
Zero-Shot Generalization of GNNs over Distinct Attribute Domains

Yangyi Shen 1 Jincheng Zhou 2 Beatrice Bevilacqua 2 Joshua Robinson 1 Charilaos Kanatsoulis 1

Jure Leskovec 1 Bruno Ribeiro 2

Abstract
Traditional Graph Neural Networks (GNNs) can-
not generalize to new graphs with node attributes
different from the training ones, making zero-shot
generalization across different node attribute do-
mains an open challenge in graph machine learn-
ing. In this paper, we propose STAGE, which en-
codes statistical dependencies between attributes
rather than individual attribute values, which may
differ in test graphs. By assuming these depen-
dencies remain invariant under changes in node
attributes, STAGE achieves provable generaliza-
tion guarantees for a family of domain shifts. Em-
pirically, STAGE demonstrates strong zero-shot
performance on medium-sized datasets: when
trained on multiple graph datasets with differ-
ent attribute spaces (varying in types and num-
ber) and evaluated on graphs with entirely new
attributes, STAGE achieves a relative improve-
ment in Hits@1 between 40% to 103% in link
prediction and a 10% improvement in node clas-
sification compared to state-of-the-art baselines.

1. Introduction
Zero-shot generalization refers to the ability of the model to
handle unseen test data without additional training or adap-
tation (Larochelle et al., 2008; Xian et al., 2017; Wang et al.,
2022). An essential prerequisite for zero-shot generalization
is a unified input space where models can learn and transfer
prediction patterns across domains. While this challenge
has been addressed in areas like natural language through
tokenization techniques that represent any text through a
fixed vocabulary (Samuel & Øvrelid, 2023), graphs present
unique challenges in achieving such unified input space.

Attributes in graphs can vary significantly across domains.

1Department of Computer Science, Stanford University, Stan-
ford, USA 2Department of Computer Science, Purdue Univer-
sity, West Lafayette, USA. Correspondence to: Yangyi Shen
<pyyshen@stanford.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Node attributes in test graphs can differ from those in train-
ing graphs in four key ways: (1) their types (e.g., continuous
vs. categorical variables); (2) their names (e.g., RAM spec-
ifications in ecommerce graphs and clothing size in retail
graphs, as illustrated in Figure 1); (3) their semantics, where
attributes with the same name can have different meanings
across domains – for instance, the meaning of size differs
substantially between electronics and clothing domains; (4)
their cardinality, as graphs may contain varying numbers of
node attributes. These challenges make it difficult to define
a unified input space that enables zero-shot generalization
to unseen attributed graphs.

For these reasons, training graph models that can zero-shot
generalize to new graphs with unseen attribute domains re-
mains an open challenge. Recent approaches address this
problem using various strategies. One approach is to ignore
node attributes to focus solely on graph topology, but this
strategy may be leaving valuable node attribute information
unutilized. Another line of work seeks to unify input spaces
by converting graphs and attributes into text representations,
which are then processed by pretrained text encoders (Chen
et al., 2024a; Huang et al., 2023; Liu et al., 2024; Zhang
et al., 2023). While promising, these approaches may strug-
gle with numerical attributes (Collins et al., 2024; Gruver
et al., 2024; Schwartz et al., 2024). Recently, Zhao et al.
(2024b) proposed an analytical approach for making predic-
tions on new graphs with potentially new attributes. How-
ever, this approach sidesteps the fundamental challenge of
creating a unified input space.

In this paper, we introduce STAGE (Statistical Transfer
for Attributed Graph Embeddings), which transforms node
attributes from their “absolute” natural space into a rela-
tive space that captures statistical dependencies between
attributes. For instance, as illustrated in Figure 1, these
dependencies manifest themselves as correlations driving
purchases across domains, which remain invariant even
when the purchased items and their attributes change. In
practice, STAGE represents such statistical dependencies
through a two-step process that transforms node attributes
into fixed-dimensional edge embeddings, achieving a uni-
fied input space alongside provable invariance to changes in
attribute values (including their types, names and semantics),
as well as to permutations of attribute order and permuta-

1

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

Bob

purchase
view

Smartphone 2

age: 30
income_level: $120K

edu_level: college

price: $1299
RAM: 3GB
battery: 2716 mAh

Claire

purchase

fashion_news: regular

height: 5'6''
club_status: active

size: M
colour_group: red

product_type: shorts

Dominic

Clothes 1 Clothes 2

purchase

view

(a) Train (b) Test

view viewview

age: 20

income_level: $70K
edu_level: high school

Alice

price: $699
RAM: 3GB
battery: 2500 mAh

view

fashion_news: regular

height: 6'2''
club_status: active

size: XL
colour_group: black

product_type: jeans

view
purchase

view

Smartphone 1

Figure 1: The task of zero-shot generalization to attributed graphs with unseen attributes. Attributes in test are different than
those in train in types and semantics, but attributes associated with an edge are highly correlated in both train and test (e.g.
income level is positively correlated to phone price in (a) and height is positively correlated to size in (b)). Our STAGE
learns these statistical dependencies among attributes to perform zero-shot transfer across distinct attribute domains.

tions of node identities. Specifically, STAGE first constructs
a weighted STAGE-edge-graph for each edge in the input
graph, where the nodes represent attributes of the edge end-
points and the edge weights capture dependencies between
the attributes. Then, STAGE uses an additional shallow
GNN to generate embeddings for each STAGE-edge-graph.
Finally, STAGE applies the original GNN to a modified
input graph, which contains only the newly generated edge
embeddings but not the node attributes.

The complexity of STAGE is linear in the size of the input
graph and quadratic in the number of attributes, as it cap-
tures pairwise statistical dependencies between attributes
over the edges of the graph. This makes STAGE particu-
larly well-suited for small to medium-sized datasets, where
it strikes a balance between computational feasibility and
strong generalization performance.

We prove that STAGE can learn domain-independent rep-
resentations for certain types of domain shifts, enabling
zero-shot generalization. Experimentally, for link prediction
in e-commerce networks spanning six distinct product do-
mains, STAGE achieves up to 103% improvement in Hits@1
compared to the strongest baseline. In node classification
tasks on social networks, STAGE achieves approximately
10% better performance than the strongest baseline.

2. STAGE
Let G = (V,E,X) an attributed graph, where V is the set
of nodes, E the set of edges, and X = {xv}v∈V the set of
node attributes xv for each node v ∈ V . We assume that all
xv belong to some measurable space of dimension d ≥ 1.

To design a model capable of generalizing to test graphs
that may have node attributes living in a different space than
X , we propose a projection map that transforms the node
attributes (xu,xv) of the endpoints of an edge (u, v) ∈ E

into a fixed-dimensional pairwise embedding

P : (xu,xv) 7→ ruv ∈ Rk, k ≥ 1. (1)

By using pairwise embeddings, STAGE can model relation-
ships between attributes belonging to different nodes. For
instance, it can capture the relation between the attributes
of the customer node Alice and the attributes of the product
node Phone1 in Figure 2(a), such as the correlation between
income level and price. We design the mapping P by build-
ing a graph based on the pairwise pdf attribute descriptors.
Viewing node attributes through their pdf s maps potentially
non-aligned node attribute spaces into a universal space of
densities, enabling consistency across diverse domains. The
modeling of probabilities generalizes the learning of rules
like “people with higher income level tend to buy expen-
sive phones,’ to abstract relationships like “high values in
X1 correlate with high values in X2”, enabling knowledge
transfer across domains with different attributes.

Concretely, let A and B be a random pair of nodes jointly
and uniformly sampled from the edge set, (A,B) ∼
Unif(E). Let xA

i denote the random variable of the i-th
attribute value of random node A, and xB

j the j-th attribute
value of random node B. Given a specific pair of distinct
nodes u, v ∈ V and specific attribute values xu

i and xv
j , we

define p(xu
i |xv

j) from the conditional probabilities as fol-
lows, accounting for mixture of totally ordered (e.g., scalar)
and unordered (e.g., categorical) attributes1:

• p(xu
i |xv

j) := P(xA
i ≤ xu

i |xB
j ≤ xv

j), if both attribute i and
j are totally ordered.

• p(xu
i |xv

j) := P(xA
i = xu

i |xB
j ≤ xv

j), if attribute i is un-
ordered and attribute j is totally ordered.

• p(xu
i |xv

j) := P(xA
i ≤ xu

i |xB
j = xv

j), if attribute i is totally
ordered and attribute j is unordered.

1For brevity we omit the distribution (A,B) ∼ Unif(E), writ-
ing P instead of P(A,B)∼Unif(E) from now.

2

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

(a) Input attributed graph

view

vi
ew

view

pu
rc

ha
se

?

Alice

Phone1

view

purchase

Phone2

Bob
age: 30
income_level: $120K

price: $1299
RAM: 3GB

...

...

...

...

...

...

(b) STAGE-edge-graph
 of the edge (Alice, Phone1)

(c) STAGE-edge-graph embedding as
edge feature for GNN forward propagation

Alice

Phone1 Phone2

Bob

Figure 2: Given an input attributed graph G (a), STAGE builds a STAGE-edge-graph (b) for every edge in G. Nodes in a
STAGE-edge-graph correspond to attributes of the two edge endpoints, and the node and edge attributes are the empirical
marginal and conditional probabilities of attribute values (Equations (2) and (3)). STAGE applies the intra-edge GNN on
STAGE-edge-graphs (b) to obtain an edge embedding for each input graph edge, and then applies the inter-edge GNN on the
modified graph containing these edge embeddings but not the node attributes (c). Details are provided in Algorithms 1 and 2.

• p(xu
i |xv

j) := P(xA
i = xu

i |xB
j = xv

j), if both attribute i and
j are unordered.

If u = v, we change the sampling distribution to (A) ∼
Unif(V) and let B = A so that STAGE can also model
dependencies between attributes of the same node. If i = j,
we change the conditional probability to p(xu

i) := P(xA
i =

xu
i) if attribute i is unordered and p(xu

i) := P(xAi ≤ xu
i)

if attribute i is totally ordered. This allows STAGE to also
model each attribute independently through its pdf or cdf.

In practice, these probabilities can be empirically esti-
mated from the input data. For the node-pair u, v we
define a conditional probability matrix Suv, with indices
i, j ∈ {1, . . . , 2d}, i ̸= j, organized such that indices 1 to d
correspond to attributes of node u and indices d+ 1 to 2d
correspond to attributes of node v:

Suv
ij =

p(xu

i | xu
j) if i ≤ d and j ≤ d,

p(xv
i−d | xv

j−d) if d < i ≤ 2d and d < j ≤ 2d,

p(xu
i | xv

j−d) if i ≤ d and d < j ≤ 2d,

p(xv
i−d | xu

j) if d < i ≤ 2d and j ≤ d.

(2)

and for the diagonal i = j we define,

Suv
ij =

{
p(xu

i) if i ≤ d,

p(xv
i) if i > d,

(3)

The matrix Suv is the core node-pair data representation
STAGE uses. This matrix is used to define a graph struc-
ture which we call a STAGE-edge-graph, illustrated in Fig-
ure 2(b), which captures, for the pair of nodes u and v, the
interactions among all pairs of attributes.

Definition 2.1 (STAGE-edge-graph). Given a pair of nodes
u, v ∈ V , a STAGE-edge-graph for (u, v) is a fully con-
nected, weighted, directed graph G(Suv) with 2d nodes,
where node i has a scalar attribute Suv

ii , and edge (i, j) has
a scalar attribute Suv

ij .

STAGE algorithm. As illustrated in Figures 2(b) and 2(c),
STAGE uses a STAGE-edge-graph for each edge in the input
graph in a two-stage process to produce attribute-domain-
transferable representations. First, STAGE uses a GNN
to obtain embeddings for each STAGE-edge-graph. These
edge embeddings replace the original node attributes, result-
ing in a modified graph which is fed into a second GNN
to solve the overall task, producing node, link, or graph
representation. The two steps of STAGE are as follows:

1. (Intra-edge) Each G(Suv) is processed with a GNN M1

to produce edge-level embeddings ruv = M1(G(Suv)).

2. (Inter-edge) A second GNN M2 processes the modi-
fied graph G′ = (V,E, {ruv}(u,v)∈E), i.e., the original
graph without node attributes, but equipped with the
learned edge embeddings to give a final representation
M(G) := M2(G

′).

The two GNNs M1 and M2 are trained end-to-end on the
task. Note that M1 can be any GNN designed to produce
whole-graph embeddings and can take single-dimensional
edge attributes, whilst M2 can be any GNN that can take
edge embeddings as input.

Integration with language models. While STAGE can
incorporate LLM embeddings for textual attributes, our ex-
periments show STAGE-edge-graphs performs better on
numerical and categorical data (Section 4). The approaches
can be complementary - initialize node embeddings with

3

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

LLM embeddings for textual attributes and edge embed-
dings with STAGE-edge-graphs for non-textual attributes.

Modelling pairwise relations. Suv is only computed for
edges (u, v), and so can only model pairwise relations be-
tween nodes connected by an edge. In some cases, such as
bipartite graphs, we find it beneficial to add extra edges be-
tween nodes of the same type (see Section 4 for details). In
general, higher-order relations could also be modelled simi-
larly, albeit at increased complexity. We leave exploration
of higher-order relations to future work.

3. Statistical Underpinnings of STAGE
This section explains how STAGE achieves domain transfer-
ability. The central result is to show that STAGE generates
representations capable of measuring dependencies among
node attributes in graphs. This means that STAGE can
ignore “absolute” attribute values, while still generalizing
through analogous statistical dependencies of the attributes.

Our first step (Section 3.1) connects measures of statistical
dependencies with a novel graph regression task. Then, Sec-
tion 3.2 shows that our STAGE-edge-graphs (Definition 2.1)
can lead to a compact model for this regression, with a vari-
ant that is invariant to a class of shifts between train and
test attribute domains. The following theoretical results are
meant to provide insights and are restricted to domains with
a fixed number of attributes to simplify the proofs, extending
them to variable size spaces is left as future work. Detailed
proofs are provided in Appendix B.

3.1. Statistical Dependence as Graph Regression

We begin by introducing the framework for building what
we call feature hypergraphs. We will show that feature
hypergraphs can sufficiently encapsulate the statistical de-
pendencies between attributes, while only leveraging the
relative orders rather than the numerical values of the at-
tribute, enabling it to be invariant to order-preserving trans-
formations (formally defined in Definition B.2) to achieve
domain transferability. In the following, we assume one
attribute space defined over a totally ordered set (e.g., Rd

for d ≥ 1, where the total order ≤ τ is well defined), since
the invariances of unordered sets are a special case (as these
do not need order-preserving transformations). Before we
describe how feature hypergraphs are built, we start with
the concept of order statistic, which captures the relative
ordering of the attribute values.

Order statistic (David & Nagaraja, 2004). Let
x1,x2, . . . ,xm be a sequence of m ≥ 2 random variables
from some unknown distribution F over a totally ordered
set (e.g., a convex set F ⊆ R). Its order statistics are defined
as the sorted values x(1) ≤ x(2) ≤ · · · ≤ x(m), where x(k)

denotes the k-th smallest value in the m samples.

Consider a domain with m entities (e.g., products in an
appliance store), where each entity is characterized by d
attributes. Specifically, an entity u can be represented
by a (row) vector of random attribute variables, xu =
[xu1 , xu

2 , . . . , xu
d], where xui describes the i-th attribute of

entity u that takes on values from the i-th attribute space
Fi ⊆ R. With these variables, we define the (random)
matrix X := [(x1)T , (x2)T , . . . , (xm)T]T of shape m× d.
Alternatively, we can view X column-wise, where each at-
tribute i corresponds to a (column) random vector xi =
[x1i , x2

i , . . . , xmi]T . Next, we introduce the order statistic for
these attributes: let xi(k) denote the k-th order statistic of
{x1i , . . . , xm

i }. For instance, xi(1) = min{x1
i , . . . , xmi }.

Given an input graph G = (V,E,X), we regard it as
a sample from some unknown distribution over all at-
tributed graphs with m entities and d attributes, where
X is a random variable with X = [x1, . . . ,xd]. Con-
sider the edges in E as samples of pairs of nodes that
give rise to the multiset of attributes of the endpoint nodes,
E = {{(xu,xv) | (u, v) ∈ E}}. Together with the order
statistics, we now define the attribute hypergraph as follows:

Definition 3.1 (Attribute hypergraph FE). Given a
multiset of attributes of the endpoint nodes E =
{{(xu,xv) | (u, v) ∈ E}} of m entities with totally ordered
attribute spaces, the feature hypergraph FE is defined as
follows. First, we label the graph with m. Then,

• For each order statistic xi(k) of attribute i and order k
(1 ≤ k ≤ m), there are 2 nodes, namely (i, k, 1) and
(i, k, 2). In total, there are exactly 2md nodes in FE
(attribute values need not be unique). Nodes (i, k, 1) and
(i, k, 2) store a single attribute to mark their order: k.

• Let oi(u) be the order of the attribute value xu
i , i.e.,

xi(oi(u)) = xu
i . For each pair of attributes of endpoint

nodes (xu,xv) ∈ E , there is a hyperedge Huv in FE
defined as

Huv := {(1, o1(u), 1), (1, o1(v), 2),
(2, o2(u), 1), (2, o2(v), 2), . . . ,

(d, od(u), 1), (d, od(v), 2)}. (4)

Our first observation is that the feature hypergraph in Defi-
nition 3.1 perfectly captures the order statistics of the set E
but discards the actual values of the attributes.

We now consider statistical tests that measure dependencies
of the attributes of endpoint nodes. As an example, consider
that if (xu,xv) ∈ E are samples (not necessarily indepen-
dently sampled) from a bivariate distribution (x,x′) ∼ F ,
one may be interested in testing the hypothesis

H0 : F (x,x′) = F1(x)F2(x
′),

4

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

i.e., that x and x′ are independent. Bell (1964); Berk &
Bickel (1968) showed that over totally ordered sets, mea-
sures (e.g., p-values) of such hypothesis tests for pairwise
independence (H0 above) and higher-order conditional in-
dependence between multiple variables, have invariances
that simplify the data representation to such a degree that
the original values are discarded, retaining only the order
relationships between the variable values. Any such test
is therefore a rank test, i.e., it relies only on indices of the
order statistic, not on the numerical values of the attributes.

Our first theoretical contribution is the observation that any
statistical test that focuses on measuring the (conditional)
dependencies of attributes of endpoint nodes in E can be de-
fined as a graph regression task over the feature hypergraph
FE of Definition 3.1.
Theorem 3.2. Given a multiset of attributes of the endpoint
nodes E , the corresponding feature hypergraph FE (Defini-
tion 3.1) and a most-expressive hypergraph GNN encoder
Mθ∗(FE), then any test T (E) that focuses on measuring
the dependence of the attributes of the endpoint nodes of
E has an equivalent function h within the space of Multi-
layer Perceptrons (MLPs) that depends solely on the graph
representation Mθ∗(FE), i.e., ∃h ∈ MLPs s.t. T (E) =
h(Mθ∗(FE)).

Next we show that the hypergraph FE can be simplified
with STAGE-edge-graph and that the ability to compute de-
pendency measures can be made invariant to certain domain
shifts between train and test.

3.2. Transferability of STAGE

The feature hypergraphFE in Definition 3.1 is used to obtain
a maximal invariant graph representation via hypergraph
GNN. This solution has a high computational cost from the
use of hypergraph GNNs. Fortunately, we show that by
assigning unique attribute identifiers to label the nodes of
our STAGE-edge-graphs G(Suv) (Definition 2.1), STAGE-
edge-graphs are as informative as the corresponding feature
hypergraphs, preserve the same invariances, while allowing
the usage of (non-hypergraph) GNN encoders.
Theorem 3.3. Given the attributes of the endpoint nodes
E (Definition 3.1) of a graph G = (V,E,X), there ex-
ists an optimal parameterization θ∗g , θ

∗
s for a most ex-

pressive GNN encoder Mg and a most-expressive mul-
tiset encoder Ms, respectively, such that Mθ∗

s ,θ
∗
g
(G) :=

Ms
θ∗
s

({{
Mg

θ∗
g
(G(Suv)) : (u, v) ∈ E

}})
such that any test

T (E) that measures the dependence of E’s attributes of
the endpoint nodes has an equivalent function h within
the space of Multilayer Perceptrons (MLPs) that depends
solely on the graph representation Mθ∗

s ,θ
∗
g
(G), i.e., ∃h ∈

MLPs s.t. T (E) = h(Mθ∗
s ,θ

∗
g
(G)).

Theorem 3.3 motivates the design of STAGE, which lever-

ages a GNN on STAGE-edge-graphs to obtain edge-level
embeddings. However, the use of unique attribute identifiers
in the STAGE-edge-graphs disrupts invariance to permuta-
tions in attribute order (e.g., U.S. shoe size appearing as the
first attribute in one dataset and U.K. shoe size as the last
attribute in another), thereby limiting its domain transfer-
ability. More broadly, we now describe all the invariances
we want for STAGE to have in order to be robust to a class
of attribute domain shifts.

COGG invariances. STAGE-edge-graphs facilitate domain
transfer to distinct attribute domains. Intuitively, the full
set of invariances required for domain transferability over
G = (V,E,X) consists of: (1) invariance or equivariance
to transformations of attribute values that preserve the order
statistic, (2) invariance or equivariance to permutations of
attribute orders (columns of X), and (3) invariance or equiv-
ariance to permutations of nodes in the graph, affecting V
(and consequently E) and the rows of X . These invariances
are formalized in Definition B.5 in Appendix B.4 through
the actions of component-wise order-preserving groupoid
for graphs (COGG). Importantly, groups are insufficient to
capture these invariances because they assume transforma-
tions act within a single attribute domain. However, we are
interested in transformations across distinct attribute spaces.
Groupoids generalize groups by allowing these transforma-
tions between different domains, making them the natural
choice for modeling the required invariances.

We now introduce our final theoretical contribution which
establishes that STAGE achieves invariance to COGGs by
design. This result shows that STAGE can provably achieve
the zero-shot transferability to the class of attribute domain
shifts defined by COGGs-type transformations.

Theorem 3.4. STAGE is invariant to COGGs (Defini-
tion B.5).

The proof sketch is as follows. From Theorem 3.3, STAGE
achieves invariance to changes in attribute values, including
their types, names, and semantics. Then, by dropping the
attribute identifiers in STAGE-edge-graphs, we sacrifice
maximal expressivity but ensure that STAGE is invariant to
permutations of the attribute order. Finally, since STAGE
employs a second GNN on the original input graph, using
the embeddings of the STAGE-edge-graphs, while omitting
the original node attributes, STAGE achieves invariance to
node permutations. Thus, the method is invariant to COGGs.

4. Experiments
We demonstrate the effectiveness of STAGE across multiple
experimental settings, focusing on small to medium-sized
datasets. While the computational complexity scales lin-
early with the graph size and quadratically with the number
of attributes, training on these datasets introduces only mod-

5

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

bed desktop refrigerators smartphone shoes H&M
Test Graph Domain

0.0

0.1

0.2

0.3

0.4

0.5

0.6

hi
ts

@
1

ra
nd

om
ra

w

ra
nd

om
ra

w

ra
nd

om
ra

w

ra
nd

om
ra

w

ra
nd

om
ra

w

ra
nd

om
ra

w

Model
random
NBFNet-raw
NBFNet-gaussian
NBFNet-structural
NBFNet-llm
NBFNet-normalized
NBFNet-STAGE

Figure 3: Zero-shot Hits@1 performance (higher is better) of STAGE and baselines, trained on four (or five) distinct
E-Commerce Store domains and evaluated on the held-out domain (or H&M dataset). NBFNet-STAGE consistently
achieves the highest zero-shot accuracy across all test domains, with up to 103% improvement.

erate computational overhead (e.g., 7.83% slower than the
fastest baseline in link prediction; see Appendix H). There-
fore, STAGE is highly effective in these settings, achieving
strong generalization performance. In the following, we
present our main results and refer to Appendix D for details.
Our code is available at https://github.com/snap-
stanford/stage-gnn/.

Datasets. To evaluate zero-shot generalization to graphs
with new attributes, we consider datasets with distinct
domain-specific attributes but a shared task. Our datasets
contain graphs with up to 4k nodes, 50k edges, 16 attributes,
representing small to medium-size real-world scenarios
where STAGE is particularly effective. Due to space con-
straints, we introduce them below and refer to Appendix C.

E-Commerce Stores dataset (link prediction). We use data
from a multi-category store (Kechinov, 2020) containing
customer-product interactions (purchases, cart additions,
views) over time. To simulate distinct single-category retail-
ers, we partition the dataset into five domains, each repre-
senting a specialized store: shoes, refrigerators, desktops,
smartphones, and beds. Each domain has its own customer
base and product-specific attributes (e.g., smartphones have
display type; shoes have ankle height). The task is to predict
future customer-product interactions from past actions.

H&M dataset (link prediction). We use the H&M Person-
alized Fashion Recommendations dataset (Kaggle, 2021),
which contains transactions from a large fashion retailer, to
evaluate the zero-shot performance of models trained on
E-Commerce Stores. All attributes, except for “price”, dif-
fer from those in E-Commerce Stores. The task remains to
predict customer-product interactions from past actions.

Social network datasets (node classification): Friendster
and Pokec. We evaluate STAGE on two online social
networks from different regions and user bases: Friend-
ster (Teixeira et al., 2019) and Pokec (SNAP, 2012). Friend-
ster nodes have attributes such as age, gender, interests,
while Pokec nodes have public profile status, completion
percentage, region, age, and gender. The task is to predict
a node attribute common to both social networks using net-
work structure and remaining node attributes. Since only
age and gender are shared, we create two tasks: mask and
predict gender (presented in this section), and mask and
regress on age (discussed in Appendix E).

Baselines. We compare STAGE to several baselines de-
signed to handle new node attributes. (1) raw: Projects each
raw node attribute into a fixed-dimensional space with a
linear transformation, before summing across the projected
dimensions. (2) gaussian: Use Gaussian noise as node
attributes (Sato et al., 2021; Abboud et al., 2021). (3) struc-
tural: Ignores node attributes entirely, using only the graph
structure. (4) llm: Converts node attributes into textual
descriptions and obtains embeddings using a pretrained en-
coder-only language model, taking only the node attributes
as input (without graph structure) due to prompt length lim-
itations, similar to PRODIGY (Huang et al., 2023). (5) nor-
malized: Retains only continuous attributes and standardize
them. For a fair comparison, all methods utilize the same
underlying GNN architecture, NBFNet (Zhu et al., 2021c)
for link prediction and GINE (Hu et al., 2020) for node
classification. In Appendix F, we report additional experi-
ments with other architectures. In addition to these baselines,
we evaluate our approach against GraphAny (Zhao et al.,
2024b), a recent method for domain transferability in node

6

https://github.com/snap-stanford/stage-gnn/
https://github.com/snap-stanford/stage-gnn/

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

classification tasks, but not applicable to link prediction.

4.1. Zero-Shot Link Prediction on Unseen Domains

We evaluate the performance of all methods on zero-shot
generalization on the E-Commerce Stores dataset, training
on four categories, and testing on the held-out fifth category.

Results. As shown in Figure 3, STAGE consistently out-
performs all baselines in zero-shot Hits@1 across all test
domains. Notable improvements include: 103% gain when
testing on the smartphone category (0.51 vs 0.25 Hits@1),
40% on bed (0.44 vs 0.31), and 33% on desktop (0.59 vs
0.44) compared to the strongest baselines.

In Table 1, we report the average performance of each model,
calculated by taking the results in which each domain is held
out once and averaging the scores. Our evaluation also in-
cludes popular non-parametric link prediction approaches
such as Common Neighbors, Adamic Adar, and Person-
alized PageRank, with results showing that STAGE sub-
stantially outperforms classical heuristic methods by 54%,
51%, and 3837% respectively on Hits@1, while maintaining
similar performance advantages on MRR. Overall, STAGE
achieves 41% higher average Hits@1 (0.46 vs 0.33) and 29%
higher MRR (0.50 vs 0.38) against the strongest baseline
(normalized), with lower variance across seeds. This empha-
sizes the benefit of STAGE in transforming node attributes
into a unified input space using learned edge embedding via
STAGE-edge-graph, including its stronger attribute repre-
sentation capabilities than LLM-based encoding approaches
in the medium-sized graphs considered in this work.

4.2. Cross-Dataset Zero-Shot Link Prediction

We evaluate models trained on E-Commerce Stores for zero-
shot prediction on the H&M dataset, which has distinct
customers, products, activity patterns and attributes.

Table 1 shows that the performance on H&M of STAGE
when trained on E-Commerce Stores is virtually identical
to its performance on the held-out category in E-Commerce
Stores (0.46 vs. 0.46 Hits@1). This highlights the robust-
ness of STAGE to domain shifts, as it maintains similar
performance when transitioning from E-Commerce Stores,
which primarily feature household items, electronics, and
shoes, to H&M, which focuses on clothing with minimal
overlap in product types.

In Hits@1, STAGE achieves a relative improvement of
103% over the best parametric baseline (llm) (0.46 vs. 0.23).
Moreover, STAGE obtains a relative improvement of 202%
against a supervised structural method trained and tested on
H&M (structural-supervised). In MRR, STAGE achieves
the highest score, outperforming the best baseline by 99%.

Moreover, STAGE demonstrates a substantial improvement

of 99% in Hits@1 over Adamic Adar (0.466 vs 0.2349),
which performs the best among traditional heuristic meth-
ods on the H&M dataset. Similarly, STAGE outperforms
Adamic Adar by 48% in MRR (0.4703 vs. 0.3184), further
confirming the its superiority over classical link prediction
heuristics in zero-shot scenarios.

4.3. Zero-Shot Node Classification on Unseen Domains

To validate our approach beyond link prediction and E-
Commerce scenarios, we benchmark on a node classification
task using two social network datasets, where the goal is
to predict user gender. We train models on Friendster and
evaluate zero-shot on Pokec.

Table 2 shows that STAGE achieves a 10.3% improvement
over the best baseline (and lower variance), also surpassing
the task-specific model GraphAny (Zhao et al., 2024b) and
the cross-domain pretraining method GCOPE (Zhao et al.,
2024a). This indicates that STAGE effectively captures
attribute dependencies also in node classification tasks and
outperforms all approaches by leveraging its unified input
space obtained by the usage of the STAGE-edge-graphs.

4.4. Generalization When Training on Multiple
Domains

We examine how the model performance varies with the
number of training domains in E-Commerce Stores.

As shown in Figure 4, STAGE obtains improving zero-shot
performance (both Hits@1 and MRR) with more training
domains. While not the only method showing improve-
ment, STAGE exhibits notably tighter interquartile ranges
compared to the only other method exhibiting better perfor-
mance with increasing domain (gaussian) at higher domain
counts. Additionally, STAGE’s lower whiskers consistently
rise with more domains, showing also that its worst-case
scenarios improve with more training data.

These results further validate that STAGE is capable of
learning transferable patterns across domains through its
defined unified input space. The consistent performance
gains with additional training domains suggest that STAGE-
edge-graph effectively captures generalizable dependencies
between attributes, with more training domains enabling the
learning of a broader range of dependencies. In contrast,
baseline approaches that ignore attributes or use generic
embeddings fail to leverage the additional training domains
for improved cross-domain generalization.

5. Related Work
In this section, we present the most closely related works
to our STAGE. A more in-depth comparison, along with
additional related work, can be found in Appendix I.

7

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

Table 1: NBFNet-STAGE outperforms all baselines in zero-shot Hits@1 and MRR (including supervised approaches)
across the E-Commerce Stores and H&M datasets. For the E-Commerce Stores, results are averaged across models
trained on all combinations of four graph domains and tested on the remaining domain. For zero-shot test on H&M, models
are trained on the five E-Commerce Stores domains. % gain shows relative improvement of STAGE over each baseline.

Training: E-Commerce Stores Test: Held-out E-Comm. Store Test: H&M Dataset

Model Hits@1 (↑) % gain MRR % gain Hits@1 (↑) % gain MRR (↑) % gain

random 0.0026 ± 0.0000 17615% - - 0.0006 ± 0.0000 77667% - -
Common Neighbors 0.2991 ± 0.0006 54% 0.3942 ± 0.0014 26% 0.2354 ± 0.0000 98% 0.3179 ± 0.0000 48%
Adamic Adar 0.3052 ± 0.0007 51% 0.4001 ± 0.0015 24% 0.2349 ± 0.0000 99% 0.3184 ± 0.0000 48%
Personalized PageRank 0.0117 ± 0.0000 3837% 0.0714 ± 0.0001 596% 0.0105 ± 0.0000 4344% 0.0717 ± 0.0000 556%
NBFNet-raw 0.0000 ± 0.0000 ∞ 0.0032 ± 0.0009 15434% 0.0005 ± 0.0004 93220% 0.0059 ± 0.0011 7871%
NBFNet-gaussian 0.2101 ± 0.0428 119% 0.2617 ± 0.0459 90% 0.0925 ± 0.0708 404% 0.1176 ± 0.0756 300%
NBFNet-structural 0.3149 ± 0.0253 46% 0.3721 ± 0.0219 34% 0.2231 ± 0.0060 109% 0.2302 ± 0.0080 104%
NBFNet-llm 0.3226 ± 0.0190 43% 0.3830 ± 0.0145 30% 0.2302 ± 0.0015 103% 0.2365 ± 0.0021 99%
NBFNet-normalized 0.3269 ± 0.0213 41% 0.3844 ± 0.0159 29% 0.2286 ± 0.0010 104% 0.2341 ± 0.0018 101%
NBFNet-structural-supervised N/A N/A N/A N/A 0.1546 ± 0.0084 202% 0.2103 ± 0.0164 124%

NBFNet-STAGE (Ours) 0.4606 ± 0.0123 0% 0.4971 ± 0.0073 0% 0.4666 ± 0.0020 0% 0.4703 ± 0.0029 0%

1 2 3 4
Number of Graph Domains

0.0

0.2

0.4

0.6

Hi
ts

@
1

Model
NBFNet-raw
NBFNet-gaussian

NBFNet-structural
NBFNet-llm

NBFNet-normalized
NBFNet-STAGE

(a) Zero-shot Hits@1

1 2 3 4
Number of Graph Domains

0.0

0.2

0.4

0.6
M

ea
n

Re
cip

ro
ca

l R
an

k
(M

RR
)

Model
NBFNet-raw
NBFNet-gaussian

NBFNet-structural
NBFNet-llm

NBFNet-normalized
NBFNet-STAGE

(b) Zero-shot MRR

Figure 4: The performance (both Hits@1 and MRR) of STAGE improves with more train domains, while this is
not the case for other methods. Box-plot distribution over all combinations of a fixed number of graph domains in the
E-Commerce Stores dataset and testing on the held-out domain(s), averaged over random seeds.

Graphs Generalization under Distribution Shifts. Sev-
eral works address distribution shifts between train and test
graphs over the same attribute domain, such as Shen et al.
(2023); Zhu et al. (2021b), which employ learned augmen-
tations to mitigate the change in distribution in test. Mean-
while, extensive research has focused on domain adaptation
for GNNs (Dai et al., 2022; Li et al., 2020; Kong et al.,
2022; Pei et al., 2020; Veličković et al., 2019; Wiles et al.,
2022; Zhang et al., 2019; Zhu et al., 2021a), which typically
assume access to data in both source and target domains. In
contrast, our work tackles the more challenging scenario of
zero-shot generalization to unseen attribute domains. To the
best of our knowledge, all out-of-distribution graph meth-
ods (Zhang et al., 2024a) do not address the attribute domain
shifts we consider, which include changes in the number of
attributes between train and test.

Foundation Models for Graphs. Developing foundation
models for graph data is a growing research interest, aiming

to create versatile graph models capable of generalizing
across different graphs and tasks (Mao et al., 2024). Initial
efforts in this direction convert attributed graphs into texts
and apply an LLM (Liu et al., 2024; Chen et al., 2024b;a;
Tang et al., 2024; Zhao et al., 2023; He & Hooi, 2024; Huang
et al., 2023). However, while promising, this methodology
risks information loss and may limit transferability (Collins
et al., 2024; Gruver et al., 2024; Schwartz et al., 2024). In
contrast, non-LLM approaches attempt to directly address
domain transferability in the attribute space (Xia & Huang,
2024; Lachi et al., 2024; Zhao et al., 2024b; Frasca et al.,
2024; Yu et al., 2024; Zhao et al., 2024a), or by avoiding the
use of node attributes entirely (Gao et al., 2023; Lee et al.,
2023; Galkin et al., 2024; Zhang et al., 2024b). We provide
details in Appendix I about why some of these approaches
are not applicable as our baselines.

8

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

Table 2: Zero-shot test accuracy of STAGE and baselines
on the Pokec dataset, trained on Friendster. % gain shows
relative improvement of STAGE over each baseline.

Model Accuracy (↑) % gain

random 0.500 ± 0.0000 30.4%
GINE-raw 0.558 ± 0.0829 16.8%
GINE-gaussian 0.588 ± 0.0250 10.9%
GINE-structural 0.564 ± 0.0466 15.6%
GINE-llm 0.550 ± 0.0368 18.5%
GINE-normalized 0.541 ± 0.0148 20.5%
GraphAny 0.591 ± 0.0083 10.3%
GCOPE 0.535 ± 0.0153 21.9%

GINE-STAGE (Ours) 0.652 ± 0.0042 0%

6. Conclusion and Future Work
The challenge of learning universal graph representations
that generalize across diverse attribute domains has limited
progress in graph foundation models, mainly due to the
lack of a unified input space to represent node attributes,
which may vary in test graphs. In this paper, we proposed
STAGE, which addresses this limitation by transforming di-
verse attribute spaces into a unified representation, learning
statistical dependencies between attributes instead of rely-
ing on their absolute values. By demonstrating that these
dependencies remain invariant under certain domain shifts,
STAGE provides theoretical foundations for zero-shot gen-
eralization across graphs with differing attribute spaces. Our
strong empirical results on medium-sized datasets demon-
strate the practical effectiveness of this approach.

While STAGE represents a meaningful step forward, it also
highlights opportunities for future research. The unified
input space we introduce could serve as a basis for devel-
oping graph foundation models that can learn from diverse
graph datasets at scale, reducing the quadratic complexity
of STAGE. However, realizing this potential will require ad-
dressing additional challenges, such as developing architec-
tures to capture complex high-order attribute dependencies
and scaling to large graph collections.

Acknowledgments
BR and BB acknowledge support from the National Science
Foundation (NSF) awards CCF-1918483, CAREER IIS-
1943364 and CNS-2212160, an Amazon Research Award,
and AnalytiXIN, Wabash Heartland Innovation Network
(WHIN), Ford, NVidia, CISCO, and Amazon. Comput-
ing infrastructure was supported in part by CNS-1925001
(CloudBank). This work was supported in part by AMD
under the AMD HPC Fund program.

JL gratefully acknowledges the support of NSF under
Nos. OAC-1835598 (CINES), CCF-1918940 (Expeditions),

DMS-2327709 (IHBEM), IIS-2403318 (III); Stanford Data
Applications Initiative, Wu Tsai Neurosciences Institute,
Stanford Institute for Human-Centered AI, Chan Zucker-
berg Initiative, Amazon, Genentech, GSK, Hitachi, SAP,
and UCB. The content is solely the responsibility of the
authors and does not necessarily represent the official views
of the funding entities.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Abboud, R., Ceylan, İ. İ., Grohe, M., and Lukasiewicz, T.

The surprising power of graph neural networks with ran-
dom node initialization. In Proceedings of the Thirtieth
International Joint Conference on Artifical Intelligence
(IJCAI), 2021.

Bell, C. B. A characterization of multisample distribution-
free statistics. Annals of Mathematical Statistics, 35(2):
735–738, 1964. doi: 10.1214/aoms/1177703564.

Berk, R. and Bickel, P. On invariance and almost invari-
ance. Annals of Mathematical Statistics, 39(5):1573–
1576, 1968. doi: 10.1214/aoms/1177698328.

Berk, R., Nogales, A., and Oyola, J. Some counterexamples
concerning sufficiency and invariance. The Annals of
Statistics, pp. 902–905, 1996.

Berk, R. H. A remark on almost invariance. The Annals of
Mathematical Statistics, pp. 733–735, 1970.

Bevilacqua, B., Robinson, J., Leskovec, J., and Ribeiro,
B. Holographic node representations: Pre-training task-
agnostic node embeddings. In The Thirteenth Interna-
tional Conference on Learning Representations, 2025.

Chen, R., Zhao, T., Jaiswal, A. K., Shah, N., and Wang, Z.
LLaGA: Large language and graph assistant. In Forty-first
International Conference on Machine Learning, 2024a.

Chen, Z., Mao, H., Li, H., Jin, W., Wen, H., Wei, X., Wang,
S., Yin, D., Fan, W., Liu, H., and Tang, J. Exploring the
potential of large language models (llms) in learning on
graphs. ACM SIGKDD Explorations Newsletter, 25(2):
42–61, 2024b.

Collins, K. M., Jiang, A. Q., Frieder, S., Wong, L., Zilka,
M., Bhatt, U., Lukasiewicz, T., Wu, Y., Tenenbaum, J. B.,
Hart, W., et al. Evaluating language models for mathe-
matics through interactions. Proceedings of the National
Academy of Sciences, 121(24):e2318124121, 2024.

9

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

Dai, Q., Wu, X.-M., Xiao, J., Shen, X., and Wang, D. Graph
transfer learning via adversarial domain adaptation with
graph convolution. IEEE Transactions on Knowledge and
Data Engineering, 35(5):4908–4922, 2022.

David, H. and Nagaraja, H. Order statistics. Encyclopedia
of Statistical Sciences, 2004.

Erhan, D., Bengio, Y., Courville, A., and Vincent, P. Visual-
izing higher-layer features of a deep network. Technical
Report 1341, University of Montreal, June 2009. Also
presented at the ICML 2009 Workshop on Learning Fea-
ture Hierarchies, Montr’eal, Canada.

Fatemi, B., Halcrow, J., and Perozzi, B. Talk like a graph:
Encoding graphs for large language models. In The
Twelfth International Conference on Learning Represen-
tations, 2024.

Frasca, F., Jogl, F., Eliasof, M., Ostrovsky, M., Schönlieb,
C.-B., Gärtner, T., and Maron, H. Towards foundation
models on graphs: An analysis on cross-dataset transfer
of pretrained gnns. arXiv preprint arXiv:2412.17609,
2024.

Galkin, M., Yuan, X., Mostafa, H., Tang, J., and Zhu, Z.
Towards foundation models for knowledge graph reason-
ing. In The Twelfth International Conference on Learning
Representations, 2024.

Gao, J., Zhou, Y., Zhou, J., and Ribeiro, B. Double equiv-
ariance for inductive link prediction for both new nodes
and new relation types. arXiv preprint arXiv:2302.01313,
2023.

Gruver, N., Finzi, M., Qiu, S., and Wilson, A. G. Large
language models are zero-shot time series forecasters.
Advances in Neural Information Processing Systems, 36,
2024.

He, Y. and Hooi, B. Unigraph: Learning a cross-domain
graph foundation model from natural language. ArXiv,
abs/2402.13630, 2024.

Hu, W., Liu, B., Gomes, J., Zitnik, M., Liang, P., Pande, V.,
and Leskovec, J. Strategies for pre-training graph neu-
ral networks. In International Conference on Learning
Representations, 2020.

Huang, Q., Ren, H., Chen, P., Kržmanc, G., Zeng, D., Liang,
P. S., and Leskovec, J. Prodigy: Enabling in-context
learning over graphs. Advances in Neural Information
Processing Systems, 36, 2023.

Kaggle. H&m personalized fashion recommenda-
tions, 2021. URL https://www.kaggle.com/
competitions/h-and-m-personalized-
fashion-recommendations/overview. Ac-
cessed: 2024-09-21.

Kechinov, M. ecommerce behavior data from multi category
store, 2020. URL www.kaggle.com/datasets/
mkechinov/ecommerce-behavior-data-
from-multi-category-store.

Kipf, T. and Welling, M. Semi-supervised classification with
graph convolutional networks. ArXiv, abs/1609.02907,
2016.

Kong, K., Li, G., Ding, M., Wu, Z., Zhu, C., Ghanem,
B., Taylor, G., and Goldstein, T. Flag: Adversarial data
augmentation for graph neural networks. arXiv preprint
arXiv:2010.09891, 2022.

Koning, N. W. and Hemerik, J. More efficient exact
group invariance testing: using a representative subgroup.
Biometrika, 111(2):441–458, 2024.

Lachi, D., Azabou, M., Arora, V., and Dyer, E. Graphfm:
A scalable framework for multi-graph pretraining. arXiv
preprint arXiv:2407.11907, 2024.

Larochelle, H., Erhan, D., and Bengio, Y. Zero-data learning
of new tasks. In AAAI Conference on Artificial Intelli-
gence, 2008.

Lee, J., Chung, C., and Whang, J. J. Ingram: Inductive
knowledge graph embedding via relation graphs. In In-
ternational Conference on Machine Learning, pp. 18796–
18809. PMLR, 2023.

Lehmann, E. L., Romano, J. P., and Casella, G. Testing
statistical hypotheses, volume 3. Springer, 3rd edition,
2005.

Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. Mul-
tilayer feedforward networks with a nonpolynomial ac-
tivation function can approximate any function. Neural
Networks, 6(6):861–867, 1993. ISSN 0893-6080. doi:
https://doi.org/10.1016/S0893-6080(05)80131-5.

Li, Y., Ma, T., Zhang, J., Ding, Y., Chen, Y., and Tang, J.
Progressive graph learning for open-set domain adapta-
tion. In International Conference on Machine Learning,
pp. 5968–5977. PMLR, 2020.

Liu, H., Feng, J., Kong, L., Liang, N., Tao, D., Chen, Y., and
Zhang, M. One for all: Towards training one graph model
for all classification tasks. In The Twelfth International
Conference on Learning Representations, 2024.

Mao, H., Li, J., Shomer, H., Li, B., Fan, W., Ma, Y., Zhao,
T., Shah, N., and Tang, J. Revisiting link prediction: A
data perspective. arXiv preprint arXiv:2310.00793, 2023.

Mao, H., Chen, Z., Tang, W., Zhao, J., Ma, Y., Zhao, T.,
Shah, N., Galkin, M., and Tang, J. Graph foundation
models. In arXiv preprint arXiv:2402.02216, 2024.

10

https://www.kaggle.com/competitions/h-and-m-personalized-fashion-recommendations/overview
https://www.kaggle.com/competitions/h-and-m-personalized-fashion-recommendations/overview
https://www.kaggle.com/competitions/h-and-m-personalized-fashion-recommendations/overview
www.kaggle.com/datasets/mkechinov/ecommerce-behavior-data-from-multi-category-store
www.kaggle.com/datasets/mkechinov/ecommerce-behavior-data-from-multi-category-store
www.kaggle.com/datasets/mkechinov/ecommerce-behavior-data-from-multi-category-store

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

Pei, H., Wei, B., Chang, K. C.-C., Lei, Y., and Yang, B.
Domain adaptation on graphs by learning aligned graph
bases. In Advances in Neural Information Processing
Systems, volume 33, pp. 16735–16745, 2020.

Perozzi, B., Fatemi, B., Zelle, D., Tsitsulin, A., Kazemi,
M., Al-Rfou, R., and Halcrow, J. Let your graph do the
talking: Encoding structured data for llms. arXiv preprint
arXiv:2402.05862, 2024.

Samuel, D. and Øvrelid, L. Tokenization with factorized
subword encoding. In Findings of the Association for
Computational Linguistics: ACL 2023, Toronto, Canada,
2023. Association for Computational Linguistics.

Sato, R., Yamada, M., and Kashima, H. Random features
strengthen graph neural networks. In Proceedings of the
2021 SIAM International Conference on Data Mining,
SDM, 2021.

Schwartz, E., Choshen, L., Shtok, J., Doveh, S., Karlinsky,
L., and Arbelle, A. Numerologic: Number encoding
for enhanced llms’ numerical reasoning. arXiv preprint
arXiv:2404.00459, 2024.

Shen, X., Sun, D., Pan, S., Zhou, X., and Yang, L. T. Neigh-
bor contrastive learning on learnable graph augmentation.
In Proceedings of the AAAI conference on artificial intel-
ligence, volume 37, pp. 9782–9791, 2023.

Simonyan, K., Vedaldi, A., and Zisserman, A. Deep inside
convolutional networks: Visualising image classification
models and saliency maps. CoRR, abs/1312.6034, 2013.

SNAP, S. N. A. P. Pokec social network dataset, 2012.
URL https://snap.stanford.edu/data/soc-
Pokec.html. Accessed: 2024-09-21.

Tang, J., Yang, Y., Wei, W., Shi, L., Su, L., Cheng, S.,
Yin, D., and Huang, C. Graphgpt: Graph instruction
tuning for large language models. In Proceedings of the
47th International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 491–500,
2024.

Teixeira, L., Jalaian, B., and Ribeiro, B. Are graph
neural networks miscalibrated? arXiv preprint
arXiv:1905.02296, 2019.

Veličković, P., Fedus, W., Hamilton, W. L., Liò, P., Bengio,
Y., and Hjelm, R. D. Deep graph infomax. In Interna-
tional Conference on Learning Representations, 2019.

Wang, T., Roberts, A., Hesslow, D., Scao, T. L., Chung,
H. W., Beltagy, I., Launay, J., and Raffel, C. What lan-
guage model architecture and pretraining objective works
best for zero-shot generalization? In Proceedings of the

39th International Conference on Machine Learning, vol-
ume 162 of Proceedings of Machine Learning Research,
pp. 22964–22984. PMLR, 17–23 Jul 2022.

Wiles, O., Gowal, S., Stimberg, F., Rebuffi, S.-A., Ktena, I.,
Dvijotham, K., and Cemgil, A. T. A fine-grained analysis
on distribution shift. In International Conference on
Learning Representations (ICLR), 2022.

Xia, L. and Huang, C. Anygraph: Graph foundation model
in the wild. arXiv preprint arXiv:2408.10700, 2024.

Xian, Y., Schiele, B., and Akata, Z. Zero-shot learning-the
good, the bad and the ugly. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 4582–4591, 2017.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? ArXiv, abs/1810.00826, 2018.

Yu, X., Zhou, C., Fang, Y., and Zhang, X. Text-free multi-
domain graph pre-training: Toward graph foundation
models. arXiv preprint arXiv:2405.13934, 2024.

Zhang, K., Liu, S., Wang, S., Shi, W., Chen, C., Li, P., Li, S.,
Li, J., and Ding, K. A survey of deep graph learning under
distribution shifts: from graph out-of-distribution gener-
alization to adaptation. arXiv preprint arXiv:2410.19265,
2024a.

Zhang, Y., Song, G., Du, L., Yang, S., and Jin, Y. Dane:
Domain adaptive network embedding. arXiv preprint
arXiv:1906.00684, 2019.

Zhang, Y., Bevilacqua, B., Galkin, M., and Ribeiro, B.
TRIX: A more expressive model for zero-shot domain
transfer in knowledge graphs. In The Third Learning on
Graphs Conference, 2024b.

Zhang, Z., Li, H., Zhang, Z., Qin, Y., Wang, X., and Zhu,
W. Graph meets llms: Towards large graph models. In
NeurIPS 2023 Workshop: New Frontiers in Graph Learn-
ing, 2023.

Zhao, H., Chen, A., Sun, X., Cheng, H., and Li, J. All in one
and one for all: A simple yet effective method towards
cross-domain graph pretraining. In Proceedings of the
30th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 4443–4454, 2024a.

Zhao, J., Zhuo, L., Shen, Y., Qu, M., Liu, K., Bronstein, M.,
Zhu, Z., and Tang, J. Graphtext: Graph reasoning in text
space. arXiv preprint arXiv:2310.01089, 2023.

Zhao, J., Mostafa, H., Galkin, M., Bronstein, M., Zhu, Z.,
and Tang, J. Graphany: A foundation model for node clas-
sification on any graph. ArXiv, abs/2405.20445, 2024b.

11

https://snap.stanford.edu/data/soc-Pokec.html
https://snap.stanford.edu/data/soc-Pokec.html

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

Zhu, Q., Ponomareva, N., Han, J., and Perozzi, B. Shift-
robust gnns: Overcoming the limitations of localized
graph training data. In Advances in Neural Information
Processing Systems (NeurIPS), volume 34, 2021a.

Zhu, Y., Xu, Y., Liu, Q., and Wu, S. An empirical study of
graph contrastive learning. In Proceedings of the NeurIPS
Track on Datasets and Benchmarks, 2021b.

Zhu, Z., Zhang, Z., Xhonneux, L.-P., and Tang, J. Neural
bellman-ford networks: A general graph neural network
framework for link prediction. Advances in Neural Infor-
mation Processing Systems, 34:29476–29490, 2021c.

12

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

A. Pseudocode of STAGE Algorithm
In this section, we present the detailed pseudocode for STAGE’s two main components: (1) the STAGE-edge-graphs
construction algorithm (Algorithm 1) that captures statistical dependencies between attributes, and (2) the forward pass
(Algorithm 2) that uses these STAGE-edge-graphs to generate the final graph representation. The STAGE-edge-graphs
construction creates a complete graph for each edge in the input graph, where nodes represent attributes and edge weights
capture conditional probabilities between attribute pairs. The algorithm handles both totally ordered and unordered attributes.
The forward pass then processes these STAGE-edge-graphs using two GNNs - one to generate edge embeddings from the
STAGE-edge-graphs, and another to produce the final graph representation using these embeddings.

Algorithm 1 STAGE-edge-graphs Construction

1: Input: Graph G = (V,E,X) with node attributes X = {xv}v∈V

2: Output: STAGE-edge-graphs {G(Suv)}(u,v)∈E

3: for each (u, v) ∈ E do
4: Initialize Suv ∈ R2d×2d with zeros
5: for i = 1 to d do
6: if xu

i is totally ordered then
7: Suv

ii ← P(xAi ≤ xu
i)

8: else
9: Suv

ii ← P(xAi = xu
i)

10: end if
11: if xv

i is totally ordered then
12: Suv

(i+d)(i+d) ← P(xBi ≤ xv
i)

13: else
14: Suv

(i+d)(i+d) ← P(xBi = xv
i)

15: end if
16: end for
17: for i = 1 to 2d do
18: for j = 1 to 2d, j ̸= i do
19: (xi, xj)← GetAttributePair(xu,xv, i, j, d)
20: if xi, xj are totally ordered then
21: Suv

ij ← P(xi ≤ xi|xj ≤ xj)
22: else if xi unordered, xj totally ordered then
23: Suv

ij ← P(xi = xi|xj ≤ xj)
24: else if xi totally ordered, xj unordered then
25: Suv

ij ← P(xi ≤ xi|xj = xj)
26: else
27: Suv

ij ← P(xi = xi|xj = xj)
28: end if
29: end for
30: end for
31: G(Suv)← CreateCompleteGraph(2d)
32: for i = 1 to 2d do
33: SetNodeAttribute(G(Suv), i,Suv

ii)
34: end for
35: for i = 1 to 2d do
36: for j = 1 to 2d, j ̸= i do
37: SetEdgeAttribute(G(Suv), (i, j),Suv

ij)
38: end for
39: end for
40: end for

13

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

Algorithm 2 STAGE Forward Pass

1: Input: Graph G = (V,E,X), GNNs M1 and M2

2: Output: Graph representation M(G)
3: {G(Suv)}(u,v)∈E ← ConstructEdgeGraphs(G)
4: for each (u, v) ∈ E do
5: ruv ←M1(G(Suv))
6: end for
7: G′ ← (V,E, {ruv}(u,v)∈E)
8: M(G)←M2(G

′)
9: return M(G)

B. Proofs and Additional Theoretical Results
B.1. Groupoids

Definition B.1 (Groupoids). A groupoid G consists of the following elements:

1. A collection of distinct spaces, denoted as Spaces(G).

2. A set of transformations (also called morphisms) between these spaces, denoted as Trans(G).

3. Each transformation f ∈ Trans(G) maps one space in Spaces(G) to another space (or potentially to itself), denoted as
f : X → Y , where X,Y ∈ Spaces(G).

4. There is a rule for combining transformations: for any two transformations f : X → Y and g : Y → Z, their composition
results in a transformation g ◦ f : X → Z.

5. Each space S ∈ Spaces(G) has an identity transformation idS : S → S that maps S to itself, such that for any space
X ∈ Spaces(G) and any transformation f1 : S → X and f2 : X → S, it guarantees f1 ◦ idS = f1 and idS ◦ f2 = f2.

6. Every transformation f : X → Y has a unique inverse transformation f−1 : Y → X such that f−1 ◦ f = idX and
f ◦ f−1 = idY .

B.2. Statistical tests as graph regression on feature hypergraphs

To prove the result of Theorem 3.2, we will first show an intermediate result using the notion of maximal invariants. Let G
be a transformation group acting on a space X. A function M : X→ Z is said to be maximal invariant if it is invariant to
transformations of G and if ∀x1, x2 ∈ X, M(x1) = M(x2) implies x2 = g ◦ x1 for some group action g ∈ G, that is, if M
is constant on the orbits but for each orbit, it takes on a different value (Lehmann et al., 2005, pp. 214). A maximal invariant
is a representation theory counterpart of sufficient statistics.

Our intermediate result will show that the feature hypergraph admits a graph representation that is a maximal invariant. But
first, we need to formally define the class of invariances, which we show later is essential for STAGE’s domain transferability.
Since we are interested in attribute spaces of distinct domains, rather than using groups (which involve automorphisms
mapping a space onto itself), we will use groupoids (Definition B.1). Groupoids generalize the concept of groups by allowing
transformations between multiple spaces. In a group, all transformations map a space onto itself, while in a groupoid,
transformations can map between different spaces, but must still be invertible.

Definition B.2 (Component-wise order-preserving groupoids for attributes (COGF)). Let X1,X2 be two attribute spaces,
both with d attribute dimensions. An attribute transformation f : X1 → X2 is said to be component-wise order-preserving if
it can be decomposed into a set of maps f1, . . . , fd, where each fi maps the i-th dimension of X1 to the i-th dimension of
X2 and is a homomorphism that preserves the total order in X1, and all dimensions of both X1 and X2 have a mapping.

Given an attributes of the endpoint nodes E = {{(xu,xv) | (u, v) ∈ E}} and a groupoid action f from the COGF (Defini-
tion B.2), we define how f acts on E as follows:

f(E) = {{(f(xu), f(xv)) | (u, v) ∈ E}} .

14

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

Now, we are ready to establish the intermediate result as follows.

Lemma B.3. Given a multiset of attributes of the endpoint nodes E and the feature hypergraph FE (Definition 3.1). There
exists a parameterization θ∗ for a maximally expressive hypergraph GNN encoder M such that Mθ∗(FE) is a maximal
invariant under COGFs (Definition B.2).

Proof. Let V(FE) be set of labeled nodes (labeled with the feature id and the order statistic position) of FE , letH(FE) be
set of hyperedges of FE , and let m(FE) be the number of entities from E , which are labeled with the entire graph during
creation. Given two hypergraphs FE1

,FE2
, we define FE1

= FE2
if and only if V(FE1

) = V(FE2
), H(FE1

) = H(FE2
),

and m(FE) = m(FE′). Note that since the node in the feature hypergraph are always labeled, a most expressive hypergraph
GNN Mθ∗ will ensure that Mθ∗(FE1) = Mθ∗(FE2) if and only if FE1 = FE2 .

Let G be the COGF (Definition B.2) and let f ∈ G be an arbitrary groupoid action of COFG. To show invariance, the
goal is to show that Mθ∗(FE) = Mθ∗(Ff(E)) for any E . Because Mθ∗ is most expressive, this is equivalent to showing
FE = Ff(E).

Let V(FE) = {(i, k, l)}i∈[d],k∈[m],l∈{1,2}. We first observe that since f acts on individual feature values, it does not change
the total number of entities. Hence, the set of hypergraph nodes remain unchanged, V(Ff(E)) = V(FE) = m.

For the edges, consider an arbitrary hyperedge Huv in FE . Then, because f is a COGF, it preserves the order statistics of all
feature values. Thus, the order of the feature value oi(u) from E remains the the same as o′i(u) from f(E), for all i and
u. Hence, Huv is also a hyperedge in Ff(E). Similarly, because f has an inverse f−1, we can show that for every edge
H ′

uv in Ff(E), it is also in FE under the transformation f−1. Thus,H(FE) = H(Ff(E)) and so FE = Ff(E), and therefore
Mθ(FE) = Mθ(Ff(E)).

To show maximality, let Mθ∗(FE) = Mθ(FE′) for some E and E ′. Our goal is to show that E and E ′ are on the same orbit,
i.e. there exists a f ∈ G such that f(E) = E ′.

Because Mθ∗ is most expressive, we know FE = FE′ . This implies that V(FE) = V(FE′) and |H(FE)| = |H(FE′)|. First,
Let m = |V(FE)| = |V(FE′)|. And since V(FE) = V(FE′), we also know both E and E ′ must have the same number of
features. Denote it d. In addition, because H(FE) = H(FG′), we have |E| = |E′|. Second, pick any endpoint features
(xu,xv) ∈ E , and let Huv ∈ H(FE) be the corresponding hyperedge. We know that Huv ∈ H(FE′) as well. Hence, there
exists an counterpart endpoint features (xu′

,xv′
) ∈ E ′ such that

∀1 ≤ i ≤ d, oi(u) = o′i(u
′) and oi(v) = o′i(v

′),

where oi(·) is the order of values of i-th feature in FE and o′i(·) the order of values of i-th feature in FE′ . Thus, we can
construct a COGF groupoid action f as follows:

Let f be decomposed into a set of maps f1, . . . , fd for every feature dimension i. Each fi is a piecewise linear function fi
defined as follows:

fi(a) =

a− (x)i(0) + (x′)i(0) if a < (x)i(0)

(x′)i(k) if a = xi(k) for some k : 1 ≤ k ≤ m′
i

(x′)i(k0) +
(x′)i(k1)−(x′)i(k0)

(x)i(k1)−(x)i(k0)
(a− (x)i(k0)) if xi(k0) < a < xi(k1) for some

k0, k1 : 1 ≤ k0 < k1 ≤ m′
i

a− (x)i(m′
i)
+ (x′)i(m′

i)
if a > (x)i(m′

i)

Since each fi is a piecewise linear function that strictly increases, each of them preserves the order of feature values. And
since f can be decomposed into fi’s, f is a COGF groupoid action.

Hence, we have showed that there exists a f such that f(E) = E ′ which shows maximality. Hence completing the proof.

Based on Lemma B.3, we are ready to prove that measuring dependencies of the features (xu,xv) ∈ E under COGF
invariances can be defined as depending only on a most-expressive GNN encoding of the feature hypergraph FE . In short,
this is because any hypothesis test T (E) that can be expressed as rank test is invariant to COGF, and any invariant function
can necessarily be expressed as depending only on a maximal invariant.

15

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

Theorem 3.2. Given a multiset of attributes of the endpoint nodes E , the corresponding feature hypergraph FE (Def-
inition 3.1) and a most-expressive hypergraph GNN encoder Mθ∗(FE), then any test T (E) that focuses on measuring
the dependence of the attributes of the endpoint nodes of E has an equivalent function h within the space of Multilayer
Perceptrons (MLPs) that depends solely on the graph representation Mθ∗(FE), i.e., ∃h ∈ MLPs s.t. T (E) = h(Mθ∗(FE)).

Proof. We first note that any test T (E) that focuses on measuring the dependence or independence of endpoint features of
E is necessarily a rank test that relies solely on the indices of the order statistics rather than the numerical values of the
features (Bell, 1964; Berk & Bickel, 1968). As such, T (E) is invariant to COGFs (Definition B.2). Now, we show that given
E , FE , and a most expressive hypergraph GNN encoder Mθ∗ , there exists an h such that T (E) = h(Mθ∗(FE)).

For any E1, E2, we know that if Mθ∗(FE1
) = Mθ∗(FE2

), then f(E1) = E2 for some groupoid action f in COGF (Lemma B.3).
Then, because T is invariant to f , we have that T (E1) = T (f(E1)) = T (E2). Hence, each value of Mθ∗(FE) is associated
with no more than one value of T (E). In other words, there exists a mapping h∗ such that h∗(Mθ∗(FE)) = T (E).

Since MLPs are universal function approximators (Leshno et al., 1993), there exists a MLP h that approximates h∗, i.e.,
h(Mθ∗(FE)) = T (E).

B.3. Correspondence between STAGE-edge-graphs and feature hypergraphs

For the proof of Theorem 3.3, we first prove an intermediate result, which establishes that there exists a bijective mapping
between the feature hypergraph FE and the multiset of stage graphs, SE := {{G(Suv) | (u, v) ∈ E}}, where each STAGE-
edge-graph is equipped with unique feature ids. In the case of repeated feature values, we will show a bijective mapping to a
collapsed feature hypergraph, where the nodes corresponding to the repeated feature values are collapsed into one single
node, with its order k being the smallest order of these repeated values. We denote by n′

i the number of unique feature
values of feature i. We note that such a collapsed feature hypergraph in the case of repeated feature values will provide a
representation that is stabler than the traditional rank tests, as repeated values will translates into uncertainty or noise in the
rank test results, whereas our feature hypergraph representation will remain stable.
Lemma B.4. There exists a bijective mapping I between the multiset of STAGE-edge-graphs SE :=
{{G(Suv) | (u, v) ∈ E}} with unique feature ids and the feature hypergraph FE (Definition 3.1).

Proof. Let G = (V,E,X) be an input graph and let E = {{(xu,xv) | (u, v) ∈ E}} be the corresponding multiset of
attributes of the endpoint nodes. We assume that each stage graph G(Suv) ∈ SE has nodes labeled as follows: the node
associated with i-th feature for the source node u is labeled with (i, 1), and the node associated with i-th feature for the
target node v is labeled with (i, 2), for every feature i ∈ [d]. Thus, given the graph G(Suv), we can recover weighted
adjacency matrix Suv , and so there is a one-to-one mapping between them. Hence, for the following discussion, we refer to
G(Suv) and Suv interchangeably.

We first show that, given SE , we can construct FE .

Construct I : I(SE) = FE :

We first construct the set of feature hypergraph nodes. For every feature i, collect the multiset Qi1 = {{Suv
ii }}(u,v)∈E

and Qi2 =
{{

Suv
(i+d)(i+d)

}}
(u,v)∈E

and let Qi = Qi1 ∪ Qi2. In words, Qi1 collects the i-th feature’s empirical c.d.f.,

Suv
ii = p(xu

i) = P(xi ≤ xu
i), of the source node u of all edges. Similarly, Qi2 collects the i-th feature’s empirical c.d.f.,

Suv
(i+d)(i+d) = p(xv

i) = P(xi ≤ xv
i), of the target node v of all edges. Note that Qi is a multiset, so if there are multiple

nodes u (or v) with the same i-th feature value xu
i (or xv

i), they will have the same empirical c.d.f. p(xu
i) (or p(xv

i)), and
thus Qi will record the multiplicity (number of occurrence) of such repeated c.d.f. values.

Sort the unique values in the multiset Qi in ascending order and denote the sorted sequence of unique values as Si =
(s1, s2, . . . , sm′

i
) where sl ∈ Qi for each l ∈ [m′

i] where m′
i ≤ m is the total number of unique values for feature i (if all

values have multiplicity of 1, then m′
i = m). Denote ni(sl) the multiplicity of the value sl in the multiset Qi. Then, we can

recover the feature hypergraph’s nodes corresponding to the i-th feature as follows:

• For the smallest feature value, Ccnstruct the two nodes labeled (i, 1, 1) and (i, 1, 2).

• For l ∈ {2, 3, . . . ,m′
i} and sl ∈ Si, construct the two nodes labeled as (i, l− 1+ni(sl−1), 1) and (i, l− 1+ni(sl−1), 2).

l − 1 + ni(sl−1) is the order of the feature value sl, accounting for multiplicity.

16

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

Repeating the above process for all features i will recover the node set of the feature hypergraph.

Then, we reconstruct the multiset of hyperedges. Take any Suv ∈ SE . Again, for every feature i, we have Suv
ii = p(xu

i)
denoting the empirical c.d.f. of the i-th feature of the source node u. Let Niu = {(i, ki,1, 1), . . . , (i, ki,m′

i
, 1)}, where the

ki,l’s are the orders (l ∈ [m′
i]). Niu then is the subset of hypernodes for feature i associated with the source node u in

the original edge in the input graph. Now, let l′ be the smallest integer in [m′
i] such that ki,l′ > Suv

ii = p(xu
i), and let

kui = ki,l′ − 1. Then, kui is the order of the i-th feature of node u, i.e., kui = oi(u).

Similarly, for every feature i, we have Suv
(i+d)(i+d) = p(xv

i), the empirical marginal c.d.f. when node v is the target node of an
edge. Let Niv = {(i, ki,1, 2), . . . , (i, ki,m′

i
, 2)}. Let l′′ be the smallest integer in [m′

i] such that kl′′ > Suv
(i+d)(i+d) = p(xv

i).
Then, let kvi = kl′′ − 1, and this is the order of the i-th feature of node v, i.e., kvi = oi(v).

Hence, we have recovered the hyperedge:

Huv = {(i, kui , 1)}i∈[d] ∪ {(i, kvi , 2)}i∈[d].

where kui and kvi are defined as above.

Repeat the above process for every Suv ∈ SE , then we recover the entire multiset of hyperedges for the feature hypergraph.

Construct I−1 : I−1(FE) = SE .

Given a feature hypergraphFE with V(FE) the set of nodes andH(FE) the multiset of hyperedges. Our goal is to reconstruct
the multiset of STAGE-edge-graphs SE = {{G(Suv) | (u, v) ∈ E}} for some underlying edge set E.

Pick any hyperedge H = {(i, k1i , 1)}i∈[d] ∪ {(i, k2i , 2)}i∈[d] ∈ H(FE), where k1i = oi(u) is the order of i-th feature value
for some unknown node u and k2i = oi(v) the order of i-th feature value for some unknown node v. We first construct
the corresponding STAGE-edge-graph adjacency matrix, which we denote SH . Once SH is obtained, then we have the
STAGE-edge-graph G(SH).

First, we construct the diagonal entries of SH as follows. Note that the entire hypergraph is labeled with an integer m,
which indicate the total number of entities (nodes) in the original input graph. Hence, we can recover the marginal empirical
c.d.f. of the i-th feature value of each entity. Specifically, for every feature i, we have k1i from the hyperedge H , denoting
the order of i-th feature value of the underlying source node u of an edge in the original input graph. If there is another
hypergraph node (i, k′, 1) ∈ V(FE) such that k′ > k1i , then let n1

i = k′ − 1. Otherwise, let n1
i = m. Thus, n1

i indicates the
total number of nodes in the original input graph that have the i-th feature values smaller than or equal to the i-th feature
value of the current node u. Note that n1

i accounts for multiplicity, if there were multiple nodes having the same i-th feature
value as this node. Hence, let SH

ii = n1
i /m, which is equal to the marginal empirical c.d.f. of the i-th feature value of node

u.

Similarly, for every feature i we have k2i . If there is another hypergraph node (i, k′, 2) ∈ V(FE) such that k′ > k2i , then let
n2
i = k′ − 1. Otherwise, let n2

i = m. Let SH
(i+d)(i+d) = n2

i /m. Hence, we have filled in the diagonal entries of SH .

Second, we construct the off-diagonal entries of SH . Recall that the off-diagonal entries of STAGE-edge-graph weighted
adjacency matrices denote the empirical conditional probabilities between two different features (Equation (2)), either
within the same source node, the same target node, or between the source and target node. Specifically, for any two features
i, j ∈ [d], i ̸= j, the entry is

SH
ij = PA∼Unif(V)(xA

i ≤ xu
i | xA

j ≤ xu
j)

SH
i(j+d) = P(A,B)∼Unif(E)(xA

i ≤ xu
i | xB

j ≤ xv
j)

SH
(i+d)j = P(A,B)∼Unif(E)(xB

i ≤ xv
i | xA

j ≤ xu
j)

SH
(i+d)(j+d) = PB∼Unif(V)(xB

i ≤ xv
i | xB

j ≤ xv
j)

where (u, v) is the edge in the input graph corresponding to the hyperedge H .

We can compute these entries of SH as follows. First, given any hyperedge H ′ ∈ V(FE), denote Kd
H′(i) for any i ∈ [d] and

r ∈ {1, 2} such that (i,Kd
H′(i), r) ∈ H ′. Then, regarding our particular hyperedge H of interest, for every pair of features

i, j ∈ [d] with i ̸= j, we can obtain n1
i , n1

j , n2
i , and n2

j as defined previously. Recall that nd
i is the number of feature values

of i-th feature that are smaller than or equal to the current i-th feature value captured by H , for both the source node (r = 1)
or the target node (r = 2).

17

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

For the entry SH
ij and SH

(i+d)(j+d), they capture inner-node feature dependencies, and we notice that the empirical conditional
probabilities are defined w.r.t. random nodes sampled uniformly from the set of all nodes. Hence, we can compute these two
entries as follows:

SH
ij = min{1, n1

i /n
1
j}

SH
(i+d)(j+d) = min{1, n2

i /n
2
j}.

To compute the entries for SH
i(j+d) and SH

(i+d)j , we note that the random nodes A,B are uniformly sampled from the set of
edges E. To do so, we first define the two subsets of hyperedgesH1

j andH2
j as follows:

H1
j := {K1

H′(j) ≤ n1
j | H ′ ∈ H(FE)}

H2
j := {K2

H′(j) ≤ n2
j | H ′ ∈ H(FE)}.

In other words, H1
j is the subset of hyperedges whose node, (i,K1

H′(j), 1), has an order K1
H′(j) that is smaller than or

equal to the order of the counterpart node of the current hyperedge H . Vice versa forH2
j . Hence, we have

|H1
j |/|H(FE)| = P(A,B)∈Unif(E)(xA

j ≤ xu
j)

|H2
j |/|H(FE)| = P(A,B)∈Unif(E)(xB

j ≤ xv
j).

Then, we define the next two subsetsH1|2
i|j andH2|1

i|j as follows:

H1|2
i|j := {K1

H′(i) ≤ n1
i | H ′ ∈ H2

j}

H2|1
i|j := {K2

H′(i) ≤ n2
i | H ′ ∈ H1

j}

These two subsets help us effectively computes the empirical conditional probabilities. Namely, now we have

|H1|2
i|j |/|H

2
j | = P(A,B)∈Unif(E)(xA

i ≤ xu
i | xB

j ≤ xv
j)

|H2|1
i|j |/|H

1
j | = P(A,B)∈Unif(E)(xB

i ≤ xv
i | xA

j ≤ xu
j)

Thus, we set the adjacency matrix entries for inter-node dependencies to

SH
i(j+d) = |H

1|2
i|j |/|H

2
j |

SH
(i+d)j = |H

2|1
i|j |/|H

2
j |

Now that we have constructed a mapping I mapping SE to FE , and another mapping I−1 mapping FE to SE , we now want
to check that they are valid bijections. To show this, we show that I−1 ◦ I = Identity, and I ◦ I−1 = Identity.

Show that I−1 ◦ I = Identity

Let SE be an arbitrary multiset of STAGE-edge-graphs. Let F ′ = I(SE) and S′′ = I−1(F ′) = I−1(I(SE)). First, we
observe that the mapping I transforms each element G(Suv) ∈ SE to one hyperedge H ′ ∈ F ′. Similarly, the mapping
I−1 transforms each hyperedge H ′ ∈ F ′ to one STAGE-edge-graph G′′ ∈ S′′. Hence, as long as we show that, for any
G(Suv) ∈ SE , the composed transformation I−1 ◦ I produces a STAGE-edge-graph G′′ such that G(Suv) = G′′, we can
conclude I−1 ◦ I = Identity.

To observe this, we first note that G′′ has the same set of labeled nodes with G, and that each node (i, r), i ∈ [d], r ∈ {1, 2}
has the same empirical marginal c.d.f. values. Similarly, between any two nodes (i1, r1) and (i2, r2), G and G′′ will have
the same edge attribute for the edge ((i1, r1), (i2, r2)), which corresponds to the empirical conditional probabilities between
features i1 and i2 and between node placement in the original edge (source or target) r1 and r2. Thus, G = G′′.

Show that I ◦ I−1 = Identity

Let FE be an arbitrary feature hypergraph. Let S′ = I−1(FE) and F ′′ = I(S′). Similarly, as long as we show that, for any
hyperedge H ∈ FE , the composed transformation I ◦ I−1 produces a hypergraph H ′′ such that H = H ′′, we can conclude
that I ◦ I−1 = Identity.

18

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

To observe this, we note that every hyperedge (i, k, r) ∈ H , where i ∈ [d], 1 ≤ k ≤ m′
i, r ∈ {1, 2}, will be recovered in

H ′′. This is because each (i, k, r) ∈ H corresponds to a unique labeled node (i, r) in the STAGE-edge-graph G′, which will
be used to construct a node (i, k′′, r) in H ′′ under the mapping I. In terms of the order k, the mapping I−1 will converts it
into the marginal empirical c.d.f. value, which is treated as the attribute of node (i, r) in the STAGE-edge-graph G′. The
mapping I, on the other hand, will convert this marginal empirical c.d.f. value into the order k′′ for the node (i, k′′, r) in
H ′′, guaranteeing k′′ = k. Thus, every node (i, k, r) that is in H is also in H ′′, and there will be no additional nodes created
for H ′′. Hence, H = H ′′ for every hyperedge H ∈ FE , and thus I ◦ I−1 = Identity.

In conclusion, we have shown two mappings, I and I−1, and have shown that they are the inverse transformation of each
other. Hence, I is a bijective mapping between the multiset of STAGE-edge-graphs and feature hypergraph.

Given the bijective mapping in Lemma B.4 between the multiset of STAGE-edge-graphs with unique feature identifiers
and the feature hypergraph, and the fact that the feature hypergraph allows for a maximal invariant graph representation
(Lemma B.3), it follows that the set of STAGE-edge-graphs can also yield a maximal invariant representation of the original
input graph. This observation is formalized as below, which is our second theoretical contribution:
Theorem 3.3. Given the attributes of the endpoint nodes E (Definition 3.1) of a graph G = (V,E,X), there exists an
optimal parameterization θ∗g , θ

∗
s for a most expressive GNN encoder Mg and a most-expressive multiset encoder Ms,

respectively, such that Mθ∗
s ,θ

∗
g
(G) := Ms

θ∗
s

({{
Mg

θ∗
g
(G(Suv)) : (u, v) ∈ E

}})
such that any test T (E) that measures the

dependence of E’s attributes of the endpoint nodes has an equivalent function h within the space of Multilayer Perceptrons
(MLPs) that depends solely on the graph representation Mθ∗

s ,θ
∗
g
(G), i.e., ∃h ∈ MLPs s.t. T (E) = h(Mθ∗

s ,θ
∗
g
(G)).

Proof. To show invariance, let G1 = (V,E,X2) and G2 = (V,E,X2) be two graphs such that f(X1) = X2 for some
groupoid action f in the COGF. Let E1 and E2 be the corresponding attributes of the endpoint nodes respectively, from which
we have f(E1) = E2. Let S1E = {{G(Suv

1) | (u, v) ∈ E}} and S2E = {{G(Suv
2) | (u, v) ∈ E}} be the corresponding

STAGE-edge-graphs respectively.

Since f(E1) = E2, and the attribute hypergraph is invariant to COGF (shown in the proof for Lemma B.3), we have
FE1

= FE2
. And since there is a one-to-one mapping between the multiset of STAGE-edge-graphs and the feature

hypergraph, we have S1E = S2E . Hence,{{
Mθ∗

g
(Suv

1) | (u, v) ∈ E
}}

=
{{

Mθ∗
g
(S)

}}
S∈S1E

=
{{

Mθ∗
g
(S)

}}
S∈S2E

=
{{

Mθ∗
g
(Suv

2) | (u, v) ∈ E
}}

.

As a result,

Mθ∗
s ,θ

∗
g
(G1) = Ms

θ∗
s
(
{{

Mg
θ∗
g
(G(Suv

1)) | (u, v) ∈ E
}}

)

= Ms
θ∗
s
(
{{

Mg
θ∗
g
(G(Suv

2)) | (u, v) ∈ E
}}

) = Mθ∗
s ,θ

∗
g
(G2).

To show maximality, Let G1 and G2 be two graphs such that Mθ∗
s ,θ

∗
g
(G1) = Mθ∗

s ,θ
∗
g
(G2). Then, because Ms

θ∗
s

is a most
expressive multiset encoder, we have that

Ms
θ∗
s
(
{{

Mg
θ∗
g
(G(Suv

1)) | (u, v) ∈ E
}}

) = Ms
θ∗
s
(
{{

Mg
θ∗
g
(G(Suv

2)) | (u, v) ∈ E
}}

).

Again, since Mg
θ∗
g

is a most expressive GNN, we have

S1E = {{G(Suv
1) | (u, v) ∈ E}} = {{G(Suv

2) | (u, v) ∈ E}} = S2E .

This implies that the feature hypergraphs FE1
and FE2

are the same, FE1
= FE2

due to the bijective mapping between
multisets of STAGE-edge-graphs and feature hypergraphs. And as has been shown in the proof of Lemma B.3, this implies
there exists a groupoid action f in COGF such that f(E1) = E2. Hence, we have shown that Mθ∗

s ,θ
∗
g
(G) is a maximal

invariant representation w.r.t. COGF.

Thus, similar to the proof of Theorem 3.2, there exists a MLP h such that for any test T (E), we have

T (E) = h(Mθ∗
s ,θ

∗
g
(G)).

19

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

B.4. COGG Invariances

Definition B.5 (Component-wise order-preserving groupoid for graphs (COGG)). Denote X the space of node attributes
with d ≥ 1 dimensions, and G(X) the space of attributed graphs with attribute space X and m ≥ 2 entities. A graph
transformation g : G(X1)→ G(X2) of two attribute spaces X1 and X2 is said to be a groupoid action of the component-wise
order-preserving groupoid for graphs if it can be decomposed into a permutation of node identities gnode : V → V and
a transformation of node attributes gattribute : X1 → X2 satisfying the following. Given G1 = (V,E1,X1) ∈ G(X1) and
G2 = (V,E2,X2) ∈ G(X2) with g(G1) = G2,

• ∀u, v ∈ V, (u, v) ∈ E1 ⇐⇒ (gnode(u), gnode(v)) ∈ E2 .

• gattribute is a COGF (Definition B.2) except for any i ∈ [d], the i-th component gattribute,i may map the i-th dimension of X1

to a different dimension of X2, while maintaining a one-to-one correspondence between all dimensions of X1 and X2.

B.5. STAGE as a COGG Invariant Representation

Theorem 3.4. STAGE is invariant to COGGs (Definition B.5).

Proof. Given a graph G = (V,E,X), a STAGE model M applies two instances of equivariant GNNs, an intra-edge GNN
and an inter-edge one, to process the input graph. Denote the intra-edge GNN M1 and the inter-edge GNN M2. The
intra-edge GNN M1 is applied onto SE := {{G(Suv) | (u, v) ∈ E}}, the set of STAGE-edge-graphs, to produce edge-leve
embeddings:

ruv = M1(G(Suv)),∀(u, v) ∈ E

and the inter-edge GNN M2 takes the edge-level embeddings as the edge attributes onto the original graph, i.e., making a
G′ = (V,E,

{{
ruv(u,v)∈E

}}
) to produce a final graph representation:

M(G) = M2(G
′) = M2((V,E, {{ruv}}(u,v)∈E))

Now, consider a train graph Gtr = (Vtr, Etr,Xtr) with Etr and a test graph Gte = (Vte, Ete,Xte) such that there exists a
groupoid action g in the COGG (Definition B.5) satisfying g(Gtr) = Gte. As per Definition B.5, g is composed of a node
identity permutation gnode and a attribute transformation gattribute.

We first note that the multiset {{ruv}}(u,v)∈E is invariant to node identity permutation gnode because a multiset is invariant
to the permutation of its elements. Since the inter-edge GNN M2 is an equivariant GNN, we have that

M(gnode(Gtr)) = M((gnode(Vtr), gnode(Etr), {{ruv}}(u,v)∈gnode(Etr)
)) = M(Gtr).

Hence, as long as we can show that the graph representation given by M is also invariant under gattribute, then we together we
can show that M is invariant to our groupoid action g, and that M(Gtr) = M(Gte).

To proceed, we first note that the groupoid action gattribute, when applied to an attributed graph G, can be expressed as
gattribute(G) = (V,E, gattribute(X)), because the attribute transformation only acts on the node attributes but leaves the graph
structure unchanged. Hence, when applying the inner-edge GNN M1 to the multiset of STAGE-edge-graphs of a transformed
input graph gattribute(G), we write M1(gattribute(G(Suv))), for all (u, v) ∈ E.

Now, all we need to show is that the intra-edge GNN M1 produces a multiset of STAGE-edge-graph representations that
is invariant under the attribute transformation gattribute, i.e., {{M1(G(Suv))}}(u,v)∈E = {{M1(gattribute(G(Suv)))}}(u,v)∈E .
Since gattribute is COGF (Definition B.2) except it may map different training attribute dimensions of Xtr to different attribute
dimensions of Xte, we can therefore further decompose it into two different components: h and f with g = h ◦ f , where h
is a mapping that permutes attribute dimensions, and f is a COGF.

In Theorem 3.3, we have shown that a most expressive GNN applied to a STAGE-edge-graph G(Suv) equipped with
attribute ids (which are the nodes ids in the STAGE-edge-graph because nodes correspond to attribute dimensions) produces
maximal invariant representation under COGF. Hence, this implies that the intra-edge GNN M1, when applied to each
STAGE-edge-graph, without unique node ids, will produce an invariant representation to the COGF f . Namely, for all
(u, v) ∈ E,

M1(f(G(Suv))) = M1(G(f(Suv))) = M1(G(Suv)).

20

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

Note that f(G(Suv)) = G(f(Suv)) because f acts on the node and edge attributes in G(Suv) (which are derived from the
attribute values), but preserve the graph structure.

On the other hand, once the node ids in STAGE-edge-graph G(Suv) is dropped, because M1 is an equivariant GNN, we
also have that the M1’s output representations are invariant to permutations of the attribute dimensions, which corresponds
to the permutations of node ids in the STAGE-edge-graph. Namely, for all (u, v) ∈ E,

M1(h(G(Suv))) = M1(G(Suv)).

Hence, together we have that for any (u, v) ∈ E,

M1(gattribute(G(Suv))) = M1(h ◦ f(G(Suv))) = M1(h(G(Suv))) = M1(G(Suv)),

Thus completing the proof.

C. Datasets
Here we describe how we construct the E-Commerce Category Dataset, the H&M Dataset, and the Social Network Datasets
(Friendster and Pokec).

C.1. E-Commerce Category Dataset

To test the model’s generalization to new input attribute spaces, we consider a dataset of E-Commerce users and prod-
ucts (Kechinov, 2020). There are 29,228,809 different product categories, such as smartphones, shoes, and computers.
We select a subset of the most popular product categories and form an input graph from the products under each category
and their respective connected users. At test time, we hold out an entirely different graph containing unseen products,
from new unseen categories and associated users, and test the zero-shot (i.e., frozen model) performance on the test data.
In this dataset, we focus on the single task of predicting links between users and products, with links indicating a user
purchasing/viewing/carting/uncarting a product.

However, all categories originally share the same attributes. To ensure that the graph domains we build have different
attribute types, we use GPT-4 to retrieve information specific to each category. Specifically, the information retrieval process
involves prompting GPT-4 with the following content:

"According to the following information regarding an E-Commerce purchase, give
information about the product in the following asked format."

"First, the product is purchased at time: " + row["event_time"] + "."
"Second, the category of the product is " + row["category_code"] + "."
"Third, the brand of the product is " + row["brand"] + "."
"Last, the price of the product is " + str(row["price"]) + "."
"Please provide information about the product in the following json format."
"{json_prototype}"

The JSON prototype is different for different categories, and contains attributes that are specific for the category being
prompted. That is, the JSON prototype for smartphones contains, for instance, attributes like display type, which is not a
attribute for shoes, containing instead attributes such as ankle height. In the following, we report the JSON prototype for all
categories.

bed

{
"type": <select from [’Twin’, ’Twin XL’, ’Full’, ’Queen’, ’King’, ’California

King’]>,
"material": <select from [’Wood’, ’Metal’, ’Upholstered’, ’Bamboo’, ’Particle

Board’, ’Composite’]>,
"bed_frame_included": <select from [’True’, ’False’]>,

21

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

"headboard_included": <select from [’True’, ’False’]>,
"footboard_included": <select from [’True’, ’False’]>,
"mattress_included": <select from [’True’, ’False’]>,
"box_spring_required": <select from [’True’, ’False’]>,
"weight_capacity_lbs": <give int in lbs>,
"bed_size_length_inches": <give float in inches>,
"bed_size_width_inches": <give float in inches>,
"bed_size_height_inches": <give float in inches>

}

desktop

{
"processor_type": <select from [’Intel Core i3’, ’Intel Core i5’, ’Intel Core i7

’, ’Intel Core i9’, ’AMD Ryzen 3’, ’AMD Ryzen 5’, ’AMD Ryzen 7’, ’AMD Ryzen
9’, ’Apple M1’, ’ARM other’]>,

"ram_gb": <give int>,
"storage_type_hdd_size_gb": <give int>,
"storage_type_ssd_size_gb": <give int>,
"storage_type_hybrid_size_gb": <give int>,
"graphics_card": <select from [’NVIDIA GeForce GTX 1660’, ’NVIDIA GeForce RTX

2060’, ’NVIDIA GeForce RTX 2070’, ’NVIDIA GeForce RTX 2080’, ’AMD Radeon RX
570’, ’AMD Radeon RX 580’, ’AMD Radeon RX 590’, ’AMD Radeon RX 5700’, ’AMD
Radeon RX 5700 XT’]>,

"operating_system": <select from [’Windows 10’, ’macOS’, ’Linux Ubuntu’, ’Linux
Fedora’, ’Linux Mint’, ’Debian’, ’FreeBSD’]>,

"power_supply_watts": <give int>,
"cooling_system": <select from [’Air cooling’, ’Liquid cooling’, ’Passive

cooling’]>,
"has_bluetooth": <select from [’True’, ’False’]>

}

refrigerators

{
"energy_rating": <select from [’A+++’, ’A++’, ’A+’, ’A’, ’B’, ’C’]>,
"capacity_liters": <give int>,
"refrigerator_type": <select from [’Top Freezer’, ’Bottom Freezer’, ’Side-by-

Side’, ’French Door’, ’Mini Fridge’, ’Commercial’]>,
"defrost_type": <select from [’Manual’, ’Frost Free’, ’Automatic Defrost’]>,
"has_ice_maker": <select from [’True’, ’False’]>,
"has_water_dispenser": <select from [’True’, ’False’]>,
"has_smart_technology": <select from [’True’, ’False’]>,
"is_energy_efficient": <select from [’True’, ’False’]>,
"height_cm": <give float>,
"width_cm": <give float>,
"depth_cm": <give float>

}

smartphone

{
"display_type": <select from [’OLED’, ’LCD’]>,
"display_size": <give float in inches>,
"display_resolution": <give int in pixels>,
"processor_type": <give string>,

22

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

"ram": <give int in GB>,
"storage_options": <give int in GB>,
"rear_camera_primary_resolution": <give int in MP>,
"front_camera_resolution": <give int in MP>,
"operating_system": <select from [’Android’, ’iOS’, ’HarmonyOS’, ’KaiOS’, ’Tizen

’, ’Ubuntu Touch’, ’PureOS’, ’Sailfish OS’, ’Plasma Mobile’]>,
"Battery_capacity": <give int in mAh>,
"Has_gps": <select from [’True’, ’False’]>,
"has_nfc": <select from [’True’, ’False’]>
}

shoes

{
"type": <select from [’Running’, ’Casual’, ’Formal’, ’Sports’, ’Boots’, ’Sandals

’, ’Slippers’, ’Hiking’, ’Dress’, ’Work’, ’Safety’]>,
"material": <select from [’Leather’, ’Synthetic’, ’Textile’, ’Rubber’, ’Canvas’,

’Mesh’, ’Suede’, ’Patent Leather’, ’Nubuck’, ’Faux Leather’]>,
"color": <give string>,
"size": <give float in UK sizes>,
"gender": <select from [’Men’, ’Women’, ’Unisex’, ’Children’, ’Infants’]>,
"closure_type": <select from [’Laces’, ’Velcro’, ’Slip-on’, ’Buckle’, ’Zip’, ’

Hook and Loop’, ’None’]>,
"sole_material": <select from [’Rubber’, ’Synthetic’, ’PVC’, ’EVA’, ’Leather’, ’

TPU (Thermoplastic Polyurethane)’, ’TPR (Thermoplastic Rubber)’]>,
"water_resistant": <select from [’True’, ’False’]>,
"ankle_height": <select from [’Low-top’, ’Mid-top’, ’High-top’, ’Over the ankle

’]>,
"breathability": <select from [’High’, ’Medium’, ’Low’]>,
"weight": <give float in grams>,
"origin_country": <give string>,
"seasonality": <select from [’All-season’, ’Summer’, ’Winter’, ’Rainy’, ’Spring

’, ’Autumn’]>,
"eco_friendly": <select from [’True’, ’False’]>

}

After extracting attributes of different numbers for all categories, we also append the original two shared attributes of all
products (price, brand) that are considered to have a different distribution across categories, forming the following dataset
statistics. Since the customer nodes lack attributes, we build edges between attributed nodes of the same type (e.g., products)
based on common connections, forming STAGE-edge-graph for these new edges. These edges are provided to all baselines.

Table 3: Statistics of E-Commerce Categories

Category Number of Nodes Number of Edges Average Degree Num attributes

bed 4044 25788 6.38 13
desktop 3011 37450 12.44 12
refrigerators 2985 33520 11.23 13
smartphone 3391 31970 9.43 14
shoes 4032 54890 13.62 16

C.2. H&M Dataset

H&M has 106K products, sharing the same 25 attributes, and 1.37M customers, sharing the same 7 attributes. We sampled
the interaction between the most popular 830 products and 830 customers based on their node degrees. We discarded
14 product attributes since 12 of them are repetitive (e.g. perceived colour value id is just a one-to-one mapping of
perceived colour value name), 1 of them is the detail desc an English sentence that connects the other attributes, and 1

23

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

Table 4: Comparison of statistics between the Pokec and Friendster social network datasets after filtering and sampling
nodes.

Statistics Pokec Friendster

Number of nodes 283 1392
Number of edges 2084 3322
Number of node attributes 4 5
Attributes public, completion percentage,region, age age, interest, occupation,music, tv
Average degree 7.363957597173145 2.3864942528735633
Minimum degree 1 1
Maximum degree 29 12
Lowest degrees [1, 2, 3, 4, 5] [1, 2, 3, 4, 5]
Nodes with lowest degrees [35, 31, 25, 21, 14] [516, 404, 213, 113, 62]
Label 0 Ratio 50.88% 46.84%
Label 1 Ratio 49.12% 53.16%

of them is the article id serving as the identifier of each product. We also discarded 4 user attributes: customer id as the
identifier, FN and Active due to too many missing values (65% and 66% respectively), and postal code that is overdispersed.

After picking the largest connected component of the graph formed by the 830 products and 830 users, we construct this
dataset to have 77080 edges, 1580 nodes with an average degree 48.78, and 11 attributes for each product node and 3 attributes
for each user node. The product attributes are: product type name, product group name, graphical appearance name,
colour group name, perceived colour value name, perceived colour master name, department name, index name, in-
dex group name, section name, garment group name. The user attributes are: club member status, fashion news frequency,
age.

C.3. Social Network Datasets (Friendster and Pokec)

The original Pokec social network dataset contains 1632803 nodes and 30622564 edges and each node has 58 attributes.
However, 54 of them are difficult to encode either because they are random texts input by the user or because there is
no straightforward way to turn the attributes into totally ordered ones. We first filtered out the nodes that contain invalid
attributes and then sample the most popular 150 female and male nodes each before picking the largest connected components
of the graph formed by the popular nodes.

The original Friendster social network dataset contains 43880 nodes and 145407 edges and each node has 644 attributes.
However, most of the attributes are binary, which is inefficient for STAGE to encode (i.e. will need 644*2 nodes in each
STAGE-edge-graphs). We find out the attributes are in the format of a meta attribute (e.g. occupation) followed by a
more detailed attribute (e.g. writer). Therefore, we turned the binary attributes that share the same meta attribute into a
multicategorical attribute. We then filtered out the nodes that have only one active binary attribute under each meta attribute
(otherwise the multi-category does not make sense) and pick the largest connected components of the graph formed by the
these nodes.
In the end, the statistics of Pokec and Friendster datasets are available in Table 4.

D. Experiment Details
For Figure 3, Table 1, and Figure 4 We use the default NBFNet-PyG configuration for the inductive WN18RR dataset (Zhu
et al., 2021c), except for a few specific parameters. The input dimension for the node attribute is set to 256, and the model
includes six hidden layers with dimensions [256, 256, 256, 256, 256, 256], making a total of seven layers. For STAGE, we
use 1 layer of GINEConv (Hu et al., 2020) for the GNN on STAGE-edge-graph, which produces an edge representation of
dimension 256. We also append an extra p value to each edge in the STAGE-edge-graph for expressivity. All model are
trained with a batch size of 32 over 30 epochs.

For Figure 3, Figure 4, and the E-Commerce columns of Table 1 we average over seeds 0, 1, 2. For the H&M columns of
Table 1, we average over seeds 1024, 1025, 1026.

For Table 2, we average over seeds 32, 33, and 34 using the following configuration. The input attribute dimension is set to
64, with 128 as the dimension of hidden channels. The model uses 2 layers of GINEConv (Hu et al., 2020). The learning

24

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

Table 5: Zero-shot test Mean-Square Loss (lower is better) of STAGE and baselines on the Pokec dataset with regression
tasks on predicting the user’s age. Models were trained on the same sample of the Friendster dataset in Section 4. All
models show the same bad performance on doing this very challenging task because the root mean squared error (RMSE) of
constantly predicting the mean of all age values is 10.7. We use the same configurations as Table 2. N/A means the model
does not support node regression tasks.

Model RMSE (↓)

GINE-structural 10.99 ± 0.000
GINE-gaussian 10.99 ± 0.000
GINE-normalized 10.99 ± 0.000
GINE-llm 10.99 ± 0.000
GINE-age 10.99 ± 0.000
GraphyAny N/A
GCOPE N/A

GINE-STAGE (Ours) 10.99 ± 0.000

rate for the optimizer was set to 0.0001, with a dropout rate of 0.5 to mitigate overfitting. Training was carried out for
400 epochs. Additionally, STAGE is deployed with 2 layers of GNN on STAGE-edge-graph with GINEConv and an edge
representation of dimension 32. For GraphAny, we adopt the default configuration as preliminary experiments indicated that
modifying hyperparameters yielded no significant performance improvements.

E. Age Regression Experiment Results
Table 5 shows that the zero-shot regression on age across different social networks is a challenging task, particularly when
the age distributions of the datasets are drastically different. GraphAny and GCOPE are not included because they are
designed for and only supports node classification tasks. Figure 5 shows that the age distribution in the Pokec dataset is
skewed towards younger users, with notable frequencies for ages such as 0 (invalid data), 18, and 20, while ages above 42
are scarcely represented. In contrast, the Friendster dataset contains a much broader range of ages, including significant
numbers of users aged in their mid-twenties, such as 25, with smaller frequencies for users up to age 91. This disparity in
distribution—where Pokec’s frequencies are centered around younger users and Friendster’s are more spread across the
adult age spectrum—poses a substantial difficulty for models attempting to generalize across the two networks.

F. Ablation Study
In this section, we provide ablation studies to further investigate the effectiveness and versatility of STAGE. Experiments
in Appendix F.1 complement the main results in the paper by exploring whether STAGE is effective on alternative GNN
backbones and configurations. Experiments in Appendix F.2 then study if STAGE can outperform a model trained on the
common attributes shared between train and test domain, validating whether STAGE truly leverages dependencies among
unseen attributes at test time to make predictions.

F.1. Evaluating STAGE with GCN as the backbone GNN

In the main experiments, we employed GINE + NBFNet for link prediction and GINE + GINE for node classification as
the backbone GNN configurations. A natural question arises: Can STAGE be effective when using other backbone GNN
architectures? To address this, we propose GCN-STAGE (GINE + GCN (Kipf & Welling, 2016)), where we replace the
second GINE with a modified GCN to perform message passing on the original graph. We choose GCN as it is a well-known
baseline for node classification tasks. We modified GCN to process edge attributes by applying an MLP layer to edge
attributes before incorporating them into the edge messages. The first GINE model operating on STAGE-edge-graphs
remained unchanged.

Table 6 presents the results, which demonstrate that GCN-STAGE outperforms all baseline methods in terms of average
accuracy. Comparing to the other GCN-backbone models, GCN-STAGE outperforms with a 7.33% relative improvement,
and achieves an order-of-magnitude smaller standard deviation, showcasing the stability and consistency of predictions
across random seeds. Furthermore, same as GINE-STAGE, GCN-STAGE also outperforms GraphAny (Zhao et al., 2024b),
demonstrating that STAGE is effective on both GCN and GINE. We note that, however, the gain observed with GCN-STAGE

25

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

0 10 20 30 40
Age

0

20

40

60

80

100

Fr
eq

ue
nc

y

Pokec Age Distribution

20 30 40 50 60 70 80 90
Age

0

50

100

150

200

250

300

350

Fr
eq

ue
nc

y

Friendster Age Distribution

Figure 5: Comparison of Age Distributions in Pokec and Friendster Datasets. The top histogram shows the age distribution
for the Pokec dataset, where a significant number of users have an age of 0, followed by a noticeable peak around the age of
20. The bottom histogram illustrates the age distribution for the Friendster dataset, with a strong concentration of users
around the age of 25, and a smaller presence of older individuals.

is slightly lower than that of GINE-STAGE as shown in Table 2. This is not surprising, as GCN has been shown to have
lesser expressivity than GINE (Xu et al., 2018).

These results demonstrate the effectiveness of STAGE regardless of the backbone GNN architecture (GINE or GCN),
reinforcing the versatility and general applicability of STAGE across tasks and architectures, further solidifying its strength
as a robust framework.

F.2. Comparison with models trained on common attributes

In the second ablation study, we aim to investigate whether STAGE is truly leveraging dependencies among multiple unseen
node attributes to make zero-shot predictions on the test domain, rather than simply relying on the common attributes
shared between train and test. In particular, the attribute “price” and “brand” are shared between the E-commerce datasets
(Appendix C.1), and the attribute “age” is shared between Friendster and Pokec (Appendix C.3). Hence, we compare
STAGE to a model with the same backbone GNN trained to utilize the shared attribute to make predictions. We name
these models NBFNet-price on E-commerce datasets for link prediction, and GINE-age on Friendster and Pokec for node
classification. We do not experiment with training on the “brand” attribute because its values are distinct (or the distribution
have different supports) in different product categories.

26

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

Table 6: Zero-shot test accuracy (higher is better) of STAGE and baselines on the Pokec dataset. Models were trained on
a sample of the Friendster dataset. GCN-STAGE demonstrates the best zero-shot test accuracy, surpassing all other
methods in both average accuracy and stability.

Model Accuracy (↑)

GCN-structural 0.547 ± 0.0658
GCN-gaussian 0.567 ± 0.0382
GCN-normalized 0.570 ± 0.0315
GCN-llm 0.526 ± 0.0300
GraphAny 0.591 ± 0.0083
GCOPE 0.535 ± 0.0153

GCN-STAGE (Ours) 0.593 ± 0.0046

Table 7: Zero-shot Hits@1 and MRR of NBFNet-STAGE and NBFNet-price on the E-Commerce dataset. Models are
trained on all combinations of four graph domains and tested on the remaining domain. NBFNet-STAGE significantly
outperforms NBFNet-price, demonstrating that STAGE effectively utilizes more information than common attribute
(price) shared between attribute domains.

Model Hits@1 (↑) MRR (↑)

NBFNet-price 0.2713 ± 0.0280 0.3263 ± 0.0301
NBFNet-STAGE (Ours) 0.4606 ± 0.0123 0.4971 ± 0.0073

Tables 7 and 8 shows the results of this ablation study. NBFNet-STAGE outperforms NBFNet-price with a relative
improvement of 69.8% and GINE-STAGE outperforms GINE-age with a relative improvement of 12.0%. These results
corroborates our statement that STAGE is capable of leveraging complex dependencies among multiple attributes to make
predictions, even when said attributes are unseen during training, as STAGE significantly outperforms the models relying
only on shared attributes.

G. Interpreting STAGE
In Section 4, we demonstrated STAGE has a strong performance when zero-shotting to unknown attribute domains. A
natural question arises: how does STAGE recognize unseen attributes during zero-shot testing, and which attributes are most
relevant for making predictions? To address this, we conduct a qualitative analysis of STAGE’s behavior using saliency
maps (Erhan et al., 2009; Simonyan et al., 2013). This method computes the gradients of the model’s outputs with respect to
the input data, quantifying how much each input influences the model’s prediction.

We train NBFNet-STAGE on all 5 categories of the E-Commerce dataset. We then perform zero-shot inference on the
H&M dataset, obtaining triplet scores for missing edges. Let G = (V,E,X) be the input graph of the H&M dataset with
d attributes, T be the set of ground-truth triplets in H&M, and M(t), t ∈ T be the model’s output triplet score. Recall
that STAGE transforms raw attribute values into edge attributes Suv

f1f2
,Suv

(f1+d)f2
,Suv

f1(f2+d),S
uv
(f2+d)(f1+d) for each pair of

attributes f1, f2 and every edge (u, v) ∈ E. We compute the saliency of attribute pairs, EG,T (f1, f2), as follows:

EG,T (f1, f2) :=
∑
t∈T

∑
(u,v)∈E

∣∣∣∣ ∂M(t)

∂Suv
f1f2

+
∂M(t)

∂Suv
f1(f2+d)

+
∂M(t)

∂Suv
(f2+d)(f1+d)

+
∂M(t)

∂S
(f1+d)(f2+d)
ij

+
∂M(t)

∂Suv
f2f1

+
∂M(t)

∂Suv
f2(f1+d)

+
∂M(t)

∂Suv
f2(f1+d)

+
∂M(t)

∂Suv
(f2+d)(f1+d)

∣∣∣∣.
Thus, EG,T (f1, f2) indicates how the pair of attributes f1, f2 jointly influence the model’s output predictions.

One of the most striking aspects of STAGE is its ability to recognize relevant attribute dependencies zero-stho at inference
time (i.e., without requiring fine-tuning). To investigate this phenomenon, we examine the saliency values of every pair of
product attributes f1, f2 in the H&M dataset during zero-shot inference.

Figure 6 presents a heatmap of these normalized saliency values EG,T (f1, f2). The color bar indicates that lighter shades

27

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

Table 8: Zero-shot test accuracy of GINE-STAGE and GINE-age on the social network datasets. Models are trained on
Friendster and zero-shot tested on Pokec. GINE-STAGE outperforms GINE-age, demonstrating that STAGE effectively
utilizes more information than common attribute (age) shared between attribute domains.

Model Accuracy (↑)

GINE-price 0.582 ± 0.0657
GINE-STAGE (Ours) 0.652 ± 0.0042

pro
du

ct
typ

e

pro
du

ct
gro

up

gra
ph

ica
l a

pp
ea

ran
ce

col
ou

r g
rou

p

pe
rce

ive
d c

olo
ur

va
lue

pe
rce

ive
d c

olo
ur

mast
er

de
pa

rtm
en

t

pro
du

ct
ind

ex

pro
du

ct
ind

ex
gro

up
sec

tio
n

ga
rm

en
t g

rou
p

product type

product group

graphical appearance

colour group

perceived colour value

perceived colour master

department

product index

product index group

section

garment group
0.0

0.2

0.4

0.6

0.8

1.0

Figure 6: Saliency heatmap of the product attribute pairs in the H&M dataset. A lighter color indicates a larger gradient of
the model’s outputs w.r.t. the pair of attributes, hence the attribute pair is more relevant to the model’s predictions. attributes
that describes the product’s type and categories – “product type”, “department”, “section”, “garment group” –
generally are more relevant, whereas product indexes – “product index”, “product index group” – are least relevant
to the model’s predictions.

correspond to larger saliency values, signifying a greater impact on the model’s output. Surprisingly, we find that certain
attribute pairs exhibit high saliency values, such as “product type”, “department”, “section”, and “garment group” because
these attributes form a natural hierarchical taxonomy that effectively narrows down and defines specific products. A
product’s identity is progressively constrained through this hierarchy, from department (e.g., Ladies), to section (e.g.,
Clothes), to garment group (e.g., Dresses), to specific product type (e.g., Cocktail Dress). Each level in this taxonomy
provides increasingly specific product categorization, making these attribute pairs particularly informative for product
identification and classification. This is notable because these attributes are not explicitly labeled or weighted in our dataset;
instead, STAGE has learned to recognize their importance while pretained on the different attribute space of E-commerce.

In contrast, attribute pairs like “product index” and “product index group” demonstrate low saliency values. This makes
sense, as these attributes are arbitrary numerical identifiers that carry no semantic meaning about the product’s characteristics,
intended use, or target demographic. Unlike meaningful attributes that describe product properties, these index values are
simply database artifacts used for internal record-keeping. However, the fact that STAGE can distinguish between relevant
and irrelevant attributes without explicit guidance is a testament to its ability to capture subtle patterns in the data.

These results are particularly remarkable because they emerge from zero-shot inference, where all attributes are unseen
and no fine-tuning has been performed. This suggests that STAGE is capable of generalizing to new domains and tasks,
even when faced with unfamiliar attribute sets. Our findings reinforce our main experimental results in Section 4, providing
further evidence of STAGE’s ability to capture pertinent attribute relationships for effective task performance zero-shot.

28

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

Table 9: Average per-epoch training and inference time on E-Commerce dataset and zero-shot Hits@1 performance of
NBFNet-STAGE and baselines on H&M dataset. Time is measured on an 80GB A100 GPU and averaged across 3 training
epochs. NBFNet-STAGE is 7.83% slower in training than the fastest baseline NBFNet-llm and 17.02% slower in
inference than the fastest baseline NBFNet-raw, while being respectively 103% and 933% better.

Model Wall Time per Training Epoch (s) Inference Time on Test (s) Zero-shot Hits@1 on H&M

NBFNet-raw 318.65 66.16 0.0005 ± 0.0004
NBFNet-gaussian 322.13 69.04 0.0925 ± 0.0708
NBFNet-structural 322.31 69.78 0.2231 ± 0.0060
NBFNet-llm 316.55 67.57 0.2302 ± 0.0015
NBFNet-normalized 316.87 68.36 0.2286 ± 0.0010

NBFNet-STAGE (Ours) 341.36 77.42 0.4666 ± 0.0020

H. Complexity Analysis and Runtime Comparison
H.1. STAGE Time Complexity

Here we analyze the time complexity of STAGE. In particular, we analyze NBFNet-STAGE (used for link prediction) and
GINE-STAGE (used for node classification).

Let d be the number of attributes, h the dimension of internal node and edge embeddings, |E| the number of edges, and |V |
the number of nodes in the input graph. For all tasks, STAGE consists of three steps:

1. Fully Connected STAGE-edge-graph Construction: This step requires O(|E|d2) operations because each fully
connected STAGE-edge-graph has 2d nodes, and each edge in the original graph induces a fully connected STAGE-edge-
graph.

2. Inference on STAGE-edge-graphs: We use 2 shared layers of GINE for all STAGE-edge-graphs. A single layer on one
fully connected STAGE-edge-graph has complexity O(dh+ d2h) = O(d2h), since we have 2d h-dimensional nodes
and (2d)2 h-dimensional edges in each STAGE-edge-graph. Obtaining edge embeddings across all STAGE-edge-graphs
takes O(|E|d2h).

3. Inference on the original graph: For link prediction tasks, we use NBFNet to perform message passing on the original
graph, which requires O(|E|h+ |V |h2) for one forward pass (where one forward pass gives representations conditioned
on a single source node and relation, therefore, predicting links (s, q, ?) for a given source node s and relation q) (Zhu
et al., 2021c). For node classification tasks, we use GINE again, which requires O(|E|h) time.

Hence, in total, running one forward pass has a complexity of O(|E|d2h + |E|h + |V |h2) for NBFNet-STAGE, and
O(|E|d2h+ |E|h) for GINE-STAGE.

H.2. Training and inference time comparison

The analysis above shows the theoretical complexity of STAGE. Now we study the computational overhead when deployed
in practice. To this end, we measured the average wall time per training epoch of NBFNet-STAGE and GINE-STAGE on
respectively the E-Commerce Stores dataset and the Friendster dataset (see Appendix C) as well as their average inference
time on the H&M dataset and the Pokec dataset using an 80GB A100 GPU.

Tables 9 and 10 displays the runtime comparison results. We observe that in train NBFNet-STAGE is 7.83% slower than the
fastest baseline (NBFNet-llm) and GINE-STAGE is 49.7% slower than the fastest baseline (GINE-gaussian), while being
respectively 103% and 933% better in zero-shot Hit@1 on H&M. During inference, NBFNet-STAGE is 17.02% slower than
the fastest baseline (NBFNet-raw) and GINE-STAGE is 61.8% slower than the fastest baseline (GINE-structural), while
being respectively 11% and 16% better in zero-shot accuracy on Pokec. The additional time is due to computing STAGE-
edge-graph embeddings during each forward pass, while building the STAGE-edge-graphs is a one-time pre-processing step.
Moreover, Table 10 shows that GINE-STAGE achieves 1.74× speedup in training and 4.01× speedup in inference than the
best baseline GraphAny, which is specifically designed for the same tasks.

29

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

Table 10: Average per-epoch training and inference time on Friendster and zero-shot accuracy of GINE-STAGE and
baselines on Pokec. Time is measured on an 80GB A100 GPU and averaged across 20 training epochs. GINE-STAGE is
49.7% slower in training than the fastest baseline GINE-gaussian and 61.8% slower in inference than the fastest baseline
GINE-structural, while being respectively 11% and 16% better. Moreover, GINE-STAGE achieves 1.74× speedup in
training and 4.01× speedup in inference than the best baseline GraphAny.

Model Wall Time per Training Epoch (s) Inference Time on Test (s) Zero-shot Accuracy on Pokec

GINE-raw 0.0313 0.0067 0.558 ± 0.0829
GINE-gaussian 0.0296 0.0061 0.588 ± 0.0250
GINE-structural 0.0292 0.0055 0.564 ± 0.0466
GINE-llm 0.0322 0.0064 0.550 ± 0.0368
GINE-normalized 0.0316 0.0072 0.541 ± 0.0148
GraphAny 0.0762 0.0357 0.591 ± 0.0083
GCOPE 1.0524 0.3619 0.535 ± 0.0153

GINE-STAGE (Ours) 0.0437 0.0089 0.652 ± 0.0042

I. Additional Discussion of Related Work
Foundation Models for Graph Data. Foundation models for graph data aim to create versatile graph models capable of
generalizing across different graphs and tasks. Despite growing interest, achieving a truly universal graph foundation model
remains challenging, especially due to the complexities in designing a suitable graph vocabulary that ensures transferability
across datasets and tasks (Mao et al., 2024). Initial efforts in this direction convert attributed graphs into texts and apply
an LLM, but this methodology, while promising, risks information loss and may limit transferability (Collins et al., 2024;
Gruver et al., 2024; Schwartz et al., 2024). For instance, OFA (Liu et al., 2024) uses frozen LLMs to generate attributes,
and then trains a GNN to perform multiple tasks, while Chen et al. (2024b); Fatemi et al. (2024); Perozzi et al. (2024)
explores the potential of LLMs as predictors or enhancers of graph-based predictions. Other methods, like LLaGA (Chen
et al., 2024a) and GraphGPT (Tang et al., 2024), use instruction tuning to map graph data into the LLM embedding space.
Similarly, Graphtext (Zhao et al., 2023) and Unigraph (He & Hooi, 2024) adopt NLP techniques, with Graphtext (Zhao et al.,
2023) translating graphs into natural language via a syntax tree encapsulating node attributes and inter-node relationships,
and Unigraph (He & Hooi, 2024) learning a unified graph tokenizer in a self-supervised fashion to generalize across different
attribute domains. Prodigy (Huang et al., 2023) further encodes textual attributes with an LLM and leverages prompt-based
graph representations for task generalization.

In contrast, recent approaches forgo LLMs entirely. For instance, Xia & Huang (2024) employs projections of the attribute
matrix to handle shifts to new datasets. We exclude this method along with two similar recent approaches (Yu et al., 2024;
Zhao et al., 2024a) from our baseline comparisons. This is because these methods’ end-to-end architectures for cross-domain
graph pre-training employ SVD-based dimensionality reduction primarily as an input processing step, similar to our
projection method for unified input space. Given our focus on understanding the effectiveness of input space unification
techniques, we study this component in isolation (c.f. the baseline raw in Section 4) rather than comparing against their full
architectures which include additional mechanisms like domain tokens and coordinators. Lachi et al. (2024) employs a
Perceiver-based encoder to compress domain-specific attributes into a shared latent space. However, since their method
requires finetuning when adapting to unseen out-of-distribution datasets, it falls outside our focus on zero-shot generalization
capabilities without additional training. Zhao et al. (2024b) proposes GraphAny, specifically designed for node classification,
which models inference on new graphs as an analytical solution to LinearGNNs, and addresses generalization by learning
attention scores to fuse predictions from multiple LinearGNNs. However, STAGE outperforms GraphAny in Table 2. Mao
et al. (2023) introduces the concept of attribute proximity as a key factor in determining the likelihood of links forming
between nodes. Unfortunately, the definition of proximity still depends on the attribute space, making the method unsuitable
in our settings of interest. Frasca et al. (2024) proposes “Feature-Structuralization” which converts categorical node features
into additional nodes and edges in the graph structure itself. However, adapting this technique would require modification to
handle continuous node attributes, making it not directly applicable as a baseline for our work.

Another line of work addresses zero-shot domain transferability on heterogeneous graphs such as knowledge graphs,
where both the nodes (entities) and edge types (relations) may be new and unseen on the test-time graph. For instance,
ISDEA+ (Gao et al., 2023) proposes a set aggregation layer over the set of edge-type-specific graph representations to
ensure equivariance to edge type permutations. Gao et al. (2023) also proposes a theoretical framework named double

30

Zero-Shot Generalization of GNNs over Distinct Attribute Domains

equivariance that underlies the necessary design principles of models capable of tackling such a task. In contrast, the
theoretical framework of our work addresses transferability to unseen attribute domains and proposes a novel connection
between statistical tests and the graph regression task. ULTRA (Galkin et al., 2024) and TRIX (Zhang et al., 2024b), on the
other hand, build a relation graph that captures the interactions among different edge types, and apply pipelines based on
NBFNet (Zhu et al., 2021c) to ensure equivariance to edge type permutations. Similarly, InGram (Lee et al., 2023) also
builds a relation graph, but its relation graph differs from ULTRA’s in that it computes a set of affinity scores between pairs
of relations and use them as edge weights on the relation graph. In comparison, the STAGE-edge-graphs built by our method
captures the statistical dependencies among different attribute dimensions of node attributes in the graph. However, all of
these methods rely sorely on graph structure and disregard attributes in nodes. In contrast, our work focus on attributed
graphs, which is capable of leveraging important information carried in the node attributes.

Finally, recently Bevilacqua et al. (2025) introduced HoloGNN, a framework that learns node representations transferable
across diverse graph tasks. However, HoloGNN assumes a fixed attribute domain and does not address the challenge of
generalizing to unseen datasets with differing attribute spaces, which is the focus of our setting.

Maximal Invariants and Statistical Testing. Bell (1964) first explored the relationship between invariant and almost-
invariant tests in hypothesis testing. Berk & Bickel (1968) and Berk (1970) extended Bell’s approach to show that
almost-invariant tests are equivalent to invariant ones under certain conditions, which are those met in our work. Later, Berk
et al. (1996) explored the interplay between sufficiency and invariance in hypothesis testing by providing counterexamples
that demonstrate how these concepts can differ significantly in other scenarios. Recently, Koning & Hemerik (2024) improved
the efficiency of hypothesis testing under invariances for large transformation groups such as rotation or sign-flipping
without resorting to sampling.

31

