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ABSTRACT

On-device healthcare monitoring play a vital role in facilitating timely interven-
tions, managing chronic health conditions, and ultimately improving individu-
als’ quality of life. Previous studies on large language models (LLMs) have
highlighted their impressive generalization abilities and effectiveness in health-
care prediction tasks. However, most LLM-based healthcare solutions are cloud-
based, which raises significant privacy concerns and results in increased mem-
ory usage and latency. To address these challenges, there is growing interest in
compact models, Small Language Models (SLMs), which are lightweight and
designed to run locally and efficiently on mobile and wearable devices. Never-
theless, how well these models perform in healthcare prediction remains largely
unexplored. We systematically evaluated SLMs on health prediction tasks us-
ing zero-shot, few-shot, and instruction fine-tuning approaches, and deployed the
best performing fine-tuned SLMs on mobile devices to evaluate their real-world
efficiency and predictive performance in practical healthcare scenarios. Our re-
sults show that SLMs can achieve performance comparable to LLMs while of-
fering substantial gains in efficiency, reaching up to 17x lower latency and 16X
faster inference speed on mobile platforms. However, challenges remain, particu-
larly in handling class imbalance and few-shot scenarios. These findings highlight
SLMs, though imperfect in their current form, as a promising solution for next-
generation, privacy-preserving healthcare monitoring. Our code is available at
https://anonymous.4open.science/r/health-SLM-C1RB0/.

1 INTRODUCTION

The proliferation of mobile and wearable devices, coupled with recent advances in deep learning,
has significantly advanced the landscape of continuous health monitoring (Dinh-Le et al.| 2019
Pham et al., 2022; Jia et al., [2024; |Wu et al., [2023). These technologies enable a range of real-time
applications, from the detection of physiological anomalies (Gabrielli et al., 2025) to the delivery
of personalized interventions (Ghadi et al.} 2025)). Meanwhile, large language models (LLMs) have
demonstrated remarkable generalization in processing heterogeneous data and performing diverse
downstream tasks (Ferraral 2024; |Imran et al., 2024)). Early studies indicate that LLM-based anal-
ysis can provide a deeper contextual interpretation of sensor data and enable more adaptive health
monitoring systems compared to conventional approaches (Khasentino et al., 2025)).

Despite this promise, major obstacles impede the practical deployment of LLM-driven wearable
health solutions. Current approaches usually depend on cloud-based inference, necessitating data
transmission to external servers, which raises concerns around user privacy, data security, and com-
munication latency (Das| 2025} [Li et al., 2024} Xu et al.l [2025; |Wang et al., [2025). Alternatively,
on-device deployment is hindered by severe resource constraints typical of mobile and wearable
hardware, as well as the real-time requirements of health applications, rendering full-sized LLMs
infeasible for timely inference. These challenges highlight a critical need for efficient, privacy-
preserving techniques that achieve competitive performance with LLMs, while being suitable for
deployment on resource-limited mobile and wearable devices.
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Small Language Models (SLMs) present a promising alternative by reducing memory consumption
and facilitating deployment on mobile and wearable devices. On-device inference with SLMs not
only lowers communication latency but also enhances the protection of sensitive personal data, while
maintaining competitive performance on natural language processing tasks (Microsoft, 2024} Zhang
et al., [2024a; Qwen, 2024} Team & DeepMind, 2024). Nevertheless, their ability to interpret sensor
data from mobile and wearable devices and accurately infer health conditions in real-world settings
remains an open question. Although prior work (Wang et al.;|2024)) has demonstrated the feasibility
of using SLMs on mobile devices to predict simple health status (e.g., fatigue, sleep quality), there
is still a lack of comprehensive benchmarking that thoroughly evaluates SLMs for a wide range of
health applications.

To bridge this gap, we present a comprehensive benchmark, HealthSLM-Bench, which aims to eval-
uate a variety of state-of-the-art (SOTA) SLMs on a suit of health prediction tasks spanning four
publicly available datasets. Our benchmark systematically assesses model performance using three
evaluation protocols: zero-shot, few-shot, and instruction-based fine-tuning. To assess practical
feasibility, we further deploy top-performing fine-tuned models on mobile devices and rigorously
evaluate their on-device efficiency in terms of memory usage and inference latency. Experimental
results demonstrate that SLMs can achieve comparable performance compared with SOTA health-
care LLMs across ten healthcare monitoring tasks, while substantially reducing memory and latency
overheads. Our main contributions are as follows:

* We introduce, HealthSLM-Bench, an extensive benchmark that systematically evaluates
nine SOTA SLMs on ten health prediction tasks across four real-world mobile and wearable
datasets.

* We investigate various evaluation paradigms, including zero-shot, few-shot, and
instruction-based fine-tuning, providing a comprehensive performance analysis under dif-
ferent adaptation scenarios.

* We demonstrate the feasibility of deploying fine-tuned SLMs on resource-constrained mo-
bile devices and quantify their efficiency in terms of real-world memory and latency foot-
prints.

2 RELATED WORK

LLMs for health monitoring. With the rise of mobile and wearable devices, a variety of human-
centered sensing signals can be continuously collected, enabling ongoing monitoring of human
health in daily life. Recent studies have shown that the physical status data collected by mobile de-
vices is strongly associated with health status (Ballinger et al.,[2018};|Hallgrimsson et al.,|2019; Mul-
lick et al.| 2022)). Their work demonstrates how passive wearable sensor data can be effectively uti-
lized to predict depression in adolescents using traditional ML models. However, these approaches,
typically trained on specific datasets or tailored architectures, often struggle to generalize across
heterogeneous tasks, and contexts (Kasl et al.| 2024). LLMs, powered by their generalization capa-
bilities, have shown great success in the healthcare domain. For example, Health-LLM (Kim et al.|
2024)) and MultiEEG-GPT (Hu et al., [2024b) demonstrate the effectiveness of leveraging LLMs in
healthcare monitoring through textual and physiological data. Instead of just deploying these mod-
els directly for healthcare applications, recent work has explored domain adaptation strategies such
as few-shot prompting, instruction tuning, and domain-specific fine-tuning to improve performance
on medical tasks (Xu et al., [2024). Notably, PaLM?2 (Singhal et al.| [2023) illustrates the benefits
of combining diverse adaptation strategies (e.g. few-shot and fine-tuned) across medical datasets.
Meanwhile, evaluations of GPT-4 highlight that SOTA LLMs may reduce the reliance on extensive
adaptation, as they already demonstrate strong capacity for medical reasoning with limited supervi-
sion (Nori et al.,|2023). More recently, applied systems such as PhysioLLM (Fang et al., 2024) have
integrated LLMs with wearable sensor data to provide personalized health insights, highlighting
their adaptability across users and contexts. However, despite these advances, their computational
overhead makes them impractical for privacy-sensitive, real-time mobile healthcare monitoring.

Small Language Models. SLMs are defined as models that are smaller in scale relative to the
widely recognised LLMs, typically comprising no more than 7 billion parameters (Hu et al.| 2024a).
Recent research has highlighted the efficiency and strong task performance of SLMs as lightweight
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Table 1: An Example of Prompt Construction for Zero-shot learning. Zg represents “Zero-shot”.

Context Prompt

Instruction  You are a personalized healthcare agent trained to predict fatigue which ranges
from 1 to 5 based on physiological data and user information.

Main Query  The recent 14-days sensor readings show: {14} days sensor readings show: Steps:
{“1476.0, 4809.0, ..., NaN”} steps, Burned Calories: {“169.0, 419.0 ..., NaN"}
calories, Resting Heart Rate: {*53.24, 52.24, ..., 51.40”} beats/min, Sleep Min-
utes: {“110.0, 524.0, ..., 481.0”} minutes, [Mood]: 3 out of 5. What would be the
predicted fatigue level?

Output

Constraints The predicted fatigue level is:

Prompt Zg = Instructionz, + Main query + Output Constraints (D

alternatives to LLMs, particularly for deployment in resource-constrained environments (Lu et al.,
2025; Murthy et al) [2023). For example, Phi-3-mini-4k-Instruct, developed by Microsoft (Mi-
crosoftl2024)), contains 3.8 billion parameters and is trained on a curated blend of synthetic and high-
quality public datasets, emphasizing reasoning capabilities. TinyLlama-1.1B (TinyLlamal [2024)
builds on Llama 2 through parameter reduction and subsequent fine-tuning using UltraChat, a broad
synthetic dialogue dataset. Similarly, Google’s Gemma2-2B (Googlel [2024), based on Gemini re-
search, demonstrates robust results in text generation, summarization, and reasoning benchmarks.
SmolLM-1.7B from HuggingFace (HuggingFaceTB||2024) further diversifies training by leveraging
synthetic educational materials and a breadth of domain samples, and Qwen2-1.5B (Qwen, 2024)
achieves SOTA performance in both coding and mathematics despite its small footprint. Meta’s
Llama-3.2 series (Meta AlL|2024) continues this trend by releasing 1B and 3B parameter models de-
signed for edge applications. While these developments affirm the viability of SLMs for a range of
natural language processing tasks, the current literature leaves the open question of how effectively
these compact models generalize to health prediction tasks. This is especially salient for high-stakes
applications in healthcare, where accuracy and timeliness are paramount.

In comparison, our study addresses this gap by conducting comprehensive evaluations of SLMs on
mobile platforms, using detailed efficiency metrics to assess their practical feasibility for mobile
health monitoring applications across various datasets, model structures, and tasks.

3 HEALTHSLM-BENCH

We benchmark a variety of SLMs for mobile and wearable health applications using zero-shot and
few-shot learning which enables in-context learning with a limited number of task-specific examples.
Additionally, we instruction-tune these models on health datasets, aiming to significantly enhance
their effectiveness for healthcare monitoring tasks.

3.1 ZERO-SHOT AND FEW-SHOT LEARNING

Zero-shot learning. In the zero-shot learning setting, models were evaluated without prior expo-
sure to any example inputs during inference. Each model was provided only with a task instruction, a
main query describing the 14-day summary of sensor readings, and explicit output constraints (e.g.,
restricting output labels for fatigue to values within the range [1-5]), as shown in Table[I] This setup
was designed to evaluate the intrinsic ability of the models to interpret and respond to healthcare-
related queries based solely on task instructions. The zero-shot protocol thus serves as a baseline for
performance, providing a reference point for subsequent experiments involving few-shot learning
and instruction tuning.

Few-shot learning. Few-shot learning (Brown et al., 2020) was employed to enhance task com-
prehension by augmenting the model inputs with a small set of labeled examples. Unlike zero-shot
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Table 2: An Example of Prompt Construction for Few-shot learning. Zg and Fg represent ‘“Zero-
shot” and “Few-shot”, respectively.

Context Prompt

Instruction  You are a health assistant. Your mission is to read the following examples and
return your prediction based on the health query.

Examples <example 1>, <example 2>, ... <example N >

Question Finally, please answer to the below question: <Prompt Zg>
Examples = (Prompt Zs + Answer) Ny 2)
Prompt Fs = Instructiong, + Examples + Prompt Z g 3)

Table 3: Summary of the four health wearable sensor datasets used in our experiments.

Dataset Participants Duration Collection Methods Derived Tasks Task Types
PMData 16 5 months Fitbit Versa 2 Fatigue, Readiness, Stress, Sleep Quality Classification
LifeSnaps 71 4 months Fitbit Sense + EMA Stress Resilience, Sleep Disorder Regression / Classification
GLOBEM 497 3 years Fitness tracker + mobile app Depression, Anxiety Classification

AW _FB 46 104 hours  GENEActiv, Apple Watch S2, Fitbit HR2 Calories, Activity Regression / Classification

learning, which relies solely on the model’s generalized knowledge, this approach leverages in-
context learning to better interpret task-specific data. As shown in Table 2] the few-shot prompt
(Prompt Fg), formalized in Equation E], consists of an explicit instruction Instructionp,, a set of
N example pairs (Prompt Zs + Answer)y, and the target query Prompt Zg. Specifically, the In-
struction g directs the model to review the /V examples before responding to the target query. Each
example follows the same structure as the zero-shot prompt, i.e., consisting of a task instruction and
a main query, but also includes the corresponding answer. This design enables the model to ground
its predictions in observed input—output patterns, capturing relationships that may be less apparent in
a zero-shot setting. In our experiments, we varied the number of examples N € {1,3,5,10} to ex-
amine its impact on performance, aiming to identify the most effective configuration. To maximize
on-device efficiency, we did not implement chain-of-thought reasoning (CoT) (Wei et al., 2022b)
and self-consistency (SC) (Wang et al.l 2022)), as both introduce additional token generation and
computational overhead that limit practicality on resource-constrained edge devices.

3.2 INSTRUCTIONAL TUNING

Instructional tuning adapts language models to follow task-specific instructions by further training
them on curated instruction—response pairs (Wei et al., 2022a). Unlike zero-shot or few-shot learn-
ing, which relies on a sole task description or in-context prompts at inference time, instructional tun-
ing updates the model parameters themselves, enabling more robust and persistent task alignment.
Specifically, the instruction-response pairs were formatted using the Alpaca-style template (Taori
et al.| [2023)), which provides a lightweight and standardized structure widely adopted in instruction-
tuning benchmarks (Kim et al.l 2024} [Wang et al.| |2023; |(Conover et al., |2023}; |Team) 2023). To
enable efficient fine-tuning, we employed Low-Rank Adaptation (LoRA) (Hu et al., 2022), which
introduces trainable low-rank decomposition matrices into the attention and feed-forward layers
while keeping the original weights frozen. LoRA is particularly well-suited for on-device inference,
as it allows effective model adaptation with minimal memory and computational overhead.

4 EXPERIMENTAL SETUP

4.1 DATASETS

We evaluate our methods using four health wearable sensor datasets: PMData (Thambawita et al.|
2020), LifeSnaps (Yfantidou et al., 2022), GLOBEM (Xu et al., 2023), and AW-FB (Fuller,
2020). These datasets were collected with devices including Fitbit Versa2(Fitbit Inc., 2019), Fit-
bit Sense (Fitbit, Inc., [2020), GENEActiv (Activinsights Ltd., 2015), Apple WatchSeries2 (Apple
Inc., 2016), and Fitbit Charge HR2 (Fitbit Inc., |2016), monitored over a study-specific duration.
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Each dataset integrates wearable-derived features (e.g., steps, calories burned, resting heart rate,
sleep metrics) with self-reported health status such as fatigue, stress, and readiness. From these, we
derived a total of ten tasks, compromising both classification and regression, that reflect real-world
health monitoring scenarios, as summarized in Table E} For health event prediction, we format the
temporal sequences of these features into 14-day windows and incorporate them into query prompts
to generate predictions. The predictions produced by SLMs are then compared with the self-reported
ground-truth labels. Additional dataset details, task definitions, and label distributions are provided
in the Appendix.

4.2 MODELS

We selected nine SOTA SLMs ranging from 1B to 4B parameters, including Google’s Gemma-
2-2B-it (Googlel [2024)), Microsoft’s Phi-3-mini-4k-instruct and Phi-3.5-mini (Microsoft Corpora-
tionl, |2024), HuggingFace’s SmolLM-1.7B (HuggingFaceTB| 2024), Alibaba’s Qwen2-1.5B and
Qwen2.5-1.5B (Qwen, 2024), TinyLlama’s TinyLlama-1.1B (Teaml 2024), and Meta-Llama’s
Llama-3.2-1B and Llama-3B (Meta Al| 2024)). Detailed information about each dataset and SLM is
provided in the Appendix.

4.3 IMPLEMENTATION DETAILS

Data processing. Following previous work (Kim et al., [2024; Wang et al., [2024; Jia et al.,|[2025),
we standardize all datasets into daily sequences spanning 14-day windows. Task-specific labels are
assigned accordingly. Each dataset is extracted, randomly shuffled, and split into training and testing
subsets in an 8:2 ratio. The tasks are categorized as either classification (fatigue, readiness, sleep
quality, stress, anxiety, depression, activity) or regression (calories). The label distributions for each
task are provided in the Appendix.

Model deployment. To assess efficiency and feasibility, we deploy the top-performing health-
domain—adapted SLMs, which is adapted for the health domain and instructional tuned using health-
related datasets, on an iPhone 15 Pro Max equipped with 8 GB of RAM. These models are converted
to the GGUF format (Generalized Graphical Unified Format) (Face, 2023) to ensure compatibility
with lightweight inference engines such as Llama.cpp (Ggerganov). Due to the strict memory con-
straints of mobile devices, we apply 4-bit quantization to enable efficient deployment. As shown
in prior studies (Murthy et al., 2023), quantization lowers computational costs while maintaining
most of the model’s performance. Both the conversion and quantization steps are performed using
Llama.cpp (Gerganov & community, [2023).

Evaluation metrics. To evaluate model performance under zero-shot, few-shot, and instructional-
tuning settings, we use mean absolute error (MAE) for regression tasks and accuracy for classifi-
cation tasks. For efficiency evaluation of mobile deployment, we assess the models latency using
metrics such as Time-to-First-Token (TTFT), Input Tokens Per Second (ITPS), Output Tokens Per
Second (OTPS), and Output Evaluation Time (OET) and Total Time. In addition, We also track
CPU and RAM usage to evaluate on-device resource consumption. Further details are provided in
the Appendix.

5 RESULTS AND DISCUSSION

We compare the performance of SLMs and SOTA LLMs under the same settings as in (Kim et al.|
2024).

5.1 OVERALL PERFORMANCE

Zero-shot learning.  As shown in Table[d SLMs achieve comparable or better performance than
LLMs across the four health datasets. For stress prediction, SLMs achieve a lower mean MAE
of 0.61, compared to 0.64 for LLMs, where lower values indicate better performance. SLMs also
outperform LLMs in readiness and fatigue prediction, with a mean MAE of 2.15 for SLMs versus
2.56 for LLMs, and a higher mean accuracy of 52.2% for SLMs compared to 41.54% for LLMs. For
other tasks, including stress resilience, sleep disorder, sleep quality, anxiety, depression, and activity,
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Table 4: Performance of LLMs and SLMs under zero-shot (ZS) across ten healthcare monitoring
tasks. STRS: Stress, READ: Readiness, FATG: Fatigue, SQ: Sleep Quality, SR: Stress Resilience,
SD: Sleep Disorder, ANX: Anxiety, DEP: Depression, ACT: Activity, CAL: Calorie Burn. Best is
bold, second-best is underlined. ‘-’ denotes failure to produce a valid prediction.

PMData LifeSnaps GLOBEM AW-FB
Model STRS (/) READ(]) FATG(t) SQ{) SR({) SD(f) ANX({) DEP() ACT(?) CAL()
MedAlpaca 0.76 2.18 46.8 0.68 1.17 40.3 1.23 0.89 21.7 35.0
PMC-Llama 1.33 4.83 0.0 225 1.21 41.7 233 2.23 - 43.4
Asclepius 0.43 1.44 27.3 0.45 - - 0.82 1.10 - 28.9
ClinicalCamel 0.40 2.11 58.1 0.37 1.35 88.3 0.97 0.79 16.3 43.4
Flan-T5 0.36 1.82 56.8 0.56 2.20 57.1 2.84 2.89 234 66.0
LLMs FPalmyra-Med 0.83 5.01 435 0.44 1.03 3.13 2.07 1.99 29.7 75.3
Llama 2 0.57 2.86 412 0.89 - - 1.19 1.23 - -
BioMedGPT 0.37 2.12 61.2 0.41 0.77 - 0.95 0.85 12.2 -
BioMistral 0.55 2.12 56.6 0.45 1.59 90.0 0.90 - 18.4 41.0
GPT-3.5 - 2.38 70.8 0.87 1.21 19.0 - 13.8 36.4
GPT-4 - 222 72.2 0.73 1.23 - - - 22.6 75.2
Gemini-Pro 0.79 1.69 34.0 0.78 2.67 84.6 1.03 0.95 17.7 314
Mean 0.64 2.56 41.5 0.60 1.44 53.0 1.43 1.44 19.5 47.6
gemma-2-2b-it 0.72 2.07 52.8 0.47 1.59 - 091 0.53 - 105.12
Phi-3-mini-4k 0.45 1.52 62.9 0.48 1.28 80.0 1.08 1.26 17.4 93.80
SmolLM-1.7B 1.42 2.99 11.0 1.00 - 44.4 2.59 2.87 21.7 277.21
Qwen2-1.5B 0.39 2.03 63.2 0.45 2.29 55.6 1.42 1.65 14.1 185.22
SLMs  TinyLlama-1.1B 0.43 2.06 51.2 0.47 - 44.4 2.40 2.58 19.7 198.72
Llama-3.2-1B 0.40 1.87 63.8 0.69 1.25 422 1.51 1.85 11.7 280.32
Llama-3.2-3B 0.67 224 40.8 0.46 1.63 44.4 1.26 0.75 15.7 19.7
Phi-3.5-mini 0.40 2.34 61.2 0.45 1.41 733 0.88 0.84 154 56.8
Qwen2.5-1.5B 0.56 225 62.9 0.93 2.12 55.6 1.36 1.63 15.7 72.20
Mean 0.61 2.15 522 0.60 1.65 55.0 1.49 1.55 16.4 143.23

SLMs perform within a similar range to LLMs. Among the SLMs, Gemma-2-2B-it and Phi-3-mini-
4k consistently deliver strong results for fatigue and readiness, while Qwen2.5-1.5B matches or
exceeds LLM performance on several tasks. However, SLMs do have some limitations. SmolLM-
1.7B often underperforms relative to LLMs, and most SLMs struggle with calorie estimation, where
the mean MAE is 143.23 for SLMs compared to 47.6 for LLMs, suggesting that regression tasks
may be more challenging for SLMs.

In sum, under zero-shot settings, SLMs generally match or surpass LLMs on most health prediction
tasks, notably achieving better results in stress, readiness, and fatigue predictions. Leading SLMs,
such as Gemma-2-2B-it and Phi-3-mini-4k, show consistent strength compared with SOTA LLMs.

Few-shot learning.  The few-shot (FS) results are shown in Table[5] For LLMs, we compare the
best few-shot performance (FS-best) to SLMs using a range of few-shot sample counts (1, 3, 5, 10)
in SLMs. As shown in Table[5] even when provided with in-context examples in the one-shot setting
(FS-1), SLMs demonstrate competitive performance compared to their larger counterparts across
multiple healthcare monitoring tasks, and also outperforms zero-shot SLMs on average.

Comparing the performance across different few-shot settings reveals interesting patterns in SLM
behavior. In the FS-1 setting, SLMs achieve competitive performance levels compared to LLMs
across most tasks. For instance, SLMs achieve a mean of 0.47 for stress prediction compared to
LLMs’ 0.90, and 0.49 for sleep quality compared to LLMs’ 0.72. As the number of few-shot ex-
amples increases from FS-1 to three-shot (FS-3), five-shot (FS-5), and ten-shot (FS-10), the per-
formance shows task-dependent variations. For stress prediction, the mean performance remains
relatively stable across all few-shot settings. Similarly, sleep quality prediction maintains consistent
performance throughout the different few-shot configurations.

However, certain tasks exhibit different response patterns to increased few-shot examples. Anxiety
and depression prediction tasks show notable improvement as the number of examples increases
from FS-1 to FS-3, with further refinement observed in subsequent settings. This suggests that
mental health prediction tasks may benefit more from additional contextual examples compared to
physiological monitoring tasks when using SLMs without fine-tuning, which has also been observed
in recent work comparing SLMs and LLMs in mental health prediction tasks (Jia et al., 2025)). As
shown in Table [5] we also observed that the collapse pattern appears at FS-1, FS-3, and FS-5, but
does not occur at FS-10. This phenomenon was observed only in PMData and LifeSnaps tasks,
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Table 5: Performance of LLMs and SLMs under few-shot (FS) setting across across ten healthcare
monitoring tasks. STRS: Stress, READ: Readiness, FATG: Fatigue, SQ: Sleep Quality, SR: Stress
Resilience, SD: Sleep Disorder, ANX: Anxiety, DEP: Depression, ACT: Activity, CAL: Calorie
Burn. Best result is in bold, second-best result is underlined. ‘-’ denotes model failed to produce
valid prediction.

PMData LifeSnaps GLOBEM AW-FB
Model STRS (/) READ () FATG(1t) SQ{) SR({) SD(t) ANX() DEP() ACT(t) CAL)
MedAlpaca 0.78 1.94 36.2 0.69 0.94 49.6 0.97 0.56 193 36.7
LLMs GPT-3.5 0.94 1.62 73.9 0.77 0.80 58.5 1.98 0.68 26.3 26.5
(FS-best)  GPT-4 0.76 164 61.3 0.60 0.45 73.4 1.11 0.60 154 24.0
Gemini-Pro 1.10 2.20 24.8 0.80 1.18 71.8 1.30 1.05 15.0 37.2
Mean 0.90 1.85 49.1 0.72 0.84 63.3 1.34 0.72 19.0 31.1
gemma-2-2b-it 0.41 2.30 59.9 0.45 1.72 55.6 2.04 2.40 0.0 24.22
Phi-3-mini-4k 043 1.56 47.8 0.46 0.61 62.2 1.99 1.94 214 21.58
SmolLM-1.7B 0.41 1.31 51.5 0.46 0.66 55.6 3.12 3.46 22.1 19.94
SLMs Qwen2-1.5B 0.41 129 51.5 0.46 0.65 44.4 2.15 2.47 14.4 19.07
(FS-1) TinyLlama-1.1B 0.41 1.30 51.5 0.46 0.66 44.4 3.10 3.39 14.0 18.97
Llama-3.2-1B 0.55 1.50 51.5 0.65 0.65 44.4 2.32 3.03 20.4 18.43
Llama-3.2-3B 0.79 1.87 28.8 0.54 1.28 71.1 1.84 201 18.1 3745
Phi-3.5-mini 0.41 1.36 51.5 046 1.04 91.1 3.06 342 14.4 51.33
Qwen2.5-1.5B 043 1.28 545 0.47 1.26 71.1 3.10 3.44 14.7 18.04
Mean 0.47 1.53 49.8 0.49 0.95 60.0 2.52 2.84 15.5 25.45
gemma-2-2b-it 0.48 1.66 44.8 0.49 1.65 53.3 - - - -
Phi-3-mini-4k 041 1.67 44.8 0.45 0.57 75.6 0.88 0.54 19.4 55.0
SmolLM-1.7B - - - - 0.74 533 0.87 0.58 154 19.0
SLMs Qwen2-1.5B 041 1.68 51.5 0.46 0.66 57.8 0.88 0.54 23.1 19.8
(FS-3) TinyLlama-1.1B - - - - 0.82 44.4 2.93 3.04 14.4 17.9
Llama-3.2-1B 0.43 1.73 49.8 0.54 1.53 44.4 0.88 0.54 15.4 185
Llama-3.2-3B 041 1.78 51.5 0.47 1.01 422 1.19 1.12 24.1 19.3
Phi-3.5-mini 041 1.42 51.5 0.46 1.02 84.4 0.91 0.55 24.1 329
Qwen2.5-1.5B 0.39 144 371 0.76 0.72 55.6 1.36 0.64 18.1 17.9
Mean 0.42 1.62 473 0.52 0.97 56.8 1.24 0.94 19.2 25.0
gemma-2-2b-it 0.48 135 61.5 047 1.75 533 - - - -
Phi-3-mini-4k 041 1.32 572 0.49 0.70 66.7 0.88 0.56 221 373
SmolLM-1.7B - - - - 0.78 44.4 0.87 0.76 17.1 18.6
SLMs Qwen2-1.5B 041 1.41 51.5 0.46 0.83 55.6 1.20 1.12 20.4 29.4
(FS-5) TinyLlama-1.1B - - - - 1.14 422 3.15 351 24.1 37.0
Llama-3.2-1B 0.43 1.42 52.5 0.46 1.62 422 1.18 1.38 15.1 27.2
Llama-3.2-3B 041 1.59 522 0.46 1.14 46.7 1.18 1.23 18.4 28.5
Phi-3.5-mini 041 1.41 51.5 0.46 1.00 68.9 1.46 1.56 24.1 237
Qwen2.5-1.5B 0.39 1.44 41.5 0.49 0.93 57.8 1.28 1.52 17.4 28.5
Mean 0.42 1.42 52.6 0.47 1.10 53.1 1.40 1.45 19.8 28.8
gemma-2-2b-it 0.49 1.40 63.6 0.50 0.75 64.4 1.23 1.09 - -
Phi-3-mini-4k 1.01 1.70 32.8 0.45 0.51 71.1 0.82 0.63 17.7 18.5
SmolLM-1.7B - - - - 0.78 44.4 0.77 0.53 15.1 19.1
SLMs Qwen2-1.5B 0.41 1.55 56.2 0.46 0.65 55.6 0.87 0.54 17.7 18.0
(FS-10) TinyLlama-1.1B - - - - - - - - 21.1 17.2
Llama-3.2-1B 0.89 1.61 8.4 0.46 0.71 37.8 0.87 0.77 15.7 19.5
Llama-3.2-3B 0.49 1.83 39.8 0.47 0.49 04.4 2.04 1.23 19.1 18.1
Phi-3.5-mini 042 1.40 34.1 0.48 0.60 46.7 0.77 1.10 22.1 189
Qwen2.5-1.5B 0.66 2.47 334 0.50 0.63 57.8 0.87 0.54 17.4 19.1
Mean 0.62 1.71 383 0.48 0.68 55.3 1.03 0.80 18.2 18.5

such as stress, fatigue, sleep quality and sleep disorder, while readiness remained unaffected and
no collapse was noted in GLOBEM or AW-FB tasks. Upon further inspection, this trend is likely
attributed to the limited representation of labels when only a small number of few-shot examples
are provided. For this reason, the collapse disappears at FS-10, as more examples enable a more
representative range of labels. The label distribution for identical predicted values is provided in the
Appendix.

Overall, SLMs perform competitively with LLMs in few-shot healthcare tasks, even with just one
example. More examples help models achieve more stable and reliable performance.

Instruction tuning. As shown in Table @, both SLMs and SOTA LLMs (Kim et al., [2024)
are instruction-tuned, yet SLMs outperform LLMs in tasks such as fatigue and calorie estimation.
Specifically, SLMs achieve higher best values for fatigue and activity, while also attaining lower
estimation error for readiness and calorie burn, demonstrating their superior accuracy for these im-
portant health measures. Although LLMs perform slightly better in stress, sleep quality, stress
resilience, anxiety and depression prediction, with lower mean values for Sleep quality and anxi-
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Table 6: Performance of LLMs and SLMs under instruction tuning (LoRA) setting across ten
healthcare monitoring tasks. STRS: Stress, READ: Readiness, FATG: Fatigue, SQ: Sleep Quality,
SR: Stress Resilience, SD: Sleep Disorder, ANX: Anxiety, DEP: Depression, ACT: Activity, CAL:
Calorie Burn. Best result is in bold, second-best result is underlined. ‘-’ denotes model failed to
produce valid prediction.

PMData LifeSnaps GLOBEM AW-FB
Model STRS () READ() FATG(T) SQ{) SR{) SD(1) ANX({) DEP() ACT(?) CAL()
LLMs  HealthAlpaca-lora-7b 0.53 1.40 50.0 0.58 0.62 61.7 0.62 0.51 274 43.6
(lora)  HealthAlpaca-lora-13b 0.34 1.56 54.8 0.39 0.70 92.0 1.04 0.67 29.0 39.6
Mean 0.44 1.48 524 0.49 0.66 76.9 0.83 0.59 28.2 41.6
gemma-2-2b-it - - - 0.51 0.72 - 1.27 1.02 344 2.80
Phi-3-mini-4k 0.40 2.14 62.2 0.52 0.97 68.9 0.81 0.71 224 9.67
SmolLM-1.7B 0.93 1.68 154 0.89 1.49 44.4 0.84 0.54 16.1 18.87
SLMs Qwen2-1.5B 043 1.52 62.2 0.47 0.90 55.6 0.92 0.97 18.7 5.21
(lora) TinyLlama-1.1B 0.40 1.30 63.2 0.47 0.67 55.6 0.83 0.67 22.1 551
Llama-3.2-1B 043 2.25 49.8 0.81 1.09 489 0.86 0.54 19.2 5.78
Llama-3.2-3B 0.60 1.53 40.8 0.47 0.86 53.3 0.88 0.54 22.1 3.064
Phi-3.5-mini 0.49 1.55 62.2 0.92 0.98 62.2 0.88 0.66 19.4 12.09
Qwen2.5-1.5B 0.87 149 13.0 0.87 1.89 55.6 1.04 0.79 21.7 457
Mean 0.57 1.68 46.1 0.66 1.06 55.6 0.93 0.72 21.8 7.57

Table 7: Efficiency & Utilization of LLMs and SLMs across datasets. Mean token denotes the
average number of prompt tokens in the 10 selected samples from that dataset.

Model TTFT(s) ITPS(t/s)y OET(s) OTPS(t/s) Total Time(s) CPU(%) RAM(GB)
PMData Phi-3-mini-4k 7.15 100.42 1.08 12.08 8.47 40.77 6.27
Mean token, 720, TimyLlama-11B 137 527.01 0.35 45.89 1.79 44.86 5.51
(Mean token: Llama-2-7b 24.03 29.99 432 3.84 28.79 317.70 7.04
. Phi-3-mini-4k 423 113.47 1.34 14.15 5.87 38.12 6.16
LifeSnaps TinyLlama-1.1B 0.94 517.87 0.33 46.93 1.34 45.27 545

Mean token: 487) - 103 - ama-t. . y ) p ; N y

( Llama-2-7b 13.68 35.65 373 5.09 17.87 262.99 7.03
Phi-3-mini-4k 1.82 12875 1.10 15.66 3.16 35.60 6.23
MGL?EE% o TiyLlama-11B 045 519.62 0.37 49.27 0.84 41.96 5.52
(Mean token: 236) 111110276 471 50.14 239 7.95 750 298.93 7.05
AW FB Phi-3-mini-4k 1.18 127.70 1.17 16.19 242 34.21 6.01
(Mean token: 152y TinyLlama-1.1B .29 523.90 0.32 50.06 0.63 43.46 5.48
: Llama-2-7b 2.94 51.74 1.98 8.95 531 270.79 6.97

ety , these differences are relatively modest compared to the clear advantages of SLMs in fatigue
and calorie estimation. For other tasks such as stress, stress resilience, depression, and depression,
both SLMs and LLMs show similar performance, with only minor differences in best values. No-
tably, SLMs like TinyLlama-1.1B and Phi-3-mini-4k stand out for their strong and consistent results
across multiple tasks. For the less-performing cases (e.g., sleep quality, anxiety and sleep disorder)
of SLMs, we observed that SLMs tend to predict only the majority classes without attempting to
predict the minority classes (i.e., class-imbalance bias; ¢f. Appendix), causing the model to stuck at
sub-optimal performance on those tasks.

In sum, these findings demonstrate that SLMs, when properly tuned, are not only competitive but
often superior to LLMs for specific healthcare tasks, particularly fatigue and calorie estimation.
This highlights the potential of SLMs for efficient, accurate, and large-scale healthcare applica-
tions, making them a compelling choice where resource efficiency and task-specific performance are
essential.

5.2 DEPLOYMENT EFFICIENCY

To investigate efficiency and computational cost in real-world deployment, we ran inference with
the two top-performing models, Phi-3-mini-4k and TinyLlama-1.1B, which were instructional-
tuned using LoRA, on an iPhone 15 Pro Max with 8GB memory capacity. Since the SOTA LLM
HealthAlpaca-lora-7b (Kim et al.,2024) did not release its checkpoint, we compared the on-device
performance of selected SLMs against the baseline Llama-2-7b (the backbone of HealthAlpaca-lora-
7b) using PMData to evaluate deployment efficiency. For fair comparison, we random select a total
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of ten samples from the four health datasets for both Llama-2-7b, Phi-3-mini-4k and TinyLlama-1.1
to evaluate latency and hardware utilization.

PMData.  As shown in Table [/} the efficiency results of the two instruction-tuned SLMs on
PMData (720 tokens) demonstrate that SLMs preserve their latency and memory advantages over
Llama-2-7b. Both SLMs outperform Llama-2-7b in latency and throughput. Specifically, Phi-3-
mini-4k achieves a 3.4x faster time-to-first-token (TTFT) and a 24 x faster output evaluation time
(OET), with gains of over +250% in both input tokens per second (ITPS) and output tokens per sec-
ond (OTPS), resulting in a 3.4 x faster total time. TinyLlama-1.1B shows even larger margins, with
17.5x faster TTFT, 12x faster OET, and more than +1600% ITPS, leading to an impressive 16.1x
faster total time compared to Llama-2-7b. The memory footprint of the SLMs is also much smaller.
Specifically, Phi-3-mini-4k uses 11% less RAM, and TinyLlama-1.1B uses 22% less than Llama-2-
7b. Between the two SLMs, Phi-3-mini-4k offers moderate efficiency gains in some metrics but is
consistently slower than TinyLlama-1.1B by about 4 x, suggesting that efficiency is strongly tied to
model size, with smaller models generally providing superior benefits.

LifeSnaps, GLOBEM, and AW_FB. On LifeSnaps, GLOBEM, and AW _FB, reduced token in-
puts led to lower latency across all models, yet SLMs still showed clear efficiency advantages over
Llama-2-7b. TinyLlama-1.1B achieves 1.46x, 3.04x, and 4.7x faster TTFT on LifeSnaps (487
tokens), GLOBEM (236 tokens), and AW_FB (152 tokens), while Phi-3-mini-4k achieves 1.69x,
3.93x%, and 6.1x, respectively. In these datasets, both SLMs substantially outperform Llama-2-
7b, with TTFT up to 14.6x faster. Throughput metrics such as ITPS, OET, and OTPS remain
mostly consistent, indicating throughput is relatively insensitive to input length. Overall, shorter-
input datasets yield lower prediction times mainly due to reduced input processing.

Robustness to Input Length. Compared to SLMs, Llama-2-7b is less robust to longer inputs. In
latency evaluation, it lags further behind SLMs on LifeSnaps and PMData than on GLOBEM and
AW _FB. Its throughput on PMData drops to approximately 50% of that on GLOBEM and AW _FB,
and to 70% of LifeSnaps, suggesting sensitivity to long sequences. Since throughput should remain
stable across datasets, as demonstrated by SLMs, this degradation likely stems from out-of-memory
pressure (Zhang et al.| |[2024c; [Lee et al., 2024; [Zhang et al., |2024b), where heavy workloads force
KV-cache spills into slower system memory. By contrast, the smaller footprint of SLMs allows them
to tolerate longer inputs. For hardware utilization, RAM usage remains largely unchanged (< 4%)
for both SLMs and LLMs, while CPU utilization decreases by about 10% on shorter-input datasets.

Together, these findings show that SLMs achieve substantial reductions in both input processing
latency and generation latency, especially hold clear advantages on longer-context datasets. In
contrast, LLMs (even at 7B) suffer substantial slowdowns under constrained RAM capacity, making
SLMs an ideal and practical solution for resource-constrained mobile health applications.

6 CONCLUSION AND FUTURE WORK

In this paper, we introduce HealthSLM-Bench, a comprehensive benchmark designed to systemat-
ically evaluate a range of SOTA SLMs on healthcare monitoring tasks under zero-shot, few-shot,
and instruction-tuning scenarios. Furthermore, we assess the efficiency of these models follow-
ing instruction-tuning through on-device deployment experiments. Our study shows that SLMs
can match or even surpass much larger LLMs after adapted with few-shot and instructional tuning
while delivering superior efficiency gain, making them practical for real-time on-device deploy-
ment. At the same time, we also identified their limitations in few-shot prompting and restricted
effectiveness in instruction tuning, particularly under class-imbalanced datasets. Both limitations
point to several promising directions for future work. One is to investigate the underlying causes
of the few-shot anomaly and explore robust prompt design to prevent collapse. Another is to ex-
plore imbalance-aware training approaches, for example by adjusting loss weighting or augmenting
minority-class samples, to reduce class bias during SLM fine-tuning. Additionally, leveraging adap-
tive techniques such as test-time adaptation could further strengthen SLM generalisation in health
applications. Overall, our benchmark establishes SLMs as a promising yet imperfect solution for
efficient and privacy-preserving healthcare applications, motivating further exploration to address
these challenges.
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REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide detailed dataset preprocessing, hyperparameter selection, and
training procedures in the Appendix. In addition, we also use the deterministic decoding strategy for
SLMs generation to ensure consistent outputs and strengthen reproducibility. Our code is available
at https://anonymous.4open.science/r/health-SILM-C1B0/. The full repository
and scripts required to replicate our experiments will be released publicly upon publication, along
with instructions to reproduce all reported results.
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APPENDIX

A USE OF LLMS

In preparing this paper, we used LLMs exclusively as a language refinement tool, particularly as-
sisted with minor text polishing, including improving grammar, sentence flow, and word choice.
They were not used for research ideation, experiment design, implementation, data analysis, or sub-
stantive writing. All technical contributions, experiments, and results presented in this paper are
entirely the work of the authors.

B IMPLEMENTATION DETAILS

We fine-tune our SLMs on a NVIDIA A100 80GB GPUs with a batch size of 128 with 3 number
of epochs for the purpose of fine-tuning, with Adam optimizer and a learning rate as 5e-5 (cosine
learning rate scheduler and dynamic warmup steps of 5% of dataset size). It took about 7 hours for
9 SLMs in 3 epochs of training with the default training setting. We adopt greedy decoding method
with sampling set to False. We utilize the same prompt of zero-shot for LoRA tuned SLMs inference.
To ensure re-productiveness, we employ the greedy decoding strategy to make the output prediction
deterministic. While most language models default to sampling-based decoding (e.g., top-k, top-p),
we explicitly disabled these strategies to maintain reproducibility across runs. To better simulate
edge-device conditions, where computational resources are constrained, we capped the maximum
number of generated tokens at 30. Generation stops once this limit is reached, even if the answer is
incomplete, which balances efficiency and response quality. The codes and fine-tuned models will
be made publicly available upon the release of the camera-ready version of this paper.

C ADDITIONAL EXPERIMENTS

Table 8: Performance of LLMs and SLMs under instruction tuning (LoRA) and full-parameters
tuning (FT) across ten healthcare monitoring tasks. STRS: Stress, READ: Readiness, FATG:
Fatigue, SQ: Sleep Quality, SR: Stress Resilience, SD: Sleep Disorder, ANX: Anxiety, DEP: De-
pression, ACT: Activity, CAL: Calorie Burn. Best result is in bold, second-best result is underlined.
‘-> denotes model failed to produce valid prediction.

PMData LifeSnaps GLOBEM AW-FB
Model STRS(}) READ{) FATG(1) SQ{) SR{) SD(t) ANX{) DEP({) ACT(1t) CAL()
LLMs  HealthAlpaca-lora-7b 0.53 1.40 50.0 0.58 0.62 61.7 0.62 0.51 274 43.6
(lora)  HealthAlpaca-lora-13b 0.34 1.56 54.8 0.39 0.70 92.0 1.04 0.67 29.0 39.6
Mean 0.44 1.48 524 0.49 0.66 76.9 0.83 0.59 28.2 41.6
LLMs  HealthAlpaca-7b 0.31 1.32 70.7 0.35 0.62 72.1 0.46 0.49 41.7 315
(FT)  HealthAlpaca-13b 0.21 1.08 61.2 0.14 0.32 93.9 0.95 0.24 51.0 28.5
Mean 0.26 1.20 65.9 0.25 0.47 83.0 0.71 0.37 46.4 30.0
gemma-2-2b-it - - - 0.511 0.723 - 1.271 1.023 344 2.8
Phi-3-mini-4k 0.398 2.144 62.2 0.522 0.966 68.9 0.809 0.712 224 9.7
SmolLM-1.7B 0.930 1.676 154 0.893 1.489 44.4 0.843 0.539 16.1 18.9
SLMs Qwen2-1.5B 0.428 1.522 622 0.472 0.903 55.6 0.923 0.967 18.7 52
(lora) TinyLlama-1.1B 0.395 1.304 63.2 0.472 0.667 55.6 0.833 0.669 22.1 55
Llama-3.2-1B 0.428 2.251 49.8 0.809 1.090 48.9 0.860 0.535 19.2 5.8
Llama-3.2-3B 0.595 1.532 40.8 0.465 0.858 53.3 0.883 0.535 22.1 3.6
Phi-3.5-mini 0.485 1.548 62.2 0.920 0.981 62.2 0.880 0.659 19.4 12.1
Qwen2.5-1.5B 0.866 1.485 13.0 0.866 1.891 55.6 1.037 0.793 21.7 4.6
Mean 0.57 1.68 46.1 0.66 1.06 55.6 0.93 0.72 21.8 7.6
gemma-2-2b-it 0.351 1.304 62.9 0.452 0.625 55.6 0.883 0.535 532 2.1
Phi-3-mini-4k 0.398 1.535 629 0.468 0.549 86.7 0.803 0.542 19.4 282
SmolLM-1.7B 0.732 2.993 18.1 1.672 - 432 1.997 0.686 16.0 -
SLMs Qwen2-1.5B 0.395 1.304 63.2 0.478 0.820 55.6 1.050 0.535 38.1 3.8
(FT) TinyLlama-1.1B 0.398 1.331 63.2 0.455 0.675 444 0.863 0.535 38.1 23
Llama-3.2-1B 0.395 2.160 64.5 0.462 0.681 55.6 - - 385 2.1
Llama-3.2-3B 0.385 1.304 56.9 0.452 0.574 - 0.873 0.532 554 1.7
Phi-3.5-mini 0.535 1.512 61.2 0.508 0.450 80.0 0.886 0.549 16.4 6.2
Qwen2.5-1.5B 0.682 1.446 39.6 0.455 1.394 71.1 0.953 0.695 15.4 5.8
Mean 0.47 1.66 54.8 0.60 0.72 61.5 1.04 0.58 323 6.5
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In addition to LoRA, we also conducted experiment on full-parameters tuning. As shown in the
Table [8] all tasks demonstrated improvement in FT compare to LoRA. Notably, the best accuracy
on activity and sleep disorder showed the significant improvements, rising from 34.4 to 55.4 and
from 68.9 to 86.7, respectively, enabling our fine-tuned SLMs to surpass HealthAlpaca-7b (55.4
vs. 41.7 and 86.7 vs. 72.1) and even outperform the 13B version on activity (55.4 vs. 51.0). This
behavior also observed on MAE tasks, such as stress resilience, where the lowest error decreased
from 0.667 to 0.450, significantly outperforming HealthAlpaca-7b (0.62). calorie burn persist its
advantages observed under LoRA and further bring its best error from 2.8 to 1.7, which outperform
HealthAlpaca at both 7b (1.7 vs. 31.5) and 13b (1.7 vs. 28.5). For tasks on PMData and GLOBEM,
the best results showed limited improvement, remaining stuck at suboptimal levels due to class-
imbalance in model’s predictions. However, they are still comparable to HealthAlpaca-7b in most
of cases.

D TASK CATEGORIZATION AND LABEL DISTRIBUTION

PMData is a dataset that integrates life-logging and activity-logging information, comprising per-
sonalized health monitoring data collected from 16 participants over a period of five months. Using
the Fitbit Versa 2 smartwatch wristband (Fitbit Inc.,2019), objective signals such as calories burned,
resting heart rate, step count, sleep duration, and more were gathered. In addition, participants pro-
vided self-reported measurements of their health status via the PMSys sports logging application,
such as fatigue, mood, stress, etc. In our setting, these self-reports were categorized into prediction
tasks with labels for fatigue, readiness, sleep quality, and stress (Kim et al., 2024;|Wang et al.,{2024)).

 Stress (STRS): Estimation of an individual’s stress level based on physiological data and self-
reported measures. (0-5, Classification)

* Readiness (READ): Assessment of an individual’s readiness for physical activity/exercise. (0-10,
Classification)

* Fatigue (FATG): Monitoring of signs of tiredness or exhaustion based on sports and life-log data
in the last 14 days. (1-5, Classification)

* Sleep Quality (SQ): Estimation of an individual’s sleep quality. (1-5, Classification)

All tasks is assessed with factors including total sleep time, Steps, mood and other sports data like
Burned Calories and Resting Heart Rate over a continuous 14-day period. In terms of range, most
tasks are evaluated on a scale of 1-5 or 0-5. A score of 3 represents a normal condition, and 1-2 are
scores below normal states, and 4-5 are scores above normal states. For the task of readiness, the
scale ranges from O to 10, where O reflects no readiness for physical activity, and 10 indicates high
preparation for exercise.

The label distribution for each task in this dataset is shown as Figure

D.1 LIFESNAPS

LifeSnaps is a multi-modal, longitudinal, and geographically-distributed dataset designed for self-
tracking physical and mental health monitoring. As stated by author (?), it was collected unob-
trusively over a period of 4 months from 71 participants using Fitbit Sense smartwatch, validated
surveys, and real-time ecological momentary assessments. The integrated Fitbit sensor data (sleep,
heart rate, stress, etc), along with Ecological Momentary Assessments (context and mood, step goal,
etc) enables real-time mental and physical health analysis. In this study, this dataset derives the
following tasks:

* Stress Resilience (SR): Evaluation of an individual’s ability to effectively cope with, posi-
tively adapt to, and recover from stress. (0.2-5, Regression)

* Sleep Disorder (SD): Identification of sleep-related irregularities in given physiological
sleep patterns. (0 or 1, Classification)

Both of them are assessed using features extracted from daily wearable sensor streams over a contin-
uous 14-day period. Specifically, the following features are used to evaluate Stress Resilience (SR):
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Figure 1: The label distribution of the four tasks in PMData

Stress Resilience Distribution (KDE) Sleep Disorder Distribution

KDE Curve m= true_y Distribution

Frequency

Value Label

Figure 2: The Data distribution of the two tasks in LifeSnaps

Stress Score, Positive Affect Score, Negative Affect Score, Lightly Active Minutes, Moderately Ac-
tive Minutes, Very Active Minutes, Sleep Efficiency, Sleep Deep Ratio, Sleep Light Ratio, and Sleep
REM Ratio; For Sleep Disorder (SD), the features include: Sleep Duration, Minutes Awake, Sleep
Efficiency, Sleep Deep Ratio, Sleep Wake Ratio, Sleep Light Ratio, Sleep REM Ratio, RMSSD,
SpO., Full Sleep Breathing Rate, BPM and Resting Hour. In the detail of labeling, SR is a contin-
uous value scale from 0.2 to 5, where 3.1 denotes a neutral state, values below 3.1 indicate lower
resilience, and values above 3.1 suggest higher resilience to stress. SD is a binary (0,1) value, where
0 indicates the absence of disorder, and 1 denotes its presence.

The data distribution for each task in this dataset is shown at Figure 2]

GLOBEM is a passive sensing dataset for health-domain analysis. Data were gathered from 497
participants between 2018 and 2021 using a custom mobile application alongside continuous fitness
tracker monitoring (24/7). This dataset captures a wide range of daily human routines, including step
counts, sleep efficiency, time spent in bed after waking, time to fall asleep, and wake periods while
in bed. These signals reveal associations between everyday behaviors and well-being outcomes. In
our experiment, we use these behavioral signals as inputs and predict mental health conditions such

as depression and anxiety (Kim et al., [2024)).
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Figure 3: The label distribution of the two tasks in GLOBEM

* Depression (DEP): estimation of a depression score that analyzes patterns in user’s sleeping be-
havior and activity levels. (0—4, Classification)

* Anxiety (ANX): estimation of an anxiety score that relies on behavioral markers such as irregular
sleep patterns or heightened physiological responses, e.g. increased heart rate, reduced activity
levels, and increased sleep disturbances (0—4, Classification)

Both the two tasks are assessed on the average of daily steps, sleep efficiency, duration the user
stayed in bed after waking up, duration the user spent to sleep, duration the user stayed awake but
still in bed, and duration the user spent to fall asleep in the last 14 days. A value of 0 implies the
disorder is not present, while a value of 4 indicates severe disorder. Any values between 0 and 4
denote their severity accordingly, such as a value of 1 indicates mild disorder, 2 refers to moderate,
and 3 refers to Moderately Severe.

The label distribution for each task in this dataset is shown at Figure [3]

AW _FB is a wearable dataset designed by Harvard University to study the relationship between
physical activity patterns and physiological metrics, gathered from 46 participants that wear GE-
NEActiv (Activinsights Ltd., 2015), Apple Watch Series 2 (Apple Inc., 2016) and a Fitbit Charge
HR2 (Fitbit Inc.,[2016) in a lab-based protocol. The recorded sensor data includes daily step count,
heart rate, activity duration, burned calories, and metabolic equivalent of task (MET) Value. This
dataset was tested to predict 6 different physical activity intensities, including lying, sitting, walking
self-paced, 3 METS, 5 METS, and 7 METS.

* Activity (ACT): estimation of individual’s activity intensity type based on sensor data. (0-5, Clas-
sification)

* Calories (CAL): estimation of burned calories that are expended by an individual during physical
activities. (no constraint, Regression)

Activity is predicted by Steps, Burned Calories, and Heart Rate obtained during an activity period.
This label ranges from O to 5, corresponding to Self Pace Walk, Sitting, Lying, Running 7 METs,
Running 5 METs, and Running 3 METs respectively. Calories are calculated based on Steps, Heart
Rate, Duration, Activity Type, and MET Value, where a higher value indicates greater energy ex-
penditure.

The label distribution for each task in this dataset is shown at Figure
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The label distribution of the two tasks in AW_FB

E SAMPLES FROM TRAINING DATASETS

Tables PHI2] show samples derived from each of the four datasets.

Table 9: Sample instruction—response pair from the fatigue task in PMData.

Instruction:
You are a personalized healthcare agent trained to predict fatigue which ranges from 1 to 5 based on
physiological data and user information.

Input:

The recent {14} days sensor readings show: Steps: {*“1476.0,4809.0, ..., NaN”’} steps, Burned Calo-
ries: {“169.0, 419.0 ..., NaN”} calories, Resting Heart Rate: {*53.24, 52.24, ..., 51.40”} beats/min,
Sleep Minutes: {“110.0, 524.0, ..., 481.0”} minutes, [Mood]: 3 out of 5. What would be the pre-
dicted fatigue level?

Response:
The predicted fatigue level is 3. <EOS>

Table 10: Sample instruction—response pair from the stress resilience task in LifeSnaps.

Instruction:
You are a personalized healthcare agent trained to predict stress resilience which ranges from 0.2 to
5 based on physiological data and user information.

Input:

The recent {7} days sensor readings show: Stress Score: {“61.0, 64.0, ..., 77.0} out of 100, [Positive
Affect Score]: 39 out of 50, [Negative Affect Score]: 27 out of 50, Lightly Active Minutes: {“96.0,
126.0, ..., 173.0} minutes, Moderately Active Minutes: {“10.0, 4.0, ..., 60.0}minutes, Very Active
Minutes: {“10.0, 12.0, ..., 88.0} minutes, Sleep Efficiency: {“87.0, 90.0, ..., 91.0}, Sleep Deep
Ratio: {“[0.90361, 1.26667, ..., 1.25974}, Sleep Light Ratio: {“1.30932, 0.62783, ..., 0.78027},
Sleep REM Ratio: {“0.90426, 0.97647, ..., 1.31461}; What would be the predicted stress resilience
index?

Response:
The predicted stress resilience index is 1.44. <EOS>

F SMALL LANGUAGE MODELS

We selected 9 most state-of-the-art SLMs between 1 to 4B from top-tier tech companies. The details
of each SLMs are listed below:

¢ Phi-3-mini-4k-Instruct (Microsoft, |2024): Microsoft’s smallest model in the Phi-3 family. It has
3.8 billion parameters, trained on a combination of synthetic data and selected publicly available
website data, with an emphasis on high-quality and reasoning-dense properties.
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Table 11: Sample instruction—response pair from the Anxiety task in GLOBEM.

Instruction:
You are a personalized healthcare agent trained to predict PHQ-4 anxiety which ranges from 0 to 4
based on physiological data and user information.

Input:

The recent {14} days sensor readings show: [Steps] is 10635.9230769231. [Sleep] efficiency,
duration the user stayed in bed after waking up, duration the user spent to sleep, duration the
user stayed awake but still in bed, duration the user spent to fall asleep are 95.4615384615385,
0.153846153846154, 429.384615384615, 20.6153846153846, 0.0 mins in average; What would be
the PHQ-4 anxiety score?

Response:
The predicted PHQ-4 anxiety score is 4. <EOS>

Table 12: Sample instruction—response pair from the Activity task in AW_FB.

Instruction:

You are a personalized healthcare agent trained to predict the type of activity among 0:“Self Pace
Walk”, 1:“Sitting”, 2:“Lying”, 3:“Running 7 METs”, 4:*Running 5 METs”, 5:“Running 3 METs”
based on physiological data and user information.

Input:
The recent sensor readings show: [Steps]: 742.72 steps, [Burned Calories]: 16.46 calories, [Heart
Rate]: 64.00 beats/min; What would be the predicted activity type?

Response:
The predicted activity type is 1. <EOS>

* Phi-3.5-mini-Instruct (Microsoft, |2024): A upgrade version of phi-3-mini-4k-instruct. It is built
in the same architecture and dataset upon phi-3, but trained with a focus on reasoning dense data
for better instruction alignment and multi-step reasoning.

* TinyLlama-1.1B-Chat-v1.0 (TinyLlama, |2024): Distilled version of Llama 2. It uses the same
architecture and tokenizer as LLaMA but is compact with 1.1 billion parameters. It was fine-tuned
on the UltraChat dataset (contains field-cross synthetic dialogues generated by ChatGPT), making
it compatible with a wide range of tasks.

* Gemma2-2B-it (Googlel 2024): Google’s SOTA open-source model, built on the same research
and technology as the Gemini models but scaled down to 2 billion parameters. It is well-suited for
text generation tasks such as question answering, summarization, and reasoning.

* SmolLM-1.7B-Instruct (HuggingFaceTB| 2024): HuggingFace’s flagship model, it has 1.7 bil-
lion parameters and is trained on SmolLM-Corpus which consists of synthetic textbooks, stories,
and educational Python and web samples.

* Qwen2-1.5B-Instruct (Qwen, [2024): Ailibaba’s state-of-the-art SLM in Qwen2 family. It has
only 1.5 billion parameters and is trained on diverse instruction-followed tasks. The included cod-
ing and mathematics data for training makes it perform well in coding and quantitative reasoning
tasks.

* Qwen2.5-1.5B-Instruct (Qwen et al., 2025): An upgraded version of Qwen?2. It is built on the
same dataset and architecture, but places greater emphasis on coding and mathematics tasks, mak-
ing it more optimized for reasoning and math.

¢ Llama-3.2-1B-Instruct (Meta Al [2024): Meta-llama’s state-of-the-art SLM. It shares the identi-
cal architecture and pre-trained datasets upon Llama3, but is compressed to 1B parameters.

¢ Llama-3.2-3B-Instruct (Meta Al 2024): 3B version of Llama-3.2-1B-Instruct.
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Figure 4: Training loss of 9 SLMs across 4 datasets. The training loss overall exhibits a consistent
downward trend across all datasets, with larger fluctuations observed in the Lifesnaps for some
SLMs.

H EVALUATION METRICS

H.1 PERFORMANCE EVALUATION

For SLMs performance evaluation, Mean Absolute Error (MAE) and Accuracy are utilized to assess
model prediction performance on health event prediction.

Accuracy (%) (Bishop, 2006) measures the proportion of correctly predicted instances out of all
instances. It provides an overview of whether a model performed well overall, with higher values
indicating better performance. However, accuracy does not capture the severity or magnitude of
errors in misclassified cases, as all errors are treated equally.

Mean Absolute Error (MAE) (Hastie et al.| 2009) quantifies the average magnitude of prediction
errors by computing the absolute difference between predicted and actual values. Lower MAE
indicates better alignment with ground truth. Unlike Accuracy, which only reflects correctness,
MAE distinguishes between small and large errors. For example, predicting “3” when the true label
is “4” yields an error of 1, while predicting “3” when the true label is “10” yields an error of 7. Thus,
MAE captures not only whether predictions are correct but also how close incorrect predictions are
to the true values.

In health event prediction, we used both Accuracy and MAE to provide complementary insights.
For instance, models that achieve slightly lower accuracy but maintain consistently low MAE may
be preferable, as they deliver more reliable outputs than those with higher accuracy but large error
magnitudes.

Efficiency and Utilization Evaluation To further evaluate the efficiency and the actual latency in
real cases, all state-of-the-art (SOTA) SLMs that show strong promise will be deployed in processing
healthcare field data on a real iPhone 15 Pro Max. To better demonstrate the importance of efficiency
on mobile devices, the widely used LLM, Llama 2, is selected and serves as a comparison to the
fine-tuned SLMs.

During batch evaluations, latency metrics such as TTFT, ITPS, OTPS, OET, and Total Time are
calculated as the average time spent or average token processed/generated over a sample size of N
(we used 10). CPU utilization is measured by the average load per second during inference, while
RAM usage is reported as the maximum memory allocated to the device when the model is running.
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Figure 5: Distribution of predictions for the four tasks in PMData under FS setting. All collapsed
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Figure 6: Distributions of model predictions across the four tasks in PMData, highlighting class
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