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Learning to Navigate Endoscopic Capsule Robots
Mehmet Turan , Yasin Almalioglu , Hunter B. Gilbert , Faisal Mahmood , Nicholas J. Durr ,

Helder Araujo , Alp Eren Sarı , Anurag Ajay, and Metin Sitti

Abstract—Deep reinforcement learning (DRL) techniques have
been successful in several domains, such as physical simulations,
computer games, and simulated robotic tasks, yet the transfer of
these successful learning concepts from simulations into the real
world scenarios remains still a challenge. In this letter, a DRL ap-
proach is proposed to learn the continuous control of a magnetically
actuated soft capsule endoscope (MASCE). Proposed controller ap-
proach can alleviate the need for tedious modeling of complex and
highly nonlinear physical phenomena, such as magnetic interac-
tions, robot body dynamics and tissue-robot interactions. Experi-
ments performed in real ex-vivo porcine stomachs prove the suc-
cessful control of the MASCE with trajectory tracking errors on
the order of millimeter.

Index Terms—Deep reinforcement learning, model-free control
learning, endoscopic capsule robot, actor-critic.

I. INTRODUCTION

W IRELESS capsule endoscopes (WCEs) and other smart
swallowable capsules are revolutionizing gastroenterol-

ogy screening, and are frequently used in lieu of esophagogastro-
duodenoscopy and colonoscopy for routine diagnostic imaging
of the gastrointestinal (GI) tract. WCEs offer patients a non-
invasive, substantially less painful and stressful experience than
other GI screening procedures involving the use of flexible endo-
scopes and catheters [1], [2]. Beyond imaging, some WCEs have
the ability to provide information from a wide array of sensors,
such as pH, temperature, pressure, and chemical concentrations
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Fig. 1. Demonstration of the magnetically actuated WCE platform designed
to visualize the GI tract in a minimally invasive manner. MASCE is made
up of an RGB camera, battery and a permanent magnet. The electromagnetic
coils based actuation unit below the patient table exerts forces and torques to
realize the desired motion. Physician operates the screening process in real-
time using the live video stream onto the medical workstation and the joystick
to control the endoscopic capsule to the desired position/orientation. Magnetic
hall sensors are placed on the top to localize the robot.

[3]. Several designs also facilitate interaction with the surround-
ing tissues, and include mechanisms for biopsy, drug delivery,
and more complex therapeutic interventions [4]. To take full
advantage of the new capabilities offered by WCEs, the abil-
ity to precisely navigate them through the desired region of the
GI tract is crucial. An accurate and precise position and orien-
tation control of the WCE will enable the physician to bring
the robot to the relevant region where biopsies of millimeter
accuracy will be performed, drugs to specific sites will be deliv-
ered or physiological data with high spatiotemporal resolution
will be measured. In addition to these, diagnostic imaging may
also benefit from improved control significantly. As an example,
second-generation WCEs fail to detect polyps in approximately
14% of patients [5]. Gaining complete control over the capsule
robot pose may ameliorate the rate of false negatives, and more
importantly, active capsule robots can facilitate multiple angles
of view, improving the amount of information available to the
physician when pathological sites of interest are discovered.

Remote magnetic actuation which is a type of external wire-
less capsule actuation has a unique advantage that it does not
require on-board actuators. This greatly reduces the electrome-
chanical complexity of the device and removes the need for extra
energy and space. Figure 1 demonstrates possible application
scenario of an actively steerable capsule endoscope at hospitals,
where the doctor navigates the robot to the desired organ regions
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for monitoring, drug delivery and/or biopsy-like operations. Per-
manent magnets or electromagnets may be located outside of the
patients body to impose the desired force and torque on the cap-
sule that is located inside the body [6], [7]. Depending on the
environment the capsule locomotion may take different forms,
including sliding on surfaces, translating in fluids, or rolling [6],
[8], [9]. Control techniques that rely on the physician to close
the loop are possible in some instances due to the stable attrac-
tion between the external magnet and the capsule [6], but a fully
automatic controller is necessary to achieve high-precision nav-
igation. Closing the loop requires accurate measurement of the
capsules pose, and several non-line-of-sight techniques exist for
this purpose [10]–[12]. However, closed-loop remote magnetic
manipulation of WCEs still remains challenging because it typ-
ically requires accurate models of the magnetic fields produced
by the actuators so that the dependence of the robots position
and orientation on the field can be appropriately predicted [9].
Furthermore, these techniques often require calibration of the
field models [13] and models of the robot-tissue interaction.

In terms of magnetic actuation for capsule robots, many dif-
ferent approaches have been proposed in recent years. Keller
et al. [15] use magnetic coils to actuate WCEs inside a water-
filled stomach for screening purposes, which provides 10 basic
motion types. Unlike our work, Keller et al. do not provide a
closed loop control and indicate large drifts in the upper parts
of the stomach. Moreover, this control technique cannot be used
for biopsy and drug delivery because it does not appear to offer
enough precision based on the presented results. For propulsion,
a single rotating magnetic dipole that can generate screw-like
motion for WCEs has been proposed by Popek et al. [16]. Al-
though, such magnetic manipulation is shown to be practical in
lumen-like surfaces the technique has not been demonstrated in
a relatively inflatable biological space such as the insufflated
stomach. Moreover, Popek et al. use phantoms, whereas we
use real porcine stomachs which makes explicit comparisons
tedious. Finally and most importantly, our method is aimed not
only at propulsion, which is the goal of Popek et al. paper, but
also at fine-scale position and orientation control. Their mo-
tion type is limited to screw propulsion rather than a 5-DoF
motion. Locomotion on solid surfaces can be achieved through
open-loop orientation control if the magnetic force is closed-
loop controlled. Closed-loop control techniques which may be
based on standard controllers such as proportional-integral and
proportional-integral-derivative [9], [17] are excessively depen-
dent on the accuracy of the model used to describe the interac-
tion between the robot and the external magnetic field. Complex
and non-linear nature of the imposed external magnetic fields
makes it difficult to close the loop with such traditional model-
dependent controllers. In addition to uncertainty in the magnetic
field, there are uncertainties in the operation environment which
further complicate the control task: mechanical properties and
geometry vary from one location to another, and unknown distur-
bances such as peristalsis, robot-tissue interactions, abnormali-
ties on the tissue (such as existing tumors) or nearby magnetic
materials may have significant influences on the overall system
dynamics.

The idea that human beings learn by interacting with the envi-
ronment is probably the first to occur to us when we think about
the nature of learning. Exercising this connection produces a
wealth of information about cause and effect, about the conse-
quences of actions, and about what to do in order to achieve
goals [18]. Like humans excelling at solving a wide variety of
challenging problems from low-level motor control through to
high-level cognitive tasks by interacting with the environment,
recently proposed artificial agents can construct and learn their
own knowledge directly from raw inputs by receiving rewards
or punishments in a reinforcement learning paradigm [19]–[21].
Motivated by this recent success of deep reinforcement learn-
ing techniques in robotic control, in particular actor-critic deep
Q-learning methods [19], we propose a solution for controlling
complex medical devices, in particular WCEs. The novelties of
the proposed controller are listed below:
� The proposed learning-based, data-driven control system

does not require complex physics-based modelling of the
system. This eliminates the need for expert knowledge
and tedious hand-engineering work for complex modelling
which is particularly useful for a controller designed to nav-
igate in the challenging environments such as GI tract with
peristaltic motions.

� The proposed control system is capable of adapting to dif-
ferent patients, and organs within the GI tract. We provide
empirical evidence of such domain adaptation and transfer
learning via extensive tests inside multiple ex-vivo porcine
stomach instances.

The rest of the letter is organized as follows: Section II intro-
duces the proposed learning based control method and gives its
mathematical and theoretical background. Section III demon-
strates the experimental setup, describes the details of the train-
ing and testing protocol and gives quantitative and comparative
results for the proposed controller. Section IV and V discuss the
shortcomings and limitations of the approach. Finally, conclu-
sion summarizes the letter and gives some future directions.

II. METHOD

The main idea of reinforcement learning is that an artificial
agent may learn to optimize its behavior for a state transition
by interacting with the environment and justifying the quality
of the taken action by interpreting received reward scores. This
approach applies in principle to any type of sequential decision-
making problem relying on past experience. The environment
may be stochastic, the agent may only observe partial infor-
mation about the current state, the observations may be high-
dimensional (e.g., frames and time series), the agent may freely
gather experience in the environment or, on the contrary, the
data may be constrained (e.g., no access to an accurate simula-
tor or limited data due to high costs or data privacy etc.). Deep
reinforcement learning (DRL) which combines the reasoning
capability of reinforcement learning (RL) with the representa-
tion power of deep learning, has led to very successful agents
in recent years that are able to address more challenging non-
linear sequential decision-making problems. DRL is most useful
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Fig. 2. Architecture of the proposed DRL approach. The MASCE interacts with the real environment and is driven by magnetic fields produced by electro-
magnets. Optitrack measures the 6 DoF pose of the capsule robot. The reward function is calculated based on the observed motion and velocity. Each action and
state transition pair results in a new experience which is stored in the experience replay memory. The critic adds current reward to the predicted future reward
score and sends the sum to the trust region policy optimizer [14]. After each action, the critic evaluates the new state to determine whether the reward is greater or
smaller than expected. That evaluation is performed by the temporal difference (TD) error. If the TD error is positive, the critic suggests that the tendency to select
this action in future should be strengthened, whereas if the TD error is negative, the critic suggests that the tendency of choosing this action for that state transition
should be weakened. The parameters of both the actor and critic neural networks are updated accordingly.

in high dimensional state-space problems and complicated tasks
with lower prior knowledge thanks to its ability to learn different
levels of abstractions from data.

A. Deep Reinforcement Learning Architecture

Our control system is designed to make the capsule robot track
a desired pose, which could be specified by either a teleopera-
tor or an automatic path planner. Figure 2 illustrates the overall
system architecture diagram for the proposed deep reinforce-
ment learning approach. The controller receives a measurement
of the MASCE state s, which comprises a 6 DoF pose and a 6
DoF rigid body velocity. The controller then computes the action
a, which describes the electromagnetic coil currents to realize
the dictated motion. After the action is executed and one time
step from time t to time t+ 1 has elapsed, a new measurement
of the state is acquired and the agent calculates a reward score
r(st, at) associated with taking action at in state st. The goal of
the agent is to find the optimal stochastic policy π(s | a) such
that the value function V π(s), which describes the cumulative
reward of following the current policy π from the starting state
s, is maximized. The definition of V π is

V π(st) =

∞∑

i≥0

γir(st+1, at+i) , (1)

where γ is the discount rate that prioritizes immediate rewards
over the predicted future rewards.

In the derivation of the optimal policy, a Q function, Q(s, a),
is associated with each state-action pair that approximates the
expected discount cumulative reward (i.e. value function) of tak-
ing action a at state s following the current policy π. The optimal
policy is the action choice that maximizes Q(s, a) given the cur-
rent state: π(s) = argmaxa′ Q(s, a′).

The actor network μ(sk) that learns to approximate the opti-
mal policy comprises a dense layer with an output tensor (size

32) followed by a RELU layer and a dense layer with an output
vector of length 9 that represents the current values. Following
the dense layer output, a final soft-max layer creates the probabil-
ity distribution of the output current values. The critic network,
on the other hand, is made up of a dense layer with an output ten-
sor (size 32) followed by a RELU layer and a dense layer with a
scalar Q-value output, that is γmaxa′ Q(s′, a′) for the next state
s′. The experience memory D, with capacity ND, is used to
store the state transitions and Q values to obtain independently
and identically distributed samples in mini-batches. Upon exe-
cution of a selected action at, the observed total reward r(st, at)
is used to update weights of the critic network via the tempo-
ral difference error, current reward, and the last action taken by
the agent. The policy network is updated relative to the tem-
poral difference error, state sk and r + γmaxa′ Q(s′, a′) using
trust region optimization [14] where expectations are replaced
by sample averages and the Q value is replaced by an empirical
estimate following the estimation procedure presented in [21].

B. Reward Function

The choice of reward function is important in terms of achiev-
ing a convergence of the controller’s weights in a reasonable
time. In our control task, one wants the capsule to track a de-
sired 6-DoF pose without exceeding the pre-defined safe velocity
threshold. The dominant term of the reward is proportional to
the Euclidean distance between the desired and achieved pose. A
velocity penalty penalizes velocities greater than the upper limit
of vsafe. An agent that takes an action in effect, is assigned a
reward score rt, which is defined by:

rt = −(||pt − p′
t||+ α||wt −w′

t||
+ β||pt − pt−1||+ θ1[vt ≥ vsafe]) (2)

where pt and wt are the achieved translational and rotational
parameters, and p′

t and w′
t are the desired translational and
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Fig. 3. Demonstration of the sliding container technique. The MASCE is
operated inside a glass container which is slid into different locations in the work
space to collect equal amount of data from each region.

Fig. 4. The experimental setup. The setup consists of a wireless MASCE
steered using a joystick, an actuation system of 9 electromagnetic coils, cooling
fans, Prime13 cameras and a magnetic hall sensor array to localize the MASCE,
a receiver to capture the transmitted image signal, a digital video grabber, and a
real porcine stomach in a glass bowl.

rotational motion parameters at time index t, respectively. 1 is
indicator function. vsafe is 2.3 cm/s and θ is 5.0, which is an
empirically determined value using log-linear variations with
logarithmic jumps.

III. EXPERIMENTS AND RESULTS

Three assessments were performed to study training and test-
ing performance of the proposed DRL-based controller. The as-
sessments are (1) a 36 hour study of the learning performance
in a guided training protocol using multiple real porcine stom-
achs; (2) a comparative assessment with the state-of-the-art DRL
methods Actor Critic using Kronecker-Factored Trust Region
(ACKTR) [22], Advantage Actor Critic (A2C) [23], and Deep
Deterministic Policy Gradient (DDPG) [19] methods; (3) tests
using multiple real porcine stomachs which were not seen by
the agent during the training.

A. Experimental Setup

The experiments took place in one of the robotics labs at the
Physical Intelligence Department, Max Planck Institute for In-
telligent Systems, Stuttgart. Details of the experimental setup
are illustrated in Fig. 4. The MASCE includes a permanent ring

magnet to enable a magnetic actuation. The electromagnetic coil
array generates fields that cause a controllable force and torque
to be applied to the MASCE. Sixty-four three-axis magnetic
hall sensors are placed at the top of the workspace and four
Prime13 Optitrack infrared cameras are placed on the corners of
the workspace in order to provide feedback to the controller and
evaluate the accuracy of the controller. Due to rapid saturation
issue of hall-effect sensor array during long training sessions,
Optitrack sensor system was employed to provide pose feed-
back to the agent. During testing however, pose feedback was
received from the hall-effect sensor array, whereas the Optitrack
sensor system was used to evaluate the translational and rota-
tional accuracies of the controller. Cooling fans were placed
around the coil array to prevent overheating.

The environment of the MASCE is an ex-vivo porcine stom-
ach (see Fig. 2), resembling the physical properties that would
be found in the human GI tract. Five porcine stomachs were
used during training, and additional twelve stomachs were used
for validation tests and were not included in the training data.
By adopting this configuration, any overfitting of the properties
of specific stomach is avoided and adaptability of the controller
is validated. The implementation of the DRL-based method is
derived from OpenAI Baselines libraries [24]. The proposed
controller is capable of achieving a 20 Hz sampling rate on an
operator PC with an Intel i7 processor. The final system im-
plementation was operated at a 5 Hz sample rate. Commanded
current values were saturated at 5 A to prevent overheating of
the coils, and the command slew rate was artificially limited to
0.5 A/s to prevent the application of rapid alternating currents
near the peak values.

B. Assessment of Learning

For the proposed method, training protocol had a termina-
tion criteria of achieving a mean translational error of 3.0 mm
and orientational error of 0.05 rad for the most recent 100 exe-
cuted motions by the DRL based controller. The time intervals
required by the proposed controller to achieve these accuracies
were used as the duration of the training sessions for ACKTR,
DDPG and A2C to have a common benchmark. The training as-
sessment took place in two phases. In the first phase of training,
the DRL-based algorithm is trained in a simple rigid environ-
ment to reduce the complexity of the problem and is guided to
improve workspace exploration (see Fig. 3). The goal of this
strategy is to promote the following outcomes: (1) complete
workspace coverage; and (2) a good initial rate of convergence
as a result of a simplified environment. In the second phase of
training, the algorithm is trained in multiple porcine stomachs.
The desired motions are generated randomly during the train-
ing and testing session. Maximum velocity limits for x and/or
y translation (±2.30 cm/s) and x and/or y rotation (±0.52rad/s)
were imposed.

The first training phase took place in a small glass container.
The container of size 7 cm × 6 cm was placed within the to-
tal workspace of dimensions 30 cm × 20 cm. The container
was placed in six uniformly distributed positions within the
workspace in an effort to ensure the agent trained in the entire
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Fig. 5. Heatmaps of normalized reward scores for various time intervals of
training. The axis dimensions represent the operation area of 30 cm× 20 cm,
corresponding to the porcine stomach container (see Fig. 3).

workspace. The MASCE was allowed to operate for 20 minutes
in each location of the container. Then, the container was moved
to the next workspace position. In total, the agent was trained for
a period of four hours in the six alternate workspace positions.

In the second phase of training, the capsule was placed in five
different porcine stomachs. The stomachs were replaced at the
following intervals of total training time: 8 h, 12 h, 18 h, 24 h,
and 30 h. An additional six hours of training was performed in
the fifth stomach to assess whether the reward diverges when
operating for extended times in the same environment.

Figure 5 shows normalized reward scores after each inter-
val of training. The workspace is divided into 600 subregions
in order to facilitate visualization of the spatial dependency re-
ward score. The color bar to the right depicts the reward score
from blue (0) to red (1). Heatmap 5 b illustrates the normalized
reward scores after the initial 4-hour glass-box training phase.
Heatmaps 5 c 5 h represent the reward scores obtained after 8 h,
12 h, 18 h, 24 h, 30 h and 36 h training periods respectively.
These periods represent the five different real-porcine-stomach
alternate positions that the glassbox was placed after the initial
4h training session. Figure 5 illustrates a significant increase
in the normalized reward scores after 24 h. After 36 h training
the controller achieves high reward scores covering the whole
operation area, which implies that the agent was successful in
generating its control strategy over the entire workspace by the
end of the training protocol.

The maximum achieved velocity during the training was
2.75 cm/s. The mean and standard deviation of the velocity were
0.72 cm/s and 0.28 cm/s respectively. The maximum achieved
angular velocity during the training was 0.86 rad/s. The mean
and standard deviation of the angular velocity were 0.42 rad/s
and 0.29 rad/s respectively.

C. Comparative Assessment of Learning with ACKTR, A2C,
and DDPG

Two different training strategies were employed and com-
pared: (1) the guided training (GT) and (2) curriculum training
(CT). To compare our method against other DRL-based control
methods, the mean reward scores for our controller, the ACKTR
method, the A2C method, and the DDPG method were assessed.
Each controller was trained five times with random training tra-
jectories to assess repeatability of the training process. First we
applied GT, following the protocol details already explained in
Section III-B. Figure 6 shows the results of GT for the proposed
DRL method compared to those of the other tested DRL meth-
ods, implying shorter training times for the proposed approach.

To achieve a better sample efficiency, we applied CT for each
DRL-based controller in which we divided the complex capsule
motion learning task into three sessions with increasing com-
plexity. In the first training session where the controller only
learns rotational motions in xy-plane, after the initial four hour
glass-box training the capsule interacts with five different stom-
achs sequentially each lasting for 1h 6min making a total training
time of 9.5h for each controller. In the second session, it learns
only translational motions in the xy plane, and in the last session
it learns how to combine gained knowledge from the previous
two stages to achieve more complex motions types (xy-rotation
and translation), each lasting for 57min (see Fig. 6).

Figure 7 shows the reward scores during training session. As
seen in this figure, the training time for each controller decreases
significantly in case of CT compared to GT method. Moreover,
it is apparent in both Fig. 6 and Fig. 7 that rotational motions
in general are learned faster than the translational motions. This
finding is consistent with the underlying physics pertaining to
the dynamics of the system; a magnetic MASCE design with one
cylindrical permanent magnet is deemed more appropriate for
rolling and rotational motions in comparison to translations. In
CT (see Fig. 7), the elapsed time of the trajectories is 28.75 hours
with a maximum achieved velocity of 2.23 cm/s. The mean and
standard deviation of the velocity are 0.81 cm/s and 0.2 6cm/s re-
spectively. Maximum achieved angular velocity during the train-
ing is 0.66 rad/s. The mean and standard deviation of the angular
velocity are 0.31 rad/s and 0.18 rad/s respectively.

D. Comparative Assessment of Control Performance

Figure 8 illustrates sample user-defined, ground truth trajec-
tories and the corresponding trajectories realized by the DRL-
based control. Figure 9 shows a plot of Euclidean distance vs.
time and orientation error vs. time for trajectory 8a. One can see
the successful realization of the desired trajectories with mini-
mal deviations on the order of millimeter scale in both figures.
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Fig. 6. Experimental results for the guided training consisting of three independent sessions: xy-rotation, xy-translation and joint xy-translation & rotation. The
bold lines represent mean of achieved rewards whereas the bands represent the standard deviations.

Fig. 7. Experimental results for the hierarchical training consisting of three sequential sessions: xy-rotation, xy-translation and joint xy-translation & rotation.
The bold lines represent mean of achieved rewards whereas the bands represent the standard deviations.

Fig. 8. Trajectory tracking results. Sample user-defined trajectories vs.
achieved trajectories by the proposed controller.

Deviations from the desired trajectories are caused by under-
representation of complex and loopy motions in the training
data. Figure 10 demonstrates the performance of the proposed
controller when exposed to new stomachs not seen during the
training session. Overall, the DRL-based control exhibits very
good performance in terms of both achieved reward scores and
physical accuracies. A substantial learning period takes place at
the beginning of each exposure to a new environment. In general,
when first exposed to the new environment, the DRL-based con-
troller exhibits lower rewards, however it quickly adapts to the
new environment and starts to receive higher reward scores in a
few minutes. Moreover, the adaptation time decreases substan-
tially across the testing session (see Fig. 9) implying that the
agent makes successful use of pre-gained knowledge to learn
adaptation. As an example, the adaptation time from stomach#1
to stomach#2 lasts around 15 minutes, whereas the adaptation
time from stomach#11 to stomach#12 is around 3 minutes.

IV. DISCUSSION

3D trajectories shown in Fig. 8, the Euclidean distance and
orientation error shown in Fig. 9, the adaptation capability shown

Fig. 9. Translational and rotational errors vs time for the trajectory of Fig. 8a.

in Fig. 10, and different types of motions realized by the MA-
SCE system shown in Fig. 11 indicate that the proposed con-
troller stays more-or-less close to the user-defined trajectories
even when exposed to a completely new stomach instance. The
precision in general remains on the order of millimeter scale
which is enough for tasks such as controlled GI tract monitor-
ing and targeted drug delivery. However, as seen between time
interval [350 − 450] seconds in Fig. 9a, the accuracy slightly de-
creases up to few millimeters. The main reasons for this decrease
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Fig. 10. Reward scores and physical accuracies for the controller in new environments. A substantial learning and adaptation effort is shown by the DRL-
based control method. Performance degradation occurs when the controller agent is first exposed to the new environment, but it improves the reward score and
accuracy over very short time intervals.

Fig. 11. Sample trajectories realized by MASCE using the proposed control algorithm. The desired trajectories are shown approximately as green dotted arrows.

is user-defined complex motions, which are not easy to realize
due to capsule robot dynamics and obstacles caused by surface
topography. More representation of such complex motions in the
training data can solve this issue and increase even the overall
controller accuracy to sub-millimeter scale making the approach
relevant for biopsy-like operations [25]. On the other hand, one
of the main drawbacks of the proposed method is the long train-
ing sessions taking up to 30 hours. This data inefficiency issue
is a general problem of the state-of-the-art DRL methods in lit-
erature (see Fig. 7). A more sample efficient learning algorithm

may be of great advantage for such a tedious real world tasks
leading to significant amount of decrease in the overall training
and adaptation time.

V. SHORTCOMINGS & LIMITATIONS

Coil Operating Frequency: A high coil operating frequency
on the order of 10-20 Hz is desirable for achieving continuous
and smooth capsule robot motions inside GI tract. Our current
coil system operates at 5 Hz and is limited by the response time
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of the coils, fast current alterations which lead to heating-up of
the coils and current arise times. We argue that these limitations
can be removed by replacing our current coil system with a
more sophisticated system that can safely operate at a higher
frequency.

Adaptation: Our proposed set-up is currently trained for the
stomach and may not generalize to the entire GI tract. However,
we hypothesize that a system developed for the stomach is likely
to adapt to other regions of the GI tract with slight training given
the similarity in the properties of the lumen [25].

Gastric Motility: In the current set of experiments, we do
not test on a deformable stomach. Our intuition is that since
a controller learned in a controlled static environment works
well in a similar static environment, axiomatically, a controller
learned in a deformable environment is likely to work well in
such a situation. Our future work will focus on training the agent
in a controlled but more realistic and deformable environment
with gastric motility.

VI. CONCLUSION

In conclusion, we have presented a DRL-based method
for learning the continuous control of a magnetically actu-
ated capsule robot, and we have demonstrated the success-
ful training and testing of this controller entirely in the real
ex-vivo porcine stomach sets. The method completely alle-
viates the need for a complex system model, and is able to
adapt to new environments that are similar to the training ex-
amples within about 2-3 minutes. DRL-based control holds
great promise for control of complex medical systems. A fu-
ture step towards real hospital conditions will be training and
testing the controller in a more deformable environment. Fi-
nally, real human tests can follow to prove the effectiveness
in real medical operation conditions. The project source code
is available at the Github, https://github.com/yasinalm/DRL-
CapsuleEndoscopeControl and a video demonstration of the pro-
posed control is availed at https://youtu.be/xZx_uy5D3yw.
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