
Reinforcement Learning for Locally Checkable Labeling Problems

Anonymous submission

Abstract

We address the challenge of solving locally checkable label-
ing (LCL) problems on graphs using machine learning. Un-
like prior supervised approaches that depend on ground-truth
algorithms or enforce unique solutions, we propose a rein-
forcement learning framework that requires only verifiers to
evaluate correctness. This formulation allows models to learn
solution strategies independently, without bias toward spe-
cific algorithmic procedures, and inherently supports the dis-
covery of non-unique solutions. We evaluate our method on
four fundamental LCL problems, demonstrating its ability to
generalize effectively, outperform supervised baselines, and
provide a versatile foundation for learning algorithmic rea-
soning on graphs.

Introduction
Graph algorithms play a central role in solving problems
across diverse domains, including network optimization, re-
source management, and data organization (Newman 2010).
Many such algorithms are designed to assign discrete labels
to graph elements, such as nodes or edges, based on well-
defined rules. Examples include finding maximal indepen-
dent sets, minimal vertex covers, or edge colorings. A par-
ticularly intriguing subset of these tasks is locally checkable
labeling (LCL) problems, where solutions can be verified
using localized checks on small subgraphs.

The algorithms used to solve these problems typically op-
erate through step-wise procedures involving discrete state
transitions. For instance, Luby’s algorithm (Luby 1985) iter-
atively builds a maximal independent set by selecting nodes
based on local rules and updating their states. Learning to
replicate such algorithmic behavior poses significant chal-
lenges, as it requires bridging the gap between the continu-
ous representations of machine learning models and the dis-
crete nature of algorithmic solutions. Recent work, such as
GraphFSA (Grötschla et al. 2024) or Discrete Neural Al-
gorithmic Reasoning (Rodionov and Prokhorenkova 2024),
have addressed this challenge by incentivizing discrete tran-
sitions during the training of a continuous system. However,
these methods often struggle with more complex problems
or rely on access to ground-truth labels and solutions, which
limits their scalability and applicability.

In this work, we propose a reinforcement learning (RL)
framework for solving LCL problems in a multi-agent set-

YES NO

Figure 1: Finding a maximal independent set is locally
checkable. A verifier can validate both conditions — the so-
lution set has to be independent and maximal — for each
node and its neighborhood. In this visualization, dark nodes
represent nodes that are part of the solution set. Executing
the verifier on the blue highlighted node entails checking all
incident nodes and adjacent edges within the blue area. On
the left, the conditions are met, while this is not the case on
the right.

ting. In our approach, each agent, representing a node or
edge, learns decision-making policies based solely on local
observations. They are trained through problem-specific ver-
ifiers that evaluate solutions on localized neighborhoods for
correctness. This verifier-driven approach removes the need
for ground-truth labels or pre-defined algorithms, allowing
the model to discover solutions independently of specific
solving strategies. Additionally, unlike supervised learning
methods, which often require unique solutions or external
symmetry-breaking mechanisms, our framework naturally
handles problems with multiple valid solutions. This flex-
ibility broadens its applicability to a wider range of graph
problems.

The paper introduces this RL-based framework and pro-
vides a practical implementation tailored to LCL problems.
We evaluate the method on several fundamental graph prob-
lems, including maximal independent set and minimal ver-
tex cover, and demonstrate its ability to generalize effec-
tively across problem instances. Our experimental results
showcase its potential to learn discrete algorithmic behav-



ior in graph-based tasks. These findings suggest that RL,
coupled with local verifiers, offers a promising direction for
addressing algorithmic graph problems with broader impli-
cations for learning and reasoning in discrete domains.

Preliminaries
We present the key concepts required to understand our ap-
proach, with additional preliminaries and related work pro-
vided in the Appendix.

The GraphFSA Framework
In GraphFSA, ach node executes a finite state automaton
operating over a discrete set of states. More formally, the
GraphFSA F consists of a tuple (M,Z,A, T ). F is applied
to a graph G = (V,E) and consists of a set of statesM, an
aggregation A and a transition function T . At time t, each
node v ∈ V is in state sv,t ∈ M. In its most general form,
the aggregationAmaps the multiset of neighboring states to
an aggregated value a ∈ Z of a finite domain.

av,t = A({{su,t | u ∈ N(v)}})

Here {{}} denotes the multiset and N(v) the neighbors of v
in G. At each timestep t, the transition function T : M×
Z →M takes the state of a node sv,t and its corresponding
aggregated value av,t and computes the state for the next
timestep sv,t+1 = T (sv,t, av,t). Note that Z is modeled to
be a finite domain.

Aggregation functions. The transition value a for node v
at time t is directly determined by aggregating the multi-set
of states from all neighboring nodes at time t. The aggrega-
tion A specifies how the aggregated value is computed from
this neighborhood information. Note that this formulation of
the aggregation A allows for a general framework in which
many different design choices can be made for a concrete
class of GraphFSAs.

Starting and final states. The FSA uses starting states
S ⊆ M to encode the discrete set of inputs to the graph
problem. Final states F ⊆ M are used to represent the out-
put of a problem. In node prediction tasks, we choose one
final state per class. Opposed to other states, it is not possi-
ble to transition away from a final state, meaning that once
such a state is reached, it will never change.

Locally Checkable Labeling Problems
A graph problem is locally checkable if the correctness of a
solution can be verified within all local neighborhoods. Lo-
cally checkable labeling (LCL) problems are typically node-
centric and defined for graphs with bounded maximum de-
gree (Balliu et al. 2019; Chang 2020, 2023; Balliu et al.
2020; Brandt et al. 2017). However, we relax this restriction
to accommodate graphs with arbitrary degrees.

Formally, an LCL problem is a tuple (Σin,Σout, r, C),
where Σin and Σout are finite input and output label sets to
make the graph attributed, r is a constant radius, and C is a
set of allowed r-hop neighborhoods. A solution is correct if
every r-hop neighborhood matches a graph in C under iso-
morphism. For edge-centric tasks, labels and neighborhoods

Node
Convolution

Edge
Convolution

Node 
Merger

Edge
Merger

Edge
Encoder

Node
Encoder

Edge
Decoder

Node
Decoder

Convolution
Block

Figure 2: The proposed architecture consists of encoding
MLPs, a convolution block, and decoding MLPs. Inside the
convolution block, the cell values are first merged with ex-
tracted input embedding. Then a single node convolution
layer performs neighborhood exchanges to propagate infor-
mation without violating locality constraints. Before node
and edge embeddings can be decoded to logits, the two end-
points’ processed node state representations are aggregated
across each edge.

are defined around edges rather than nodes. A verifier algo-
rithm checks the local neighborhood and outputs YES if a
neighborhood matches an element of C, and NO otherwise.
To accept a proposed solution, all neighborhoods have to
output YES. Common LCL problems include finding maxi-
mal independent sets, vertex or edge colorings, and maximal
matchings. An example of such a verifier is depicted in Fig-
ure 1.

Problem Formulation
We follow the framework introduced by GraphFSA
(Grötschla et al. 2024). We focus on problems defined on
a graph structure G = (V,E) that can be solved using a
finite set of states Q and qv denotes the state of node v. Fur-
ther, we will concentrate on tasks that belong to the class of
locally checkable labeling problems.

In contrast to the original formulation of GraphFSA, we
relax the condition for the transition function. Namely, the
aggregation function, which determines how T behaves, no
longer has to be explicitly discretized to a finite domain. In-
stead, T directly maps a node’s current state, and its neigh-
bors’ states to the node’s next state. That is, the state gets
updated according to

qv ← T (qv, {{qu | u ∈ N(v)}})
This formulation does not explicitly define the aggrega-

tion function, such as thresholded counting, and therefore
allows for greater generality. In particular, it enables the in-
corporation of additional continuous inputs, such as random
bits, into the computation of T , which can facilitate tie-
breaking. This flexibility is critical for handling input graphs
that admit multiple valid solutions or require symmetry-
breaking to resolve ambiguities, as illustrated in Figure 3.
We maintain the concept of terminal states—states from
which no further transitions are possible. Once all nodes



Figure 3: The solution for problems we consider does not need to be unique. For example, for MIS, the same input graph gives
rise to two different solutions displayed above. Moreover, while for the two graphs on the left, one could choose one solution
over the other based on the graph topology, the two examples on the right are completely symmetrical and, as such, require
additional means of symmetry breaking to assign different output labels to nodes in the same orbit. This problem remains even
when the GNN is fully expressive under 1-WL.

reach terminal states, the algorithm halts, ensuring a well-
defined termination condition.

Model Architecture
We introduce Verifier-based Algorithmic Reasoning us-
ing Reinforcement Learning (VARL) approach that uses a
Graph Neural Network (GNN) to learn the actor policies
that follows an encode-process-decode paradigm. At each
timestep t, we are given the graph G = (V,E), cell values,
all node and edge states. For each node w ∈ V and each edge
{u, v} ∈ E our network outputs action logits to be taken to
transition to timestep t + 1. A schematic representation of
the architecture can be seen in Figure 2.

First, two Multi-Layer Perceptrons (MLP) encode the
one-hot encoding of the node states q⃗w and edge states p⃗u,v
into a d-dimensional embedding h.

hw = MLPθ1(q⃗w) hu,v = MLPψ1(p⃗u,v)

The processing is done with a convolution block that first
combines node and edge embedding together with their re-
spective cell values into h′′.

h′′
w = LINθ2(hw||cw) h′′

u,v = LINψ2(hu,v||cu,v)

Afterwards, it locally propagates the information among
node and edge neighborhoods using a message-passing layer
to derive the updated node and edge embedding h′. Any
node convolution layer fits here. But as a default setting,
we use a slightly modified Graph Isomorphism Network
(GIN) (Xu et al. 2019) layer, including edge features to con-
struct the node update. Furthermore, we use max aggrega-
tion, which was shown to be beneficial in algorithmic set-
tings (Veličković et al. 2020b):

h′
w = MLPθ4

(
(1 + ϵ) · h′′

w + max
w′∈N(w)

MLPθ3
(
h′′
w||h′′

w′ ||h′′
w,w′

))
To update the state of an edge, we incorporate its current

state along with the updated states of the two nodes it con-
nects.

h′
u,v = MLPψ3

(
h′′
u,v||h′

u||h′
v

)
To ensure that the edge remains agnostic to the edge direc-
tion and preserve symmetry in undirected edge problems an
additional aggregation step is performed:

h′
u,v = max

{
MLPψ3

(
h′′
u,v||h′

u||h′
v

)
,MLPψ3

(
h′′
v,u||h′

v||h′
u

)}

Finally, the decoder consists of two MLPs that transform
the d-dimensional embeddings into |Q| node logits, and |P |-
sized edge logits from which the next states can be sampled:

lw = MLPθ5 (h
′
w) lu,v = MLPψ4

(
h′
u,v

)
We use the same architecture for all LCL problems that we
consider in the following.

Experiments
To test our proposed approach across four well-known LCL
problems: Maximal Independent Set (MIS), Minimal Ver-
tex Cover (MVC), Maximal Matching (MM), and Minimal
Edge Cover (MEC). Both MIS and MVC are node tasks,
whereas MM and MEC are edge-centric. For all of them
there exists a local verifier that accepts or rejects a proposed
solution. For a formal definition of the problems, we refer to
the Appendix.

Supervised Baselines
To critically assess our VARL approach, we compare it to su-
pervised learning baselines. RL is better suited for problems
with multiple valid solutions verified by a local checker. Su-
pervised learning, typically requieres a unique label for each
instance but can be adapted to handle non-unique cases. We
utilize a supervised approach inspired by Luby’s algorithm
(Luby 1985), which constructs solutions iteratively by se-
lecting nodes or edges based on local properties. At each
timestep, the algorithm is given access to a set of random
bits. We adapt the selection and invalidation mechanisms for
our tasks to match their specific constraints. We consider two
different selection strategies:
• Guided Strategy: The solution is constructed by selecting

locally maximal elements from the given random bits.
The constructed solution uses the exact same set of ran-
dom bits that is given during training.

• Unguided Strategy: The solution is again constructed by
selecting locally maximal elements from random bits.
However, the specific random bits are hidden from the
model during training. The model still has access to dif-
ferent random bits during training for tie breaking, how-
ever, they are independent of the solution. This setup is
closer to what we desire to achieve with RL and should
encourage independence from specific solving strategies,
allowing the model to learn to solve the problem rather
than imitating a given algorithm.



MIS MVC MAT MEC
GIN 100.0 (±0.1) 100.0 (±0.1) 63.2 (±29.6) 74.1 (±10.9)
GAT 1.7 (±1.1) 3.1 (±3.1) 11.6 (±10.0) 0.5 (±0.4)

guided SAGE 8.0 (±1.4) 8.7 (±2.0) 0.0 (±0.1) 0.1 (±0.1)
PGN 100.0 (±0.0) 100.0 (±0.0) 0.0 (±0.1) 0.0 (±0.1)
gGCN 96.1 (±1.1) 97.4 (±0.8) 38.9 (±35.2) 27.6 (±5.7)
GIN 28.3 (±1.4) 25.4 (±4.3) 0.0 (±0.0) 0.0 (±0.1)
GAT 1.4 (±0.7) 1.1 (±0.1) 0.0 (±0.0) 0.0 (±0.1)

unguided SAGE 0.9 (±0.2) 1.0 (±0.4) 0.0 (±0.0) 0.0 (±0.1)
PGN 25.1 (±4.0) 26.1 (±2.9) 0.0 (±0.1) 0.0 (±0.1)
gGCN 22.9 (±2.6) 20.7 (±4.8) 0.1 (±0.1) 0.1 (±0.1)
large 100.0 (±0.0) 100.0 (±0.0) 99.0 (±0.4) 98.4 (±0.9)
small 100.0 (±0.0) 100.0 (±0.0) 99.4 (±0.3) 99.2 (±0.5)VARL (ours)

MIS MVC MAT MEC
GIN 100.0 (±0.0) 100.0 (±0.0) 95.6 (±5.0) 98.0 (±1.0)
GAT 42.8 (±5.7) 59.9 (±14.6) 83.0 (±10.0) 64.6 (±2.5)

guided SAGE 76.6 (±1.4) 77.3 (±0.1) 66.2 (±1.0) 55.2 (±1.9)
PGN 100.0 (±0.0) 100.0 (±0.0) 62.1 (±1.0) 46.7 (±1.9)
gGCN 99.4 (±0.2) 99.6 (±0.1) 91.2 (±6.5) 90.1 (±2.2)
GIN 86.8 (±0.6) 85.8 (±1.8) 63.3 (±2.2) 46.2 (±1.7)
GAT 41.0 (±2.8) 42.2 (±4.7) 58.1 (±2.7) 46.2 (±3.4)

unguided SAGE 64.2 (±1.0) 63.8 (±1.1) 57.0 (±0.4) 46.1 (±2.4)
PGN 85.2 (±1.2) 86.1 (±1.1) 61.5 (±2.4) 46.6 (±1.3)
gGCN 83.6 (±1.6) 83.2 (±1.9) 66.0 (±1.8) 53.7 (±1.4)
large 100.0 (±0.0) 100.0 (±0.0) 99.9 (±0.0) 99.9 (±0.0)
small 100.0 (±0.0) 100.0 (±0.0) 100.0 (±0.0) 100.0 (±0.0)VARL (ours)

Table 1: Our RL-based approach outperforms alternative su-
pervised baselines. We show graph accuracy on top in per-
centages, and agent accuracy on the bottom. The shown
numbers represent mean and sample standard deviation in
parenthesis. Rows indicate different methods: supervised
baselines have access to labels computed through guided
(guided) or unguided (unguided) selection strategy. The re-
inforcement learning approach is denoted with RL, and we
show results from agents with only access to a few states
(small), five central and one non-central state, or ones with
ten central and five non-central states (large).

The invalidation step ensures solution constraints are sat-
isfied. Using the described strategies, we generate labeled
instances for supervised learning datasets formulating the
problem as a classification task. Note that there are no spe-
cific input features for the nodes as the problems are defined
on the graph topology. However, during the execution, the
models are given access to random bits. We use different
common GNN architectures such as GIN (Xu et al. 2019),
GAT (Veličković et al. 2018), SAGE (Hamilton, Ying, and
Leskovec 2018), PGN (Veličković et al. 2020a) and Gated
GCN (Bresson and Laurent 2018). In order to run them on
graphs of variable sizes we set the number of convolutions
proportional to the graph size. Furthermore, we also incor-
porate a memory cell to feed in the random bits and we make
the architectures recurrent so that the different convolution
layers share the same set of weights.

Results
We evaluate the discussed baseline models on the four LCL
problems and train them on graphs of size 16. In Table 1 we
report the agent level accuracy, which indicates the percent-
age of nodes which the verifier outputs Yes and the graph
level accuracy, the number of correctly solved instances.

We can observe large differences between the baselines.

Using labels computed using the unguided strategy, the ap-
proach designed to learn to solve the problem rather, is more
challenging than the maximum selection, which corresponds
to learning a specific algorithm. This indicates that a super-
vised approach struggles to learn the more general under-
lying concepts that define solutions from the more general
dataset. The used graph convolution layer is also of impor-
tance: GAT and SAGE are poor choices, and so is PGN when
edge states are central to the problem at hand. SAGE does
not consider edge features and uses mean aggregation during
message passing, which we found to perform worse when
trying different designs for the default modified GIN ver-
sion. PGN’s stark difference between node and edge task
is somewhat surprising as edge features are propagated to-
gether with node features during message passing. The main
difference to our modified GIN concerning message con-
struction is that node and edge features are added together.
GIN performs the best across the board. Architectures using
gGCN show partial success on edge tasks but perform worse
than PGN on node-centric problems.

We test two different versions of our proposed method
that is trained using RL. The first variant uses only a few
states — if it is used on a node task, |Q| = 5 and |P | = 1,
and on edge tasks |Q| = 1 and |P | = 5. The second vari-
ant, uses 10 and 5 states instead respectively. Both variants
are able to achieve very good performance across all tasks
with only marginal difference between them, although going
with fewer states seems to be slightly better. However, the
difference with respect to the supervised baselines is much
more significant, especially when considering the number of
correctly solved instances. Our proposed method using RL
clearly outperforms both supervised strategies, even though
it only access to a verifier and has no access to labels.

Conclusions
Learning correct algorithms purely from data driven feed-
back is very challenging, especially when no intermediate
trajectories by a ground truth mechanism are given or the
solution to a given problem instance is not unique. We pro-
pose to address these gaps by teaching machines algorith-
mic thinking through reinforcement learning (RL) for graph
problems. We extend the state-based formulation of Graph-
FSA to fit within a multi-agent RL framework, where agents
on graph nodes observe local states and perform transitions.
This has the advantage of generalizing the state updates and
also incorporating random bits for necessary tie-breaking.
Policies trained via policy-gradient methods are translated
into transition functions, modeling the learned algorithm’s
behavior.

Experiments demonstrate the applicability of our ap-
proach to locally checkable problems (LCLs) like maximal
independent sets and matchings. Unlike supervised meth-
ods that require input-output pairs and struggle to effectively
learn these tasks, our verifier-based RL approach learns the
underlying problem dynamics and can handles non-unique
solutions effectively. We thus validate the feasibility of the
proposed RL approaches for learning solvers for algorith-
mic problems, laying a foundation for further research in
algorithmic learning on graphs.



References
Albrecht, S. V.; Christianos, F.; and Schäfer, L. 2023. Multi-
agent reinforcement learning: Foundations and modern ap-
proaches. Massachusetts Institute of Technology: Cam-
bridge, MA, USA.
Balliu, A.; Brandt, S.; Chang, Y.-J.; Olivetti, D.; Rabie,
M.; and Suomela, J. 2019. The distributed complex-
ity of locally checkable problems on paths is decidable.
arXiv:1811.01672.
Balliu, A.; Brandt, S.; Olivetti, D.; and Suomela, J. 2020.
How much does randomness help with locally checkable
problems? arXiv:1902.06803.
Brandt, S.; Hirvonen, J.; Korhonen, J. H.; Lempiäinen,
T.; Östergård, P. R. J.; Purcell, C.; Rybicki, J.; Suomela,
J.; and Uznański, P. 2017. LCL problems on grids.
arXiv:1702.05456.
Bresson, X.; and Laurent, T. 2018. Residual Gated Graph
ConvNets. arXiv:1711.07553.
Cappart, Q.; Chételat, D.; Khalil, E.; Lodi, A.; Morris, C.;
and Veličković, P. 2022. Combinatorial optimization and
reasoning with graph neural networks. arXiv:2102.09544.
Chang, Y.-J. 2020. The Complexity Landscape of
Distributed Locally Checkable Problems on Trees.
arXiv:2009.09645.
Chang, Y.-J. 2023. The Distributed Complexity of Locally
Checkable Labeling Problems Beyond Paths and Trees.
arXiv:2311.06726.
Christianos, F.; Papoudakis, G.; Rahman, A.; and Albrecht,
S. V. 2021. Scaling Multi-Agent Reinforcement Learning
with Selective Parameter Sharing. CoRR, abs/2102.07475.
Grötschla, F.; Mathys, J.; Raun, C.; and Wattenhofer, R.
2024. GraphFSA: A Finite State Automaton Framework for
Algorithmic Learning on Graphs. arXiv:2408.11042.
Grötschla, F.; Mathys, J.; and Wattenhofer, R. 2022. Learn-
ing Graph Algorithms With Recurrent Graph Neural Net-
works.
Hamilton, W. L.; Ying, R.; and Leskovec, J. 2018.
Inductive Representation Learning on Large Graphs.
arXiv:1706.02216.
Huang, J.; Patwary, M.; and Diamos, G. 2019. Coloring Big
Graphs with AlphaGoZero. arXiv:1902.10162.
Huang, S.; and Ontañón, S. 2020. A Closer Look at In-
valid Action Masking in Policy Gradient Algorithms. CoRR,
abs/2006.14171.
Joshi, C. K.; Cappart, Q.; Rousseau, L.-M.; and Laurent, T.
2022. Learning the travelling salesperson problem requires
rethinking generalization. Constraints, 27(1–2): 70–98.
Kingma, D. P.; and Ba, J. 2017. Adam: A Method for
Stochastic Optimization. arXiv:1412.6980.
Luby, M. 1985. A simple parallel algorithm for the maximal
independent set problem. SIAM J. Comput., 15: 1036–1053.
Mazyavkina, N.; Sviridov, S.; Ivanov, S.; and Burnaev, E.
2020. Reinforcement Learning for Combinatorial Optimiza-
tion: A Survey. arXiv:2003.03600.

Minder, J.; Grötschla, F.; Mathys, J.; and Wattenhofer, R.
2023. SALSA-CLRS: A Sparse and Scalable Benchmark
for Algorithmic Reasoning. arXiv:2309.12253.
Mordvintsev, A.; Randazzo, E.; Niklasson, E.; and Levin,
M. 2020. Growing Neural Cellular Automata. Distill.
Newman, M. E. 2010. Networks: an introduction.
Papoudakis, G.; Christianos, F.; Schäfer, L.; and Al-
brecht, S. V. 2021. Benchmarking Multi-Agent Deep Re-
inforcement Learning Algorithms in Cooperative Tasks.
arXiv:2006.07869.
Rodionov, G.; and Prokhorenkova, L. 2024. Discrete Neural
Algorithmic Reasoning. arXiv:2402.11628.
Selsam, D.; Lamm, M.; Bünz, B.; Liang, P.; de Moura, L.;
and Dill, D. L. 2019. Learning a SAT Solver from Single-Bit
Supervision. arXiv:1802.03685.
Silver, D.; Huang, A.; Maddison, C.; Guez, A.; Sifre, L.;
Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneer-
shelvam, V.; Lanctot, M.; Dieleman, S.; Grewe, D.; Nham,
J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.; Leach, M.;
Kavukcuoglu, K.; Graepel, T.; and Hassabis, D. 2016. Mas-
tering the game of Go with deep neural networks and tree
search. Nature, 529: 484–489.
Tang, H.; Huang, Z.; Gu, J.; Lu, B.-L.; and Su, H.
2020. Towards Scale-Invariant Graph-related Problem Solv-
ing by Iterative Homogeneous Graph Neural Networks.
arXiv:2010.13547.
Terry, J. K.; Grammel, N.; Son, S.; Black, B.; and Agrawal,
A. 2023. Revisiting Parameter Sharing in Multi-Agent Deep
Reinforcement Learning. arXiv:2005.13625.
Tönshoff, J.; Kisin, B.; Lindner, J.; and Grohe, M.
2022. One Model, Any CSP: Graph Neural Networks as
Fast Global Search Heuristics for Constraint Satisfaction.
arXiv:2208.10227.
Veličković, P.; Badia, A. P.; Budden, D.; Pascanu, R.;
Banino, A.; Dashevskiy, M.; Hadsell, R.; and Blundell,
C. 2022. The CLRS Algorithmic Reasoning Benchmark.
arXiv:2205.15659.
Veličković, P.; and Blundell, C. 2021. Neural algorithmic
reasoning. Patterns, 2(7): 100273.
Veličković, P.; Buesing, L.; Overlan, M. C.; Pascanu, R.;
Vinyals, O.; and Blundell, C. 2020a. Pointer Graph Net-
works. arXiv:2006.06380.
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.;
Liò, P.; and Bengio, Y. 2018. Graph Attention Networks.
arXiv:1710.10903.
Veličković, P.; Ying, R.; Padovano, M.; Hadsell, R.; and
Blundell, C. 2020b. Neural Execution of Graph Algorithms.
arXiv:1910.10593.
Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine learning, 8: 229–256.
Wulff, N.; and Hertz, J. A. 1992. Learning Cellular Automa-
ton Dynamics with Neural Networks. In Hanson, S.; Cowan,
J.; and Giles, C., eds., Advances in Neural Information Pro-
cessing Systems, volume 5. Morgan-Kaufmann.



Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019. How
Powerful are Graph Neural Networks? arXiv:1810.00826.

Related Work
Algorithmic Learning
Extrapolation and logical reasoning are considered to be ma-
jor weaknesses of neural network-based methods today. The
field of neural algorithmic learning combines ideas from
classical algorithms, which provide strong generalization
and runtime guarantees, with machine learning. The goal
is to learn the underlying algorithmic principles in a data-
driven approach resulting in learned solvers that manifest
corresponding, desirable properties.

The term neural algorithmic reasoning comes from a work
with the same name by (Veličković and Blundell 2021). The
authors argue that classical algorithm and deep learning ap-
proaches fundamentally differ in their generalization capa-
bilities. Many common algorithms find applications in dif-
ferent domains, while deploying neural-network-based ap-
proaches in situations that diverge from what was seen in
training, oftentimes leads to unpredictable behavior.

We are interested in solving graph problems through state-
based methods. In that vein, finite state automata (FSA) and
cellular automata (CA) form computation models based on
discrete states, which can be used to encode the structure
of certain algorithms in a learnable fashion. The earliest ex-
ample that combines machine learning and CA comes from
(Wulff and Hertz 1992). The authors learn the state transi-
tions of simple one and two-dimensional automata with neu-
ral networks. More recently, (Mordvintsev et al. 2020) have
utilized convolution to learn CA transition rules that gener-
ate images from a single seed pixel.

More concretely aimed at solving graph problems is the
work that provided the initial inspiration for this thesis by
(Grötschla et al. 2024). They build on top of concepts from
CA, to develop GraphFSA: a framework for algorithmic
learning of problems on general graphs. GraphFSA is based
on the observation that some graph algorithms can be mod-
eled by each node following a simple automaton-like state
recipe. The GraphFSA’s main algorithmic component is the
transition function, which guides the nodes’ state changes.
The authors show that given a dataset of pairs of input
and output graphs labeled with states such a function can
be learned by back-propagation through a transition table.
Their approach shows great extrapolation capabilities and
interpretability. However, it is limited by the need for com-
plete discreteness. (Rodionov and Prokhorenkova 2024) re-
lax that limitation in their work called Discrete Neural Algo-
rithmic Reasoning (DNAR). While not explicitly referenc-
ing automata, they still rely on discrete state transitions to
encode algorithm behavior. However, they make use of con-
tinuous inputs and additional edge states to train transitions
mimicking more well-known algorithms, such as Luby’s al-
gorithm for finding a maximal independent set (Luby 1985),
in a supervised fashion.

More concerned about scaling applications and extrapola-
tion results to much bigger graphs than adhering to a discrete
state representation is the work by (Grötschla, Mathys, and
Wattenhofer 2022). Their experiments on up to 10’000 node
graphs show that such extreme size extrapolation is possible
yet challenging.



Another work that focuses on extrapolation comes from
(Selsam et al. 2019). They present a graph neural network
architecture designed with the goal of solving propositional
satisfiability (SAT) problems in mind. It shares some simi-
larities with the previous work in that scaling inference to
much bigger inputs is facilitated by having an architecture
with a variable number of message-passing iterations. This
is also a key component in the work by (Tang et al. 2020),
who show not only improvement in extrapolation with re-
spect to problem size but also with respect to other factors,
such as different edge weight ranges for finding the shortest
path in a graph. (Selsam et al. 2019)’s extrapolation demon-
stration not only includes scaling problem instance sizes ei-
ther. They also generalize across different problem classes,
i.e. their solver is trained on datasets containing randomly
generated SAT problems but is able to find solutions for
more specific problems such as detecting cliques in a graph.

Algorithmic reasoning has gained more interest in recent
years. In order to unify research efforts, (Veličković et al.
2022) have proposed a benchmark suite consisting of mul-
tiple different algorithms, input graphs, and corresponding
outputs. SALSA-CLRS (Minder et al. 2023) extends that
collection by six graph algorithms and exemplifies an ex-
perimental methodology that highlights the importance of
dataset diversity.

Reinforcement Learning
Using reinforcement learning (RL) to solve tasks that in-
volve logical reasoning is not uncommon. Probably the most
well-known RL-based work, AlphaGo (Silver et al. 2016),
involves training an agent to compete in the world of Go, a
complex strategy board game.

Applications over graphs are oftentimes looked at through
the lens of combinatorial optimization and are more cen-
tered around the problem statement than known solving al-
gorithms. For example, (Tönshoff et al. 2022) proposes an
approach viable for any constraint satisfaction problem such
as MAXCUT or 3-SAT. Formulating the satisfaction prob-
lem in the form of a graph allows the authors to train an
RL-based search heuristic parametrized as a GNN, whose
inherent parallelism can be exploited to speed up training.

The work by (Joshi et al. 2022) also combines GNNs and
RL. The authors focus on the traveling salesperson problem
(TSP). A comparison between a supervised approach and an
RL formulation supports that the latter is a viable alternative
and that it can even outperform the former. Related to our
work is also the author’s focus on generalization across dif-
ferent graph sizes. They identify RL algorithms as one pos-
sible key ingredient next to inductive bias for extrapolation
to very large graphs.

Other famously hard problems are also studied. E.g.
(Huang, Patwary, and Diamos 2019) investigate coloring
problems. A rigorous survey of works that combine RL
with combinatorial optimization is provided by (Mazyavk-
ina et al. 2020), or more recently with a focus on GNNs by
(Cappart et al. 2022).

This thesis will formulate learning graph algorithms as
a multi-agent reinforcement learning (MARL) task where
the number of agents scales with the size of the graph. A

method of keeping the number of trainable parameters man-
ageable even under such circumstances is using shared poli-
cies. (Christianos et al. 2021) show that parameter-shared
approaches are capable of solving well-known RL sample
tasks such as Level-based Foraging and Starcraft Multi-
Agent Challenge.

The theoretical justifications for policy sharing are pro-
vided by (Terry et al. 2023). In their work, the authors prove
that agents that are aware of a unique identifier and operate
under parameter sharing may converge to the optimal multi-
agent policy.

Finally, extensive benchmarking of MARL learning algo-
rithms by (Papoudakis et al. 2021) shows that shared policies
can outperform other options when combined with indepen-
dent learning and trained through policy-gradient methods;
even while operating under sparse reward signals.

Multi-Agent Reinforcement Learning
Many applications can not be modeled with a single agent.
Allowing k agents leads to the notion of multi-agent rein-
forcement learning (MARL). The above definition of MDPs
can be adjusted accordingly: each agent i operates over its
own action space Ai, is assigned its own reward signal
Ri : S × Ai 7→ R, and the transition function’s domain
changes to S × A⃗ × S , where A⃗ is the joint-action space
A1 ×A2 × · · · × Ak.

We can also extend the notion of policies to the multi-
agent scenario: policy πi maps aj ∈ Ai given s ∈ S to
the probability of agent i taking action j when in state s.
Alternatively, a joint-policy π⃗ models the behavior of all
the agents in parallel: It assigns a probability to a joint ac-
tion a⃗ ∈ A⃗ given the environment’s state. However, cen-
tral learning (Albrecht, Christianos, and Schäfer 2023) — a
MARL approach that operates on joint policies — faces the
problem that the joint action space size grows exponentially
for each added agent, i.e.: |A⃗| = |A1| · |A2| · · · · · |Ak|.

A method that avoids this quickly growing joint-action
space is called independent learning (Albrecht, Christianos,
and Schäfer 2023). Each agent i is modeled separately in a
way that assumes all other agents as part of the environment.
For an agent, this assumption may make the transition func-
tion appear non-markovian as other agent’s behavior may
change throughout training. However, it also allows the use
of single-agent RL algorithms.

Problem Formulation
Training Procedure
One major specification of our state-based approach signifi-
cantly shapes the proposed procedure of this work: all nodes
follow the same state transition recipe. In other words, two
nodes in the same state, both having the same distribution
of states in their immediate neighborhood must transition to
the same state. The transition function T was therefore de-
fined irrespective of nodes. The formulation of the multi-
agent learning task — an agent is placed on each node,
and the transition function is derived from the agent’s pol-
icy — implies that if we want the invariance across nodes
to hold, πi should be equal to πj for every pair of trained



agents i, j. Luckily, this can be enforced through parame-
ter sharing. Namely, for two agent i, j with their policies
modelled by πi(·|·, θi) and πj(·|·, θj) respectively parameter
sharing implies θi = θj . Our proposed independent learn-
ing MARL training procedure with shared policies will use
policy-gradient learning algorithms.

A trained policy needs to properly address that a node is
not allowed to switch away from a final state. Putting it into
reinforcement learning terms, we want to restrict a trained
agent’s actions if certain conditions are met. We implement
this as follows: We mask logits associated with unwanted
actions. Let l⃗ = (l1, l2, . . . , l|A|) be the output of the shared
policy network of some agent whose node is in state qi. The
corresponding masked logits l⃗′ = (l′1, l

′
2, . . . , l

′
|A|) are de-

fined as:

l′j =

{
lj , if qi /∈ QF or i = j

−η, if qi ∈ QF and i ̸= j

Choosing η to be sufficiently large and defining the policy
as the softmax over masked logits:

π(aj |o, θ) =
exp(l′j)∑

ak∈A exp(l′k)

means that transition probabilities attain close-to-extreme
values if qi is a final state:

π(aj |o, θ) ≈
{
0, if i ̸= j

1, if i = j

With this, masking does not only disallow the transition
function defined over the argmax of the policy to switch
away from a final state but also makes it effectively impos-
sible to sample such illegal transitions while sampling from
π during training. Preliminary experiments showed that ex-
plicit masking leads to better results than implicitly discour-
aging unwanted outbound transition by penalization through
the reward. The choice is further supported by (Huang and
Ontañón 2020)’s work about invalid action masking, which
tells a similar story, and provides a theoretical justification
for action masking in general.

Reinforcement Learning Formulation
Throughout the execution of an algorithm in our state-based
framework, v will transition from state to state. Say the ex-
ecution takes t steps, and v encounters states q0, q1, . . . , qt
in that order. In each state qi, node v applies T to get qi+1.
This iterative application of a transition function parallels an
agent’s trajectory in a MARL setting if the action it can take
corresponds to algorithm-state transitions: the node’s agent
started in state q0, it took the action corresponding to tran-
sitioning to state q1, then the action to go to q2, and so on.
Zooming out on the whole graph, placing an agent on each
node, and allowing it only to observe its neighbors’ states,
results in an intuitively analogous MARL formulation.

To combat possible confusion during the merging of
the two concepts with similar terminology, the congruence
is shown here more formally. The following deterministic

multi-agent MDP corresponds to an environment for an al-
gorithm solving some problem P using states Q,Q0, QF as
previously introduced: an MDP state s from state space S =
Q×Q×· · ·×Q = Qn at time step t includes all the n nodes’
algorithm states, i.e. s = (qv1 , qv2 , . . . , qvn). All n agents
share the same action space A = {a0, a1, . . . , a|Q|−1},
where ai implies the agent’s node swapping to state qi.
Therefore:

T (s, a⃗, s′) = T
(
(qv1 , . . . , qvn), (av1 , . . . , avn), (q′v1 , . . . , q′vn)

)
=


1, if ∀v ∃i s.t. av = ai ∧ q′v = qi

∧ (qv ∈ QF ⇒ qv = qi),

0, otherwise.

Note that the number of environment states grows expo-
nentially in n, which is exacerbated by higher numbers of
node states. We have that |S| = |Q|n. However, the restric-
tion through final states can limit the number of valid envi-
ronment transitions.

The only thing missing from the MARL formulation is
the reward function. We have neither access to a ground-
truth transition function nor any hints that can be computed
through it. Yet, a verifier is available. For a node-based ver-
ifier V we define the reward for an action of agent i located
on node vi in the environment state st:

Ri(st, a) =


1, if episode end = t+ 1 and V(vi) = YES

−1, if episode end = t+ 1 and V(vi) = NO

0, otherwise

Or analogously, the reward of agent j associated with edge
ej if P is an edge-centric problem:

Rj(st, a) =


1, if episode end = t+ 1 and V(ej) = YES

−1, if episode end = t+ 1 and V(ej) = NO

0, otherwise

An episode of a node-centric task is considered finished if
all nodes reach a final state or the horizon is reached. For
an edge-based task, we consider the final edge states for the
termination condition.

The environment state in this MARL setting with node
and edge agents contains all their respective node or edge
states, which if they are final, encode matching output labels.
In the last environment state st+1 of the episode, the verifier
is executed, and based on its output, a non-zero reward is
paid. If the episode is preempted due to reaching the horizon,
some node or edge state may be non-final. In that case, the
corresponding agent just receives −1 reward and its state is
interpreted as an additional label for its neighbor verification
computation.

Problem Definitions
Our proposed approach is tested on four problems. As they
are not part of a preexisting benchmark as was the case in
the previous chapter, we introduce them more formally here.
The objective of all four of them is to find either a set of
nodes or a set of edges for a given graph. The four sets of
interest are defined as follows:



Definition 1 (Maximal Independent Set) A set of vertices
S ⊆ V is an independent set if no node v ∈ S has a neigh-
bor that is also in S. An independent set S is maximal if, for
every node u not in S, S ∪ {u} is not an independent set.

Definition 2 (Minimal Vertex Cover) A set of vertices
S ⊆ V is a vertex cover if every edge e ∈ E has at least
one endpoint in S. A vertex cover S is minimal if for every
node v in S, S \ {v} is not a vertex cover.

Definition 3 (Maximal Matching) A set of edges M ⊆ V
is a matching if every node v ∈ V is incident to at most one
edge in M . A matching M is maximal if for every edge e not
in M , M ∪ {e} is not a matching.

Definition 4 (Minimal Edge Cover) A set of edges S ⊆ E
is an edge cover if every node v ∈ V is incident to at least
one edge in S. An edge cover S is minimal if for every node
e in S, S \ {e} is not an edge cover.

With respect to labels, the four problems share similari-
ties. They do not come with inputs, i.e. the input alphabet
Σin only contains an empty label σλ, and outputs can be en-
coded as simple membership indicator σ0 ∈ Σout represents
a node or an edge being in the solution set, σ1 ∈ Σout if it is
not. Yet, they differ in other aspects. maximal independent
set (MIS) and minimal vertex cover (MVC) are both node-
centric tasks. On the other hand, the goal of maximal match-
ing (MAT) and minimal edge cover (MEC) is to extract an
edge set, and as such labels are associated with edges. Or-
thogonally to that, as is already implied by the names, MVC
and MEC are minimality problems, while MIS and MAT
concern themselves with maximality.

Experimental Setup
The policies were trained with the REINFORCE (Williams
1992) algorithm using a batch size of 16, discount factor
γ = 0.95 and an entropy coefficient of 10−6. The Horizon
H was chosen to be roughly 4 log2 n. Throughout the exper-
iment, we use the Adam optimizer (Kingma and Ba 2017)
with a learning rate of 0.0003. The supervised baselines per-
form 160 epochs during training, with a batch size of 16 and
the train set containing 10, 000 graphs equivalent to 100, 000
optimization steps. We fix the number of recurrent updates,
to be 4 · (log n + 1), which limits the supervised baselines
to use the same upper bound for the number of communi-
cation rounds as the RL agents. Model selection is based on
the best parameters found during training on the validation
set.


