID data is correctly classified.

In this paper, we consider post hoc OOD detection methods to produce g(xi) which does not require
expensive re-training. As an example, a classical way to compute g(xi) is Maximum Softmax
Probability (MSP) (Hendrycks & Gimpel, 2016) which is given by the maximum softmax value. We
include details of the considered OOD detection methods in Appendix A.

3 WILL PROPAGATION ALWAYS HELP GRAPH OOD DETECTION?

The majority of techniques for Out-of-Distribution (OOD) detection are primarily tailored for im-
ages (Hendrycks & Gimpel, 2016; Sun et al., 2022a; Zhu et al., 2022) and tabular data analytics (Ulmer
et al., 2020). While it is certainly possible to adapt these methodologies to the graph data, they are
not inherently designed to capture the node dependencies, a key that could potentially boost the
effectiveness of graph OOD detection.

Previous empirical studies have demonstrated that improvements in graph OOD Detection could
be realized through the propagation of the OOD scoring vector (Wu et al., 2022) along the graph
structure. However, rather than merely corroborating these preliminary findings, our research delves
into a deeper understanding of the underlying mechanisms. Specifically, we aim to answer the
following research question: Will propagation always help graph OOD Detection? We start by
showing the formal definition of propagation.

Define OOD scoring propagation. Given a raw OOD scoring vector ĝ ∈ RN with ĝi = g(xi), the
propagated scoring vector is given by:

Propagated OOD Scoring Vector: g = Ākĝ, (1)

where k ∈ N+ are hyperparameters.

Is it necessarily the case that g outperforms ĝ? The answer is NO. We elucidate with the theoretical
insight below.

Theoretical Insight. To elucidate this, we refer to a toy example illustrated in Figure 2. The discussion
is decomposed into two distinct scenarios: (a) In Figure 2(a) where the number of ID-to-ID and
OOD-to-OOD edges surpasses that of ID-to-OOD edges, the propagation mechanism tends to
“aggregate" the scores associated with the ID data which further amplify the separability between the
ID and OOD nodes. (b) Conversely, when the number of ID-to-OOD edges are more than the other
types of edges, the scores for both ID and OOD nodes become undistinguishable post-propagation.

ID OOD
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(a) The case when propagation is helpful. (b) The case when propagation is harmful. 
Fully separable Undistinguishable✗ 

Figure 2: Two illustrative examples when scoring propagation is helpful/harmful. We consider two ID nodes in
green and two OOD nodes in red. The value represents the respective OOD scores. Consequently, the propagated
scores in these cases will be the mean of the scores of adjacent nodes.

The example above offers the insight that the relative performance of g compared to ĝ is contingent
upon the structural dynamics of the network, specifically the distribution of edges. To formally
articulate this relationship, we adopt a probabilistic framework for modeling edges. Specifically, we
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assume that the edge follows a Bernoulli distribution characterized by parameters ηintra and ηinter
for intra-edges (ID-to-ID and OOD-to-OOD) and inter-edges (ID-to-OOD), respectively:

Aij ∼
{

Ber(ηintra), if i, j ∈ Vuid or i, j ∈ Vuood

Ber(ηinter), if i ∈ Vuid, j ∈ Vuood or j ∈ Vuid, i ∈ Vuood

In the context of probabilistic modeling, the subsequent Theorem 3.1 can be established to formalize
the inherent understanding.

Theorem 3.1. (Informal) (a) When ηintra ≫ ηinter, it is highly likely that the propagation
algorithm will yield enhanced performance in OOD detection. (b) When ηintra ≈ ηinter or
even ηintra < ηinter, the score propagation is likely to be either ineffective or detrimental to
the performance.

We also provide the formal version below (Theorem 3.2) which provides a mathematical foundation
for understanding how varying the Bernoulli parameters influence the efficacy of the propagation in
the context of OOD detection. We provide the detailed proof in Appendix B.

Theorem 3.2. (Formal) For any two test ID/OOD node set Sid ⊂ Vuid, Sood ⊂ Vuood with
equal size Ns, let the ID-vs-OOD separability Msep defined on an OOD scoring vector
ĝ ∈ RN as

Msep(ĝ) ≜ Ei∈Sid
ĝi − Ej∈Sood

ĝj .

If Msep(ĝ) > 0 and ηintra − ηinter > 1/Ns, for some ϵ > 0 and constant c, we have
P
(
Msep(Aĝ) ≥ Msep(ĝ)− ϵ

)
≥ 1− exp(− cϵ2

∥ĝ∥2
2
).

Summary. This section has presented a comprehensive overview of both empirical and theoretical
evidence to substantiate the claim that propagation through the adjacency matrix A does not nec-
essarily enhance out-of-distribution (OOD) detection in graphs. Moreover, Theorem 3.2 reveals
that the critical factor in enhancing post-propagation performance lies in improving the ratio of
intra-edges to inter-edges within the graph structure. These insights serve as a direct motivation for
the augmentation strategy that will be proposed in the next section.

4 HOW TO BOOST POST-PROPAGATION OOD DETECTION PERFORMANCE?

The findings from the preceding section give rise to a subsequent thought: "Can we improve the
propagation strategy for graph OOD detection performance?" In an ideal scenario, if an oracle were
to indicate that a particular subset in the test set belongs exclusively to the ID or OOD, one could
augment the graph by adding intra-edges or removing inter-edges. This would consequently improve
the ratio of ηintra/ηinter, leading to enhanced OOD detection performance post-propagation.

However, such an oracle does not exist in practical settings, and even approximating such a subset
proves to be a difficult task. Existing literature has suggested the use of pseudo-labels assigned
to nodes (Lee et al., 2013; Xie et al., 2020; Arazo et al., 2020; Wang et al., 2021a; Pham et al.,
2021). Nonetheless, these studies also caution that this approach is susceptible to “confirmation bias",
whereby errors in estimation are inadvertently amplified.

To circumvent it, this paper proposes the solution for adding edges to a subset of the train-
ing set Vl, which is assured to be in-distribution data. We start by showing the theoretical

…
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Figure 3: The augmentation procedure.

underpinnings that adding such a subset can, under
specified conditions, contribute to improved OOD
detection performance after propagation.

4.1 THEORETICAL INSIGHT

Our approach involves adding the edges to a subset
G of training data and then propagating the out-of-
distribution (OOD) scoring vector using the enhanced
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adjacency matrix. Specifically, when edges are added to G, this action can be mathematically
represented as incorporating a perturbation matrix E = eGe

⊤
G into A, as demonstrated in Figure 3.

Here, eS ∈ RN denotes an indicator vector for a set S ⊂ V , where the vector takes the value of 1 if
the index i ∈ S and value 0 otherwise. A sufficient condition for the efficacy of this augmentation
strategy in enhancing post-propagation OOD detection performance is outlined in Theorem 4.1.

Theorem 4.1. (Informal) For a subset G in the training set, augmenting G by adding edges
to all its nodes can lead to improved post-propagation OOD detection performance, provided
that the following condition is met: G has more edges to ID data than OOD data.

We also provide the formal version below (Theorem 4.2) that incorporates a perturbation analysis.
This analysis elucidates how edge augmentation in the training set can positively influence the
propagation algorithm’s ability to enhance OOD detection. For the sake of the main intuition, we
provide the analysis on A instead of Ā for simplicity. We provide the detailed proof in Appendix B.

Theorem 4.2. (Formal) For any two test ID/OOD node set Sid ⊂ Vuid, Sood ⊂ Vuood with
size Ns, let the ID-vs-OOD separability Msep defined on a non-negative OOD scoring vector
ĝ ∈ RN as

Msep(ĝ) ≜ Ei∈Sid
ĝi − Ej∈Sood

ĝj .

Let ES↔S′ ⊂ E to denote the edge set of edges between two node sets S and S′, where
S, S′ ⊂ V . If we can find a node set G ⊂ Vl such that |EG↔Sid

| > |EG↔Sood
|, we have

Msep((A+ δE)2ĝ) > Msep(A
2ĝ),

where E = eGe
⊤
G and δ > 0.

The Theorem 4.2 shows a critical principle for enhancing propagation: the optimal strategy entails
the addition of edges to the subset G such that there are more edges to ID data than OOD data. For
some Sid, Sood in the test set, the goal is to find the set

G∗ = argmax
S⊂Vl,|S|=Ng

|ES↔Sid
|

|ES↔Sood
| , (2)

where Ng is a hyperparameter to control the size of G∗. Inspired by the optimization target, we
proceed to present our pragmatic algorithmic approach.

4.2 GRAPH-AUGMENTED SCORE PROPAGATION (GRASP)

OOD 
ID
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Figure 4: Illustration of the ra-
tionale in selecting Sid and Sood.
MSP score is reported on Dataset
Coauther-CS with the division
of ID and OOD classes introduced
in Appendix C.

Our augmentation approach hinges on the selection of a subset,
G, from the training set, as exemplified in Equation 2. Two
principal challenges arise in implementing this: (1) We can-
not directly determine the number of edges linked to ID/OOD
data because these reside in the test set and their labels remain
unknown. (2) An exhaustive search to find a subset is computa-
tionally expensive, as the number of combinatorial possibilities
increases in a factorial manner. In this paper, we tackle these
challenges by providing the practical approximation method.

Selection of Sid/Sood. Our discussion begins by detailing the
methodology to select the subset from the test ID/OOD dataset,
symbolized by Sid and Sood in Equation 2. A straightforward
approach to obtain the most likely ID is by selecting nodes with
the largest confidence and the least for OOD in class predictions.
Following Hendrycks & Gimpel (2016), we employ the max
softmax probability (MSP) as a representation of confidence.
The selected sets can be defined as:

Sid = {i ∈ Vu|max
c∈[C]

fc(i) > λα}, Sood = {j ∈ Vu|max
c∈[C]

fc(j) < λ100−α},
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where λα denotes the α-th percentile of the MSP scores corresponding to nodes in Vu. To offer a
clear view, Figure 4 portrays Sid and Sood in the marginal regions highlighted in orange. Selecting a
subset in the leftmost and rightmost regions reduces the error when identifying the ID/OOD subsets,
given that overlapping between ID and OOD predominantly occurs around the central region of the
distribution.

Selection of G. Upon establishing Sid and Sood, the next step is to determine G using Equation 2.
Directly enumerating every possible G is impractical. Instead, we adopt a greedy approach, prioritiz-
ing the node with the highest "likelihood" score. To elucidate, for each node i ∈ Vl, the score can be
computed as the ratio of the edge count to Sid over Sood:

h(i) = |E{i}↔Sid
|/(|E{i}↔Sood

|+ 1), (3)

where we incorporate an addition of 1 in the denominator to circumvent division by zero. Subse-
quently, G can be expressed as:

G = {i ∈ Vl|h(i) > τβ}, (4)

where τβ stands for the β-th percentile of h(i) scores for nodes in Vl. Once G is defined, edge
augmentation can be executed as demonstrated in Section 4.1. The OOD score is then propagated
with the new adjacency matrix A+ = A+ eGe

⊤
G in place:

gGRASP = (Ā+)
kĝ, (5)

where k ∈ N+ are hyperparameters.

5 EXPERIMENTS

Table 1: Summary statistics of the datasets: size of the
training set |Vl|, size of the test ID set |Vuid|, size of the
test OOD set |Vuood|, number of ID classes C, scale of
the dataset, and whether the graph is homophily.

Dataset |Vl| |Vuid| |Vuood| C Scale Homophily

Cora 678 226 2K 3 SM ✓
Amazon-Photo 2K 1K 4K 3 SM ✓
Coauthor-CS 1K 3K 5K 11 SM ✓
Chameleon 1K 341 1K 3 SM ✗
Squirrel 2K 1K 2K 3 SM ✗
ArXiv-year 87K 29K 53K 3 LG ✗
Snap-patents 1M 400K 1M 3 LG ✗
Wiki 1M 300K 1M 3 LG ✗

Datasets. We carry out experiments
with an extensive array of graph bench-
mark datasets to evaluate graph OOD
detection. A high-level summary of
the dataset statistics is provided in Ta-
ble 1, with a comprehensive description
of ID/OOD split in Appendix C.1. Specif-
ically, Cora (Sen et al., 2008) serves
as a widely recognized citation network.
Amazon-Photo (McAuley et al., 2015)
represents a co-purchasing network on
Amazon. Coauthor-CS (Sinha et al.,
2015) portrays a coauthor network within
the realm of computer science. Moreover,
Chameleon and Squirrel (Rozemberczki et al., 2021) are two notable Wikipedia networks,
predominantly utilized as heterophilic graph benchmarks. To augment the evaluation of our methods
on large-scale graphs, we additionally incorporate three recently proposed graphs: ArXiv-year,
Snap-patents, and Wiki (Lim et al., 2021).

Remark on homophily/heterophily. In Table 1, datasets are also categorized based on the attribute of
homophily, denoting the tendency of nodes with the same class to connect. Conversely, the heterophily
graph demonstrates a tendency for nodes of disparate classes to connect. This characteristic not
only presents a challenge for graph classification but also for graph OOD detection. The underlying
reason is that the OOD data is from different classes with ID, and heterophily exacerbates the ratio of
inter-edge connections between ID and OOD, which is deemed undesirable for graph OOD detection
according to Theorem 3.2.

Implementation Details. Our graph OOD detection technique operates in a post hoc fashion utilizing
a pre-trained network. In particular, we explore methods with: (1) Graph Convolutional Network
(GCN) (Kipf & Welling, 2017), which serves as a prototypical Graph Neural Network (GNN) model,
and (2) H2GCN (Zhu et al., 2020), which presents a special solution tailored to the heterophily
graph learning. All pre-trained models possess a layer depth of 2. With the pre-trained network, we
proceed to execute the graph OOD detection. By default, we report the performance of the augmented
propagation (GRASP) on the Energy score (Liu et al., 2020). The compatibility with other OOD
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Table 2: Main results. Comparison with competitive post hoc out-of-distribution detection methods. For
each pre-trained method (GCN, H2GCN), we take the average values that are percentages over 5 independently
trained backbones. ↑ indicates larger values are better and ↓ indicates smaller values are better.

Pre-
trained

Backbone

OOD
Detection
Method

Datasets AverageCora Amazon Coauthor Chameleon Squirrel
FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC FPR95 AUROC

↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↑

GCN

MSP 52.23 89.33 49.52 90.47 23.87 95.29 90.87 59.91 91.99 48.17 61.70 76.63
Energy 52.05 89.48 39.49 92.33 14.98 96.52 94.98 59.68 94.29 45.06 59.16 76.61
KNN 72.29 81.24 60.61 86.01 47.99 91.34 93.43 62.09 94.42 56.74 73.75 75.48
ODIN 50.28 89.50 41.92 91.89 16.78 96.22 92.18 59.79 92.46 45.41 58.72 76.56
Mahalanobis 54.89 88.50 72.63 83.97 78.39 87.04 95.15 48.91 91.46 55.94 78.50 72.87
GNNSAFE 43.75 89.85 13.89 96.71 9.12 97.92 92.86 56.18 92.74 47.08 50.47 77.55
GRASP (ours) 21.92 94.65 15.64 96.76 7.88 97.94 74.54 67.97 90.21 54.93 42.04 82.45

H2GCN

MSP 54.19 90.57 71.55 84.69 50.22 90.66 85.87 68.43 92.74 52.36 70.91 77.34
Energy 42.94 91.71 56.60 85.92 43.97 92.27 91.57 66.03 92.92 47.13 65.60 76.61
KNN 65.89 86.45 56.55 84.94 50.45 91.43 92.34 61.73 94.35 61.14 71.92 77.14
ODIN 41.39 91.45 60.04 86.57 47.58 91.80 90.02 69.06 91.23 53.97 66.05 78.57
Mahalanobis 77.34 84.34 95.82 73.12 64.33 87.90 97.71 57.37 97.71 57.37 86.58 72.02
GNNSAFE 35.11 93.56 20.22 95.64 33.47 93.48 89.59 62.61 92.21 45.29 54.12 78.12
GRASP (ours) 18.30 95.65 14.50 96.53 8.29 97.59 65.35 72.63 90.06 56.00 39.30 83.68

scoring functions is also shown in Table 3. We set the propagation number k as 8, with percentile
values α = 5 and β = 50.

Metrics. Following the convention in literature (Hendrycks & Gimpel, 2016; Liu et al., 2020; Sun
et al., 2021), we use AUROC and FPR95 as evaluation metrics for OOD detection.

5.1 COMPARATIVE RESULTS

GRASP achieves superior performance. We provide results in Table 2, wherein our proposed
methodology (GRASP) demonstrates promising performance. The comparative analysis encompasses
a broad spectrum of post hoc competitive Out-of-Distribution (OOD) detection techniques in existing
literature. We categorize the baseline methods into two groups: (a) Traditional OOD detection
methods including MSP (Hendrycks & Gimpel, 2016), Energy (Liu et al., 2020), ODIN (Liang et al.,
2018), and KNN (Sun et al., 2022a); (b) Graph OOD detection methods GNNSAFE (Wu et al., 2022).
In this table, we present GRASP results based on the Energy score. Noteworthy findings include: (a)
The traditional OOD detection methods exhibit suboptimal performance in the realm of graph OOD
detection. For instance, GRASP reduced the average FPR95 by 26.30% compared to the strongest
traditional OOD detection method (Energy) with H2GCN. This outcome is anticipated given their
lack of specificity in design towards graph data. (b) GRASP outperforms existing baselines by a
large margin, surpassing the best baseline GNNSAFE by 14.82% concerning average FPR95 on
the pre-trained backbone H2GCN. These results further corroborate that the theoretically motivated
solution GRASP is also appealing to use in practice.

Table 3: GRASP is compatible with different OOD scoring functions. We compare OOD detection methods and
the performance after the simple propagation in Equation 1 (denoted by "+ prop") and with GRASP respectively.
We report FPR95 results that are averaged over 5 independent models pre-trained with GCN and 5 models
pre-trained with H2GCN.

Method DATASET
Cora Amazon Coauthor Chameleon Squirrel Average

MSP 53.21 60.54 37.05 88.37 92.37 66.31
MSP + prop 30.04 29.06 20.38 91.42 91.46 52.47
MSP + GRASP (Ours) 20.21 19.89 7.75 75.11 90.61 42.71
Energy 47.50 48.05 29.48 93.28 93.61 62.38
Energy + prop 30.33 22.54 27.55 97.74 90.74 53.78
Energy + GRASP (Ours) 20.11 15.07 8.09 69.95 90.14 40.67
KNN 69.09 58.58 49.22 92.89 94.39 72.83
KNN + prop 46.67 33.84 15.23 90.12 92.00 55.57
KNN + GRASP (Ours) 32.49 20.05 8.59 66.52 88.43 43.21

GRASP is compatible with a wide range of OOD scoring methods. In Table 3, we demonstrate
the compatibility of GRASP with various alternative scoring functions. We evaluate commonly
utilized scoring functions, comparing the performance with and without the application of GRASP
accordingly. We specifically examine MSP (Hendrycks & Gimpel, 2016), Energy (Liu et al., 2020),
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and KNN (Sun et al., 2022a), each of which generates OOD scores to form a scoring vector; GRASP
is then applied to facilitate score propagation. Notably, across all five datasets, the use of GRASP
markedly surpasses the performance of its non-augmented counterpart. The results, as presented in
Table 3, are averaged across all backbones (GCN and H2GCN). The detailed performance on each
backbone is shown in Appendix, Table 9 and Table 10 .

GRASP is better than propagation without augmentation. In Table 3, we contrast the performance
of two propagation strategies including the basic propagation illustrated in Equation 1, and the
enhanced propagation strategy, GRASP, as introduced in Equation 5. Our observations indicate that
utilizing basic propagation with the original graph connection may result in diminished performance.
For instance, within the Chameleon dataset, there is an increase in the FPR95 by 3.04% and 4.46%
respectively on MSP and Energy scores. This outcome resonates with the discussion in Section 3,
affirming that propagation does not always enhance graph OOD detection. To boost the post-
propagation OOD detection performance, we suggest employing augmented propagation and the
empirical results demonstrate that GRASP consistently outperforms the basic propagation strategy.

Table 4: Results on large-scale graph dataset. We report
AUROC that are averaged over 5 independently pre-trained
GCN models.

Method Large-scale Dataset
ArXiv-year Snap-patents Wiki Average

MSP 43.35 51.42 36.63 43.80
Energy 47.58 46.93 28.47 40.99
KNN 61.28 53.20 40.89 51.79
ODIN 43.62 49.09 34.03 42.25
Mahalanobis 59.61 55.29 61.06 58.65
GNNSAFE 36.66 33.44 39.90 36.67
GRASP (ours) 74.66 67.36 65.56 69.19

GRASP is also competitive on large-scale
graph datasets. We further extend our
evaluation to the large-scale graph OOD
detection task, leveraging datasets such
as ArXiv-year, Snap-patents, and
Wiki (Lim et al., 2021). Contrasted with the
small-scale benchmarks in Table 4, the large-
scale scenario presents more challenges due to
a large number of nodes and edges. Through
empirical analysis, we find that all baseline
OOD detection methodologies exhibit subop-
timal performance, manifesting around 50%
AUROC. This outcome aligns with anticipations, given that these three datasets are recognized for
their heterophily graph characteristic. By deploying our augmentation strategy, we manage to elevate
the overall AUROC to approximately 70%, marking a substantial improvement of 10.54% over the
second-best methodology.

Table 5: Comparison with training-based
OOD detection baselines on AUROC.

Method Dataset
Cora Amazon Coauther

OE 89.47 95.39 96.04
GKDE 57.23 65.58 61.15
GPN 90.34 92.72 83.65
GRASP (ours) 94.65 96.76 97.94

Comparison with training-based graph OOD detection
baselines. In addition to contrasting with post hoc meth-
ods, we extend our comparison to a parallel line of graph
Out-Of-Distribution (OOD) detection research, which fo-
cuses on refining the training strategy to improve graph
OOD detection performance. The methods compared in-
clude OE (Hendrycks et al., 2018), GKDE (Zhao et al.,
2020), and GPN (Stadler et al., 2021). While these ap-
proaches necessitate a costly re-training procedure, our
approach, GRASP, offers a simple "plug-and-play" utility on any pre-trained models, and furthermore
demonstrates superior performance compared to the baseline methods, as illustrated in Table 5.

5.2 FURTHER DISCUSSIONS
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Figure 5: Illustration of the number of
edges from each training node i to ID
and OOD data within the test set of the
Chameleon dataset. The x-axis denotes
the training node indices, ordered by h(i)
from low to high.

Selection by h(i) is effective. The essence of our ap-
proach, GRASP, lies in selecting a subset G from the
training set such that there is a higher edge count towards
ID data compared to OOD data (Equation 2). Our ob-
jective is to find out whether the estimation score h(i),
detailed in Equation 3, can effectively prioritize a training
node that has a higher edge count to ID (Vuid) over OOD
(Vuid). Figure 5 demonstrates the sorting of training nodes
indices from low to high, revealing that a higher h(i) value
(corresponding to the right side of the figure) is associated
with more edges towards ID than OOD, thereby affirming
the efficacy of our algorithm.
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Selecting the subset G strategically is important. In our GRASP algorithm, we select the subset G
from the training set, comprising nodes with the top 50% scores of h(i), which correspond to the
nodes on the right side of Figure 5. Upon altering the selection policy to include 50% of nodes with
the lowest h(i) values (left side of Figure 5), the AUROC declines from 67.97% to 60.46% on the
GCN backbone. This result substantiates the theoretical insight posited in Theorem 4.2, affirming
that selecting subset G with more edges to ID data than OOD data can enhance graph OOD detection
performance after the augmented propagation.

Directly adding edges to Sid and Sood is sub-optimal. In this paragraph, we draw a comparison
with an alternative solution to GRASP. While we augment the training set subset with additional
edges, there is also a possibility of directly incorporating edges into Sid and Sood within the test set.
Employing this strategy yields an average AUROC on GCN of 72.44, which, according to Table 2, is
approximately 10% lower than that achieved with GRASP. This observation further substantiates the
notion that "confirmation bias" can adversely affect the graph OOD detection.

6 RELATED WORK

Out-of-distribution Detection. The primary focus within this realm has been on the development
of scoring functions for OOD detection. These works can be broadly categorized into two main
streams: (1) output-based methods (Hendrycks & Gimpel, 2016; Liang et al., 2018; Liu et al., 2020;
Wang et al., 2022a; Huang et al., 2021; Wang et al., 2022b; Zhu et al., 2022; Huang et al., 2022;
Djurisic et al., 2022; Zhang et al., 2023), and (2) feature-based methods including the Mahalanobis
distance (Lee et al., 2018; Sehwag et al., 2021; Ren et al., 2021) and KNN distance (Sun et al., 2022a).
These methodologies are predominantly applied in domains such as computer vision, where samples
are inherently independent of each other. However, these techniques are not designed to adeptly
handle data structures like graphs, where samples are inter-connected.

Out-of-distribution detection for graph data. Graph anomaly detection has a rich history (Ding
et al., 2021a; Wang et al., 2021b; Zhang et al., 2021; Liu et al., 2021a; Wang et al., 2021c; Liu
et al., 2021c; Ding et al., 2021b; Liu et al., 2021d; Kim et al., 2022). In recent years, the OOD
detection in graph data introduced fresh challenges, particularly with multi-class classification for
in-distribution data, escalating the difficulty in discerning outlier data. Some of the works focus on
graph-level OOD detection (Li et al., 2022; Liu et al., 2023; Bazhenov et al., 2022). For node-level
OOD detection, GKDE (Zhao et al., 2020) and GPN (Stadler et al., 2021) apply Bayesian Network
models to estimate uncertainties to detect OOD nodes. However, Bayesian-based approaches can
encounter impediments such as inaccurate predictions and high computational demands, which limit
their broader applicability Yang et al. (2021). GNNSAFE (Wu et al., 2022) emerges as the work
employing post hoc energy-based score to perform OOD detection. Given the merits of post hoc
methods, our study first provides a comprehensive understanding of the OOD score propagation in
Graphs, extending beyond existing knowledge.

Graph Data Augmentation. Graph Data Augmentation is a common technique in graph machine
learning (Gasteiger et al., 2019b; Chen et al., 2020; Rong et al., 2020; Jin et al., 2020; Zheng et al.,
2020; Zhao et al., 2021; Kipf & Welling, 2016; Park et al., 2021; Ding et al., 2022; Azabou et al.,
2023) to improve the node classification performance. Existing methods operate exclusively on
in-distribution (ID) data. Furthermore, their test set data also originates from the in-distribution and
shares the same classes as the training set. In contrast, our data augmentation is purposefully crafted
for OOD detection, supported by the theoretical explanation.

7 CONCLUSION

In this research, we delve into an important yet under-explored challenge in the realm of graph data:
Out-of-Distribution (OOD) detection. Recognizing the inadequacies of traditional OOD detection
techniques in the context of graph data, our exploration centered on the potential of score propagation
as a viable and efficient solution. Our findings reveal the specific conditions under which score
propagation will be helpful—in situations where the ratio of intra-edges surpasses that of inter-edges.
Motivated by this finding, our edge augmentation strategy selectively adds edges to a specific subset
G of the training set, which provably improves post-propagation OOD detection outcomes under
certain conditions. Extensive empirical evaluations reinforced the merit of our approach. In summary,
this paper contributes an enriched understanding of OOD detection in graph data and paves the way
for more robust graph-based machine learning systems.
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A DETAILS OF BASELINES

For the reader’s convenience, we summarize in detail a few common techniques for defining OOD
scores that measure the degree of ID-ness on a given input. By convention, a higher (lower) score is
indicative of being in-distribution (out-of-distribution).

MSP Hendrycks & Gimpel (2016) This method proposes to use the maximum softmax score as the
OOD score. For each node i, we use FOODD(i) = maxc∈[C] fc(i) as the OOD score.

ODIN Liang et al. (2018) This method improves OOD detection with temperature scaling and
input perturbation. In all experiments, we set the temperature scaling parameter T = 1000. For
graph neural network, we found the input perturbation does not further improve the OOD detection
performance and hence we set ϵ = 0.

Mahalanobis Lee et al. (2018) This method uses multivariate Gaussian distributions to model
class-conditional distributions of softmax neural classifiers and uses Mahalanobis distance-based
scores for OOD detection. The mean µc of each multivariate Gaussian distribution with class c and a
tied covariance Σ are estimated based on training samples. We define the confidence score M(x)
using the Mahalanobis distance between test sample x and the closest class-conditional Gaussian
distribution.

Energy Liu et al. (2020) This method proposes using energy score for OOD detection. The energy
function maps the logit outputs to a scalar E(xi; f) ∈ R, which is relatively lower for ID data. Note
that Liu et al. (2020) used the negative energy score for OOD detection, in order to align with the
convention that S(x) is higher (lower) for ID (OOD) data.

KNN Sun et al. (2022a) This method uses the k-th nearest neighbor distance between a test graph
node and the training set as the OOD score. We use k = 10 for all experiments in this paper.

B TECHNICAL DETAILS

Theorem B.1. (Recap of Theorem 3.2) For any two test ID/OOD node set Sid ⊂ Vuid, Sood ⊂ Vuood

with equal size Ns, let the ID-vs-OOD separability Msep defined on a OOD scoring vector ĝ ∈ RN

as
Msep(ĝ) ≜ Ei∈Sid

ĝi − Ej∈Sood
ĝj .

If Msep(ĝ) > 0 and ηintra − ηinter > 1/Ns, for some ϵ > 0 and constant c, we have

P
(
Msep(Aĝ) ≥ Msep(ĝ)− ϵ

)
≥ 1− exp(− cϵ2

∥ĝ∥22
).

Proof. Without losing the generality, we set the ĝi = 0, if i ∈ Sood ∪ Sid, since we only care about
the detection results in the given test node set Sood and Sid.

The Msep(ĝ) can be re-written as

Msep(ĝ) = ĝ⊤(eSid
− eSood

).

Then we have

Msep(Aĝ) = ĝ⊤A(eSid
− eSood

)

According to General Hoeffding’s inequality (Theorem 2.6.3) in Vershynin (2018), we know that

P
(
E[ĝ⊤A(eSid

− eSood
)]− ĝ⊤A(eSid

− eSood
) ≤ ϵ

)
≥ 1− exp(− cϵ2

∥ĝ∥22
),

where c is some constant value.
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Since ĝi = 0, if i ∈ Vl,

E[ĝ⊤A(eSid
− eSood

]) = ĝ⊤E[A](eSid
− eSood

)

= ĝ⊤Ns(ηintra − ηinter)(eSid
− eSood

)

> ĝ⊤(eSid
− eSood

)

Combining together, we have

P
(
ĝ⊤A(eSid

− eSood
) ≥ ĝ⊤(eSid

− eSood
)− ϵ

)
≥ 1− exp(− cϵ2

∥ĝ∥22
)

Theorem B.2. (Recap of Theorem 4.2) For any two test ID/OOD node set Sid ⊂ Vuid, Sood ⊂ Vuood

with equal size Ns, let the ID-vs-OOD separability Msep defined on a non-negative OOD scoring
vector ĝ ∈ RN as

Msep(ĝ) ≜ Ei∈Sid
ĝi − Ej∈Sood

ĝj .

Let ES↔S′ ⊂ E to denote the edge set of edges between two node sets S and S′, where S, S′ ⊂ V . If
we can find a node set G ⊂ Vl such that |EG↔Sid

| > |EG↔Sood
|, we have

Msep((A+ δE)2ĝ) > Msep(A
2ĝ),

where E = eGe
⊤
G and δ > 0.

Proof. The Msep(ĝ) can be re-written as

Msep(ĝ) =
1

Ns
ĝ⊤(eSid

− eSood
).

We can then directly derive the proof by expanding

Msep((A+ δE)2ĝ)−Msep(A
2ĝ) =

1

Ns
(eSid

− eSood
)⊤

(
(A+ δE)2ĝ −A2ĝ

)

=
1

Ns
(eSid

− eSood
)⊤

(
δ(AE + EA)ĝ + δ2eGe

⊤
GeGe

⊤
Gĝ

)

=
δ

Ns
(eSid

− eSood
)⊤

(
AeGe

⊤
Gĝ + eGe

⊤
GAĝ

)

=
δ

Ns
(eSid

− eSood
)⊤AeGe

⊤
Gĝ

=
δ

Ns
(e⊤Gĝ)(e

⊤
Sid

AeG − e⊤Sood
AeG)

=
δ(e⊤Gĝ)
|G|Ns

(|EG↔Sid
| − |EG↔Sood

|)

> 0,

where the second and the third equation are derived by the fact that G ⊂ Vl and then we have
e⊤Sid

eG = 0 and e⊤Sood
eG = 0.

C EXPERIMENTAL DETAILS

C.1 DATASET DETAILS

We adopt nine publicly available common benchmarks used for graph learning, split the ID/OOD
parts and use them in our experiment. For Cora, Amazon-Photo and Chameleon, we follow
the approaches handling these datasets as (Wu et al., 2022) and use the data loader provided by
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the Pytorch Geometric package 1. For the remaining six datasets, we directly use the pickle file or
download from the given hyperlinks proposed by Lim et al. (2021).

Cora (Sen et al., 2008) is a 7-class citation network comprising 2,708 nodes, 5,429 edges and 1,433
features. In this network, each node represents a published paper, each edge signifies a citation
relationship, and the label class is each paper’s topic, which is the goal to predict. For our OOD
setting, we designate nodes belonging to 4 specific classes (0, 1, 2, 3) as Out-of-Distribution (OOD),
while the remaining 3 classes (4, 5, 6) are considered In-Distribution (ID).

Amazon-Photo (McAuley et al., 2015) is an 8-class item co-purchasing network on Amazon,
which contains 7,650 nodes, 238,162 edges and 745 features. In this network, each node denotes a
product, each edge indicates that two linked products are frequently purchased together, and the node
label denotes the category of the product. Similar to Cora, we designate 3 classes (5, 6, 7) as ID and
and the remaining 5 classes (0, 1, 2, 3, 4) as Out-of-Distribution (OOD).

Coauthor-CS (Sinha et al., 2015) is a 15-class coauthor network of computer science, which
contains 18,333 nodes, 163,788 edges and 6,805 features. In this network, nodes denote authors and
there is an edge between two authors if co-authored a paper. And the label represents the study field
for the authors. Similar to Cora, we use 4 classes (0, 1, 2, 3) of nodes as Out-of-Distribution (OOD),
and the remaining 10 classes (4-14) are used as In-Distribution (ID).

The data split operation for ID and OOD in the aforementioned three datasets is the same as
GNNSAFE (Wu et al., 2022). Notably, GNNSAFE offers three OOD processing methods for these
datasets, of which, however, only the "Label Leave-Out" approach is the correct setup for OOD
detection. Furthermore, the methodologies applied to other datasets in GNNSAFE do not align with
node-level graph OOD detection setup either, by which reason we only adopt these three datasets.

Chameleon and Squirrel (Rozemberczki et al., 2021) are two Wikipedia networks with 5
classes, where nodes represent web pages and edges represent hyperlinks between them. Node
features represent several informative nouns in the Wikipedia pages and the task is to predict the
average daily traffic of the web page (Fey & Lenssen, 2019).

arXiv-year (Hu et al., 2020) is the ogbn-arXiv network with different labels and is altered to be
heterophily, in which the class labels are set to be the year that the paper is posted, instead of subject
area in the original paper. The nodes are arXiv papers, and directed edges connect a paper to other
papers that it cites. The node features are averaged word2vec token features of both the title and
abstract of the paper. The five classes are chosen by partitioning the posting dates so that class ratios
are approximately balanced (Lim et al., 2021).

snap-patents (Leskovec & Krevl, 2014; Leskovec et al., 2005) is a big dataset of utility patents
in the US. Each node represents a patent and edges connect patents that cite each other. Node features
are derived from patent metadata (Lim et al., 2021). Like arXiv-year, this dataset is changed to
set the task to predict the time at which a patent was granted, which is also five classes.

wiki (Lim et al., 2021) is a super big dataset of Wikipedia articles, which are crawled and cleaned
from the internet. Nodes represent pages and edges represent links between them. Node features are
derived from the average GloVe embeddings (Pennington et al., 2014) of the titles and abstracts and
labels indicate total page views over a 60-day period, categorized into five classes based on quintiles.

The above 6 datasets all have 5 classes, for which we universally designate three classes (2, 3, 4) as
ID and the remaining 2 classes (0, 1) as OOD, just as Cora, Amazon-Photo and Coauthor-CS.

The complete information and statistics of all these datasets aforementioned are summarized in Table
6.

C.2 GRAPH CLASSIFICATION DETAILS

The ID Accuracy result of the pre-trained backbone model is shown in Tables 7 and 8.

1https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
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Table 6: Statistics of all the graph datasets. # C is the total number of distinct node classes.
Dataset # Nodes # Edges # Features # C OOD Class ID Class

Cora 2,708 5,429 1,433 7 {0, 1, 2, 3} {4,5,6}
Amazon-Photo 7,650 238,162 745 8 {0, 1, 2, 3, 4} {5, 6, 7}
Coauthor-CS 18,333 163,788 6,805 15 {0, 1, 2, 3} {4, · · · , 14}
Chameleon 2,277 31,421 2,325 5 {0, 1} {2, 3, 4}
Squirrel 5,201 198,493 2,089 5 {0, 1} {2, 3, 4}
arXiv-year 169,343 1,166,243 128 5 {0, 1} {2, 3, 4}
snap-patents 2,923,922 13,975,788 269 5 {0, 1} {2, 3, 4}
wiki 1,925,342 303,434,860 600 5 {0, 1} {2, 3, 4}

Table 7: ID ACCs of five small-scale graph datasets.
Dataset Cora Amazon Coauthor Chameleon Squirrel

GCN 93.894 ± 1.305 96.723 ± 0.761 96.214 ± 0.610 71.202 ± 2.067 72.318 ± 2.015
H2GCN 94.071 ± 1.840 96.258 ± 0.741 94.565 ± 0.433 71.848 ± 2.214 74.725 ± 1.107

Table 8: ID ACCs of three large-scale graph datasets.
Dataset arXiv-year snap-patents wiki

GCN 56.67 ± 0.33 62.48 ± 0.10 54.89 ± 0.16

Table 9: GRASP is compatible with different OOD scoring functions. We compare OOD detection methods and
the performance after the simple propagation in Equation 1 (denoted by "+ prop") and with GRASP respectively.
We report FPR95 results that are averaged over 5 independent models pre-trained with GCN.

Method DATASET
Cora Amazon Coauthor Chameleon Squirrel Average

MSP 52.23 49.52 23.87 90.87 91.99 61.70
MSP + prop 31.24 26.87 8.74 98.17 91.77 51.36
MSP + GRASP (Ours) 19.31 18.38 7.31 94.10 91.16 46.05
Energy 52.05 39.49 14.98 94.98 94.29 59.16
Energy + prop 38.03 23.42 11.86 97.77 91.00 52.42
Energy + GRASP (Ours) 21.92 15.64 7.88 74.54 90.21 42.04
KNN 72.29 60.61 47.99 93.43 94.42 73.75
KNN + prop 49.94 38.95 15.05 92.71 92.48 57.83
KNN + GRASP (Ours) 33.16 21.43 8.86 62.29 87.96 42.74

Table 10: GRASP is compatible with different OOD scoring functions. We compare OOD detection methods
and the performance after the simple propagation in Equation 1 (denoted by "+ prop") and with GRASP
respectively. We report FPR95 results that are averaged over 5 independent models pre-trained with H2GCN.

Method DATASET
Cora Amazon Coauthor Chameleon Squirrel Average

MSP 54.19 71.55 50.22 85.87 92.74 70.91
MSP + prop 28.84 31.24 32.01 84.67 91.14 53.58
MSP + GRASP (Ours) 21.11 21.39 8.18 56.11 90.05 39.37
Energy 42.94 56.60 43.97 91.57 92.92 65.60
Energy + prop 22.63 21.65 43.23 97.71 90.47 55.14
Energy + GRASP (Ours) 18.30 14.50 8.29 65.35 90.06 39.30
KNN 65.89 56.55 50.45 92.34 94.35 71.92
KNN + prop 43.40 28.73 15.41 87.53 91.52 53.32
KNN + GRASP (Ours) 31.81 18.67 8.32 70.74 88.89 43.69
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