A PRIMAL-DUAL ALGORITHM FOR VARIATIONAL IM AGE RECONSTRUCTION WITH LEARNED CONVEX REG ULARIZERS

Anonymous authors

006

007

008 009 010

011 012 013

014

015

016

017

018

019

021

024

025 026 027

029

031

Paper under double-blind review

ABSTRACT

We address the optimization problem in a data-driven variational reconstruction framework, where the regularizer is parameterized by an input-convex neural network (ICNN). While gradient-based methods are commonly used to solve such problems, they struggle to effectively handle non-smoothness which often leads to slow convergence. Moreover, the nested structure of the neural network complicates the application of standard non-smooth optimization techniques, such as proximal algorithms. To overcome these challenges, we reformulate the problem and eliminate the network's nested structure. By relating this reformulation to epigraphical projections of the activation functions, we transform the problem into a convex optimization problem that can be efficiently solved using a primaldual algorithm. We also prove that this reformulation is equivalent to the original variational problem. Through experiments on several imaging tasks, we demonstrate that the proposed approach outperforms subgradient methods in terms of both speed and stability.

028 1 INTRODUCTION

Image restoration focuses on reconstructing high-quality images from degraded, low-quality versions that often result from issues during image acquisition and transmission. This includes tasks such as image denoising image deblurring image innainting and computer tomography (CT) re-

such as image denoising, image debluring, image inpainting and computer tomography (CT) reconstruction. The measurement process is typically modeled as $\mathbf{y} = \mathbf{A}\mathbf{x} + \boldsymbol{\epsilon}$, where A simulates the physics in the measurement process and $\boldsymbol{\epsilon}$ denotes the measurement noise. One then seeks to recover the unknown image \mathbf{x} from the noisy measurement \mathbf{y} . To mitigate the ill-possedness of the inverse problem, the classical variational reconstruction framework incorporates prior information about plausible reconstructions through a regularizer:

$$\min D(\mathbf{A}\mathbf{x}, \mathbf{y}) + \gamma R_{\boldsymbol{\theta}}(\mathbf{x}), \tag{P}$$

where D is the data fidelity. The regularizer R_{θ} can be parametrized, with θ denoting its parameters. The trade-off between data fidelity and regularizer is controlled by the positive regularization parameter γ . The reconstruction is obtained by solving the minimization problem (P).

Traditional methods often utilize hand-crafted regularizers, such as total variation (TV) (Rudin et al., 044 1992), total generalized variation (TGV) (Bredies et al., 2010) and sparsity promoting regularizer 045 (Daubechies et al., 2004). In recent years, data-driven approaches for inverse problems have gained 046 increasing interest. For instance, (Chen et al., 2017; Jin et al., 2017; Kang et al., 2017) propose 047 learning end-to-end neural networks to post-process analytical reconstructions. Another prominent 048 strategy involves unrolling methods (Adler & Öktem, 2018; Kobler et al., 2017; Meinhardt et al., 2017; Yang et al., 2016), which integrate neural network modules into iterative optimization algorithms based on the variational framework. Alternatively, several works (Aharon et al., 2006; Chen 051 et al., 2014; Kunisch & Pock, 2013; Xu et al., 2012) attempted to learn regularizers. This is also extended to parameterizing them with neural networks (Goujon et al., 2023; Kobler et al., 2020; 052 Li et al., 2020; Lunz et al., 2018; Mukherjee et al., 2020), and embedding them within variational reconstruction frameworks.

054 1.1 LEARNED CONVEX REGULARIZER WITH ICNNS

In Amos et al. (2017), a *L*-layered ICNN is defined by the following architecture:

060

074

075 076

077

$$\mathbf{z}_{1} = h_{1}(\mathbf{V}_{0}\mathbf{x} + \mathbf{b}_{0}),$$

$$\mathbf{z}_{i+1} = h_{i+1}(\mathbf{V}_{i}\mathbf{x} + \mathbf{W}_{i}\mathbf{z}_{i} + \mathbf{b}_{i}), \ i = 1, \dots, L-2,$$

$$R_{\boldsymbol{\theta}}(\mathbf{x}) := h_{L}(\mathbf{V}_{L-1}\mathbf{x} + \mathbf{W}_{L-1}\mathbf{z}_{L-1} + \mathbf{b}_{L-1}),$$

(EQ)

where \mathbf{V}_i , \mathbf{W}_i are linear operators, which could represent various neural network components, such as fully connected layers, convolution layers and average pooling layers. Here $\boldsymbol{\theta} = {\mathbf{V}_i, \mathbf{W}_i, \mathbf{b}_i}$ represents the collection of all trainable parameters of the ICNN. The functions h_i are non-linear activations. For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, we denote $\mathbf{x} \leq \mathbf{y}$ if $\mathbf{x}_i \leq \mathbf{y}_i$ for i = 1, ..., n. To handle general activations, we call a function $f : \mathbb{R}^n \to \mathbb{R}^m$ convex if $f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \leq \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$ for every $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\alpha \in [0, 1]$. f is called non-decreasing if $f(\mathbf{x}) \leq f(\mathbf{y})$ for $\mathbf{x} \leq \mathbf{y}$.

The convexity of R_{θ} with respect to the input x can be guaranteed by imposing that the weights \mathbf{W}_i are non-negative and h_i are convex, non-decreasing.

070 A major advantage of a convex setting over a non-convex one is the ability to compute a global op- **071** timum independent of initialization, allowing one to leverage the well-established theory of convex **072** optimization with guaranteed convergence to efficiently solve (P). Therefore, we focus on the case **073** where the regularizer R_{θ} is parameterized by an ICNN and try to address the following problem:

Problem: How to solve (P) efficiently in the setting of ICNN?

2 CHALLENGES AND MOTIVATIONS

Numerous efforts have been made in the literature to study algorithms for optimizing convex func-079 tions, in particular in variational reconstruction. Gradient methods are often applied to general smooth convex problems (Boyd & Vandenberghe, 2004) and can be extended to subgradient meth-081 ods for non-smooth problems (Boyd et al., 2003). Another essential component for non-smooth problems is the proximal operator (Parikh & Boyd, 2014). In particular, primal-dual methods have 083 been extensively studied for non-smooth handcrafted regularizers such as TV (Chambolle & Pock, 084 2011; 2016; Yan, 2018; Zhu & Chan, 2008). However, due to the nested structure of neural networks, 085 computing the proximal operator for neural networks is often impractical. Therefore, to perform variational reconstruction with neural network-parameterized regularizers, subgradient methods are 087 commonly applied, where subgradients are computed via backpropagation (Mukherjee et al., 2020). 088 Despite the simplicity of this approach, challenges arise due to non-smoothness.

On the other hand, (Askari et al., 2018; Carreira-Perpinan & Wang, 2014; Li et al., 2019; Taylor et al., 2016; Wang & Benning, 2023; Zhang & Brand, 2017) explored unconventional training methods of training neural network. They proposed to remove nested structure of the neural network by introducing auxiliary variables given by the layer-wise activations. Relaxed problems are considered by introducing penalty to the induced equality constraints. However, the problem remains non-convex, and the minimizers are altered as a result of these relaxations.

096 2.1 CONTRIBUTIONS

Primal-dual algorithms have been successfully applied to classical variational problems, providing
 fast reconstruction methods. Motivated by their flexibility and practicality, we aim to exploit both the
 inherent convex nature and the architecture of the neural network to devise optimization algorithm
 for solving the variational problem. Our contributions are as follows:

102 103

105

- We introduce a more general architecture than ICNN. To address the non-smoothness and nested structure, we propose a novel reformulation of the variational problem. We prove that this reformulation is both convex and equivalent to the original variational problem.
- We apply this novel convex reformulation to setting where the regularizer is parameterized by an ICNN, solving the associated variational problem using a primal-dual algorithm. Additionally, we design a step-size scheme tailored specifically to our formulation.

108 • We implement the proposed framework for image restoration tasks such as denoising, in-109 painting, and CT reconstruction. Our results demonstrate that the proposed method is su-110 perior to subgradient methods, achieving faster and more stable reconstruction. 111 112 **PROPOSED METHOD** 3 113 114 3.1 CONSTRAINED CONVEX REFORMULATION 115 116 Instead of focusing on the specific ICNN architecture considered before, we present our proposed 117 reformulation in the setting of a more general nested structure for the functional R_{θ} : 118 $\mathbf{z}_1 = \phi_1(\mathbf{x}),$ 119 120 $\mathbf{z}_{i+1} = \phi_{i+1}(\mathbf{x}, \boldsymbol{\omega}_i)$ for $i = 1, \dots, L-2$, with $\boldsymbol{\omega}_i = (\mathbf{z}_1, \dots, \mathbf{z}_i)$, (EQ-G) 121 $R_{\boldsymbol{\theta}}(\mathbf{x}) = \phi_L(\mathbf{x}, \boldsymbol{\omega}_{L-1}).$ 122 123 We make the following assumption on the activation functions. 124 Assumption 1. ϕ_i are convex for $i = 1, \dots, L$, and ϕ_i^x are non-decreasing for $i = 2, \dots, L$, where 125 $\phi_i^{\mathbf{x}}(\boldsymbol{\omega}_{i-1}) = \phi_i(\mathbf{x}, \boldsymbol{\omega}_{i-1}).$ 126 127 **Proposition 1.** Under Assumption 1, R_{θ} defined by (EQ-G) is convex with respect to x. 128 Note that the ICNN architecture given by (EQ) is a special case of the above structure, with 129 $\phi_{i+1}(\mathbf{x}, \boldsymbol{\omega}_i) = h_{i+1}(\mathbf{V}_i \mathbf{x} + \mathbf{W}_i \mathbf{z}_i + \mathbf{b}_i)$. In particular, \mathbf{W}_i being non-negative and h_{i+1} being 130 non-decreasing imply that $\phi_{i+1}^{\mathbf{x}}$ is non-decreasing. Hence, R_{θ} parametrized as in (EQ) is indeed 131 convex. We also relax the condition on h_1 to be merely convex, rather than both convex and non-132 decreasing, as in Amos et al. (2017). With the above framework, we could also consider a residual 133 architecture, where $\phi_{i+1}(\mathbf{x}, \boldsymbol{\omega}_i) = \mathbf{z}_i + h_{i+1}(\mathbf{V}_i\mathbf{x} + \mathbf{W}_i\mathbf{z}_i + \mathbf{b}_i)$. The proofs of Proposition 1 and 134 all following results are deferred to the Appendix. 135 The main objective of this paper is to minimize a functional R_{θ} with the above structure efficiently. 136 The first step of the proposed approach involves removing the nested structure of the problem. Given 137 R_{θ} as defined in (EQ-G), the problem (P) is equivalent to Carreira-Perpinan & Wang (2014): 138 $\min_{\mathbf{x},\boldsymbol{\omega}_{L-1}} D(\mathbf{A}\mathbf{x},\mathbf{y}) + \gamma \phi_L(\mathbf{x},\boldsymbol{\omega}_{L-1}) \text{ subject to } \boldsymbol{\omega}_{L-1} \text{ satisfying (EQ-G).}$ 139 140 141 However, the above reformulation is in general not convex as ϕ_i could be non-linear. 142 **Example.** To illustrate the non-convexity of (1), consider a simple 1D example. Here, we define

143 $R_{\theta}(x) = \exp(x + \max(x, 0))$ and a data fidelity $D(x, y) = \frac{1}{2}(x - y)^2$. Then reformulation (1) can 144 145 be written as:

$$\min_{x,z} \frac{1}{2} (x-y)^2 + \exp(x+z) \text{ subject to } z = \max(x,0).$$

148 Here $w_1 = (-1, 0), w_2 = (1, 1)$ are both feasible but $0.5w_1 + 0.5w_1$ 149 $0.5\mathbf{w}_2 = (0, 0.5)$ is not. Hence, the feasible set of the above 150 problem is non-convex, so the above problem is non-convex de-151 spite that the objective is convex. This is due to the fact that 152 the graph (red curve) of the max function is not convex. How-153 ever, $0.5\mathbf{w}_1 + 0.5\mathbf{w}_2$ belongs to the shaded region given by 154 $\{(x,z)|z \ge \max(x,0)\}$, which is the epigraph of max. In fact, 155 epigraphs can represent a large family of non-linear constraints which are effective in inverse problems. Epigraphical projections 156 were applied in (Chierchia et al., 2015) to solve classes of con-157 strained convex optimization problems. 158

(1)

Figure 1: Example illustrating the non-convexity of (1).

159 This motivates modifying the constraints in (EQ-G) as:

160 $\mathbf{z}_1 > \phi_1(\mathbf{v})$ 161

146 147

$$\mathbf{z}_1 \ge \phi_1(\mathbf{x}),$$

$$\mathbf{z}_{i+1} \ge \phi_{i+1}(\mathbf{x}, \boldsymbol{\omega}_i), \ i = 1, \dots, L-2.$$
 (IQ-G)

162 163 164 Proposition 2. Given x, we define the sets $E(\mathbf{x}) := \{\omega_{L-1} | \omega_{L-1} \text{ satisfies } (EQ - G)\}, I(x) := \{\omega_{L-1} | \omega_{L-1} \text{ satisfies } (IQ - G)\}.$ Under Assumption 1, R_{θ} defined by (EQ-G) satisfies

$$R_{\boldsymbol{\theta}}(\mathbf{x}) = \min_{\boldsymbol{\omega}_{L-1} \in E(\mathbf{x})} \phi_L(\mathbf{x}, \boldsymbol{\omega}_{L-1}) = \min_{\boldsymbol{\omega}_{L-1} \in I(\mathbf{x})} \phi_L(\mathbf{x}, \boldsymbol{\omega}_{L-1}).$$
(2)

We make the following assumption on the data fidelity and the regularization parameter.

Assumption 2. $D(\mathbf{Ax}, \mathbf{y})$ is convex in \mathbf{x} and $\gamma > 0$.

165

170 171

182

196 197

198 199

Theorem 3. Under Assumptions 1 and 2, the following problem is convex

$$\min_{x,\omega_{L-1}} D(\mathbf{A}\mathbf{x},\mathbf{y}) + \gamma \phi_L(\mathbf{x},\omega_{L-1}) \text{ subject to } \omega_{L-1} \text{ satisfies (IQ-G)}.$$
(3)

Furthermore, we denote S_1 as set of minimizers of (P) with R_{θ} defined by (EQ-G), and S_2 as set of minimizers of (3). Then $\hat{\mathbf{x}} \in S_1$ if and only if there exists $\hat{\boldsymbol{\omega}}_{L-1}$ such that $(\hat{\mathbf{x}}, \hat{\boldsymbol{\omega}}_{L-1}) \in S_2$.

Corollary 4. Consider the problem (P) with R_{θ} given by an ICNN. Under Assumption 2, the following problem is convex

$$\min_{\mathbf{x}, \mathbf{z}_{1}, \dots, \mathbf{z}_{L-1}} D(\mathbf{A}\mathbf{x}, \mathbf{y}) + \gamma h_{L}(\mathbf{V}_{L-1}\mathbf{x} + \mathbf{W}_{L-1}\mathbf{z}_{L-1} + \mathbf{b}_{L-1})$$
subject to $\mathbf{z}_{1} \ge h_{1}(\mathbf{V}_{0}\mathbf{x} + \mathbf{b}_{0}),$

$$\mathbf{z}_{i+1} \ge h_{i+1}(\mathbf{V}_{i}\mathbf{x} + \mathbf{W}_{i}\mathbf{z}_{i} + \mathbf{b}_{i}), \quad i = 1, \dots, L-2.$$
(P1)

Furthermore, $\hat{\mathbf{x}}$ is a minimizer of (P) if and only if there exists $\hat{\mathbf{z}}_1, \dots, \hat{\mathbf{z}}_{L-1}$ such that $(\hat{\mathbf{x}}, \hat{\mathbf{z}}_1, \dots, \hat{\mathbf{z}}_{L-1})$ is a minimizer of (P1).

183 3.2 PRIMAL-DUAL FRAMEWORK

The final step of the proposed framework for solving (P1) is to replace the inequality constraints by indicator functions and reformulate (P1) as an equivalent unconstrained problem:

$$\min_{\mathbf{x}, \mathbf{z}_1, \dots, \mathbf{z}_{L-1}} D(\mathbf{A}\mathbf{x}, \mathbf{y}) + \gamma h_L(\mathbf{V}_{L-1}\mathbf{x} + \mathbf{W}_{L-1}\mathbf{z}_{L-1} + \mathbf{b}_{L-1}) + \delta_{C_1}(\mathbf{V}_0\mathbf{x} + \mathbf{b}_0, \mathbf{z}_1) + \sum_{i=2}^{L-1} \delta_{C_i}(\mathbf{V}_{i-1}\mathbf{x} + \mathbf{W}_{i-1}\mathbf{z}_{i-1} + \mathbf{b}_{i-1}, \mathbf{z}_i),$$
(4)

 $\sum_{i=2}^{i=2}$

here $C_i := \{(p,q) | h_i(p) \le q\}$, and the indicator function is given by $\delta_{C_i}(\mathbf{x})$ which is 0 if $(p,q) \in C_i$ and ∞ otherwise. We then apply a primal-dual algorithm to solve (4).

To utilize the PDHG algorithm Chambolle & Pock (2011); Esser et al. (2010); Zhu & Chan (2008),
we recast (4) in the following form:

$$\min_{\mathbf{u}} \left\{ \sum_{i=0}^{L} f_i(\mathbf{K}_i \mathbf{u}) + g(\mathbf{u}) \right\}.$$
 (5)

(7)

We introduce the variable $\mathbf{u} = (\mathbf{x}, \mathbf{z}_1, \dots, \mathbf{z}_{L-1})$ and consider:

$$\mathbf{K}_{1} = \begin{pmatrix}
\mathbf{V}_{0} & \mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} \\
\mathbf{0} & \mathbf{I} & \mathbf{0} & \cdots & \mathbf{0}
\end{pmatrix}$$

$$\mathbf{K}_{i} = \begin{pmatrix}
\mathbf{V}_{i-1} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{W}_{i-1} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} & \mathbf{I} & \mathbf{0} & \cdots & \mathbf{0}
\end{pmatrix}, i = 2, \dots, L - 1$$

$$\mathbf{K}_{L} = (\mathbf{V}_{L-1} & \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} & \mathbf{W}_{L-1})$$

$$\beta_{i} = \begin{pmatrix}
\mathbf{b}_{i-1} \\
\mathbf{0}
\end{pmatrix}, i = 1, \dots, L.$$
(6)

The data fidelity term $D(\mathbf{Ax}, \mathbf{y})$ can either be included as $f_0(\mathbf{K}_0\mathbf{u})$ or as $g(\mathbf{u})$, where $\mathbf{K}_0 = (\mathbf{A} \ \mathbf{0} \ \cdots \ \mathbf{0})$.

We then consider the following updates of PDHG: We then consider the following updates of PDHG:

213
$$\mathbf{u}^{k+1} = \operatorname{prox}_{a}^{\mathbf{T}}(\mathbf{u}^{k} - \mathbf{T}\mathbf{K}^{*}\mathbf{v}^{k})$$

214

$$\overline{\mathbf{u}}^{k+1} = \mathbf{u}^{k+1} + \theta \left(\mathbf{u}^{k+1} - \mathbf{u}^k \right)$$
215

$$\mathbf{v}_i^{k+1} = \operatorname{prox}_{f_i^*}^{\mathbf{S}_i}(\mathbf{v}_i^k + \mathbf{S}_i \mathbf{K}_i \overline{\mathbf{u}}^{k+1}), \ i = 0, \dots, L,$$

216 here the proximal operators are defined as $\operatorname{prox}_{h}^{\mathbf{S}}(\mathbf{x}) = \operatorname{arg\,min}_{\mathbf{x}'} \left\{ \frac{1}{2} \|\mathbf{x}' - \mathbf{x}\|_{\mathbf{S}^{-1}}^{2} + h(\mathbf{x}) \right\}$, where 217 $\|\mathbf{x}\|_{\mathbf{S}^{-1}}^2 = \langle \mathbf{x}, \mathbf{S}^{-1}\mathbf{x} \rangle$, and the step-size matrices \mathbf{T}, \mathbf{S}_i are symmetric and positive definite. The 218 algorithm is known to converge Pock & Chambolle (2011) if $\|\mathbf{S}^{1/2}\mathbf{KT}^{1/2}\| < 1$ and $\theta = 1$, where 219 $\mathbf{S} = \operatorname{diag}(\mathbf{S}_1, \ldots, \mathbf{S}_n)$. We choose diagonal matrices \mathbf{T}, \mathbf{S}_i as our step-size matrices. Applying 220 the Moreau identity, which relates the proximal operator of a function h to that of its conjugate h^* 221 defined by $h^*(\mathbf{y}) = \sup_{\mathbf{x}} \langle \mathbf{x}, \mathbf{y} \rangle - h(\mathbf{x})$, updates for \mathbf{v}_i s can be computed via $\operatorname{prox}_{f_i}$, which are the projections onto C_i or $\operatorname{prox}_{h_L}$. With common choices of activations such as ReLU, leaky ReLU, 222 223 these operators can be computed exactly. More details can be found in the Appendix. 224

The proposed primal-dual framework introduces auxiliary variables z_i . However, these auxiliary variables correspond directly to the layer-wise activations already present in the network. Hence, the method does not incur additional memory costs compared to standard backpropagation (Li et al., 2019). Moreover, the updates for the auxiliary variables and the dual variables can be computed independently, which offers the potential for efficient parallel computation.

4 EXPERIMENTS

232 We evaluate the performance of the proposed method and compare with subgradient methods on 233 three imaging tasks, (i) salt and pepper denoising, (ii) image inpainting, and (iii) sparse-view CT re-234 construction. For all tasks, we utilize a learned regularizer parametrized by an ICNN, which consists 235 of a convolution layer and a global average operator layer, followed by two fully connected layers. 236 The regularizer can be represented by $R_{\theta}(\mathbf{x}) = \mathbf{W}_2 h_2 (\mathbf{W}_1 \mathbf{P} \mathbf{z} + \mathbf{b}_1)$ with $\mathbf{z} = h_1 (\mathbf{V}_0 x + \mathbf{b}_0)$. 237 Here V_0 corresponds to a convolution operator with 32 5 \times 5 filters, and P denotes an average 238 pooling operater with 16×16 pool size. The fully connected layers $\mathbf{W}_1, \mathbf{W}_2$ consists of 256 and 239 1 output neurons respectively. The activations h_1, h_2 are chosen to be leaky ReLU and ReLU respectively, with the leaky ReLU's negative slope set to 0.2. The regularizer is then trained following 240 the adversarial framework Lunz et al. (2018), taking (possibly un-paired) ground truth signals as 241 positive samples and unregularized reconstructions, which are task-dependent, as negative samples. 242 The associated minimization problem is then solved with the proposed method, and compare with 243 the subgradient method (Boyd et al., 2003) with (a) constant step-size (SM-C) and (b) diminishing 244 step-size (SM-D), with step-size at the k-th iteration given by the initial step-size divided by k. More 245 details on adversarial training and the subgradient methods can be found in the Appendix.

246 247 248

230

231

4.1 SALT AND PEPPER DENOISING

In this example, 1000 grayscale images from the FFHQ dataset (Karras et al., 2019) downsampled to size 256×256 are used as training data. The salt and pepper corrupted images are used as negative samples in adversarial training. To deal with salt and pepper noise, we utilize an L^1 -data fidelity (Chambolle & Pock, 2011). The optimization problem is formulated as:

$$\min_{\mathbf{x},\mathbf{z}} \lambda \|\mathbf{x} - \mathbf{y}\|_1 + \mathbf{W}_2 h_2 (\mathbf{W}_1 \mathbf{P} \mathbf{z} + \mathbf{b}_1) + \delta_{C_1} (\mathbf{V}_0 \mathbf{x} + \mathbf{b}_0, \mathbf{z}),$$
(8)

where $C_1 = \{(p,q) | h_1(p) \le q\}$. The steps to solve the variational problem are outlined as follows:

253 254 255

258 259 260

261 262

264

265

266 267

268 269

$$\begin{aligned} \mathbf{x}^{k+1}, \mathbf{z}^{k+1} &= \operatorname{prox}_{\lambda \parallel \cdot -\mathbf{y} \parallel 1}^{\tau_{1}} (\mathbf{x}^{k} - \tau_{1} \mathbf{V}_{0}^{*} \mathbf{v}_{1,1}^{k}), \mathbf{z}^{k} - \tau_{2} (\mathbf{v}_{1,2}^{k} + \mathbf{P}^{*} \mathbf{W}_{1}^{*} \mathbf{v}_{2}^{k}) \\ &\overline{\mathbf{x}}^{k+1}, \overline{\mathbf{z}}^{k+1} = 2\mathbf{x}^{k+1} - \mathbf{x}^{k}, 2\mathbf{z}^{k+1} - \mathbf{z}^{k} \\ (\tilde{\mathbf{v}}_{1,1}^{k+1}, \tilde{\mathbf{v}}_{1,2}^{k+1}), \tilde{\mathbf{v}}_{2}^{k+1} &= (\mathbf{v}_{1,1}^{k} + \sigma_{1} \mathbf{V}_{0} \overline{\mathbf{x}}^{k+1}, \mathbf{v}_{1,2}^{k} + \sigma_{1} \overline{\mathbf{z}}^{k+1}), \mathbf{v}_{2}^{k} + \sigma_{2} \mathbf{W}_{1} \mathbf{P} \overline{\mathbf{z}}^{k+1} \\ &\mathbf{v}_{1}^{k+1}, \mathbf{v}_{2}^{k+1} &= \tilde{\mathbf{v}}_{1}^{k+1} - \sigma \operatorname{proj}_{C_{1}} \left(\frac{\tilde{\mathbf{v}}_{1}^{k+1}}{\sigma} + \beta_{1} \right), \tilde{\mathbf{v}}_{2}^{k+1} - \operatorname{prox}_{f_{2}}^{\sigma_{2}^{-1}} \left(\frac{\tilde{\mathbf{v}}_{2}^{k+1}}{\sigma_{2}} \right). \end{aligned}$$
(9)

We consider vector-valued step-sizes, $\mathbf{T} = \text{diag}(\tau_1 \mathbf{I}_{\mathbf{x}}, \tau_2 \mathbf{I}_{\mathbf{z}}), \mathbf{S} = \text{diag}(\sigma_1 \mathbf{I}_{\mathbf{v}_1}, \sigma_2 \mathbf{I}_{\mathbf{v}_2})$. The stepsizes are chosen based on the condition $\|\mathbf{S}^{1/2}\mathbf{K}\mathbf{T}^{1/2}\| < 1$ and are given by:

$$\sigma_1 = \frac{c_1}{\|\mathbf{V}_0\|^2}, \sigma_2 = \frac{c_2}{\|\mathbf{W}_1\mathbf{P}\|^2}, \tau_1 = \frac{1}{\sigma_1\|\mathbf{V}_0\|^2}, \tau_2 = \frac{1}{\sigma_1 + \sigma_2\|\mathbf{W}_1\mathbf{P}\|^2},$$
(10)

with hyperparameters c_1, c_2 . Details on the step-size selection scheme can be found in the Appendix.

Parameters: For this experiment, we set the gradient penalty for adversarial training as 5 and set $\lambda = 0.02$. For the proposed method, we pick c_1, c_2 from {5*e*-3,1*e*-2,5*e*-2,1*e*-1,5*e*-1,1,5}, {5*e*-6,1*e*-5,5*e*-5,1*e*-4,5*e*-4,1*e*-3,5*e*-3}. For SM-C, we choose the step-size from {0.1, 0.5, 1, 2}. As for SM-D, we select the initial step-size from {1, 3, 5, 10}.

Ablation study: Figure 2 shows the ablation study of the step-size hyperparameters for the proposed method. We ran 200 iterations of the proposed method for each hyperparameter combination and evaluated the average objective value to assess convergence. The left plot shows the average objective values, while the right plot depicts energy versus iterations for different values of c_1, c_2 .

Figure 2: Denoising: Ablation study of proposed method for step-size hyperparameters. The markers on the left corresponds to those depicted in the energy versus iterations plots on the right.

Figure 3: Denoising: Comparison to subgradient methods.

Results: The proposed method with the optimal choice of c_1, c_2 ($c_1, c_2=1e-1, 5e-5$) is then com-pared with the subgradient methods. The first row of Figure 3 shows energy versus iterations plots, indicating that SM-C fail to converge within 200 iterations, while SM-D do converge, albeit slower than the proposed method. Moreover, we evaluate the Peak Signal-to-Noise Ratio (PSNR). The proposed method achieves the highest PSNR values in less than 20 iterations, outperforming both subgradient methods. Figure 4 shows the reconstructed images produced by each method. Recon-structions are provided at both 15 and 200 iterations, with the proposed method delivering visually satisfactory results as early as 15 iterations.

4.2 IMAGE INPAINTING

We consider an image inpainting task in this section. We randomly remove 30% of the pixels of the image. We further add Gaussian noise with standard deviation of 0.03 to the masked image. Given the noise model, we adopt a L^2 data term and formulate the optimization problem as:

$$\min_{\mathbf{x},\mathbf{z}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{2}^{2} + \gamma \mathbf{W}_{2} h_{2}(\mathbf{W}_{1}\mathbf{P}\mathbf{z} + \mathbf{b}_{1}) + \delta_{C_{1}}(\mathbf{V}_{0}\mathbf{x} + \mathbf{b}_{0}, \mathbf{z}),$$
(11)

visually appealing reconstructions in considerably fewer iterations than the subgradient methods.

374 375

376

4.3 CT WITH POISSON NOISE

In this section, we consider a sparse-view computed tomography (CT) reconstruction task, with human abdominal CT scans of the Mayo clinic for the low-dose CT grand challenge (McCollough,

Figure 6: Inpainting: Visual comparison of reconstructions, with PSNR shown at top right corner.

2016) as training and testing data. The measurements are simulated using a parallel beam geometry with 200 angles and 400 bins. We model the noise as Poisson with a constant background level r = 50. The filtered back projections (FBP) are used as negative samples for training. We also assumed that the reconstruction is bounded below by 0. We consider the Kullback–Leibler (KL) divergence data fidelity, which is suitable for Poisson-distributed data:

$$D(\mathbf{A}\mathbf{x}, \mathbf{y}) = \mathbf{1}^{T} \left(\mathbf{A}\mathbf{x} - \mathbf{y} + \mathbf{r} \right) + \mathbf{y}^{T} \log \left(\frac{\mathbf{y}}{\mathbf{A}\mathbf{x} + \mathbf{r}} \right),$$
(12)

where **1** denotes a vector of 1s. We consider the following optimization problem:

$$\min_{\mathbf{x},\mathbf{z}} D(\mathbf{A}\mathbf{x},\mathbf{y}) + \gamma \mathbf{W}_2 h_2(\mathbf{W}_1 \mathbf{P}\mathbf{z} + \mathbf{b}_1) + \delta_{C_1}(\mathbf{V}_0 \mathbf{x} + \mathbf{b}_0, \mathbf{z}) + \delta_{[0,\infty)}(\mathbf{x}),$$
(13)

where A is the scaled X-ray transform with the prescribed geometry.

Unlike the previous experiment, we dualize the forward operator A with the data fidelity acting as f_0 . This leads to the following updates:

$$\mathbf{x}^{k+1}, \mathbf{z}^{k+1} = \max(\mathbf{x}^k - \tau_1 \mathbf{A}^* \mathbf{v}_0 + \mathbf{V}_0^* \mathbf{v}_{1,1}^k, \mathbf{0}), \mathbf{z}^k - \tau_2(\mathbf{v}_{1,2}^k + \mathbf{P}^* \mathbf{W}_1^* \mathbf{v}_2^k)$$

$$\overline{\mathbf{x}}^{k+1}, \overline{\mathbf{z}}^{k+1} = 2\mathbf{x}^{k+1} - \mathbf{x}^k, 2\mathbf{z}^{k+1} - \mathbf{z}^k$$

$$(\tilde{\mathbf{v}}_{1,1}^{k+1}, \tilde{\mathbf{v}}_{1,2}^{k+1}), \tilde{\mathbf{v}}_{2}^{k+1} = (\mathbf{v}_{1,1}^{k} + \sigma_1 \mathbf{V}_0 \overline{\mathbf{x}}^{k+1}, \mathbf{v}_{1,2}^{k} + \sigma_1 \overline{\mathbf{z}}^{k+1}), \mathbf{v}_{2}^{k} + \sigma_2 \mathbf{W}_1 \mathbf{P} \overline{\mathbf{z}}^{k+1}$$
$$\mathbf{v}_{0}^{k+1} = \operatorname{prox}_{f_0^*}^{\sigma_0} (\mathbf{v}_{0}^{k} + \sigma_0 \mathbf{A} \overline{\mathbf{x}}^{k+1})$$
(14)

$$\mathbf{v}_{1}^{k+1}, \mathbf{v}_{2}^{k+1} = \tilde{\mathbf{v}}_{1}^{k+1} - \sigma \operatorname{proj}_{C_{1}} \left(\frac{\tilde{\mathbf{v}}_{1}^{k+1}}{\sigma} + \beta_{1} \right), \tilde{\mathbf{v}}_{2}^{k+1} - \operatorname{prox}_{f_{2}}^{\sigma_{2}^{-1}} \left(\frac{\tilde{\mathbf{v}}_{2}^{k+1}}{\sigma_{2}} \right).$$

Similarly, we pick step-sizes $\mathbf{T} = \text{diag}(\tau_1 \mathbf{I}_{\mathbf{x}}, \tau_2 \mathbf{I}_{\mathbf{z}}), S = \text{diag}(\sigma_0 \mathbf{I}_{\mathbf{v}_0}, \sigma_1 \mathbf{I}_{\mathbf{v}_1}, \sigma_2 \mathbf{I}_{\mathbf{v}_2})$ given by:

$$\sigma_{0} = \frac{c_{0}}{\|\mathbf{A}\|^{2}}, \sigma_{1} = \frac{c_{1}}{\|\mathbf{V}_{0}\|^{2}}, \sigma_{2} = \frac{c_{2}}{\|\mathbf{W}_{1}\mathbf{P}\|^{2}}, \tau_{1} = \frac{1}{\sigma_{0}\|\mathbf{A}\|^{2} + \sigma_{1}\|\mathbf{V}_{0}\|^{2}}, \tau_{2} = \frac{1}{\sigma_{1} + \sigma_{2}\|\mathbf{W}_{1}\mathbf{P}\|^{2}}.$$
(15)

Parameters: We set the gradient penalty for adversarial training as 10 and set $\gamma = 400$. We pick c_0, c_1, c_2 from {50, 100, 500, 1000, 5000}, {10, 50, 100, 500, 1000}, {0.1, 0.5, 1, 5, 10}. For SM-C, we select step-sizes from $\{0.002, 0.003, 0.004, 0.0005\}$, and $\{0.001, 0.005, 0.01, 0.05\}$ as initial step-sizes for SM-D.

Results: Figure 7 compares the energy and PSNR plots of the proposed method and subgradient methods. While the constant step-size subgradient methods show substantial progress in the early iterations, they are quickly surpassed by the proposed method, which demonstrates a more consistent convergence. In contrast, the diminishing step-size subgradient methods exhibit much slower convergence overall.

Figure 7: CT: Comparison to subgradient methods $(c_0, c_1, c_2=500, 100, 1e-1)$.

Additionally, Figure 8 shows comparisons of the data fidelity and regularization term plots. All methods handle the data fidelity term smoothly, though the constant step-size subgradient methods can sometimes reach a far lower value than the eventual converged value, which may also explain their initial speed. In contrast, the subgradient methods exhibit different behavior with the non-smooth regularization term. The constant step-size subgradient methods reduce the regularization term much more slowly than the proposed method, while the diminishing step-size subgradient methods show very oscillatory behavior in the initial states, indicating superior stability of the proposed method throughout the optimization process. Figure 9 shows the reconstructions at 50 and 500 iterations, further illustrating the effectiveness of the proposed method in producing high-quality results consistently.

Figure 8: CT: Data fidelity and regularization versus iterations plots. Notably, the subgradient methods with large step sizes exhibit oscillatory behavior, while the proposed method demonstrates more stable convergence.

Figure 9: CT: Visual comparison of reconstructions, with PSNR shown at top right corner.

5 CONCLUSION

We proposed an efficient method for solving the optimization problem in variational reconstruction with a learned convex regularizer. A key challenge comes from the non-smoothness of the ICNN regularizer, whose proximal operator lacks a closed-form solution. To overcome this, we decou-pled the neural network layers by introducing auxiliary variables corresponding to the layer-wise activations. While this initially resulted in a non-convex problem, we drew inspiration from the con-vexity of epigraphs and reformulated it as a convex optimization problem. We then proved that this reformulation is equivalent to the original variational problem and applied a primal-dual algorithm to solve it. Numerical experiments demonstrated that the proposed method not only outperforms subgradient methods in terms of convergence speed but also exhibits greater stability throughout the optimization process, as evidenced by the smoother behavior observed in the energy versus itera-tions plots, as well as those depicting data fidelity and regularization. Additionally, we note that the updates of the proposed method are independent, enabling parallel computation. Looking for-ward, we aim to explore the potential of extending the proposed method to primal-dual variants that leverage this, such as coordinate-descent primal-dual algorithms (Fercoq & Bianchi, 2019).

540 REFERENCES

547

554

565

566 567

568

569

570

574

575

576

577

- Jonas Adler and Ozan Öktem. Learned primal-dual reconstruction. *IEEE transactions on medical imaging*, 37(6):1322–1332, 2018.
- Michal Aharon, Michael Elad, and Alfred Bruckstein. K-svd: An algorithm for designing overcomplete dictionaries for sparse representation. *IEEE Transactions on signal processing*, 54(11): 4311–4322, 2006.
- Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In *International Confer- ence on Machine Learning*, pp. 146–155. PMLR, 2017.
- Armin Askari, Geoffrey Negiar, Rajiv Sambharya, and Laurent El Ghaoui. Lifted neural networks.
 arXiv preprint arXiv:1805.01532, 2018.
- 553 Stephen Boyd and Lieven Vandenberghe. *Convex optimization*. Cambridge university press, 2004.
- Stephen Boyd, Lin Xiao, and Almir Mutapcic. Subgradient methods. *lecture notes of EE392o, Stanford University, Autumn Quarter*, 2004(01), 2003.
- Kristian Bredies, Karl Kunisch, and Thomas Pock. Total generalized variation. SIAM Journal on Imaging Sciences, 3(3):492–526, 2010.
- Miguel Carreira-Perpinan and Weiran Wang. Distributed optimization of deeply nested systems. In
 Artificial Intelligence and Statistics, pp. 10–19. PMLR, 2014.
- Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex problems with applications to imaging. *Journal of mathematical imaging and vision*, 40:120–145, 2011.
 - Antonin Chambolle and Thomas Pock. On the ergodic convergence rates of a first-order primal-dual algorithm. *Mathematical Programming*, 159(1):253–287, 2016.
 - Antonin Chambolle, Matthias J Ehrhardt, Peter Richtárik, and Carola-Bibiane Schonlieb. Stochastic primal-dual hybrid gradient algorithm with arbitrary sampling and imaging applications. SIAM Journal on Optimization, 28(4):2783–2808, 2018.
- Hu Chen, Yi Zhang, Mannudeep K Kalra, Feng Lin, Yang Chen, Peixi Liao, Jiliu Zhou, and
 Ge Wang. Low-dose ct with a residual encoder-decoder convolutional neural network. *IEEE transactions on medical imaging*, 36(12):2524–2535, 2017.
 - Yunjin Chen, Rene Ranftl, and Thomas Pock. Insights into analysis operator learning: From patchbased sparse models to higher order mrfs. *IEEE Transactions on Image Processing*, 23(3):1060– 1072, 2014.
- Giovanni Chierchia, Nelly Pustelnik, J-C Pesquet, and Béatrice Pesquet-Popescu. Epigraphical
 projection and proximal tools for solving constrained convex optimization problems. *Signal, Image and Video Processing*, 9:1737–1749, 2015.
- Ingrid Daubechies, Michel Defrise, and Christine De Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. *Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences*, 57(11):1413– 1457, 2004.
- Ernie Esser, Xiaoqun Zhang, and Tony F Chan. A general framework for a class of first order primal dual algorithms for convex optimization in imaging science. *SIAM Journal on Imaging Sciences*, 3(4):1015–1046, 2010.
- Olivier Fercoq and Pascal Bianchi. A coordinate-descent primal-dual algorithm with large step size and possibly nonseparable functions. *SIAM Journal on Optimization*, 29(1):100–134, 2019.
- Alexis Goujon, Sebastian Neumayer, Pakshal Bohra, Stanislas Ducotterd, and Michael Unser. A neural-network-based convex regularizer for inverse problems. *IEEE Transactions on Computational Imaging*, 2023.

594 Kyong Hwan Jin, Michael T McCann, Emmanuel Froustey, and Michael Unser. Deep convolutional 595 neural network for inverse problems in imaging. *IEEE transactions on image processing*, 26(9): 596 4509-4522, 2017. 597 Eunhee Kang, Junhong Min, and Jong Chul Ye. A deep convolutional neural network using direc-598 tional wavelets for low-dose x-ray ct reconstruction. *Medical physics*, 44(10):e360–e375, 2017. 600 Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative 601 adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern 602 recognition, pp. 4401-4410, 2019. 603 Erich Kobler, Teresa Klatzer, Kerstin Hammernik, and Thomas Pock. Variational networks: con-604 necting variational methods and deep learning. In Pattern Recognition: 39th German Conference, 605 GCPR 2017, Basel, Switzerland, September 12–15, 2017, Proceedings 39, pp. 281–293. Springer, 606 2017. 607 608 Erich Kobler, Alexander Effland, Karl Kunisch, and Thomas Pock. Total deep variation for linear 609 inverse problems. In Proceedings of the IEEE/CVF Conference on computer vision and pattern 610 recognition, pp. 7549-7558, 2020. 611 Karl Kunisch and Thomas Pock. A bilevel optimization approach for parameter learning in varia-612 tional models. SIAM Journal on Imaging Sciences, 6(2):938-983, 2013. 613 614 Housen Li, Johannes Schwab, Stephan Antholzer, and Markus Haltmeier. Nett: Solving inverse 615 problems with deep neural networks. *Inverse Problems*, 36(6):065005, 2020. 616 Jia Li, Cong Fang, and Zhouchen Lin. Lifted proximal operator machines. In Proceedings of the 617 AAAI Conference on Artificial Intelligence, volume 33, pp. 4181–4188, 2019. 618 619 Sebastian Lunz, Ozan Oktem, and Carola-Bibiane Schönlieb. Adversarial regularizers in inverse 620 problems. Advances in neural information processing systems, 31, 2018. 621 Cynthia McCollough. Tu-fg-207a-04: overview of the low dose ct grand challenge. Medical physics, 622 43(6Part35):3759-3760, 2016. 623 624 Tim Meinhardt, Michael Moller, Caner Hazirbas, and Daniel Cremers. Learning proximal operators: 625 Using denoising networks for regularizing inverse imaging problems. In *Proceedings of the IEEE* 626 International Conference on Computer Vision, pp. 1781–1790, 2017. 627 Subhadip Mukherjee, Sören Dittmer, Zakhar Shumaylov, Sebastian Lunz, Ozan Öktem, and 628 Carola-Bibiane Schönlieb. Learned convex regularizers for inverse problems. arXiv preprint 629 arXiv:2008.02839, 2020. 630 631 Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and trends® in Optimization, 1 632 (3):127-239, 2014.633 Thomas Pock and Antonin Chambolle. Diagonal preconditioning for first order primal-dual al-634 gorithms in convex optimization. In 2011 International Conference on Computer Vision, pp. 635 1762-1769. IEEE, 2011. 636 637 Leonid I Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise removal 638 algorithms. *Physica D: nonlinear phenomena*, 60(1-4):259–268, 1992. 639 Gavin Taylor, Ryan Burmeister, Zheng Xu, Bharat Singh, Ankit Patel, and Tom Goldstein. Training 640 neural networks without gradients: A scalable admm approach. In International conference on 641 machine learning, pp. 2722–2731. PMLR, 2016. 642 643 Xiaoyu Wang and Martin Benning. Lifted bregman training of neural networks. Journal of Machine 644 Learning Research, 24(232):1-51, 2023. 645 Qiong Xu, Hengyong Yu, Xuanqin Mou, Lei Zhang, Jiang Hsieh, and Ge Wang. Low-dose x-ray ct 646 reconstruction via dictionary learning. IEEE transactions on medical imaging, 31(9):1682–1697, 647 2012.

- Ming Yan. A new primal-dual algorithm for minimizing the sum of three functions with a linear operator. *Journal of Scientific Computing*, 76:1698–1717, 2018.
- Yan Yang, Jian Sun, Huibin Li, and Zongben Xu. Deep admm-net for compressive sensing mri. In
 Proceedings of the 30th international conference on neural information processing systems, pp. 10–18, 2016.
- Ziming Zhang and Matthew Brand. Convergent block coordinate descent for training tikhonov regularized deep neural networks. *Advances in Neural Information Processing Systems*, 30, 2017.
- Mingqiang Zhu and Tony Chan. An efficient primal-dual hybrid gradient algorithm for total variation
 image restoration. Ucla Cam Report, 34(2), 2008.

050	i
658	
659	
660	
661	
662	
663	
664	
665	
666	
667	
668	
669	
670	
671	
672	
673	
674	
675	
676	
677	
678	
679	
680	
681	
682	
683	
684	
685	
686	
687	
688	
689	
690	
691	
692	
693	
694	
695	
696	
697	
698	
699	
700	

Proofs А

We now present the proofs for all the results in Section 3.1.

Proposition 1. Under Assumption 1, R_{θ} defined by (EQ-G) is convex with respect to x.

Proof. Consider $\bar{\mathbf{x}}, \tilde{\mathbf{x}}, \text{ and } \lambda \in [0, 1]$. Then

$$\mathbf{z}_1^{\lambda} := \phi_1(\lambda \bar{\mathbf{x}} + (1-\lambda)\tilde{\mathbf{x}}) \le \lambda \phi_1(\bar{\mathbf{x}}) + (1-\lambda)\phi_1(\tilde{\mathbf{x}}) =: \lambda \bar{\mathbf{z}}_1 + (1-\lambda)\tilde{\mathbf{z}}_1,$$

where the inequality is due the convexity of ϕ_1 . Since $\phi_2^{\mathbf{x}}$ is non-decreasing, we have:

$$\begin{aligned} \mathbf{z}_{2}^{\lambda} &:= \phi_{2}(\lambda \bar{\mathbf{x}} + (1 - \lambda) \tilde{\mathbf{x}}, \boldsymbol{\omega}_{1}^{\lambda}) \\ &\leq \phi_{2}(\lambda \bar{\mathbf{x}} + (1 - \lambda) \tilde{\mathbf{x}}, \lambda \bar{\boldsymbol{\omega}}_{1} + (1 - \lambda) \tilde{\boldsymbol{\omega}}_{1}) \\ &\leq \lambda \bar{\mathbf{z}}_{2} + (1 - \lambda) \tilde{\mathbf{z}}_{2}, \end{aligned}$$

where the second inequality follows from the convexity of ϕ_2 . Using similar argument, we have:

$$\boldsymbol{\omega}_i^{\lambda} \leq \lambda \bar{\boldsymbol{\omega}}_i + (1-\lambda) \tilde{\boldsymbol{\omega}}_i, \text{ for } i = 2, \dots, L-1$$

where $\boldsymbol{\omega}_i$ are defined as $(\mathbf{z}_1, \dots, \mathbf{z}_i)$ and $\boldsymbol{\omega}_i^{\lambda} := \phi_i(\lambda \bar{\mathbf{x}} + (1-\lambda)\tilde{\mathbf{x}}, \boldsymbol{\omega}_{i-1}^{\lambda})$. In particular:

$$R_{\theta}(\lambda \bar{\mathbf{x}} + (1-\lambda)\tilde{\mathbf{x}}) = \phi_L(\lambda \bar{\mathbf{x}} + (1-\lambda)\tilde{\mathbf{x}}, \boldsymbol{\omega}_{L-1}^{\lambda})$$

$$\leq \phi_L(\lambda \bar{\mathbf{x}} + (1-\lambda)\tilde{\mathbf{x}}, \lambda \bar{\boldsymbol{\omega}}_{L-1} + (1-\lambda)\tilde{\boldsymbol{\omega}}_{L-1})$$

$$\leq \lambda \phi_L(\bar{\mathbf{x}}, \bar{\boldsymbol{\omega}}_{L-1}) + (1-\lambda)\phi_L(\tilde{\mathbf{x}}, \tilde{\boldsymbol{\omega}}_{L-1}),$$

where the first inequality holds since ϕ_L^x is non-decreasing and the second inequality is due to the convexity of ϕ_L . Hence, R_{θ} is convex with respect to x.

Proposition 2. Given x, we define the sets $E(\mathbf{x}) := \{\omega_{L-1} | \omega_{L-1} \text{ satisfies } (EQ - G)\}, I(x) :=$ $\{\omega_{L-1}|\omega_{L-1} \text{ satisfies } (IQ-G)\}$. Under Assumption 1, R_{θ} defined by (EQ-G) satisfies

$$R_{\boldsymbol{\theta}}(\mathbf{x}) = \min_{\boldsymbol{\omega}_{L-1} \in E(\mathbf{x})} \phi_L(\mathbf{x}, \boldsymbol{\omega}_{L-1}) = \min_{\boldsymbol{\omega}_{L-1} \in I(\mathbf{x})} \phi_L(\mathbf{x}, \boldsymbol{\omega}_{L-1}).$$
(2)

Proof. Note that $E(\mathbf{x})$ is a singleton, consists of $\hat{\boldsymbol{\omega}}_{L-1}$ which satisfy (EQ-G) given Hence, $R_{\theta}(\mathbf{x}) = \min_{\boldsymbol{\omega}_{L-1} \in E(\mathbf{x})} \phi_L(\mathbf{x}, \boldsymbol{\omega}_{L-1}).$ Since $E(\mathbf{x}) \subset I(\mathbf{x})$, we have x. $\min_{\boldsymbol{\omega}_{L-1}\in E(\mathbf{x})}\phi_L(\mathbf{x},\boldsymbol{\omega}_{L-1})\geq \min_{\boldsymbol{\omega}_{L-1}\in I(\mathbf{x})}\phi_L(\mathbf{x},\boldsymbol{\omega}_{L-1}).$

For $\boldsymbol{\omega}_{L-1} = (\mathbf{z}_1, \dots, \mathbf{z}_{L-1}) \in I(\mathbf{x})$, we have $\mathbf{z}_1 \geq \phi_1(\mathbf{x}) = \hat{\mathbf{z}}_1$, $\mathbf{z}_i \geq \phi_i(\mathbf{x}, \boldsymbol{\omega}_i) = \hat{\mathbf{z}}_i$ for $i = 2, \ldots, L-1$, where $\hat{\boldsymbol{\omega}}_{L-1} = (\hat{\mathbf{z}}_1, \ldots, \hat{\mathbf{z}}_{L-1})$. Therefore, $\hat{\boldsymbol{\omega}}_{L-1} \leq \boldsymbol{\omega}_{L-1}$ for all $\boldsymbol{\omega}_{L-1} \in I(\mathbf{x})$. Since $\phi_L^{\mathbf{x}}$ is non-decreasing, we have:

$$\phi_L(\mathbf{x}, \hat{\boldsymbol{\omega}}_{L-1}) \leq \phi_L(\mathbf{x}, \boldsymbol{\omega}_{L-1}).$$

Therefore, $\min_{\omega_{L-1} \in E(\mathbf{x})} \phi_L(\mathbf{x}, \omega_{L-1}) \leq \min_{\omega_{L-1} \in I(\mathbf{x})} \phi_L(\mathbf{x}, \omega_{L-1})$. Combining with the other inequality, this shows that $\min_{\omega_{L-1} \in E(\mathbf{x})} \phi_L(\mathbf{x}, \omega_{L-1}) = \min_{\omega_{L-1} \in I(\mathbf{x})} \phi_L(\mathbf{x}, \omega_{L-1}).$

Theorem 3. Under Assumptions 1 and 2, the following problem is convex

$$\min_{\mathbf{x},\boldsymbol{\omega}_{L-1}} D(\mathbf{A}\mathbf{x},\mathbf{y}) + \gamma \phi_L(\mathbf{x},\boldsymbol{\omega}_{L-1}) \text{ subject to } \boldsymbol{\omega}_{L-1} \text{ satisfies (IQ-G).}$$
(3)

Furthermore, we denote S_1 as set of minimizers of (P) with R_{θ} defined by (EQ-G), and S_2 as set of minimizers of (3). Then $\hat{\mathbf{x}} \in S_1$ if and only if there exists $\hat{\boldsymbol{\omega}}_{L-1}$ such that $(\hat{\mathbf{x}}, \hat{\boldsymbol{\omega}}_{L-1}) \in S_2$.

Proof. The constraints (IQ-G) are convex since ϕ_i are convex. In particular, D and $\gamma \phi_L$ are convex in x, then problem (3) is convex. Due to proposition 2, we have:

750
$$\min_{\mathbf{x}} D(\mathbf{A}\mathbf{x}, \mathbf{y}) + \gamma R_{\boldsymbol{\theta}}(\mathbf{x}) = \min_{\mathbf{x}, \boldsymbol{\omega}_{L-1} \in E(\mathbf{x})} D(\mathbf{A}\mathbf{x}, \mathbf{y}) + \gamma \phi(\mathbf{x}, \boldsymbol{\omega}_{L-1})$$

$$= \min D(\mathbf{A}\mathbf{x}, \mathbf{y}) + \gamma \quad \min_{L \to 0} \phi_L(\mathbf{x}, \boldsymbol{\omega}_{L-1})$$

$$= \min_{\mathbf{x}} D(\mathbf{A}\mathbf{x}, \mathbf{y}) + \gamma \min_{\boldsymbol{\omega}_{L-1} \in I(\mathbf{x})} \phi_L(\mathbf{x}, \boldsymbol{\omega}_{L-1})$$

755
$$= \min_{\mathbf{x}, \boldsymbol{\omega}_{L-1} \in I(\mathbf{x})} D(\mathbf{A}\mathbf{x}, \mathbf{y}) + \gamma \phi(\mathbf{x}, \boldsymbol{\omega}_{L-1}).$$

Suppose that $\hat{\mathbf{x}} \in S_1$. We note that we have $\hat{\boldsymbol{\omega}}_{L-1} \in I(\hat{\mathbf{x}})$ for $\hat{\boldsymbol{\omega}}_{L-1} \in E(\hat{\mathbf{x}})$, which is a singleton. Then we have: $D(\mathbf{A} \Rightarrow -\mathbf{v}) + \alpha A(\mathbf{\hat{x}} \Rightarrow -\mathbf{v}) - \min D(\mathbf{A} \mathbf{x} \cdot \mathbf{x}) + \alpha B_0(\mathbf{x})$

$$D(\mathbf{A}\hat{\mathbf{x}}, \mathbf{y}) + \gamma \phi(\hat{\mathbf{x}}, \hat{\boldsymbol{\omega}}_{L-1}) = \min_{\mathbf{x}} D(\mathbf{A}\mathbf{x}, \mathbf{y}) + \gamma R_{\boldsymbol{\theta}}(\mathbf{x})$$

$$= \min_{\mathbf{x}, \boldsymbol{\omega}_{L-1} \in I(\mathbf{x})} D(\mathbf{A}\mathbf{x}, \mathbf{y}) + \gamma \phi(\mathbf{x}, \boldsymbol{\omega}_{L-1}).$$

This shows that $(\hat{\mathbf{x}}, \hat{\boldsymbol{\omega}}_{L-1})$ is indeed a minimizer of (3). Conversely, suppose $(\hat{\mathbf{x}}, \hat{\boldsymbol{\omega}}_{L-1}) \in S_2$. Then we have:

$$D(\mathbf{A}\hat{\mathbf{x}}, \mathbf{y}) + \gamma R_{\boldsymbol{\theta}}(\hat{\mathbf{x}}) = D(\mathbf{A}\hat{\mathbf{x}}, \mathbf{y}) + \gamma \min_{\boldsymbol{\omega}_{L-1} \in E(\hat{\mathbf{x}})} \phi_L(\hat{\mathbf{x}}, \boldsymbol{\omega}_{L-1})$$

$$= D(\mathbf{A}\hat{\mathbf{x}}, \mathbf{y}) + \gamma \min_{\boldsymbol{\omega}_{L-1} \in I(\hat{\mathbf{x}})} \phi_L(\hat{\mathbf{x}}, \boldsymbol{\omega}_{L-1})$$

$$= D(\mathbf{A}\hat{\mathbf{x}}, \mathbf{y}) + \gamma \phi(\hat{\mathbf{x}}, \hat{\boldsymbol{\omega}}_{L-1})$$

= min $D(\mathbf{A}\mathbf{x}, \mathbf{y}) + \gamma B_{\boldsymbol{\alpha}}(\mathbf{x})$

$$= \min_{\mathbf{x}} D(\mathbf{A}\mathbf{x}, \mathbf{y}) + \gamma R_{\boldsymbol{\theta}}(\mathbf{x})$$

Therefore, we have $\hat{\mathbf{x}} \in S_1$ if and only if there exists $\hat{\boldsymbol{\omega}}_{L-1}$ such that $(\hat{\mathbf{x}}, \hat{\boldsymbol{\omega}}_{L-1}) \in S_2$.

Corollary 4. Consider the problem (P) with R_{θ} given by an ICNN. Under Assumption 2, the fol-lowing problem is convex

$$\min_{\mathbf{x}, \mathbf{z}_{1}, \dots, \mathbf{z}_{L-1}} D(\mathbf{A}\mathbf{x}, \mathbf{y}) + \gamma h_{L}(\mathbf{V}_{L-1}\mathbf{x} + \mathbf{W}_{L-1}\mathbf{z}_{L-1} + \mathbf{b}_{L-1})$$
subject to $\mathbf{z}_{1} \ge h_{1}(\mathbf{V}_{0}\mathbf{x} + \mathbf{b}_{0}),$

$$\mathbf{z}_{i+1} \ge h_{i+1}(\mathbf{V}_{i}\mathbf{x} + \mathbf{W}_{i}\mathbf{z}_{i} + \mathbf{b}_{i}), \quad i = 1, \dots, L-2.$$
(P1)

Furthermore, $\hat{\mathbf{x}}$ is a minimizer of (P) if and only if there exists $\hat{\mathbf{z}}_1, \ldots, \hat{\mathbf{z}}_{L-1}$ such that $(\hat{\mathbf{x}}, \hat{\mathbf{z}}_1, \dots, \hat{\mathbf{z}}_{L-1})$ is a minimizer of (P1).

Proof. We note that (EQ) is a special case of (EQ-G) with $\phi_{i+1}(\mathbf{x}, \omega_i) = h_{i+1}(\mathbf{V}_i \mathbf{x} + \mathbf{W}_i \mathbf{z}_i + \mathbf{b}_i)$. Therefore, Assumption 1 is satisfied in the ICNN setting. The result directly follows from Theorem 3 with $(\hat{\mathbf{z}}_1, \ldots, \hat{\mathbf{z}}_{L-1}) =: \hat{\boldsymbol{\omega}}_{L-1}$. \square

B **TRAINING DETAILS**

We follow the adversarial training framework in (Lunz et al., 2018; Mukherjee et al., 2020) to train the regularizer R_{θ} . In this approach, the regularizer is trained to output low values when provided with true images and higher values for unregularized reconstructions. To ensure that the regularizer transitions smoothly with respect to the input, we incorporate a gradient penalty term into the training objective. This penalty enforces stability of the learned regularizer. The complete training procedure is detailed in Algorithm 1.

Here π_X denotes the true image distribution and π_Y denotes the measurement distribution, and \mathbf{A}^{\dagger} denotes the pseudo-inverse of the forward operator.

ALGORITHM DETAILS С

In this section, we write down the subgradient methods we implemented in the numeric sections. We also provide some additional details on the primal-dual algorithm, specifically the exact formulae for proximal operators and the step-size selection scheme in (10) and (15).

C.1 SUBGRADIENT METHODS

The subgrdradient method with (a) constant-stepsize (SM-C) and (b) diminishing step-size (SM-D) are given in Algorithm 2 and 3 respectively. For both methods, the subgradients are computed using automatic differentiation.

810 Algorithm 1 Training the ACR (Mukherjee et al., 2020). 811 Gradient penalty $\lambda_{\rm gp}$, initial value of the network parameters $\theta^{(0)}$ 1: Input: _ 812 $\{\mathbf{V}_0, \mathbf{W}_1, \mathbf{W}_2, \mathbf{b}_1, \mathbf{b}_2\}$, mini-batch size n_b , parameters (η, β_1, β_2) for the Adam optimizer. 813 2: for $m = 1, 2, \cdots$ (until convergence): do 814 3: Sample $\mathbf{x}_j \sim \pi_X, \mathbf{y}_j \sim \pi_Y$, and $\epsilon_j \sim$ uniform [0, 1] 815 for $1 \leq j \leq n_b$ do 4: 816 Compute $\mathbf{x}_{i}^{(\epsilon)} = \epsilon_{j}\mathbf{x}_{j} + (1 - \epsilon_{j})\mathbf{A}^{\dagger}\mathbf{y}_{j}$. 5: 817 Compute the training loss for the m^{th} mini-batch: 6: 818 819 $\mathcal{L}(\boldsymbol{\theta}) := \frac{1}{n_b} \sum_{i=1}^{n_b} \mathcal{R}_{\boldsymbol{\theta}} \left(\mathbf{x}_j \right) - \frac{1}{n_b} \sum_{i=1}^{n_b} \mathcal{R}_{\boldsymbol{\theta}} \left(\mathbf{A}^{\dagger} \mathbf{y}_j \right)$ 820 821 + $\lambda_{\mathrm{gp}} \cdot \frac{1}{n_b} \sum_{i=1}^{n_b} \left(\left\| \nabla \mathcal{R}_{\boldsymbol{\theta}} \left(\mathbf{x}_j^{(\epsilon)} \right) \right\|_2 - 1 \right)^2.$ 823 824 825 Update $\boldsymbol{\theta}^{(m)} = \operatorname{Adam}_{\eta,\beta_1,\beta_2} \left(\boldsymbol{\theta}^{(m-1)}, \nabla_{\boldsymbol{\theta}} \mathcal{L} \left(\boldsymbol{\theta}^{(m-1)} \right) \right).$ 7: Zero-clip the negative weights in W_1, W_2 to preserve convexity. 8: 827 9: Output: Parameter θ of the trained ACR. 828 829 Algorithm 2 SM-C (Boyd et al., 2003). 830 1: Input: Initialization x^0 , constant step-size η , maximum number of iterations N_{max} . 831 2: for $k = 0, 1, ..., N_{max}$ do 832 Compute subgradient $\mathbf{g}^k \in \partial_{\mathbf{x}}(D(\mathbf{A}\mathbf{x}^k, \mathbf{y}) + \gamma R_{\boldsymbol{\theta}}(\mathbf{x}^k)).$ 3: 833 Update $\mathbf{x}^{k+1} = \mathbf{x}^k - \eta \mathbf{g}^k$. 4: 834 835 836 Algorithm 3 SM-D (Boyd et al., 2003). 837 1: Input: Initialization x^0 , initial step-size η^0 , maximum number of iterations N_{max} . 838 2: for $k = 0, 1, ..., N_{max}$ do 839

3: Compute subgradient $\mathbf{g}^k \in \partial_{\mathbf{x}}(D(\mathbf{A}\mathbf{x}^k, \mathbf{y}) + \gamma R_{\boldsymbol{\theta}}(\mathbf{x}^k)).$

4: Update
$$\mathbf{x}^{\kappa+1} = \mathbf{x}^{\kappa} - \eta^{\kappa} \mathbf{g}^{\kappa}$$
.

5: Update step-size
$$\eta^{\kappa+1} = \eta^{\kappa}/k$$

C.2 PROXIMAL OPERATORS

840 841 842

844

845

846

We first consider $f_1(p,q) = \delta_{C_1}(p+b_0,q)$. Applying the translation property of proximal operators and the Moreau identity, we have:

$$\operatorname{prox}_{f_1^*}^{\sigma_1}((\bar{p},\bar{q})) = (\bar{p},\bar{q}) - \sigma \left(\operatorname{prox}_{\delta_{C_1}}^{\sigma_1^{-1}} \left(\left(\frac{\bar{p}}{\sigma_1} + b_0, \frac{\bar{q}}{\sigma_1} \right) \right) - b_0 \right).$$

Here the proximal operator of δ_{C_1} is the epigraphical projection of leaky ReLU, which is given by:

$$\operatorname{proj}_{C_1}(\bar{p}, \bar{q}) = \begin{cases} (\bar{p}, \bar{q}) & \text{if } h_1(\bar{p}) \leq \bar{q} \\ (\frac{\bar{p} + \bar{q}}{2}, \frac{\bar{p} + \bar{q}}{2}) & \text{if } |\bar{q}| \leq \bar{p} \\ (\frac{\bar{p} + \alpha \bar{q}}{1 + \alpha^2}, \frac{\alpha(\bar{p} + \alpha \bar{q})}{1 + \alpha^2}) & \text{if } \bar{q} \leq \alpha \bar{p} \text{ and } \bar{p} \leq -\alpha \bar{q} \\ (0, 0) & \text{otherwise} \end{cases}$$

where h_1 denotes the leaky ReLU function with negative slope α .

Consider $f_2(\mathbf{w}) = \gamma \mathbf{W}_2 h_2(\mathbf{w} + \mathbf{b}_1)$. Since f_2 is separable, we can first consider the simpler 1D function $\tilde{f}_2(w) = a \max(w + b, 0)$, its proximal operator can then be easily computed. Applying Moreau identity once again, we have:

$$\begin{bmatrix} \operatorname{prox}_{f_{2}^{*}}^{\sigma_{2}}(\bar{w}) \end{bmatrix}_{i} = \begin{cases} [\gamma W_{2}]_{i} & \text{if } [\bar{w} + \sigma b_{1}]_{i} > [\gamma W_{2}]_{i} \\ 0 & \text{if } [\bar{w} + \sigma b_{1}]_{i} < [\gamma W_{2}]_{i} \\ \bar{w}_{i} & \text{if } 0 \le [\bar{w} + \sigma b_{1}]_{i} \le [\gamma W_{2}]_{i} \end{cases}$$

The proximal operator of the L^1 data fidelity is given by the pointwise soft shrinkage function:

$$\left[\operatorname{prox}_{\lambda\parallel\cdot-y\parallel_{2}}^{\tau}(\bar{x})\right]_{i} = \begin{cases} \bar{x}_{i} - \tau\lambda & \text{if } \bar{x}_{i} - y_{i} > \tau\lambda \\ \bar{x}_{i} + \tau\lambda & \text{if } \bar{x}_{i} - y_{i} < -\tau\lambda \\ y_{i} & \text{otherwise} \end{cases}$$

For the Kullback–Leibler divergence, we let $f_0(\mathbf{w}) = \mathbf{1}^T (\mathbf{w} - \mathbf{y} + \mathbf{r}) + \mathbf{y}^T \log \left(\frac{\mathbf{y}}{\mathbf{w} + \mathbf{r}}\right)$. The proximal operator of its conjugate can be given by (Chambolle et al., 2018):

$$\left[\operatorname{prox}_{f_0^*}^{\sigma_0}(\bar{\mathbf{w}})\right]_i = \frac{1}{2} \left(\bar{\mathbf{w}}_i + 1 + \sigma_0 \mathbf{r}_i - \sqrt{(\bar{\mathbf{w}}_i - 1 + \sigma_0 \mathbf{r}_i)^2 + 4\sigma_0 \mathbf{y}_i} \right)$$

C.3 STEP-SIZE SELECTION SCHEME

For the denoising and the inpainting experiments, we incorporate the data fidelity as g, and consider the operator:

$$\mathbf{K} = \left(\begin{array}{cc} \mathbf{V}_0 & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \\ \mathbf{0} & \mathbf{W}_1 \mathbf{P} \end{array} \right).$$

Then $S^{1/2}KT^{1/2}$ is given by

$$\mathbf{K} = \begin{pmatrix} \sqrt{\sigma_1 \tau_1} \mathbf{V}_0 & \mathbf{0} \\ 0 & \sqrt{\sigma_1 \tau_2} \mathbf{I} \\ 0 & \sqrt{\sigma_2 \tau_2} \mathbf{W}_1 \mathbf{P} \end{pmatrix}$$

To study the convergence condition we compute

$$\begin{aligned} \|\mathbf{S}^{1/2}\mathbf{K}\mathbf{T}^{1/2}\mathbf{u}\|^{2} &= \sigma_{1}\tau_{1}\|\mathbf{V}_{0}\mathbf{x}\|^{2} + \sigma_{1}\tau_{2}\|\mathbf{z}\|^{2} + \sigma_{2}\tau_{2}\|\mathbf{W}_{1}\mathbf{P}\mathbf{z}\|^{2} \\ &\leq \sigma_{1}\tau_{1}\|\mathbf{V}_{0}\|^{2}\|\mathbf{x}\|^{2} + \sigma_{1}\tau_{2}\|\mathbf{z}\|^{2} + \sigma_{2}\tau_{2}\|\mathbf{W}_{1}\mathbf{P}\|^{2}\|\mathbf{z}\|^{2} \\ &= \sigma_{1}\tau_{1}\|\mathbf{V}_{0}\|^{2}\|\mathbf{x}\|^{2} + (\sigma_{1}\tau_{2} + \sigma_{2}\tau_{2}\|\mathbf{W}_{1}\mathbf{P}\|^{2})\|\mathbf{z}\|^{2}. \end{aligned}$$

By choosing the step-sizes as in (10), we have $\sigma_1 \tau_1 \|\mathbf{V}_0\|^2$, $\sigma_1 \tau_2 + \sigma_2 \tau_2 \|\mathbf{W}_1 \mathbf{P}\|^2 \le 1$. In all the experiments, we computed the respectively norms using power methods.

For the CT experiment, we incorporate the data fidelity as f_0 , and consider the operator:

$$\mathbf{K}=\left(egin{array}{cc} \mathbf{A} & \mathbf{0} \ \mathbf{V}_0 & \mathbf{0} \ \mathbf{0} & \mathbf{I} \ \mathbf{0} & \mathbf{W}_1 \mathbf{P} \end{array}
ight)$$

Then $S^{1/2}KT^{1/2}$ is given by

$$\mathbf{K} = \begin{pmatrix} \sqrt{\sigma_0 \tau_1} \mathbf{A} & \mathbf{0} \\ \sqrt{\sigma_1 \tau_1} \mathbf{V}_0 & \mathbf{0} \\ \mathbf{0} & \sqrt{\sigma_1 \tau_2} \mathbf{I} \\ \mathbf{0} & \sqrt{\sigma_2 \tau_2} \mathbf{W}_1 \mathbf{P} \end{pmatrix}.$$

Similarly, we compute

$$\begin{split} \|\mathbf{S}^{1/2}\mathbf{K}\mathbf{T}^{1/2}\mathbf{u}\|^{2} &= \sigma_{0}\tau_{1}\|\mathbf{A}\mathbf{x}\|^{2} + \sigma_{1}\tau_{1}\|\mathbf{V}_{0}\mathbf{x}\|^{2} + \sigma_{1}\tau_{2}\|\mathbf{z}\|^{2} + \sigma_{2}\tau_{2}\|\mathbf{W}_{1}\mathbf{P}\mathbf{z}\|^{2} \\ &\leq \sigma_{0}\tau_{1}\|\mathbf{A}\|^{2}\|\mathbf{x}\|^{2} + \sigma_{1}\tau_{1}\|\mathbf{V}_{0}\|^{2}\|\mathbf{x}\|^{2} + \sigma_{1}\tau_{2}\|\mathbf{z}\|^{2} + \sigma_{2}\tau_{2}\|\mathbf{W}_{1}\mathbf{P}\|^{2}\|\mathbf{z}\|^{2} \\ &= (\sigma_{0}\tau_{1}\|\mathbf{A}\|^{2} + \sigma_{1}\tau_{1}\|\mathbf{V}_{0}\|^{2})\|\mathbf{x}\|^{2} + (\sigma_{1}\tau_{2} + \sigma_{2}\tau_{2}\|\mathbf{W}_{1}\mathbf{P}\|^{2})\|\mathbf{z}\|^{2}. \end{split}$$

By choosing the step-sizes as in (15), we have $\sigma_0 \tau_1 \|\mathbf{A}\|^2 + \sigma_1 \tau_1 \|\mathbf{V}_0\|^2$, $\sigma_1 \tau_2 + \sigma_2 \tau_2 \|\mathbf{W}_1 \mathbf{P}\|^2 \le 1$.

D COMPARISON WITH SMOOTHED PROBLEM: IMAGE INPAINTING

In this section, we consider a smoothed version of our problem and compare the subgradient methods applied to this smoothed problem with the proposed method on the same image inpainting task as in Section 4.2. We consider the following smoothed approximation to ReLU:

$$\tilde{h}_{1}(x) = \begin{cases} 0 & \text{if } x \leq 0, \\ \frac{x^{2}}{2\nu}, & \text{if } 0 < x < \nu, \\ x - \frac{\nu}{2}, & \text{otherwise,} \end{cases}$$

where ν denotes a smoothing parameter. Similarly, we consider the smoothed approximation to leaky ReLU given by $\tilde{h}_2(x) = \kappa x + (1 - \kappa) \tilde{h}_1(x)$, where κ corresponds to the negative slope of leaky ReLU.

The subgradient methods are applied to solve the following problem:

$$\min_{\mathbf{x},\mathbf{z}} \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_2^2 + \gamma \tilde{R}_{\theta}(x), \tag{16}$$

where $\hat{R}_{\theta}(\mathbf{x}) = \mathbf{W}_2 h_2(\mathbf{W}_1 \mathbf{P} \mathbf{z} + \mathbf{b}_1)$ with $\mathbf{z} = h_1(\mathbf{V}_0 x + \mathbf{b}_0)$. The weights θ are kept the same as those of the pre-trained model as in Section 4.2.

Parameters: We set the smoothing parameter ν as 0.01 and set $\gamma = 0.1$. For SM-C, we select the step-sizes from $\{0.5, 1, 1.5, 2\}$. For SM-D, the initial step-sizes are chosen from $\{10, 30, 50, 60\}$.

Results: Figure 10 compares the energy and PSNR plots with the smoothed version of the prob-lem. While this smoothed formulation approximates the original problem, the subgradient methods behave similarly to their performance in the original setup, showing comparable trends in step-size choices, objective values, and PSNR values. For instance, the diminishing step-size strategy still fails to improve convergence speed, and both subgradient methods are still significantly slower compared to the proposed method in reducing the objective value, showing that smoothing does not improve the convergence speed for subgradient methods. Figure 11 presents comparisons of recon-structions with that of the smoothed problem, which are visually similar to those obtained from the original problem.

Figure 10: Inpainting: Comparison to subgradient methods.

