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Abstract

Vision-language models (VLMs) as foundation models have significantly enhanced
performance across a wide range of visual and textual tasks, without requiring
large-scale training from scratch for downstream tasks. However, these determinis-
tic VLMs fail to capture the inherent ambiguity and uncertainty in natural language
and visual data. Recent probabilistic post-hoc adaptation methods address this
by mapping deterministic embeddings onto probability distributions; however,
existing approaches do not account for the asymmetric uncertainty structure of the
modalities, and the constraint that meaningful deterministic embeddings reside on
a unit hypersphere, potentially leading to suboptimal performance. In this paper,
we address the asymmetric uncertainty structure inherent in textual and visual data,
and propose AsymVLM to build probabilistic embeddings from pre-trained VLMs
on the unit hypersphere, enabling uncertainty quantification. We validate the effec-
tiveness of the probabilistic embeddings on established benchmarks, and present
comprehensive ablation studies demonstrating the inherent nature of asymmetry in
the uncertainty structure of textual and visual data.

1 Introduction

Vision-language models (VLMs) have demonstrated impressive capabilities in understanding visual
and linguistic information, by constructing a joint embedding space that aligns image and text embed-
dings [4, 29]. Models like CLIP [18] and BLIP [14], enable a wide range of downstream applications,
such as zero-shot classification [1], image-to-text retrieval [5], optical character recognition [27].
However, due to the inherent ambiguity within text and image data, aligned point estimates for
text and image embeddings produced by deterministic VLMs may not fully capture the complex
relationships between the visual and linguistic embedding spaces.

Alternatively, instead of learning deterministic point estimate embeddings, probabilistic embedding
methods [8] map text and language data onto probability distributions, more effectively capturing the
ambiguity and uncertainty of the data. However, they entail training probabilistic VLMs from scratch
on massive datasets — an expensive process that forgoes the strengths of established deterministic
VLMs. To explore post-hoc methods for constructing probabilistic embeddings from pretrained deter-
ministic VLMs, recent frameworks such as ProbVLM [25] and BayesVLM [3] have been proposed.
However, the abmiguous nature of text-to-image retrieval is due to both textual abstraction and image
variability, while image-to-text ambiguity arises from the multiplicity of textual descriptions. Existing
methods overlook this asymmetric nature in texts and images, and the fact that the embeddings of
most pre-trained VLMs reside on a unit hypersphere, instead of the Euclidean space.
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Figure 1: Left: Mapping relations between text, image, object, and representation spaces. Right:
Comparison of methods — CLIP uses deterministic one-to-one mappings; ProbVLM introduces one-
to-many mappings via probabilistic embeddings; AsymVLM further captures asymmetry structure
between texts, images and objects.

In this work, we propose a post-hoc method, Asymmetric Probabilistic Vision-Language Model
(AsymVLM), to model the uncertainty of embeddings obtained from pretrained VLMs

* We formally address the asymmetric uncertainty structure inherent in vision—language data, high
aleatoric uncertainty in text versus lower aleatoric uncertainty in images.

* We propose AsymVLM, an adapter that exploits the asymmetric uncertainty structure and per-
forms post-hoc probabilistic adaptation on the unit hypersphere, rather than in Euclidean space.
We also show that AsymVLM is a natural extension of CLIP’s cosine-similarity loss with the
added ability to quantify uncertainty.

* Empirically, AsymVLM yields more accurate uncertainty estimates and higher cross-modal
retrieval accuracy on multiple benchmarks. We further demonstrate its advantages in robust
fine-tuning, zero-shot classification and "none-of-the-above" rejection.

We formulate the problem, addressing the asymmetric structure of vision-language data in Section 3,
and derive our method, AsymVLM, in Section 4. We then present empirical evaluations, including
uncertainty quantification, ablation studies, and downstream applications in Section 5. We conclude
and discuss future work in Section 6.

2 Related work

Vision-language models Recent advancements in vision-language modeling have facilitated the
development of multimodal models capable of learning a shared embedding space for images and
text. These models typically achieve this by optimizing directional similarity metrics, such as cosine
similarity. Notable works including CLIP [18], BLIP [14], SigLIP [28], typically align paired image-
text representations by maximizing the cosine similarity between corresponding embeddings. This
strategy has proven to be effective for large-scale training, enabling these models to capture semantic
relationships, and generalize well across diverse downstream tasks. However, these pretrained VLMs
offer deterministic mappings that fail to capture the inherent ambiguity in the inputs.

Probabilistic VLMs Methods have been proposed to improve deterministic VLM embeddings
by learning a unified probabilistic embedding space for both visual and textual data. Methods such
as PCME [8], and PFE [24] learn to map texts and images to aligned probability distributions, by
maximizing the cross-modal likelihood between corresponding text and image data. However, these
approaches require training from scratch, which is computationally expensive as existing high-quality
deterministic VLMs are not fully leveraged. A more resource-efficient alternative is the probabilistic
adaptation of pretrained VLMs. ProbVLM [25] trains an adapter to construct probability distributions
from deterministic embeddings, while BayesVLM [3] estimates the uncertainty of cosine similarity
through post-hoc Bayesian posterior approximation. As mentioned in Section 1 (and detailed in
the following Section), although having demonstrated their efficacy for uncertainty quantification,
existing post-hoc approaches do not consider the asymmetry in uncertainty structures between textual
and visual data, and the constraint that meaningful embeddings of most pretrained VLMs reside on
the unit sphere, resulting in sub-optimal performance.

Embeddings on the unit hypersphere Cosine similarity is widely utilized in contemporary VLMs
and foundation models pre-trained with contrastive loss [6, 18, 7]. This approach inherently constrains
the learned embeddings to reside on the unit hypersphere. These embeddings have been shown to
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Figure 2: Asymmetric probabilistic adaptation (AsymVLM): Texts are encoded with a frozen text
encoder and adaptor to produce probabilistic hyperspherical embeddings (e.g., vMF distribution),
while image are deterministically encoded via a frozen image encoder. The log likelihood matrix
L, with element L,, ,, representing the log likelihood of image vector z. given text embedding
2L~ P(fim, Km), is optimized using InfoNCE to maximize diagonals and minimize off-diagonals.

have advantages such as improved uniformity and alignment compared to their Euclidean counterparts
[26]. Beyond cosine similarity, embeddings on the unit hypersphere can also be explicitly modeled by
assuming directional distributions, such as the von Mises-Fisher (vMF) distribution [10]. Scott et al.
[21] introduced a contrastive loss based on the vMF distribution as a pretraining method, while [20]
proposes a method to distill pretrained VLMs, adapting student models with vMF assumptions for
zero-shot classification. However, while these approaches focus on improving empirical performance
in downstream tasks, none explicitly model the uncertainty of embeddings from pretrained VLMs.

3 Asymmetric structure of texts and images

The relationship between vision and language exhibits an inherent asymmetry in its uncertainty
structure. A textual concept, such as "dog," acts as an abstract type that can map to a vast number of
unique real-world instances (tokens). Each of these instances can, in turn, be captured in countless
images differing in viewpoint, lighting, and composition. This cascaded one-to-many mapping—from
abstract type to physical token, and from token to specific image—induces high aleatoric uncertainty
in the text modality.

Conversely, an image portrays a single, specific token. While it depicts one object unambiguously,
it can be described by multiple valid captions (e.g., "a dog," "a golden retriever," "a pet"). This
one-to-many mapping, from image to text, arises from linguistic diversity. Therefore, the uncertainty
in text-to-image retrieval (rooted in abstraction and visual variability) is fundamentally different from
that in image-to-text retrieval (rooted in descriptive variance). Despite this structural asymmetry as
shown in Figure 1, existing post-hoc probabilistic adapters typically treat both retrieval directions
symmetrically.

3.1 Mathematical formulation

Let7,Z, O and O denote the text, image, (real-world) object and (numerical) representation space
respectively. The relationships betweent € 7,4 € Z,0 € O and 6 € O can be presented as follows.

Building VLMs Existing datasets such as MS-COCO [15] and Flickr30K [17] collect data in the
form of {(¢,,%,)}_; such that there exist 0,, € O which satisfies 0, € ®7(t,,) and i,, € ®;(0,,).
Based on such datasets, we aim to find a d-dimensional real-valued representation space O c RY,
such that there exists a bijective function 7 : O — O. More importantly, the goal is to approximate
the composite function o &7 : T — P(@) and v o <I>;1 : T — O with finite samples from datasets
as the text encoder fr and image encoder fr, following the Platonic representation hypothesis [11].
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3.2 Motivating the approach

Trained on datasets in the form of {(t,,,i,)}2_,, existing deterministic pre-trained models maximize

the similarity measure between matching text-image pairs while minimizing it for non-matching

pairs [18, 28]. These approaches effectively learn a real-valued embedding space O, along with
deterministic text and image encoders. Existing probabilistic adaptation methods, rather than mapping
an image or caption to a single point in the embedding space, represent elements of 7 or Z as random

variables in O, thereby capturing the inherent one-to-many nature of the relationships.

However, the relationships among texts, images, and objects are inherently asymmetric, leading to
distinct structures in text-to-image and image-to-text retrieval tasks. While both tasks are one-to-
many, the asymmetry arises from different sources: abstraction and visual variability in text-to-image
versus diverse textual descriptions in image-to-text. This structural difference motivates the use of
asymmetric probabilistic structure for encoders within the representation space.

From an uncertainty-quantification perspective, we adopt the standard taxonomy of aleatoric vs.
epistemic uncertainty [12]. Aleatoric uncertainty captures irreducible data ambiguity, e.g. the caption
"a dog" denotes an entire class of breeds, poses and contexts, so no amount of additional training can
pinpoint a single underlying object. Epistemic uncertainty captures model ignorance that could be
reduced with more or better-distributed data, e.g., images, while depicting a unique scene with low
aleatoric spread, may still suffer from coverage gaps if certain viewpoints or lighting conditions were
under-represented during training. This asymmetry yields inherently broad aleatoric uncertainty in
text versus more data-dependent epistemic uncertainty in images. In practice, aleatoric uncertainty is
modeled via parameterized distributions, whereas epistemic uncertainty is estimated by Monte Carlo
methods (e.g., sampling from dropout layers or Bayesian neural networks).

Assuming an underlying asymmetric uncertainty structure, a direction for improvement emerges. For
text embeddings, it is essential to capture the wide variance inherent in language via distributions to
reflect the multitude of corresponding objects. Conversely, image embeddings can be be modeled
deterministically and the uncertainty is reduced through large coverage of visual data in the datasets.

4 Method

With a pretrained VLM such as CLIP or SigLIP, we denote the text encoder as f7 : 7 — S~ ! and
image encoder as f; : T — S?!, where d is the dimension of the representation space.

4.1 Asymmetric probabilistic adaptation

As discussed in Section 3, capturing the variance is crucial for text embeddings, while ensuring
coverage in training data is key for image embeddings. To achieve this, we introduce a text adapter
gr for the text encoder fr, while retaining the deterministic embeddings from the image encoder f7,
as expanding image data coverage lies beyond the scope of this work. Formally, the embedding of
any text t € T is modeled by a random variable 27,

T~ P(O(t)) where 0(t) := gr o fr(t), (1



where P(6(t)) denotes a distribution parametrized by 951&) predicted by a neural network given
corresponding text. The deterministic image embedding z* from the image encoder f7 is retained.

Objective function For any batch of data {(¢1,71), ..., (t5,ip)}, we aim to maximize In p_r (zh)
for all n € [B] while minimizing Inp_r () for all n,m € [B], n # m, where pq (b) denotes the
value of the PDF of random variable a at b. First we define the log likelihood matrix I, € REXE,
where the (m, n)-th element is computed as L(m,n) = Inp,r (21), for n,m € [B].

To maximize the diagonal elements and minimize the off-diagonal elements of L, we apply the
InfoNCE loss to L and obtain the objective function to be minimized,

B
arg min — — Z In — %P (- L(n,n)) P (7 L(n,n))

0o 2B n=1 Zi:1 exp (T : L(n, TTL)) Zf:,:l exp (T : L(ma TL))

where 7 is a temperature parameter and 6 is the parameter set of distribution P, (6(t)).

(@)

4.2 Modelling on the unit hypersphere

The shared representation space built by most pre-trained VLMs is S%~!, the domain in which both
2T and 27 reside. This observation necessitates the selection of a directional distribution for P(6(t)),
defined on S?~. To properly construct a probabilistic embedding on S?~!, directional distributions
for the embeddings should be employed — either projected distributions (e.g., the angular normal
distribution) or native directional distributions (e.g., the vMF distribution). In this work, we use the
vME, and power spherical (PS) distributions to model the text embeddings distribution. The former
is generally considered as the simplest directional distribution, while the latter is reported to be an
alternative to the vMF distribution with a closed form normalization constant.

Derivation w.r.t. vVMF distribution The vMF distribution vMF (u, x) is a probability distribution
on S9!, parameterized by a mean direction ;1 € R? and an isotropic concentration parameter x € R,
where || |2 = 1 and x > 0. The PDF for random unit vector x is given by,

jod/2-1
(2m)4/21 /91 (k)

and I, denotes the modified Bessel function of the first kind, at order p.

p(x; p, ) = Cy(rk) exp(r - ' x), where Cy(k) =

Following Equation 1, assuming that 27" ~ vMF(u(t), x(t)) for text t € T, for any image i € Z,
we have Inp,r (27) = k- u(t) T 27 + In Cy(k(t)). However, computing Cy(x) is intractable in the
high dimensional space, yet [21] have shown that In C;(x) can be approximated by Fy;(x) -+ const.,
where Fy(k) is given by,

d—1 d—1 d—1\2 1 [(d—1)\?
o - - = 2 i P 2
pd=ty fd=1 ANt ) 1 ATy
4 2 2 2 2 '

Injecting the log likelihood of vMF into Equation 2 results in the vMF kernel for the objective
function Lyyr as follows,

LVMF(Ta 5) = ’{(tr) 'M(tr)—rzsl + Fd(ﬁ(tr))a VT‘,S € [B]

The detailed derivation for the approximation is deferred to Appendix A.1.

Derivation w.r.t. PS distribution The power spheric distribution PS(, %) is an alternative to vVMF,

also parametrized by a mean direction ;1 € R? and a concentration parameter x € R with [|u]|o = 1
and x > 0. The PDF of a PS distribution is given by,

-1
p(a; k) = (14 p" @) - Ca(k), where Cy(r) = {2a+ﬂwﬁf(l;(i)ﬂ)} ’



anda=(d—1)/2+k,6=(d—1)/2.

Similarly, following Equation 1, assuming that z* ~ PS(u(t), x(¢)) for text t € T, for any image
1 € Z, injecting the log likelihood of PS distribution in Equation 2 results in the PS kernel Lpg,

Lps(r, s) =k(t,) In(1 + p(t,) " 20) — (d — 1 + &(t,)) In2

—InT (% + /i(t,«)) +Inl(d -1+ &(tr)), Vr,s € [B].

4.3 Uncertainty quantification

We quantify text-embedding uncertainty as u(t) = 1/k(t), due to the fact that for both the vMF
and PS distributions on S?~!, the (angular) variance o2 is a strictly decreasing function of .
Equivalently, larger x concentrates mass more tightly around the mean direction (lower 02), so 1/
grows monotonically with the distribution’s variance, providing a natural scalar value for uncertainty
estimate for probabilistic embeddings.

4.4 Connections to CLIP

Equation 2 can be rewritten in the following form,

B
0 = argmin — —— Iy XP (to(n,n)) XD (to(n,n))

sco 2B | Tooiew(ro(nm) T exp (76(m,n)
Denoting CosSim(r, s) = u(t,) " 2L, for any r, s € [B] we have,
for CLIP: écpip(r, s) = CosSim(r, s),
for AsymVLMyr: dymr(r, 8) = k(tr) - CosSim(r, s) + Fy(k(tr)), 3)
for AsymVLMpsg: dps(r, s) = k(L) In(1 + CosSim(r, s) + In Cy(k(t,)).

Given that x(¢,) > 0, it is clear that the latter two objectives are monotonically increasing w.r.t. dcrip
with an additional parameter x. These can be interpreted as extensions of the CLIP loss by introducing
K, the concentration parameter, to model the variance of the text embedding without drifting from the
pre-trained models using cosine similarities.

Equation 3 demonstrates AsymVLM’s consistency with the underlying ideas of CLIP, while
incorporating mechanisms to account for embedding variance. AsymVLM ultimately offers
a more refined and probabilistically grounded approach to modeling semantic relationships
between text and images. Furthermore, AsymVLM can be extended to a SigLIP variant.
Inference using AsymVLM also extends beyond simply computing the cosine similarity, to
utilizing the maximum likelihood principle, with a clearer statistical explanation. Details about
the inference process and its SigLIP-variant are provided in Appendix A.2 and A.3.

5 Empirical results

We compare AsymVLM to the baselines on benchmark datasets, and subsequently present an ablation
study. Further, extended analyses and demonstration on two downstream applications are presented.

Datasets, baselines and metrics The MS-COCO [15] and Flickr-30k [17] datasets are used to
train the adapters. Additionally, a subset of the Conceptual Caption dataset [23] of 200k samples
(CC-200k) is also used. To understand the nature of learned uncertainty, the HierarCap dataset
[2] is used, containing four captions of different abstraction levels for each image. The baselines
include BayesVLM, ProbVLM, ProLIP, PFE and PCME++ adapted from pretraining methods
(denoted by PFE* and PCME++", respectively). The pre-trained VLM used in the experiments in
the main text is CLIP (ViT-B/32 backbone). We assess the uncertainty quality in text embeddings
by evaluating recall@1 performance in cross-modal retrieval tasks. A strong positive correlation
between uncertainty and errors indicates that higher uncertainty leads to poorer embeddings and
lower recall. For each task, we group results by uncertainty levels and compute Spearman’s rank
correlation (S) between uncertainty and recall [22]. We then fit a regressor (R?) to determine if the



performance drop is linear, and compare average Recall@1 across uncertainty levels for different
methods. All experiments were repeated five times with different random seeds, and we report the
mean results with full standard deviations provided in the Appendix. The code for this paper is
available at https://github.com/1li-ju666/asymvim.

5.1 Evaluation of UQ and cross-modal retrieval
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Figure 3: Recall@1 versus uncertainty levels for cross-modal retrieval tasks for various datasets. Each
subplot shows the performance degradation as uncertainty increases for PFE*, PCME++", ProbVLM,
AsymVLM, s, and AsymVLM,g. Ideally Recall@1 should decrease monotonically.

Table 1: Evaluation of model performance and uncertainty on benchmarks (MS-COCO, Flickr-30k,
CC-200k) for Image-to-Text (i2t) and Text-to-Image (t2i) retrieval. We report Recall@1 1, regression
fit R? 1 between uncertainty and retrieval error, and Spearman’s rank S | correlation between
uncertainty and retrieval error. Bold font denotes the best results and underline denotes the second
best results. Each value is the mean of 5 runs with standard deviation in the Appendix, Table A.2.

T21 12T
DATASET METHOD Recall@el + R? 1 Sl Recall@el + R? 1 Sl
PFE* 0.500 0558  -0.722 0.304 0.946  -0.988
PCME++* 0.500 0931  -0.996 0.304 0.948  -0.990
BayesVLM 0.506 0.884  -0.976 0.323 0932 -0.985
MS-COCO  ProbVLM 0.480 0951  -0.981 0.293 0979  -1.000
ProLip 0.500 0.808  -0.908 0.304 0.876  -0.985
AsymVLM, p 0.561 0.948  -0.988 0.392 0.984  -1.000
AsymVLMg 0.558 0937  -0.984 0.390 0.989  -1.000
PFE* 0.680 0675  -0.832 0.451 0955  -0.998
PCME++* 0.679 0455  -0.178 0.451 0.900  -0.918
BayesVLM 0.637 0916  -0.976 0.425 0.934  -0.973
FLICKR-30K  ProbVLM 0.646 0.826  -0.914 0.422 0964 -0.985
ProLip 0.678 0.829  -0.954 0.450 0928  -0.978
AsymVLM, i 0.688 0.860  -0.976 0.504 0.960  -0.995
AsymVLMpg 0.688 0.854  -0.947 0.498 0946  -0.993
PFE* 0.352 0.857  -0.521 0.336 0.988  -0.595
PCME++* 0.352 0.198  -0.148 0.336 0.779  -0.887
BayesVLM 0.347 0.905  -0.968 0.304 0.874  -0.937
CC-200K ProbVLM 0.316 0772 -0.837 0.302 0.775  -0.965
ProLip 0.351 0.968  -0.990 0.335 0.992  -1.000
AsymVLM,, 0.395 0.990  -1.000 0.383 0991  -0.998
AsymVLMpg 0.393 0.992  -1.000 0.380 0.993  -1.000

Figure 3 and Table 1 summarize the main results comparing the proposed AsymVLM with baseline
methods. For uncertainty quantification, results indicate that while all methods capture text uncertainty
to some degree, AsymVLM consistently outperforms its counterparts. As the uncertainty level
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increases, AsymVLM is the only method for which Recall@1 decreases strictly monotonically.
Moreover, AsymVLM also meets or exceeds competing approaches on both 2 and S scores.

In cross-modal retrieval, AsymVLM, z and AsymVLM, achieve the highest and second-highest
Recall@1 scores across all datasets. Note that the retrieval performances of PFE* and PCME++* are
identical, as they only model the variance of embeddings while while keeping embedding directions
constant, resulting in performance identical to the pre-trained models. In contrast, both AsymVLM
and ProbVLM adapt the directions and learn the uncertainty of the embeddings during post-hoc
training. Although ProbVLM achieves reasonable uncertainty estimates overall, it consistently under-
performs pre-trained models in recall, whereas AsymVLM delivers richer uncertainty estimates and
improves cross-modal retrieval performance.

Furthermore, the similar performance of AsymVLM,;z and AsymVLMpg in both cross-modal
retrieval and uncertainty quantification shows the robustness of AsymVLM w.r.t. the choice of the
spherical distribution, suggesting possibilities of exploring other spherical or directional distributions.

5.2 Ablation study

We conduct an ablation study on the two important components of AsymVLM: the asymmetric
architecture of the adapter, and the use of a spherical distribution for modeling. To assess the impact
of two components, we designed following adapters with experimental results presented in Figure 4:

* AsymVLM(image): This variant modifies AsymVLM by only mapping deterministic image
embeddings to spherical distributions, leaving text embeddings deterministic.

* SymVLM: This variant map both deterministic image and text embeddings to spherical distribu-
tions, with InfoNCE applied to symmetrized log likelihood kernel.

* AsymVLM(G): This variant has identical architecture with AsymVLM but maps deterministic
text embedding on Gaussian distribution, followed by normalization. The kernel of the loss
function is replaced by Gaussian log likelihood.

Asymmetric architecture Both AsymVLM(image) and SymVLM perform worse than the original
AsymVLM with respect to uncertainty quantification. Specifically, AsymVLM(image) struggles
to model image uncertainty, showing no decrease in Recall@1 as uncertainty increases. Although
SymVLM exhibits a slight decrease in Recall@1 with rising uncertainty, uncertainty estimates
remain sub-optimal to AsymVLM. AsymVLM(image) achieves average Recall@1 comparable to
AsymVLM while SymVLM performs much worse than either AsymVLM or AsymVLM(image).
The results underscore the importance of an asymmetric architecture for uncertainty quantification
and cross-modal retrieval performance.

Choice of spherical distributions For both Image-to-Text and Text-to-Image retrieval tasks,
AsymVLM(G) yields reasonable uncertainty estimates. As uncertainty levels increase, the Recall@ 1
of AsymVLM(G) declines almost linearly, exhibiting behaviour similar to AsymVLM. However, the
overall Recall@1 is inferior compared to AsymVLM. This emphasizes not only the effectiveness
of the asymmetric architecture for uncertainty quantification, but also the necessity of spherical
distributions for the post-hoc adaptation of pre-trained VLMs.
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Figure 4: Ablation study results for AsymVLM: The left and middle panel shows Recall@1 per-
formance for cross-modal retrieval across various uncertainty levels. The right panel summarizes
average Recall@1 for both retrieval tasks.



5.3 Understanding the uncertainty estimates

To better understand the uncertainty estimates produced by AsymVLM, we analyze caption estimates
on the HierarCap dataset. In this dataset, each image is paired with hierarchical captions spanning
four levels — from general descriptions (Level 0) to detailed image descriptions (Level 3). Figure 5
illustrates the following observations.

* AsymVLM captures hierarchical caption structure Level O captions with general descriptions
exhibit higher uncertainty estimates, indicating greater ambiguity, while Level 3 captions with
the most detail generally show lower uncertainty. This pattern aligns with the inherent ambiguity
of language and the corresponding uncertainty estimates provided by AsymVLM.

* Detailed captions enhance image retrieval likelihood The likelihood of the image embedding
increases as more detailed descriptions are provided, as shown by the shift towards higher log
likelihood values from Level O to 3. This suggests that detailed captions better capture the nuances
of the image, facilitating more accurate image retrieval.

* Longer captions exhibit reduced ambiguity The results indicate that a higher token count is
associated with lower uncertainty in the text, as depicted by the downward trend in uncertainty
values. This is aligned with the expectation, as shorter texts generally tend to be more ambiguous,
while longer captions provide more context, reducing ambiguity.

Uncertainty at Different Levels Log Likelihood at Different Levels Num Tokens vs Uncertainty
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Figure 5: Uncertainty and likelihood analysis with the HierarCap dataset. The left panel shows the

distribution of uncertainty estimates across hierarchical caption levels, showing decreasing uncertainty

from Level O to 3. The middle panel illustrates the log likelihood distribution of image embeddings,

with increased likelihood as caption detail increases. The right panel shows the relationship between

the number of tokens and uncertainty, indicating reduced uncertainty with longer captions.

5.4 Applications

Below, we present two example applications of the uncertainty estimates obtained from AsymVLM,
demonstrating their potential use cases.

Handling none-of-the-above For zero-shot  Table 2: None-of-the-above-aware zero-shot classifi-
classification, strategies to enable a model to  cation using dummy prompts. The table reports the

say "none-of-the-above" rather than as- accuracy on positive samples and negative samples.
signing an incorrect label include threshold-

based rejection, margin-based rejection and ~ Dummy CrLass ~ METHOD Pos. Acc.  NEG. Acc.
other techniques. AsymVLM provides CLIP 0.888 0.009
an alternative approach, by introducing a  "a photo" Determ. FT 8-;29 8~é15
" " : AsymVLMy¢ .845 .547
dummy prompt such as "a photo" to signal AsymVLM e 0.857 0.387
"none-of-the-above". We evaluate these
thod bined test set stine of CLIP 0.888 0.009
methods on a combined test set consisting o "a photo of Determ. FT 0778 0037
CIFAR-10 and CIFAR-100 samples, perform-  an object" AsymVLMg 0.849 0.609
ing zero-shot classification over CIFAR-10 AsymVEM, v 0858 0557
classes. Ideally, CIFAR-10 samples (positive CLIP 0.888 0.009
. . " hot b
samples) should be correctly classified into ;};;fn;ﬂ 2:;?{1/51\} 8';22 g'éﬁg
their respective categories, while CIFAR-100 AsymVLM aye 0.857 0.585
samples (negative samples) should be rejected Nomn Margin-Based 0584 0.579
as "none-of-the-above". AsymVLM con- Threshold-Based 0.646 0.560

sistently outperforms other methods (Table 2),
achieving higher accuracy on both positive and negative samples.



Table 3: Zero-shot classification accuracy. "None" denotes the baseline without fine-tuning.

VALIDATED ON

FINE-TUNED METHOD CIFAR-10 CIFAR-100 STL-10 IMAGENET-1K
Determ. FT 0.684 0.300 0.829 0.395
MS-COCO AsymVLMpg 0.847 0.470 0.952 0.502
AsymVLM, \ip 0.837 0.477 0.940 0.507
Determ. FT 0.688 0.342 0.874 0.369
FLICKR-30K AsymVLMg 0.791 0413 0.920 0451
AsymVLM, e 0.792 0.422 0918 0.464
Determ. FT 0.779 0411 0.922 0.450
CC-200k AsymVLMg 0.861 0.542 0.968 0.520
AsymVLM, \r 0.866 0.542 0.967 0.527
NONE CLIP 0.888 0.642 0.974 0.632

Robust fine-tuning Pre-trained VLMs are renowned for their zero-shot classification performance.
However, fine-tuning these models on smaller datasets typically impairs this capability on other
datasets. Table 3 compares AsymVLM with its deterministic counterpart, denoted by Determ.FT,
and the foundation model without fine-tuning. Models fine-tuned with AsymVLM consistently
outperform those fine-tuned deterministically across all settings. This suggests that AsymVLM
preserves the zero-shot classification proficiency acquired during pre-training to a greater extent,
whereas the deterministic approach is more prone to catastrophic forgetting. Therefore, AsymVLM
offers a more robust fine-tuning strategy for VLMs.

6 Conclusion and limitation

We introduced AsymVLM, a post-hoc probabilistic adaptation framework for pretrained vi-
sion—language models that leverages asymmetric uncertainty in textual and visual embeddings. Text
embeddings are modeled as random variables using directional distributions (e.g., von Mises—Fisher
and power spherical) on the unit hypersphere, while image embeddings remain deterministic. Incor-
porating these spherical likelihoods into an InfoNCE-based objective enables effective modeling of
wide-variance aleatoric uncertainty in language.

While AsymVLM delivers impressive performance in cross-modal retrieval with reliable uncertainty
estimates, it only models text uncertainty. Future work could extend uncertainty modeling to image
embeddings via data augmentation or similar methods. Also, although example applications of the
uncertainty estimates are provided, further exploration into additional downstream tasks is warranted.

Broader impact

Uncertainty estimates for text are vital in high-stakes applications involving VLMs, such as medical
diagnostics where ambiguous language must be treated carefully. AsymVLM enhances trust in textual
inputs, enabling safer and more robust applications of VLMs in uncertainty-sensitive domains.
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1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, our main claims made in the abstract and introduction are reflected by the
paper’s contributions through the experimental results in Section 5.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The main limitations of the work, as well as future directions that may address
some of these limitations, are discussed in Section 6.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Lemmas and theoretical results are well defined, and used to motivate and
ground the proposed approach, with explicit assumptions and proofs as applicable.

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code for the paper is attached in the supplementary materials for the
submission, and will be open-sourced through GitHub. The data for the paper is publicly
available.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All necessary details for experiments are provided in the Appendix.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experiments were repeated five times with different random seeds, and
we report the mean results in the main text, with full standard deviations provided in the
Appendix.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All computing resources utilized for the experiments in the paper are listed in
the Appendix.
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This work does not entail any harmful consequences as laid out in the Code of
Ethics.

. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Potential broader impacts of the paper are discussed in the main text.
Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: No such models or datasets are involved in the scope of this paper.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All code, data and models used in the paper are properly cited, and the license
and terms of use are respected as specified.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The code for the paper is well documented with license, and terms of use being
appended in the supplementary materials.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No such models or datasets are involved in the scope of this paper.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: There are no human participants involved in the scope of this paper.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:

Justification: LLMs are not used for any important, original or non-standard component of
the core methods.
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A Method Details

A.1 Approximation of the log normalizer of vMF distribution

The normalizer of vMF distribution Cy(k) is given by,
jod/2-1

Ca(k) = (2m)2214/9_1(K)

Remark 1 (Derivatives of modified Bessel functions [16]). Let I,,(z) denote modified Bessel
Sfunction of v-th order. For k =0,1,2,.. .,

(w)’“ (710(2)) = 2 F L, (2).

zdz

Lemma 1. The first order derivate of I,,(z) is,
d
TL(2) = La(2) + <L (2).
Proof. Using Remark 1, let £ = 1 and we have,
1d

;@ZUI”(Z) =21, 4(2),

drl,(z)
dz

vz L, (2) + 2Y =2"T,_1(2).

Reorganizing the equation gives us,
d

dz

Further we use the Recurrence Relations of modified Bessel function [16],

I,(2) = Ip_1(z) — SL,(Z).

Ioa(2) = T () = 21 (2),

and obtain,
A rz) = Lo (2) + 1)
dZ v — loy+1 2 v .
O
Note that,
d d
T InCy(k) = — [(d/2=1)Ink —d/2In2r —InIys_1(x)],
K K
_d/2-1 dlg/o—1(k)/dk
K Ig/2—1(k)
Using Lemma 1, we have,
d d/2—1  Lya(r) + L2210 (k)
—In Cd(l-i) = - 5
dk K Ig/2-1(K)
_ Lq/a(k)
Iyjo-1(k)
Ruiz-Antolin and Segura [19] give a tight lower and upper bound for — %, given by following

Remark:
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Remark 2 (Tight lower and upper bound for the ratio of modified Bessel functions [19]). Let
I,,(z) be the modified Bessel function of the first kind at order v. We have following bound,

I,(2)

RSN/ iy vy el AT 5 S Y TS v e M

I,(z)
Iv,l(z)

I,(2)
Iv—l(z)

where g(z) and h(z) denote the left and right hand sides of the inequality.

With the tight lower and upper bounds, can be approximated by,

~ 5(9(2) + h(z),

To further approximate In Cy(k), by plugging v = g, we further integrate the function w.r.t x, and
obtain following approximates,

—1 -1 —1\? 1 —1\?
lnCd(n)%d In d + (d )_i_HQ _z <d )_i_ﬁg

4 2 2 2 2
: : 4
d—1 d—1 d+1 1 d+1
+ 1 In 5 + < ; ) + K2 | - 3 (;) + K2 4 const.

A.2 Inference with maximum log likelihood

The inference of deterministic pre-trained VLMs (i.e. cross-modal retrieval) relies on computing
the cosine similarities of each possible pairs of given texts and images, while the inference for
AsymVLM has a clear statistical interpretation as maximizing log likelihood w.r.t. different image-
text pairs. For Image-to-Text retrieval, given a set of text embeddings {z! Jr € [R]}, where 21’ ~
vMF (u(t,), (t.)) or zI' ~ PS(u(t,), k(t,)), and an image embeddings 2, the predictor is given
by,

{m(m (u(tr)) T2+ Fa(k(t,)) for VMF,

7 = argmaxlnp.y (1) = K(t,) In(1 + (u(t)) "2 +In Cy(r(tr))  for PS.

r€[R)

Similarly, for Text-to-Image retrieval, given a set of image embeddings {z!|s € [S]} and a text
embedding zT ~ vMF(u, k) or 27" ~ PS(u, k), the predictor is given by,
I {n T2l 4 Fy(k) for vVMF,

- 1
§ = argmaxnp.r (z; kIn(1+pT2l) +1nCy(k) for PS.

s€[S]

A.3 Derivation for the SigLIP variant

The objective function of SigLIP is defined as,

1 S 1
= 1 ,
B ; ; S exp(o(r, s)(—7 - CosSim(r, s) + b))
where o(r,s) = 1if r = sand o(r,s) = —1if r # s. SigLIP shares the identical "kernel", i.e.

cosine similarity, with CLIP, while our methods employs different kernels with variance modeling
derived from vMF/PS assumptions for the text embeddings. By replacing the kernel of the objective
function of SigLIP, we can also obtain the SigL.IP variant of our method.

B Experimental Protocol

B.1 Adapter architecture

The text adapter is implemented as a four-layer perceptron that takes the output of a pre-trained text
encoder as its input. It consists of two hidden layers, each with 1024 dimensions and activated by the
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ReLU function, followed by an output layer that has the same dimensionality as the input, and no
activation function. The un-normalized output of the final layer, denoted as z}, is decomposed into
z; = K, where the vector || || = 1 and the scalar k > 0, serving as the parameters for either vMF
or PS distribution. The temperature parameter in the InfoNCE objective function is trainable.

Other adapters (ProbVLM, PFE* and PCME++") share identical architectures as three-layer percep-
tron, with different number of outputs for the last layer due to the inherent different parameterization
in the methods.

B.2 Datasets

We use the datasets MS-COCO and Flickr-30k to train and validate the adapters since they provide
well-annotated image—caption pairs. Additionally, we randomly sample 200k image-caption pairs
from Conceptual Caption dataset [23], building a dataset (CC-200k) for the training and validation.
For ablation studies, all methods are trained on the training set of CC-200k and evaluated on the
validation set of CC-200k. For the study of understanding the learned uncertainty, the model
is evaluated on HierarCap dataset [2], a dataset adapted from Conceptual Caption to reflect the
hierarchical structure of captions. For each image, there exists four captions of different abstraction
levels from general to detailed ones. For example applications, CIFAR-10, CIFAR-100 [13] and
STL10 [9] are used for zero-shot classification.

Metrics The evaluation of the quality of aleatoric uncertainty / ambiguity estimates for text embed-
dings is based on the recall performance in cross-modal retrieval tasks. A strong positive correlation
between uncertainty and error indicates that when the model is more uncertain, it tends to produce
lower-quality embeddings, which leads to poorer retrieval performance. For each task, we first group
the recall results according to the uncertainty levels of the text embeddings. Then we compare Spear-
man’s rank correlation (.5) between the uncertainty levels and recall for cross-modal retrieval [22].
We also compute the regression fit R? between the uncertainty levels and Recall@ 1 performances
to measure if the drop in performance follows a linear trend. To evaluate the overall performance
of cross-modal retrieval of the models trained with different methods, we also compare the average
Recall@1 across all uncertainty levels.

B.3 Baseline methods

The uncertainty quantification baselines include ProbVLM, PFE and PCME++ adapted/trained in
a post-hoc manner from pretrained models (denoted by PFE* and PCME++", respectively). Note
that the post-hoc adaptation for both PFE and PCME++ only predicts the variances of probabilistic
embeddings, while keeping the means unchanged from the pretrained models. This is due to PFE
and PCME++ achieving poor performance (worse than pre-trained models) for cross-modal retrieval,
when used to to adapt the means of the embeddings. For downstream tasks, vanilla pre-trained
vision-language models are also included. BayesVLM is not compared against with other methods in
the main experiments, as it does not provide a single scalar value quantifying the uncertainty of its
embeddings, rather scalar uncertainty for cosine similarities propagated by probabilistic embeddings.

B.4 Optimization protocol

All methods are implemented in PyTorch, and all pre-trained VLMs are loaded by transformers.
All computations are conducted on NVIDIA A100/A40 GPUs. We use stochastic gradient descent
with momentum (SGD-momen.) for the optimization of AsymVLM, PCME and PFE, and use
AdamW for ProbVLM, following its official implementation. The learning rates for different methods
are optimized using a grid search within {10745 x 107%,1073,5 x 1073,1072,5 x 1072}, and
reported gs Table A.1. We apply cosine annealing for learning rate scheduling with a minimal learning
rate 107°.

B.5 Computational costs
The overhead of post-hoc adaptation with AsymVLM is negligible compared to pre-training CLIP

or SigLIP. This efficiency stems from two factors: (1) the adaptor is a lightweight three-layer MLP
operating in the 512-dimensional latent space (for CLIP); (2) all CLIP embeddings for adaptation
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Table A.1: Optimizer configurations for different methods

Method Optimizer Learning rate  Batch size
AsymVLM SGD 1072 2048
ProbVLM  AdamW 1074 2048
PFE* SGD 1073 2048
PCME++* SGD 5x 1074 2048

data are cached after a single forward pass through the pretrained VLM. Adaptation training then
proceeds solely on these cached embeddings, avoiding repeated runs through the large model and
dramatically reducing compute cost. On an NVIDIA A100, completing 200 epochs of adaptation on
either MS-COCO, Flickr-30K or CC-200k requires under one GPU-hour.

C Supplementary Empirical Results

Complete experimental results for the evaluation of AsymVLM on CLIP embeddings are presented
in Table A.2 (mean =+ std. dev. over 5 runs).

Table A.2: Complete experimental results for the comparison of different methods for CLIP embed-

dings.
12T T21

DATASET METHOD Recall@1 R? ¢ S| Recall@1 1 R? ¢ Sl
PFE* 0.500 +0.000  0.558 0253  -0.722+£0.193 0304 £0.000  0.946 £ 0.021  -0.988 = 0.008
PCME++* 0.500 +0.000 0931 +0.006  -0.996 £ 0.004 0304 £0.000  0.948 £0.010  -0.990 = 0.004
BayesVLm 0.506 +0.007  0.884 +0.020  -0976 £0.011 0323 +£0006 0932 +0023  -0.985 =+ 0.014

MS-COCO ProbVLM 0480 +0.004 0951 +0.011  -0981 £0.006 0293 +£0001 0979 £0002  -1.000 & 0.000
ProLip 0.500 + 0.000  0.808 +0.025  -0.908 £0.031 0304 £0.000  0.876 £0.007  -0.985 = 0.012
AsymVLMz  0.561 £ 0.002 0948 4+ 0.016  -0.988 4 0.013 0392+ 0.001  0.984 4 0.004  -1.000 = 0.000
AsymVLMpg 0.558 £ 0.004 0937 £ 0013  -0984 £0012 0390 +£0002  0.989 £ 0.001  -1.000 & 0.000
PFE* 0.680 £ 0.000  0.675+0.186  -0.832£0.094 0451 £0.000 0955 +0.002  -0.998 = 0.005
PCME++* 0.679 +0.001 0455+ 0386  -0.178 £0.650 0451 £0.000  0.900 £ 0.063  -0.918 =& 0.067
BayesVLm 0.637 £ 0012 0916 +0.035  -0.976 £ 0.013 0425 +0.010 0934 +£0011  -0.973 & 0.019

FLICKR-30K  ProbVLM 0.646 +0.006  0.826 +0.062  -0914+£0.029 0422 +0002 0964 +0.016  -0.985 & 0.012
ProLip 0.678 £ 0.000  0.829 4+ 0032  -0.954 £0.041 0450 £0.000 0928 £0.010  -0.978 = 0.005
AsymVLM: 0688 £ 0.005  0.860 £ 0.029  -0.976 + 0.010  0.504 + 0.001  0.960 + 0.006  -0.995 = 0.006
AsymVLMpg 0.688 + 0.005 0854 £ 0.021  -0.947 £0.032 0498 £0.002 0946 £ 0021  -0.993 & 0.006
PFE* 035240000 0857 40075  -0521£0757 03360000 0988 +0.008  -0.595 = 0.798
PCME++* 035240000  0.198 40375  -0.148£0430  0336+£0000 0779 £0.105  -0.887 & 0.060
BayesVLM 0.347 £ 0010 0905 +0.025  -0.968 £0.016 0304 £0.008 0874 +£0.026  -0.937 & 0.022

CC-200K ProbVLM 0316 £0.001  07724+0.102  -0.837 £0.066 03020001 0775 +£0.029  -0.965 = 0.021
ProLip 0.351 +£0.000 0968 +0.007  -0.990 +0.009 03350000 0992 +0.002  -1.000 & 0.000
AsymVLMge  0.395£0.002 0990 £0.003  -1.000 + 0.000  0.383 +0.003  0.991 £ 0.002  -0.998 == 0.005
AsymVLMpg 0.393 +£0.001 0992 £ 0.004  -1.000 £ 0.000 0380 £0.002  0.993 +0.001  -1.000 & 0.000

Complete experimental results for the evaluation of AsymVLM on SigLIP embeddings are presented

in Table A.3.

Complete experimental results for the evaluation of AsymVLM for robust out-of-distribution zero-
shot classification are presented in Table A.4.

Complete experimental results for the evaluation of AsymVLM for zero-shot classification, with
none-of-the-above handling are presented in Table A.S.
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Table A.3: Full experimental results for the comparison of different methods for SigLIP embeddings.

12T T2I
DATASET METHOD Recall@] 1 R? T Sl Recall@] 1 R? T S {1
PFE* 0.654 + 0.000 0.940 + 0.010 -0.990 £ 0.005 0.472 % 0.000 0.996 + 0.001 -1.000 £ 0.000
PCME++* 0.654 4 0.000 0.021 4 0.016 -0.101 4 0.020 0.472 4 0.000 0.893 4 0.016 -0.907 £ 0.031
BayesVLM* 0.664 £ 0.001 0.541 4 0.022 -0.780 £ 0.036 0.488 4 0.002 0.923 4 0.006 -0.931 £ 0.027
MS-COCO ProbVLM 0.649 + 0.001 0.564 + 0.063 -0.672 4 0.064 0.469 + 0.001 0.935 + 0.007 -0.998 £ 0.005
ProLIP 0.678 £ 0.001 0.791 £ 0.031 -0.866 4= 0.042 0.489 =4 0.000 0.944 4 0.002 -0.996 =+ 0.005
AsymVLM g 0.694 + 0.002 0.948 + 0.018 -0.995 4 0.006 0.502 =4 0.000 0.986 4 0.001 -1.000 =+ 0.000
AsymVLMpg 0.691 4 0.002 0.929 4 0.021 -0.993 4 0.015 0.497 4 0.001 0.987 4 0.002 -1.000 £ 0.000
PFE* 0.815 % 0.000 0.840 + 0.023 -0.947 4 0.030 0.638 + 0.000 0.922 + 0.005 -0.998 + 0.005
PCME++* 0.814 4 0.000 0.007 £ 0.002 0.127 4 0.070 0.638 4= 0.000 0.472 4+ 0.016 -0.625 4 0.027
BayesVLM* 0.818 4= 0.001 0.496 4 0.042 -0.776 £ 0.021 0.642 4= 0.001 0.515 4+ 0.019 -0.742 £ 0.024
FLICKR-30K ProbVLM 0.807 £ 0.002 0.519 4 0.097 -0.714 £ 0.119 0.631 4 0.000 0.525 4 0.038 -0.640 £ 0.151
ProLIP 0.812 %+ 0.003 0.820 + 0.064 -0.879 4 0.090 0.636 + 0.001 0.573 + 0.028 -0.699 £ 0.075
AsymVLM, g 0.823 £ 0.002 0.803 £ 0.044 -0.967 £ 0.010 0.647 4 0.001 0.934 4 0.010 -0.998 + 0.005
AsymVLMpg 0.819 4 0.006 0.891 £ 0.024 -0.959 4 0.012 0.649 £ 0.002 0.949 £ 0.008 -0.998 + 0.005
PFE* 0.503 % 0.000 0.981 + 0.003 -1.000 £ 0.000 0.484 + 0.000 0.992 + 0.004 -1.000 £ 0.000
PCME++* 0.502 £ 0.000 0.933 4 0.009 -0.956 4 0.010 0.484 4 0.000 0.889 £ 0.016 -0.965 £ 0.014
BayesVLM* 0.512 4= 0.001 0.993 £ 0.006 -0.998 £ 0.006 0.488 4= 0.001 0.981 4 0.010 -0.992 £ 0.008
CC-200K ProbVLM 0.489 + 0.002 0.674 + 0.081 -0.817 4+ 0.071 0.477 £ 0.000 0.744 + 0.022 -0.934 £ 0.029
ProLIP 0.507 £ 0.002 0.737 & 0.061 -0.903 £ 0.055 0.487 £ 0.001 0.795 4 0.019 -0.962 £ 0.010
AsymVLM, g 0.516 + 0.002 0.991 4 0.004 -1.000 =+ 0.000 0.496 4 0.002 0.993 4 0.002 -1.000 =+ 0.000
AsymVLMpg 0.514 & 0.001 0.984 4 0.003 -1.000 £ 0.000 0.489 4 0.002 0.985 4 0.002 -1.000 £ 0.000

Table A.4: Full experimental results for Out-of-distribution zero-shot classification accuracy on
CIFAR-10, CIFAR-100 and STL-10 for pretrained VLMs fine-tuned with different methods on
MS-COCO, Flickr-30k and CC-200k datasets.

VALIDATED ON

FINE-TUNED ON METHOD CIFAR-10 CIFAR-100 STL-10 IMAGENET-1K
Determ. FT 0.684 £+ 0.055 0.300 £0.017 0.829 £ 0.030 0.395+ 0.002
MS-COCO AsymVLM¢ 0.847 £ 0.007 0.470 +0.012  0.952 £ 0.005 0.502+ 0.002
AsymVLM, ,,r 0.837 +£0.010 0.477 £0.010 0.940+0.010  0.507 £+ 0.003
Determ. FT 0.688 £0.030 0.342+0.019 0.874 +£0.012  0.369 £ 0.007
FLICKR-30K AsymVLM¢ 0.791 £ 0.019  0.413 £0.009 0.920 £ 0.009  0.451 & 0.003
AsymVLM, ,,r  0.792 £0.011 0.422 £0.014 0918 +0.006  0.464 £ 0.002
Determ. FT 0.779 £0.037 0411 £0.011 0922 £0.017  0.450 & 0.004
CC-200K AsymVLMq 0.861 +0.008  0.542 £0.005 0.968 + 0.001  0.520 & 0.002
AsymVLM =  0.866 = 0.013  0.542 £ 0.013 0.967 +0.004  0.527 £ 0.001
NONE CLIP 0.888 0.642 0.974 0.632

Table A.5: Complete results for the evaluation metrics for various zero-shot classification methods
using different dummy prompts. The table reports the accuracy on positive samples and negative
samples when classifying all inputs into CIFAR-10 classes. Baseline methods using threshold- and
margin-based rejection are included for comparison.

DuUMMY PROMPT METHOD POSITIVE ACC. NEGATIVE AcCC.
CLIP 0.888 0.009
va Shoto Determ. FT 0.769 + 0.028 0.11540.138
p AsymVLM,, 0.845 + 0.011 0.547+0.106
AsymVLM, ;. 0.857 + 0.010 0.587+0.110
CLIP 0.888 0.009
va shoto of an obiects Determ. FT 0.778 = 0.040 0.037+£0.026
P J AsymVLM,, 0.849 £ 0.012 0.609-£0.119
AsymVLM, .. 0.858 =+ 0.011 0.557-40.089
CLIP 0.888 0.009
va ohoto of somethings Determ: FT 0.769 + 0.031 0.12540.132
P HET AsymVLMy 0.843 +0.019 0.59540.149
AsymVLM, ;. 0.857 + 0.009 0.585+0.107
Margin-Based 0.584 0.579
NONE Threshold-Based 0.646 0.560
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