Under review as a conference paper at ICLR 2025

A PRIMAL-DUAL ALGORITHM FOR VARIATIONAL IM-
AGE RECONSTRUCTION WITH LEARNED CONVEX REG-
ULARIZERS

Anonymous authors
Paper under double-blind review

ABSTRACT

We address the optimization problem in a data-driven variational reconstruction
framework, where the regularizer is parameterized by an input-convex neural net-
work (ICNN). While gradient-based methods are commonly used to solve such
problems, they struggle to effectively handle non-smoothness which often leads
to slow convergence. Moreover, the nested structure of the neural network com-
plicates the application of standard non-smooth optimization techniques, such as
proximal algorithms. To overcome these challenges, we reformulate the prob-
lem and eliminate the network’s nested structure. By relating this reformulation
to epigraphical projections of the activation functions, we transform the problem
into a convex optimization problem that can be efficiently solved using a primal-
dual algorithm. We also prove that this reformulation is equivalent to the original
variational problem. Through experiments on several imaging tasks, we demon-
strate that the proposed approach outperforms subgradient methods in terms of
both speed and stability.

1 INTRODUCTION

Image restoration focuses on reconstructing high-quality images from degraded, low-quality ver-
sions that often result from issues during image acquisition and transmission. This includes tasks
such as image denoising, image deblurring, image inpainting and computer tomography (CT) re-
construction. The measurement process is typically modeled as y = Ax + €, where A simulates
the physics in the measurement process and € denotes the measurement noise. One then seeks to
recover the unknown image x from the noisy measurement y. To mitigate the ill-possedness of the
inverse problem, the classical variational reconstruction framework incorporates prior information
about plausible reconstructions through a regularizer:

min D(Ax,y) +vRg(x), P)

where D is the data fidelity. The regularizer R can be parametrized, with # denoting its parame-
ters. The trade-off between data fidelity and regularizer is controlled by the positive regularization
parameter ~. The reconstruction is obtained by solving the minimization problem (P).

Traditional methods often utilize hand-crafted regularizers, such as total variation (TV) (Rudin et al.,
1992), total generalized variation (TGV) (Bredies et al. |2010) and sparsity promoting regularizer
(Daubechies et al., 2004). In recent years, data-driven approaches for inverse problems have gained
increasing interest. For instance, (Chen et al., [2017; Jin et al., 2017} [Kang et al., [2017) propose
learning end-to-end neural networks to post-process analytical reconstructions. Another prominent
strategy involves unrolling methods (Adler & Oktem, [2018; [Kobler et all, [2017; Meinhardt et al.,
2017; | Yang et al.l |2016), which integrate neural network modules into iterative optimization algo-
rithms based on the variational framework. Alternatively, several works (Aharon et al., [2006; (Chen
et al.} 2014; |Kunisch & Pockl [2013}; |Xu et al., 2012) attempted to learn regularizers. This is also
extended to parameterizing them with neural networks (Goujon et al., 2023 Kobler et al., 2020;
Li et al.|, 20205 |[Lunz et al., 2018; [Mukherjee et al.| |2020), and embedding them within variational
reconstruction frameworks.
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1.1 LEARNED CONVEX REGULARIZER WITH ICNNSs

In/Amos et al.|(2017), a L-layered ICNN is defined by the following architecture:

71 = hl(VOX =+ b()),
Ziy1 = hip1(Vix + Wiz, +by), i =1,...,L -2, (EQ)
Ro(x) :=hr(Viix+Wpr_1z2r_1 +br_1),

where V;, W, are linear operators, which could represent various neural network components, such
as fully connected layers, convolution layers and average pooling layers. Here 8 = {V;, W, b;}
represents the collection of all trainable parameters of the ICNN. The functions h; are non-linear
activations. For x,y € R", we denote x < y if x; < y; for¢ = 1,...,n. To handle general
activations, we call a function f : R™ — R™ convex if f(ax+ (1 —a)y) < af(x) + (1 —a)f(y)
forevery x,y € R™ and « € [0, 1]. f is called non-decreasing if f(x) < f(y) forx <y.

The convexity of Rg with respect to the input x can be guaranteed by imposing that the weights W
are non-negative and h; are convex, non-decreasing.

A major advantage of a convex setting over a non-convex one is the ability to compute a global op-
timum independent of initialization, allowing one to leverage the well-established theory of convex
optimization with guaranteed convergence to efficiently solve (P). Therefore, we focus on the case
where the regularizer Ry is parameterized by an ICNN and try to address the following problem:

Problem: How to solve ([P) efficiently in the setting of ICNN?

2 CHALLENGES AND MOTIVATIONS

Numerous efforts have been made in the literature to study algorithms for optimizing convex func-
tions, in particular in variational reconstruction. Gradient methods are often applied to general
smooth convex problems (Boyd & Vandenberghe] [2004) and can be extended to subgradient meth-
ods for non-smooth problems (Boyd et al] [2003)). Another essential component for non-smooth
problems is the proximal operator (Parikh & Boyd.,|[2014). In particular, primal-dual methods have
been extensively studied for non-smooth handcrafted regularizers such as TV (Chambolle & Pockl
2011}[2016} [Yan| 2018} [Zhu & Chan [2008). However, due to the nested structure of neural networks,
computing the proximal operator for neural networks is often impractical. Therefore, to perfom
variational reconstruction with neural network-parameterized regularizers, subgradient methods are
commonly applied, where subgradients are computed via backpropagation (MuKkherjee et al} 2020).
Despite the simplicity of this approach, challenges arise due to non-smoothness.

On the other hand, (Askari et al| 2018} [Carreira-Perpinan & Wang| [2014} [Li et al] 2019; [Taylor
letal] 20165 [Wang & Benning| [2023} [Zhang & Brand} [2017)) explored unconventional training meth-

ods of training neural network. They proposed to remove nested structure of the neural network
by introducing auxiliary variables given by the layer-wise activations. Relaxed problems are con-
sidered by introducing penalty to the induced equality constraints. However, the problem remains
non-convex, and the minimizers are altered as a result of these relaxations.

2.1 CONTRIBUTIONS

Primal-dual algorithms have been successfully applied to classical variational problems, providing
fast reconstruction methods. Motivated by their flexibility and practicality, we aim to exploit both the
inherent convex nature and the architecture of the neural network to devise optimization algorithm
for solving the variational problem. Our contributions are as follows:

* We introduce a more general architecture than ICNN. To address the non-smoothness and
nested structure, we propose a novel reformulation of the variational problem. We prove
that this reformulation is both convex and equivalent to the original variational problem.

* We apply this novel convex reformulation to setting where the regularizer is parameterized
by an ICNN, solving the associated variational problem using a primal-dual algorithm.
Additionally, we design a step-size scheme tailored specifically to our formulation.
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* We implement the proposed framework for image restoration tasks such as denoising, in-
painting, and CT reconstruction. Our results demonstrate that the proposed method is su-
perior to subgradient methods, achieving faster and more stable reconstruction.

3 PROPOSED METHOD

3.1 CONSTRAINED CONVEX REFORMULATION

Instead of focusing on the specific ICNN architecture considered before, we present our proposed
reformulation in the setting of a more general nested structure for the functional Rg:

Z; = ¢1(X)7
Zit1 = ¢i+l(X7 wz) fori=1,...,L —2, withw; = (Zl, S ,Zi), (EQ-G)
RQ(X) = ¢L(X7WL71)-

‘We make the following assumption on the activation functions.

Assumption 1. ¢; are convex for7 =1, ..., L, and ¢ are non-decreasing for¢ = 2, ..., L, where
P (wi-1) = di(x, wi—1).
Proposition 1. Under Assumption 1, Rg defined by is convex with respect to X.

Note that the ICNN architecture given by (EQ) is a special case of the above structure, with
dir1(x,w;) = hip1(Vix + W;z; + b;). In particular, W; being non-negative and h;, 1 being
non-decreasing imply that ¢, ; is non-decreasing. Hence, Ry parametrized as in (EQ) is indeed
convex. We also relax the condition on h; to be merely convex, rather than both convex and non-
decreasing, as in|/Amos et al.|(2017)). With the above framework, we could also consider a residual
architecture, where ¢;+1(x,w;) = z; + h;11(V;x + W,;z; + b;). The proofs of Proposition and
all following results are deferred to the Appendix.

The main objective of this paper is to minimize a functional Rg with the above structure efficiently.
The first step of the proposed approach involves removing the nested structure of the problem. Given
Ryg as defined in (EQ-G)), the problem (P) is equivalent to Carreira-Perpinan & Wang| (2014):

min D(AX,y) + v¢r(x,wr_1) subject to wy_; satisfying (EQ-G). (1)

X,Wr—1

However, the above reformulation is in general not convex as ¢; could be non-linear.

Example. To illustrate the non-convexity of (), consider a simple 1D example. Here, we define
Ro(x) = exp(x 4+ max(x,0)) and a data fidelity D(z,y) = 3(z — y)?. Then reformulation (1) can
be written as:

1
min §(x —y)? + exp(x + z) subject to z = max(x, 0).

Here w; = (—1,0),wy = (1, 1) are both feasible but 0.5w; +
0.5wo = (0,0.5) is not. Hence, the feasible set of the above
problem is non-convex, so the above problem is non-convex de-
spite that the objective is convex. This is due to the fact that 0.5w; £ 0.
the graph (red curve) of the max function is not convex. How- -
ever, 0.5w; + 0.5wy belongs to the shaded region given by W
{(z, )|z > max(x,0)}, which is the epigraph of max. In fact,
epigraphs can represent a large family of non-linear constraints :
which are effective in inverse problems. Epigraphical projections ~the non-convexity of (@.
were applied in (Chierchia et al.| [2015)) to solve classes of con-

strained convex optimization problems.

Figure 1: Example illustrating

This motivates modifying the constraints in (EQ-GJ) as:

Z; Z (251 (X)7

1Q-G
Zi+12¢i+1(xawi)aizl)"'aL_Q' (Q )
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Proposition 2. Given x, we define the sets E(x) := {wp_1|wr_1 satisfies (EQ — G)},I(z) =
{wr_1|wr—1 satisfies (IQ) — G|)}. Under Assumption 1, Rg defined by (EQ-G) satisfies
Ro(x) = ming, ,epx)PL(X,wr—1) = ming,,  erx)or(X,wr_1). 2)

We make the following assumption on the data fidelity and the regularization parameter.

Assumption 2. D(Ax,y) is convex in x and v > 0.
Theorem 3. Under Assumptions 1 and 2, the following problem is convex

min D(AX,y) + v¢r(x,wr_1) subject to w1 satisfies ([0-G). 3)

T, wr—1
Furthermore, we denote Sy as set of minimizers of (P) with Rg defined by (EQ-G), and S as set of
minimizers of. Then x € S if and only if there exists &y, such that (X,wr_1) € Sa.
Corollary 4. Consider the problem (P) with Rg given by an ICNN. Under Assumption 2, the fol-
lowing problem is convex

min  D(Ax,y)+~vh(Vo_1x+ W 12,1 +bp_1)

XyZq,--yZL—1

subject to z; > h1(Vox + byg), (P1)
ziv1 > hipi(Vix+ Wiz, +b;), i =1,..., L —2.
Furthermore, X is a minimizer of (P) if and only if there exists Zy,...,%Z5_1 such that

(X,24,...,21-1) is a minimizer of (PI).
3.2 PRIMAL-DUAL FRAMEWORK

The final step of the proposed framework for solving is to replace the inequality constraints by
indicator functions and reformulate (PI)) as an equivalent unconstrained problem:

min  D(Ax,y)+~vh(Voo1x+Wr_1z1,1+br_)

X,Zy,...,ZL -1
L1 (4)
+c,(Vox +bo,z1) + > bc,(Vioax+ Wiz, 1 + b _1,2:),
i=2
here C; := {(p, q)|hi(p) < ¢}, and the indicator function is given by d¢, (x) whichis 0if (p, q) € C;
and oo otherwise. We then apply a primal-dual algorithm to solve ().

To utilize the PDHG algorithm (Chambolle & Pock! (2011); [Esser et al.|(2010); [Zhu & Chan| (2008},
we recast (@) in the following form:

L
muin{z fi(Kiu) +g(u)}- )

i=0
We introduce the variable u = (x,zy,...,%z—1) and consider:
(Vo 00 - 0
Kl( o I o0 -- 0>
[ Vi, 0 0 W,.; 0 0 0\ .
Ki_( 0 0 - 0 I o 0>’Z—27 L—1 ©)
K,=(Vi_ 0 000 0 W, )

B = < biO*l >,i—1,...,L.

The data fidelity term D(Ax,y) can either be included as fo(Kou) or as g(u), where Ko =
(A 0 -~ 0)

We then consider the following updates of PDHG: We then consider the following updates of PDHG:
uftl = prox;r(uk — TK*vF)
Tt = bt g (uk+1 _ uk) 7

vhtl — proxi’i vk + S, K; @), i=0,...,L,

3

4
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here the proximal operators are defined as proxy (x) = argminy {1|/x’ — x||3_, + h(x)}, where
[x||3-: = (x,S7'x), and the step-size matrices T, S; are symmetric and positive definite. The

algorithm is known to converge Pock & Chambolle|(2011) if ||S*/ 2KTY/? || < 1and@ =1, where
S = diag(Si,...,S,). We choose diagonal matrices T, S, as our step-size matrices. Applying
the Moreau identity, which relates the proximal operator of a function h to that of its conjugate h*
defined by h*(y) = sup(x,y) — h(x), updates for v;s can be computed via prox ;,, which are the
projections onto C; or prox,, . With common choices of activations such as ReLU, leaky ReLU,
these operators can be computed exactly. More details can be found in the Appendix.

The proposed primal-dual framework introduces auxiliary variables z;. However, these auxiliary
variables correspond directly to the layer-wise activations already present in the network. Hence,
the method does not incur additional memory costs compared to standard backpropagation (Li et al.,
2019). Moreover, the updates for the auxiliary variables and the dual variables can be computed
independently, which offers the potential for efficient parallel computation.

4 EXPERIMENTS

We evaluate the performance of the proposed method and compare with subgradient methods on
three imaging tasks, (i) salt and pepper denoising, (ii) image inpainting, and (iii) sparse-view CT re-
construction. For all tasks, we utilize a learned regularizer parametrized by an ICNN, which consists
of a convolution layer and a global average operator layer, followed by two fully connected layers.
The regularizer can be represented by Rg(x) = Waho(W1Pz + by) with z = hy(Vox + byg).
Here V| corresponds to a convolution operator with 32 5 x 5 filters, and P denotes an average
pooling operater with 16 x 16 pool size. The fully connected layers W1, W5 consists of 256 and
1 output neurons respectively. The activations h1, ho are chosen to be leaky ReLLU and ReLU re-
spectively, with the leaky ReLLU’s negative slope set to 0.2. The regularizer is then trained following
the adversarial framework [Lunz et al.| (2018), taking (possibly un-paired) ground truth signals as
positive samples and unregularized reconstructions, which are task-dependent, as negative samples.
The associated minimization problem is then solved with the proposed method, and compare with
the subgradient method (Boyd et al.} |2003) with (a) constant step-size (SM-C) and (b) diminishing
step-size (SM-D), with step-size at the k-th iteration given by the initial step-size divided by k. More
details on adversarial training and the subgradient methods can be found in the Appendix.

4.1 SALT AND PEPPER DENOISING

In this example, 1000 grayscale images from the FFHQ dataset (Karras et al.,|2019)) downsampled to
size 256 x 256 are used as training data. The salt and pepper corrupted images are used as negative
samples in adversarial training. To deal with salt and pepper noise, we utilize an L!-data fidelity
(Chambolle & Pock, 2011)). The optimization problem is formulated as:

IEizn )\HX — y||1 + Wghz(Wle + bl) + (SC'1 (V()X + by, Z), ()

where Cy = {(p, q)|h1(p) < q}. The steps to solve the variational problem are outlined as follows:

k+1 k41 _ B k ok k k ATk
X"z =prox{) o (X =1 Vivy ), 2" — o (vi, + PTWivy)
S Lani e S WS SN WS S
“k+l cht1ly oktl k —kt+1 k Zktly k —k+1
(vlj ,Vl:g ), vy = (Vi +01Vox + ,Vio + 01Z ™, vh + 0oW,PZF T ©)]
"}k—‘rl 1 {,k-‘rl
k1 k41l okt . 1 ~k+1 o 2
Vi, Ve =Vy ' — oprojg, - +0B81|,ve — prox > oy )

We consider vector-valued step-sizes, T = diag(mIx,721,),S = diag(o11ly,,021y,). The step-
sizes are chosen based on the condition ||S*/ 2KT!/? || < 1 and are given by:
C1 C2 1 1

TV T WP T arf[VolP ' T on + o[ W P[P

with hyperparameters cq, co. Details on the step-size selection scheme can be found in the Appendix.

(10)
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Parameters: For this experiment, we set the gradient penalty for adversarial training as 5 and set
A = 0.02. For the proposed method, we pick ¢y, ¢ from {5e-3,1e-2,5¢-2,1e-1,5e-1,1,5}, {5e-6,1e-
5,5e-5,1e-4,5¢-4,1e-3,5¢-3}. For SM-C, we choose the step-size from {0.1,0.5, 1, 2}. As for SM-D,
we select the initial step-size from {1, 3, 5, 10}.

Ablation study: Figure 2] shows the ablation study of the step-size hyperparameters for the pro-
posed method. We ran 200 iterations of the proposed method for each hyperparameter combination
and evaluated the average objective value to assess convergence. The left plot shows the average
objective values, while the right plot depicts energy versus iterations for different values of ¢y, cs.

00
0 = c1=5e-3, c;=5e-5
75 e
1005 L~ =50, c;=5e-
350 o —&— a=lel, ;=5¢6
s \ — a=lel, ;=563
- c=le-1, ;;=5e-5
300 \ <
275 \ \
250 0 \ \
o001 \ <
225 ‘o)
200 N N
200 — SN
H 100 107

0005 001 005 01 05 1
a

100
Iterations.

Average objective value Objective value

Figure 2: Denoising: Ablation study of proposed method for step-size hyperparameters. The mark-
ers on the left corresponds to those depicted in the energy versus iterations plots on the right.
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Figure 3: Denoising: Comparison to subgradient methods.

Results: The proposed method with the optimal choice of ¢1,cs (¢1, co=1e-1,5e-5) is then com-
pared with the subgradient methods. The first row of Figure [3|shows energy versus iterations plots,
indicating that SM-C fail to converge within 200 iterations, while SM-D do converge, albeit slower
than the proposed method. Moreover, we evaluate the Peak Signal-to-Noise Ratio (PSNR). The
proposed method achieves the highest PSNR values in less than 20 iterations, outperforming both
subgradient methods. Figure [ shows the reconstructed images produced by each method. Recon-
structions are provided at both 15 and 200 iterations, with the proposed method delivering visually
satisfactory results as early as 15 iterations.

4.2 IMAGE INPAINTING

We consider an image inpainting task in this section. We randomly remove 30% of the pixels of the
image. We further add Gaussian noise with standard deviation of 0.03 to the masked image. Given
the noise model, we adopt a L? data term and formulate the optimization problem as:

1
r)rcﬁzn 5||Ax —y3 + YW2ha(W1Pz + b)) + 60, (Vox + by, 2), (11)

where A is a binary diagonal matrix that corresponds to the sampling mask. The regularizer is
trained with the same dataset in the previous experiment with the masked noisy images as negative
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Noisy Proposed, 200 iter

SM-C, 200 iter

SM-D, 200 iter

Figure 4: Denoising: Visual comparison of reconstructions, with PSNR values shown in the top
right corner. The proposed method (c1, co=1e-1, 5e-5) achieves a visually satisfactory reconstruction
within 15 iterations, while that of SM-C remains noisy.

samples. The updates of the primal-dual framework are as in (9), with the L' data term replaced by
the L? data term. The step-sizes are also chosen following (10)).

Parameters: We set the gradient penalty for adversarial training as 5 and set v = 0.1. We choose
1, ¢2 from {le-4,5e-4,1e-3,5e-3,1e-2,5e-2,1e-1}, {1e-6,5¢-6,1e-5,5e-5,1e-4,5e-4,1e-3}. For SM-
C, we select the step-sizes from {0.5,1,1.5,2}. For SM-D, the initial step-sizes are chosen from
{10, 30, 50, 60}.

Table 1: Comparisons to subgradient methods across dataset.
Methods  Iterations (Mean+Std) Speedup

Proposed 85.54+9.31 —
SM-C 151.6£23.50 1.81
SM-D 266.61+18.67 3.17

Results: To evaluate the performance of the proposed method across different test images, we solved
the minimization problem on 20 test images and recorded the number of iterations required to reduce
the relative objective error below 1e-3. Table[I|shows the mean and standard deviation of the number
of iterations needed for all methods. Additionally, the mean speedup of the proposed method com-
pared to the subgradient methods is reported, demonstrating the efficiency of the proposed method,
highlighting its efficiency. Figure [5]show the comparisons of energy and PSNR plots. Notably, the
proposed method converges significantly faster compared to both subgradient approaches. Interest-
ingly, unlike the previous experiment, the diminishing step-size does not improve the convergence
speed. It is important to note that while the proposed method effectively minimizes the objective
function, it does not yield the reconstruction with the best PSNR. This discrepancy may be due to the
fact that the regularizer was trained using an unsupervised adversarial framework. Figure [6] shows
the reconstructions, illustrating that despite the PSNR drop, the proposed method still produces
visually appealing reconstructions in considerably fewer iterations than the subgradient methods.

4.3 CT wWITH POISSON NOISE

In this section, we consider a sparse-view computed tomography (CT) reconstruction task, with
human abdominal CT scans of the Mayo clinic for the low-dose CT grand challenge (McCollough,
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Figure 5: Inpainting: Comparison to subgradient methods (c;, co=5e-3, He-5).

e

Noisy Proposed, 300 iter SM-C, 300 iter SM-D, 300 iter

Figure 6: Inpainting: Visual comparison of reconstructions, with PSNR shown at top right corner.

as training and testing data. The measurements are simulated using a parallel beam geometry
with 200 angles and 400 bins. We model the noise as Poisson with a constant background level
r = 50. The filtered back projections (FBP) are used as negative samples for training. We also
assumed that the reconstruction is bounded below by 0. We consider the Kullback-Leibler (KL)
divergence data fidelity, which is suitable for Poisson-distributed data:

D(Ax,y) = 17 (Ax —y+r) +yTlog (ﬁ) , (12)

where 1 denotes a vector of 1s. We consider the following optimization problem:

IQiZH D(Ax,y) +vYW2ha(W1Pz + by) + 0c, (Vox + bo, 2) + p,00) (X), (13)

where A is the scaled X-ray transform with the prescribed geometry.



Under review as a conference paper at ICLR 2025

Unlike the previous experiment, we dualize the forward operater A with the data fidelity acting as
fo. This leads to the following updates:

XM M = max(x* — 1 ATvo 4+ VivE,0), 28 — (v, + PYWIVE)

TETL gh L oxhtl gk 9kl _ gk
kel oktly k41 k —k+1 k —k+1\ ok —k+1
(vlj V1,—~2_ ),v2+ = (VL1 + o1 VoxiT ,Vig + 01% ™, vE + 0y W PZF

’ 14
Vit = prox;;l (Ve + opAXF ) (14)

k1 k+1 _ okl Vit k+1 ot (V5
Vi, vy =V — oprojg, T+ﬁ1 , Vo' — prox;’ .

Similarly, we pick step-sizes T = diag(m1Ix, 21,), S = diag(ooly,, 011y, , 021y,) given by:

Co C1 Co 1 1
= ,01 = y 02 = s 5571 — , T = .
IAIZ ™ [Voll2 ™~ IWAP[2 ™ oolAJ2 +o1][Vol2 ™~ oy +02HW1P||125
15)

g0

Parameters: We set the gradient penalty for adversarial training as 10 and set v = 400. We pick
¢, 1, ¢2 from {50, 100, 500, 1000, 5000}, {10, 50, 100, 500, 1000}, {0.1,0.5,1,5, 10}. For SM-C,
we select step-sizes from {0.002,0.003,0.004, 0.0005}, and {0.001, 0.005,0.01,0.05} as initial
step-sizes for SM-D.

Results: Figure [7] compares the energy and PSNR plots of the proposed method and subgradient
methods. While the constant step-size subgradient methods show substantial progress in the early
iterations, they are quickly surpassed by the proposed method, which demonstrates a more consis-
tent convergence. In contrast, the diminishing step-size subgradient methods exhibit much slower
convergence overall.
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281 —— |Initial step-size:0.007

PSNR

Iterations Iterations

SM-C SM-D

Figure 7: CT: Comparison to subgradient methods (cg, ¢, c2=500, 100, le-1).

Additionally, Figure [8] shows comparisons of the data fidelity and regularization term plots. All
methods handle the data fidelity term smoothly, though the constant step-size subgradient methods
can sometimes reach a far lower value than the eventual converged value, which may also explain
their initial speed. In contrast, the subgradient methods exhibit different behavior with the non-
smooth regularization term. The constant step-size subgradient methods reduce the regularization
term much more slowly than the proposed method, while the diminishing step-size subgradient
methods show very oscillatory behavior in the initial states, indicating superior stability of the pro-
posed method throughout the optimization process. Figure 0] shows the reconstructions at 50 and
500 iterations, further illustrating the effectiveness of the proposed method in producing high-quality
results consistently.
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Figure 8: CT: Data fidelity and regularization versus iterations plots. Notably, the subgradient
methods with large step sizes exhibit oscillatory behavior, while the proposed method demonstrates
more stable convergence.
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FBP Proposed, 500 iter SM-C, 500 iter SM-D, 500 iter

Figure 9: CT: Visual comparison of reconstructions, with PSNR shown at top right corner.

5 CONCLUSION

We proposed an efficient method for solving the optimization problem in variational reconstruction
with a learned convex regularizer. A key challenge comes from the non-smoothness of the [CNN
regularizer, whose proximal operator lacks a closed-form solution. To overcome this, we decou-
pled the neural network layers by introducing auxiliary variables corresponding to the layer-wise
activations. While this initially resulted in a non-convex problem, we drew inspiration from the con-
vexity of epigraphs and reformulated it as a convex optimization problem. We then proved that this
reformulation is equivalent to the original variational problem and applied a primal-dual algorithm
to solve it. Numerical experiments demonstrated that the proposed method not only outperforms
subgradient methods in terms of convergence speed but also exhibits greater stability throughout the
optimization process, as evidenced by the smoother behavior observed in the energy versus itera-
tions plots, as well as those depicting data fidelity and regularization. Additionally, we note that
the updates of the proposed method are independent, enabling parallel computation. Looking for-
ward, we aim to explore the potential of extending the proposed method to primal-dual variants that
leverage this, such as coordinate-descent primal-dual algorithms (Fercoq & Bianchi} 2019).

10
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A PROOFS

We now present the proofs for all the results in Section 3.1}

Proposition 1. Under Assumption 1, Rg defined by (EQ-G) is convex with respect to x.

Proof. Consider X, %, and A € [0,1]. Then
77 = o1 (A + (1 — N)X) < A1 (X) + (1 — N1 (%) =: Azq + (1 — Nz,
where the inequality is due the convexity of ¢;. Since ¢3 is non-decreasing, we have:
75 = o (AX + (1 — )X, w))
< Ppa(Ax 4+ (1 = N)x, A1 + (1 — V@)
< Azg + (1 — N\)zo,
where the second inequality follows from the convexity of ¢o. Using similar argument, we have:
w) <A@+ (1= N)@;, fori=2,...,L—1,
where w; are defined as (z1, ..., 2;) and w := ¢;(AX + (1 — \)X,w? ). In particular:
Ro(Ax+ (1 = V%) = o (Mx+ (1 - V)X, w} )
<or(Ax+ (1= N)x, A1+ (1 = AN)wr-1)
S A(ZSL(iv (DL—l) + (1 - >\)¢L(>~(50L—1)7

where the first inequality holds since ¢7 is non-decreasing and the second inequality is due to the

convexity of ¢r. Hence, Ry is convex with respect to x. O
Proposition 2. Given x, we define the sets E(x) := {wr_1|wr_1 satisfies (EQ — G)}, I(x) =
{wr_1|lwr_1 satisfies (1) — G|)}. Under Assumption 1, Rg defined by (EQ-G) satisfies
Ro(x)= min ¢r(x,wr_1)= min ¢r(x,wr_1). (2)
wr_1€E(x) wr_1€l(x)

Proof. Note that FE(x) is a singleton, consists of @y which satisfy (EQ-G) given

X. Hence, Rg(x) = min,, ,epx) ¢r(X,wr-1). Since E(x) C I(x), we have
minwL-1€E(x) ¢L(X7 wal) > minwL_1€I(x) (bL(X; wal)-

For wy,—1 = (z1,...,21-1) € I(x), we have z1 > ¢1(x) = 2z1, 2, > ¢i(x,w;) = Z; for
i=2,...,L—1,where &y _1 = (21,...,21_1). Therefore, wy_; < wyr_; forall wy_; € I(x).

Since ¢7F is non-decreasing, we have:

¢r(x,wr—1) < ¢r(x,wr—1).
Therefore, min,,, | cpx) ¢r(X,wr—1) < min,,, ,er(x) ¢r(X,wr—1). Combining with the other
inequality, this shows that min,,, | ep(x) ¢r(X, wr—1) = ming,, | crx) ¢r(X, wr-1). O

Theorem 3. Under Assumptions 1 and 2, the following problem is convex
min D(AX,y) + vér(x,wr—1) subject to wy,_1 satisfies ([Q-GJ). 3)

X,wWr—1

Furthermore, we denote Sy as set of minimizers of (P) with Rg defined by (EQ-G), and S» as set of
minimizers of . Then x € S if and only if there exists &y, such that (X,@p_1) € Sa.

Proof. The constraints (IQ-GJ) are convex since ¢; are convex. In particular, D and ¢, are convex
in z, then problem (3) is convex. Due to proposition 2} we have:

min D(Ax,y) + vRe(x) = min : D(Ax,y) + vo(x,wp—1)

x,wr_1€E(x

=min D(Ax,y)+~v min ¢r(x,wr_1)
x wr_1€E(x)

=min D(Ax,y)+~v min ¢r(x,wr_1)
X wr_1€I(x)

=  min : D(Ax,y) + vyo(x,wr_1).

x,wr_1€l(x

14
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Suppose that X € S;. We note that we have @1 € I(X) for @1 € E(X), which is a singleton.
Then we have:
D(A)*(, y) + f}/d)(fg ‘:JL—l) = m)ZnD(Ax, y) + ')/Rg (X)

= min  D(AX,y) + vo(x,wpr_1).

x,wr,_1€1(x)

This shows that (X, @y, 1) is indeed a minimizer of . Conversely, suppose (X, @,_1) € Sy. Then
we have:
D(A%,y) +vRe(%) = D(AX,y) +7 min )¢L(5(7 wr-1)

wr_1€E(k

= D(A%,y) +7 mier}(A) or(X,wr-1)

- D(A)A(, y) + ’y(b(f(» (':’Lfl)
=min D(AX,y) + 7Ro(x)

Therefore, we have X € Sy if and only if there exists @y, such that (X, & _1) € Ss. O

Corollary 4. Consider the problem (P) with Rg given by an ICNN. Under Assumption 2, the fol-
lowing problem is convex

min  D(AX,y)+vh(Vp_1x+Wr_1Z1, 1+ br_1)

X,Z1p 5 BL—1
subject to zy > h1(Vox + bg), (P1)
zZiy1 2> hip1 (Vix+ Wiz, +b;), i=1,...,L — 2.

Furthermore, X is a minimizer of (P) if and only if there exists Zi,...,25_1 such that
(X,21,...,21-1) is a minimizer of (PI).

Proof. We note that is a special case of with ¢4 1(x,w;) = hiv1(Vix+W,z; +b;).
Therefore, Assumption 1 is satisfied in the ICNN setting. The result directly follows from Theorem
With (217---72L—1) = wr_1. O

B TRAINING DETAILS

We follow the adversarial training framework in (Cunz et al] 2018}, [Mukherjee et all [2020) to train
the regularizer Rg. In this approach, the regularizer is trained to output low values when provided
with true images and higher values for unregularized reconstructions. To ensure that the regular-
izer transitions smoothly with respect to the input, we incorporate a gradient penalty term into the
training objective. This penalty enforces stability of the learned regularizer. The complete training
procedure is detailed in Algorithm[T]}

Here 7mx denotes the true image distribution and 7y denotes the measurement distribution, and Af
denotes the pseudo-inverse of the forward operator.

C ALGORITHM DETAILS

In this section, we write down the subgradient methods we implemented in the numeric sections. We
also provide some additional details on the primal-dual algorithm, specifically the exact formulae
for proximal operators and the step-size selection scheme in (T0) and (T3).

C.1 SUBGRADIENT METHODS
The subgrdradient method with (a) constant-stepsize (SM-C) and (b) diminishing step-size (SM-D)

are given in Algorithm [2Jand B]respectively. For both methods, the subgradients are computed using
automatic differentiation.

15
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Algorithm 1 Training the ACR (Mukherjee et al., 2020).

I: Input:  Gradient penalty Agp, initial value of the network parameters 00 =
{Vo, W1, Wa, by, by}, mini-batch size n;, parameters (7, 81, 82) for the Adam optimizer.

2: form = 1,2, - - - (until convergence): do

3 Sample x; ~ Tx,y; ~ Ty, and €; ~ uniform [0, 1]

4: for1 <j<nydo

5

6

9= ex;+ (1 - ¢;) Aly;.

Compute the training loss for the m™ mini-batch:

Compute x

ny

1 & 1
£(0) := ” > Re (x;) - - > Re (Aly))
j=1 j=1

e (v (), 1)

j=1
7 Update o) = Adam, g, 3, (0“"‘1), VoLl (9(’"‘1))).

8: Zero-clip the negative weights in W1, Wy, to preserve convexity.
9: Output: Parameter 6 of the trained ACR.

Algorithm 2 SM-C (Boyd et al.|[2003).
1: Input: Initialization x°, constant step-size 1, maximum number of iterations N, qz.
2: for k=0,1,..., Ny do
3:  Compute subgradient g € 9y (D(Ax",y) +vRg(x")).
4: Update x*+1 = x¥ — ngk.

Algorithm 3 SM-D (Boyd et al.,[2003)).

1: Input: Initialization 2V, initial step-size °, maximum number of iterations N,, 4.
2: fork=0,1,..., Ny, do

3. Compute subgradient g € 9, (D(Ax",y) + vRo(x")).

4 Update x*+1 = x* — pFgh.

5 Update step-size n**1 = n* /k.

C.2 PROXIMAL OPERATORS

We first consider f1(p, q) = d¢c, (p+ bo, ¢). Applying the translation property of proximal operators
and the Moreau identity, we have:

—1 " -
prox? (7.2)) = (5.0) — o (proxé; ((f T o, j)) - bo) |

1
Here the proximal operator of d¢, is the epigraphical projection of leaky ReL.U, which is given by:

?a if h1(p) <q
projer (p.g) = 4 oo ) il <p
s (1171237 a(ﬁ—:@) ifg<apandp < —ag

(0,0) otherwise
where h; denotes the leaky ReLLU function with negative slope .

Consider fo(w) = YWsyho(w + by). Since f5 is separable, we can first consider the simpler 1D
function fo(w) = amax(w + b,0), its proximal operator can then be easily computed. Applying
Moreau identity once again, we have:
[YWal; if [+ abi]; > [YWa],
pmywhz() if [@+ obi], < [YWa),
W; if 0 < [’lj)—‘rO’bl]i < [’VWQ]Z-

16
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The proximal operator of the L' data fidelity is given by the pointwise soft shrinkage function:

Ti—TA ifz; —y; >TA
prox;”_fyurz(:f)} =R E 4T ifE -y < —TA
' Yi otherwise

For the Kullback—Leibler divergence, we let fo(w) =17 (w —y 4+ 1) +y” log ( ¥ ) The prox-

w—Hr
imal operator of its conjugate can be given by (Chambolle et al.,[2018):

1
|:pI‘OX‘;§ (W):|1 = 5 (Wz + 1 —+ oor; — \/(ﬁﬁ — 1 —+ O'(]I‘i)2 —+ 400}’1')

C.3 STEP-SIZE SELECTION SCHEME

For the denoising and the inpainting experiments, we incorporate the data fidelity as g, and consider

the operator:
Vo 0
K :( o 1 )
0o wW,P

NG 0
< )

Then SY/2KT'/? is given by

0 \/017'21
0 ,/02T2W1P

To study the convergence condition we compute

[SY2KTY?u|? = o171 || Vox||? + o172||2]|? + oome| W1 Pz]|?
< o7 || VolPlfx1* + ov7ezl|® + o7 [ W1 PJ?||z)?
= o171 || Vol *[x]1* + (0172 + 0272 [ W1 P[|?) | 2]|*.
By choosing the step-sizes as in (10), we have 171 [|Vo||%, 0172 + 02m2[W1P||? < 1. In all the
experiments, we computed the respectively norms using power methods.

For the CT experiment, we incorporate the data fidelity as fj, and consider the operator:

A 0
[ ve o
K=1 0 1
0 WP

Then SY/2KT"/? is given by

Voo A 0
K= \/CTlTlVO 0
o 0 1/0’1’7’21
0 \/O'QTQWlP

Similarly, we compute

||Sl/2KT1/2uH2 = 007'1||AXH2 —+ 0'17'1HV0X||2 + 0'17'2HZ|‘2 —+ O'2T2||W1PZ||2
< oon[|[AI2[I]1° + o1 [ Vol P [1x]1* + o172 [2])* + o272 [ WP 2]
= (oo [|AI? + o1 [ Vo D) IXII? + (0172 + 0272 [W1P|[?)]|2]*.

By choosing the step-sizes as in , we have 071 ||A]|2 + 0171 || Vol|?, 0172 + 0om | |[W1 P2 < 1.

17
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D COMPARISON WITH SMOOTHED PROBLEM: IMAGE INPAINTING

In this section, we consider a smoothed version of our problem and compare the subgradient methods
applied to this smoothed problem with the proposed method on the same image inpainting task as in
Section[f.2] We consider the following smoothed approximation to ReLU:

0 if z <0,

- ) .

hi(x) = q &, if0<z<v,
xr — 35, otherwise,

where v denotes a smoothing parameter. Similarly, we consider the smoothed approximation to

leaky ReLU given by hy(x) = kx + (1 — k)hi(x), where x corresponds to the negative slope of
leaky ReLU.

The subgradient methods are applied to solve the following problem:
1 ~
min o[|Ax = y |5 + yRo(w), (16)

where Rg (x) = ngzg(Wl Pz+b;) withz = ha (Vox +bg). The weights 0 are kept the same as
those of the pre-trained model as in Section[£.2}

Parameters: We set the smoothing parameter v as 0.01 and set v = 0.1. For SM-C, we select the
step-sizes from {0.5, 1, 1.5,2}. For SM-D, the initial step-sizes are chosen from {10, 30, 50, 60}.

Results: Figure [T0] compares the energy and PSNR plots with the smoothed version of the prob-
lem. While this smoothed formulation approximates the original problem, the subgradient methods
behave similarly to their performance in the original setup, showing comparable trends in step-
size choices, objective values, and PSNR values. For instance, the diminishing step-size strategy
still fails to improve convergence speed, and both subgradient methods are still significantly slower
compared to the proposed method in reducing the objective value, showing that smoothing does not
improve the convergence speed for subgradient methods. Figure[TT] presents comparisons of recon-
structions with that of the smoothed problem, which are visually similar to those obtained from the
original problem.

—— Step-size:1.0 —— Initial step-size:30.0
—— Step-size:1.5 —— Initial step-size:50.0

—— Proposed —— Proposed
. — Step-size:0.5 o — Initial step-size:10.0
—— Step-size:2.0 | —— Initial step-size:60.0 |

Objective value
[

Objective value
[

10 10 100
Iterations Iterations

s
50 A
—— Proposed
o 2251 — nitial step-size:10.0
§ 200| — Initial step-size:300
—— Initial step-size:50.0
1754 — Initial step-size:60.0 /
- A_/ i
o

—— Proposed
51 — Step-size:0.5
—— Step-size:L.0
—— Step-size:1.5
225{ — Step-size:2.0

/ |

100
Iterations

10 100 10t

10
Iterations
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Figure 10: Inpainting: Comparison to subgradient methods.
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I’

Noisy Proposed, 300 iter SM-C, 300 iter SM-D, 300 iter

Figure 11: Inpainting: Visual comparison of reconstructions, with PSNR shown at top right corner.
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