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Abstract

Machine-vision representations of faces can be aligned to people’s first impres-
sions of others (e.g., perceived trustworthiness) to create highly predictive models
of biases in social perception. Here, we use deep tensor fusion to create a
unified model of first impressions that combines information from three channels:
(1) visual information from pretrained machine-vision models, (2) linguistic
information from pretrained language models, and (3) demographic information
from self-reported demographic variables. We test the ability of the model to
generalize to held-out faces, traits, and participants and measure its fidelity to a
large dataset of people’s first impressions of others.

1. Introduction

People form first impressions of others based in part on their appearance [0]. Computational
models of person perception often focus on modeling the face features that give rise to those first
impressions [[I4, 7], the semantic structure of trait space and the relationships between traits [[],
or individual- and group-level differences in person perception [I1].

To understand the visual basis of people’s biased first impressions, researchers have aligned
representations from machine-vision systems to large datasets of first-impression judgments [S].
However, people’s first impressions depend not only on the visual information present in an
image of a face, but also on the interaction between (1) observers, (2) the faces of the people
they encounter, and (3) the traits along which the observers form impressions. Thus, a complete
computational model of first impressions must also reflect representations of traits and individual-
and cultural-level differences across observers.

Recent advances in machine-learning methods for multimodal fusion provide a means to create
unified representations of heterogeneous data [d]. Here, we developed an integrated approach
based on deep tensor factorization with side information [U] that aligns representations from
multiple pretrained deep networks (dense vector representations of images of human faces, textual
descriptions of psychological traits, and demographic features of participants) to create predictive
models of first impressions. This method transforms each machine representation into a modality-
specific latent space to combine with the other modes. For behavioral data, it embeds information
from the different channels into separate latent spaces formed by deep feature vectors, then uses
an attention mechanism to interpret between-channel interactions.

In this paper, we first describe the structure of our deep tensor-factorization model. We then train
the model using a large-scale dataset of first impressions and finally assess the ability of the model
to generalize to held-out faces, traits, and participants.
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2. Background And Related Work

Information from at least three channels contribute to people’s first impressions of others: (1)
visual information from faces, (2) linguistic or conceptual information about traits, and (3) demo-
graphic features of participants. Deep tensor factorization with side information is a mathematical
framework for aligning information from multiple channels: it combines (through, for example, a
dot product) pretrained latent vectors of features from different channels of the perceptual tensor
into a single scalar value — one entry of the main data tensor. Moreover, it has the advantage of
allowing additional channels to be incorporated and for more complex transformations to be used
in service of combining the latent representations (e.g., attention mechanisms). We explain the
development of the latent feature spaces for the three channels in detail below.

2.1. Modality 1: Visual Information about Faces

Valentine et al. (2016) [135] proposed a “face space” as a concept for representing psychological
similarities of human faces. Each face can be represented by a point placed at a particular location
in the face space. Distances between faces reflect their similarities. With developments in computer
vision, algorithms can learn more comprehensive face features. The extracted face features may
derive from interpretable attributes (e.g., chin width)[I3], or features learned from various machine
learning models (e.g., CNN and Eigenfaces [B, T4]) or deep learning algorithms [S, B, T2]. The
deep face features have much higher dimensionality and are generally more expressive.

2.2. Modality 2: Linguistic Information about Traits

The concept of trait space is often found in studies of person perception and first impressions [[Z,
IT], which used dimensionality reduction and related techniques to explore the similarity structure
of traits. However, their method for generating a trait space is limited in its ability to generalize
to new traits that do not appear in the training dataset. Pretrained language models such as BERT
[?] provide a possible alternative. BERT is known for extracting high-quality language features
from text data and can create high-dimensional representations of any given input text. In the case
of first-impression ratings [8], BERT can be applied to a compact set of texts with close semantic
meaning for the given traits to generate latent vectors. These latent vectors form the input to the
multidimensional trait space.

2.3. Modality 3: Demographic Information about Participants

Shaver et al. (2015) [I0] distinguish between individual and cultural/ group differences in person
perception. Here, we consider both to be participant side features. The one-hot-encoding method
is applied to demographic features self-reported by participants to formulate the input to the
demographic latent space.

3. Methods

We explored five deep tensor factorization models. The workflow in Figure. @ (Appendix. &) shows
their three major components: pretrained deep networks for feature latent space generation in each
channel, a multichannel fusion strategy with attention, and dense layers for converting fused vectors
into impression-rating predictions. Differences across the five models are mostly in the fusion
strategy. Model 1 is vanilla tensor factorization, which takes the dot product of dimensionally
reduced 3-way side feature vectors to generate impression-rating predictions. Models 2 to 5 are
four deep tensor factorization approaches. Model 2, the additive concatenation approach, combines
the 3 modes of side features into a single row vector. And Models 3, 4, and 5 apply a between-
channel attention mechanism on top of the concatenated vector in Model 2.

Figure.ll describes the working mechanisms of all deep fusion models in detail. At first, the
pretrained deep networks (described in Section D) process the raw perceptual data for each
channel in parallel and produce three sets of feature vectors. Then, different ways of information
consolidation are conducted. In Models 1 and 2, information from all channels is merged without
attention, while Models 3, 4 and 5, provide alternative methods for computing between-channel
interactions. Models 3 and 4 are the two well-known attention mechanisms initially introduced
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Figure 1: Structures of five options multi-modal fusion methods handling human face perception
prediction data.

in [IA] (details seen in Appendix.B and D). Model 3 uses Scaled Dot Product Attention (DPA),
which is applied to every pair of the three channels. Model 4 uses Multi-Head Attention (MHA),
which has a more complex way of computing attention. It calculates attention from multiple heads
by repeatedly querying the data. Option 5 is inspired by the Multi-Modal Uni-Utterance- Self
Attention (MMUU-SA) in [8] (details seen in Appendix.H). All the calculated attention vectors
are concatenated with the original vector representations of these three channels. By this means, a
long fusion vector representing both within-channel and between-channel information is generated.

The final portion of the fusion models is a series of dense layers with non-linear transformations
with flexible options such as dropout, batch normalization, and so on. Fusion vectors are fed
into the dense layers to produce impression predictions. In sum, the pretrained networks produce
vector representations for each channel, the tensor factorization fusion strategies decide how to
integrate data from all channels together, and the dense layers produce the final output. Together,
they work as an end-to-end system for predicting first impressions from the output of pretrained
machine vision and language networks.

4. Results

To evaluate the performance of the tensor factorization approaches, we tested each model on
the One Million Impressions dataset [B], which contains over one million first-impression ratings
collected for over a thousand StyleGAN2-generated synthetic face images with respect to thirty-
four distinct traits.

We conducted two sets of experiments to test the generalizability of the five fusion models. The
first set compares their ability to predict first impressions at the individual level. Linear regression
(Model 0) served as the baseline model. 95% of the dataset was used as a training dataset and
5% as the validation set. Under a learning rate (Ir = 0.002), performance metrics for each
model were collected after 100 epochs and reported using the average performance among three
repeated experiments. The performance of each model on the validation set is summarized in Table.
. All five tensor-factorization models (Models 1-5) outperform the baseline regression model
considerably. Model 4, MHA with 8 heads, achieves the lowest RMSE (20.2538) and Model 5,
MMUU-SA, achieves the best linear correlation (R? = 0.4867). Though each model has its own
advantages, in training over epochs (Figure.B in Appendix.0), the latter shows noticeably more
distance between training and validation RMSE:s in later epochs, implying a greater possibility of
overfitting. As such, the 8-head MHA provides the best predictive model for individual-level first
impressions. In contrast, Model 1, vanilla tensor factorization, performed the worst among all the
tensor-factorization models.



Table 1: Performance metrics of deep tensor factorization models

Model Description Key Parameters RMSE R-Square

0 Linear 512 face features + 300 trait features + 27  26.4936 0.2312
Regression participant features, linear combination

1 Direct Dot 512 face features, 300 trait features, 27 21.0805 0.3073
Product participant features all dense into 100

dimensions, calculate the dot product for
the three 100-dimensional vectors

2 Direct Additive 512 face features, 300 trait features, 27 20.3380 0.4838
Concatenation participant features all dense into 100
dimensions, concatenated into a
300-dimensional vector

3 DPA Scaled Dot Product Attention + 20.4989 0.4805
300-dimensional vector generated by
three-channel features concatenation

3-head Attention + 300-dimensional vector 20.2944 0.4805
4 MHA generated by three-channel features
concatenation

8-head Attention + 300-dimensional vector 20.2538 0.4761
generated by three-channel features
concatenation

5 MMUU-SA Multi-Modal Uni-Utterance- Self Attention 20.2855 0.4867
+ 300-dimensional vector generated by
three-channel features concatenation

The second set of experiments explored the vanilla tensor factorization approach in terms of
its ability to predict first impressions of held-out entities, which might either be faces, traits,
or participants. Vanilla tensor factorization was selected to conduct the experiments, for Table. [
indicates it has the threshold performance of all models for individual-level prediction. Correlation
coefficients were measured as a target metric for held-out faces, traits, and participants to compare
with individual-level impression rating prediction. As a baseline for the comparison target, the
training process of the individual-level prediction used all the data, with information associated
with all faces, traits, and participants. However, the other models had no exposure to held-out
entities of a particular type. Results demonstrate that models tested on held-out entities are lower
than that of a model tested on held-out individual ratings (R? = 0.48). Despite this, the tensor
factorization approach gains substantially comparable performance for holding out faces (R? =
0.42) and participants (R? = 0.45) concerning the target model. Nevertheless, its performance for
held-out traits (R? = 0.046) is low, though above chance. This is likely because held-out faces
and participants have more underlying similarities with the remainder used as training samples. In
particular, the traits are few in number and were intentionally selected to be different from each
other. Therefore, the natural connections among traits are limited.

5. Discussion & Conclusion

The deep tensor-factorization approach that we propose aligns the latent space of two or more
pretrained deep neural network representations to behavioral judgments made by people. The
system generalizes to multiple entities and their relations. We showed that, when modeling a



Table 2: R-Square values for held-outs of three channels via the tensor factorization fusion model.

Held out channel Sampling Strategy R-Square

(Ratings) Use all samples, 5% data used to compute correlation values, 0.48
the rest used as training samples

Faces/Stimulus Use all samples, the correlation coefficient of 100 faces 0.42
computed at one time, data of the rest faces used as training
samples

Traits Use all samples, the correlation coefficient of 1 trait computed  0.046

at one time, data of the rest traits used as training samples

Participants Use samples related to 2000 out of 4476 participants, the 0.45
correlation coefficient of 200 participants computed at one
time, data of the rest participants used as training samples

large dataset of human first impressions [B], deep tensor factorization methods outperformed the
baseline regression and vanilla tensor factorization (Table. ).

More research is needed to understand which deep tensor factorization approach provides the
most reliable method for representing between-channel interactions. Though we found that MHA
achieved the best performance based on the average of repeated experiments, performance was
comparable across all the deep-tensor factorization methods. Further corroboration is needed to
demonstrate that 8-head MHA is the optimal attention mechanism for representing these datasets.
Moreover, other attention-based mechanisms are possible.

We also note that the generalization performance of the tensor factorization approach for held-out
traits prediction is weak (Table. D). We suggest two potential improvements: first, collect a much
denser sampling of traits than the 35 traits examined here. This is important given the relatively
high dimensionality of the language models used (300) in comparison to the number of traits tested
(35). Second, we might apply alternative attention mechanisms to better capture between-channel
correlations and predict impressions for held-out traits.

Overall, we show that, as one of the state-of-the-art fusion models, deep tensor factorization
provides the key to creating computational models of biased first impressions. Its 3D tensor
structures enable the integration of heterogeneous information, commonly seen in behavioral
datasets. It substantially improves the alignment of human impression judgments with machine-
generated deep fusion representations. Though the most appropriate choice of pretrained networks
and attention can be further explored, the deep tensor factorization models demonstrate the ability
to generalize to held-out faces, traits, and participants.
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Appendix A.
Data organizing structure of deep tensor factorization modeling human
attribute inference
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Figure 2: Data organizing structure of deep tensor factorization modeling human attribute inference.
Note: Each entry of the main 3D tensor in the middle of the graph stands for a face impression
rating on a certain trait from one participant. The three side information are shown with detailed
feature lists.

Appendix B.
Scaled Dot Product Attention

According to the definition introduced by [I6], an attention function can be described as mapping
a query and a set of key-value pairs to an output, where the query, keys, values, and output are all
vectors. In the face impression rating case, we can assign the query as the participant (pg) as the
query. keys are traits (tr), and values are faces (fr). All input vectors are dense vectors instead
of the initial vectors. As one specific type of attention, Scaled Dot Product Attention (DPA) is
computed as Formula. (0). The related working mechanisms can be briefly explained as follows:
The dj, denotes the total dimension number of inputs. (),,,, denotes a packed set of simultaneous
queries, while K, and Vy, stand for its corresponding packed matrices of keys and values.
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Appendix C.
Training vs. validation RMSEs of deep tensor factorization models over
100 epochs

The plots in Figure. B below show the RMSE values over 100 epochs for five options of tensor
factorization approaches. Comparing the difference in traces of training vs. validation data over
epochs demonstrates 1) the potential overfitting issue for some approaches is more severe than
others. As the overfitting issue affects the model’s generalization ability, it can be used as a
reference to distinguish whether the Multi-Head Attention Approach (MHA) is the optimal solution



for the face impression rating case over the Multi-Modal Uni-Utterance-Self Attention (MMUU-
SA). 2) After a certain number of training epochs, the RMSEs in most of the approaches become
relevantly stable and slowly decrease, except for the Scaled Dot Production Attention (DPA)
approach having noticeable fluctuations.
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Figure 3: Training vs. validation RMSEs of deep tensor factorization models over 100 epochs.

Appendix D.
Multi-Head Attention

In the Multi-Head Attention approach, queries, keys, and values are project h times by distinct

learned linear projections (to dimension dj), where h is the number of heads. This mechanism

make the overall model able to jointly summarize information from different representation
. .. K 1%

subspaces at different positions. In Formula. (B), WiQ”R,Wi "R W, " denote the parameter

matrices of projections.

MultiHead(Qpy,, Kt Vi) = Concat(heady, ..., head;,)W©

, (2)
where head; = Attention(Q,, W>"" , K, W;*'% VW, 7).

Appendix E.
Multi-Modal Uni-Utterance-Self Attention

In the Multi-Modal Uni-Utterance-Self Attention approach, Formula. (B), (#) shows its basic
computational operations. The X € R3*¢ in Equation. (B) stands for the information tensor,
where the three d dimensional rows are the outputs of the dense layer (pg,tgr, fr in Figure. 0) for
the three modalities. The attention tensor A € R3*¢ is computed in Equation.(d), concatenated
with X, ., and passed to the output impression predicting layer.

PR>
M=XxXT. (3)
o eM(i.5) o
N(i,5) = W fori,j=1,2,3
3 4
O=NX

A=00X.
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