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ABSTRACT

In this work, we investigate the limitations of the 3D Gaussian Splatting (3DGS)
optimization scheme, revealing why it undergoes significant performance drops
when initialized with noisy or random point clouds. Through in-depth analysis,
we identify a key limitation of the 3DGS optimization: limited Gaussian trans-
portability. Since Gaussians are optimized solely based on image photometric
loss, the optimization tends to overfit the parameters of the projected Gaussians
to improve reconstruction at their current positions, rather than relocating them to
more optimal locations. This leads to producing under-reconstructed regions when
starting with noisy or random initialization, failing to transport Gaussians to cor-
rect locations. Based on our findings, we propose RAIN-GS (Relaxing Accurate
INitialization Constraint for 3D Gaussian Splatting), a set of simple yet effec-
tive modifications, including initializing sparse Gaussians with large variances,
progressive Gaussian low-pass filtering, and an Adaptive Bound-Expanding split
algorithm. These modifications enable Gaussians to effectively redistribute across
the scene, capturing both coarse structure and fine details. By addressing the in-
herent limitations of 3DGS, RAIN-GS allows effective training even with random
point clouds, significantly enhancing reconstruction quality.

1 INTRODUCTION

Novel view synthesis is one of the essential tasks in computer vision and computer graphics, aiming
to render novel views of a 3D scene given a set of images. It has a wide range of applications in var-
ious fields, including augmented reality and virtual reality (Xu et al., 2023), robotics (Adamkiewicz
et al., 2022), and data generation (Ge et al., 2022). Recently, neural radiance fields (NeRFs) (Milden-
hall et al., 2021) and 3D Gaussian splatting (3DGS) (Kerbl et al., 2023) have demonstrated remark-
able success in this task, where 3DGS further pushes the boundary of real-time rendering through
explicitly representing the scene with Gaussians.

Despite its remarkable results, compared to NeRFs, 3DGS requires an additional input of initial point
cloud. In addition, the quality of the initial point cloud is one of the essential requirements of 3DGS,
showing large performance drops when trained with randomly initialized point cloud (Kerbl et al.,
2023). To mitigate such performance degradation, 3DGS and its extensions (Yu et al., 2023; Luiten
et al., 2024) often utilize Structure-from-Motion (SfM) (Schonberger & Frahm, 2016) algorithms,
which provide both accurate camera poses and point clouds.

However, in real-world scenarios, SfM can also fail to produce accurate point clouds, such as in
scenes with symmetry, textureless regions, and dynamic movements inducing occulsions (Bian et al.,
2023; Zhang et al., 2022). In addition, instead of applying SfM algorithms, camera poses are often
estimated with external sensors (Geiger et al., 2013; Sturm et al., 2012) or pre-defined as given
trajectories as in text- or image-to-3D generation (Tang et al., 2023; Yi et al., 2024). Initial point
clouds become unavailable in these scenarios, which leads to performance degradation in 3DGS.

To understand this strict requirement of accurate point clouds, which has not yet been fully explored,
in this work, we start with a natural question: “Why is accurate initial point cloud so important for
3D Gaussian Splatting?”. By conducting an in-depth analysis, we reveal an important limitation
of the current 3DGS optimization scheme: limited Gaussian transportability. This is primarily due
to the Gaussian being optimized solely with image photometric loss, which fails to provide clear
guidance for the Gaussians to move to their optimal positions. As a result, the optimization process
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often leads to under-reconstruction of the scene. We further reveal that this problem has simply been
less highlighted with SfM point clouds as they already provide information about where the scene
geometry exists, reducing the need for Gaussian transportation.

Based on our analysis, we propose a simple yet effective method, RAIN-GS (Relaxing Accurate
INitialization Constraint for 3D Gaussian Splatting), composed of simple modifications to address
the existing limitation of 3DGS. Specifically, we initialize sparse Gaussians with large variance,
employ progressive Gaussian low-pass filtering, and split Gaussians with a new Adaptive Bound-
Expanding split algorithm, which enables the Gaussians to effectively redistribute across the scene,
capturing both coarse structure and fine detail throughout the optimization. RAIN-GS effectively
mitigates the limitation of the original 3DGS optimization, enabling 3DGS to achieve high-quality
reconstructions even with random initializations.

In summary, our main contributions are as follows:

• We conduct an in-depth analysis and identify the key limitation of the current 3DGS opti-
mization scheme: limited Gaussian transportability. This is due to the 3DGS optimization’s
sole reliance on image photometric loss, which fails to provide clear guidance for the Gaus-
sians to move to their optimal positions.

• While limited Gaussian transportability is an inherent limitation of 3DGS optimization,
we further reveal that as accurate initializations provide information of where the scene
geometry exists, this problem has been less highlighted.

• Based on our findings, we propose RAIN-GS, which effectively enables the Gaussians to
redistribute across the scene, achieving on-par or better reconstruction results even with
random initializations.

2 RELATED WORK

Structure-from-Motion (SfM). SfM techniques (Agarwal et al., 2011; Schonberger & Frahm,
2016) have been one of the most widely used algorithms to reconstruct a 3D scene. Through iterative
feature matching and bundle adjustment, SfM algorithms estimate the camera pose and point cloud
of the reconstructed scene. Despite the effectiveness of SfM algorithms, its incremental nature and
the computational intensity of bundle adjustment significantly increase its time complexity, often to
O(n4) with respect to n cameras involved (Wu, 2013). To mitigate such limitations, recent methods
propose to replace the components of SfM algorithms with learnable modules (Wang et al., 2024b;a;
Pan et al., 2024), accelerating the overall process.

Neural radiance fields (NeRF). NeRF (Mildenhall et al., 2021) has succeeded in significantly
boosting the performance of novel view synthesis by optimizing an MLP that can estimate the den-
sity and radiance of any continuous 3D coordinate. With the camera poses of the given images,
NeRF learns the MLP by querying dense points along randomly selected rays, which outputs the
density and color of each of the queried coordinates. Various follow-ups (Barron et al., 2021; 2022;
Du et al., 2023; Hong et al., 2023; Li et al., 2023; Müller et al., 2022; Song et al., 2024; Yang et al.,
2023) adopted NeRF as their baseline model and further extend the ability of NeRF to model un-
bounded or dynamic scenes (Barron et al., 2021; 2022; Li et al., 2023), lower the required number
of images for successful training (Song et al., 2024; Yang et al., 2023), or utilize an external hash-
grid to accelerate the overall optimization process (Müller et al., 2022). Although all of these works
show compelling results, the volume rendering from dense points along multiple rays makes NeRF
hard to apply in real-time settings achieving lower rendering rates of under < 1 fps.

3D Gaussian splatting (3DGS). Departing from implicit representations of NeRF, 3DGS (Kerbl
et al., 2023) represents the scene with explicit 3D Gaussians, achieving real-time rendering speed of
over > 90 fps. Thanks to its efficiency, 3DGS has gained massive attention and has been extended to
modeling large-scale scenes (Kerbl et al., 2024), dynamic scenes (Luiten et al., 2024), and enabling
the training with multi-scale images (Yu et al., 2023). Nevertheless, 3DGS is not without limitations
as the performance largely deteriorates when trained with sub-optimal (noisy, sparse, random) point
clouds.
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3 PRELIMINARY: 3D GAUSSIAN SPLATTING

In this section, we briefly explain 3DGS (Kerbl et al., 2023), which represents the scene with mul-
tiple 3D Gaussians (Zwicker et al., 2002). Each i-th Gaussian Gi represents the scene with the
following attributes: a position vector µi ∈ R3, an anisotropic covariance matrix Σi ∈ R3×3, spher-
ical harmonic (SH) coefficients (Yu et al., 2021; Müller et al., 2022), and an opacity logit value
αi ∈ [0, 1). With these attributes, each Gaussian Gi is defined in the world space x as follows:

Gi(x) = e−
1
2 (x−µi)

TΣ−1
i (x−µi). (1)

To render an image from a pose represented by the viewing transformation W , the projected covari-
ance Σ′

i is defined as follows:
Σ′

i = JWΣiW
TJT , (2)

where J is the Jacobian of the local affine approximation of the projective transformation. The 2D
covariance matrix is simply obtained by skipping the third row and column of Σ′

i (Zwicker et al.,
2002). Finally, to render the color C(p) of the pixel p, 3DGS utilizes alpha blending according to the
Gaussians depth. For example, when N Gaussians are sorted by depth, the color C(p) is calculated
as follows:

C(p) =

N∑
i=1

ciαiG
′
i(p)

i−1∏
j=1

(1− αjG
′
j(p)), (3)

where ci is the view-dependent color value of each Gaussian calculated with the SH coefficients,
and G′

i is the 3D Gaussian projected to the 2D screen space.

During optimization, 3DGS adaptively adjusts the number of Gaussians through cloning and split-
ting, to adjust the scene from being under-/over-reconstructed. Specifically, a Gaussian is cloned in
the mean position of the original Gaussian, if the scene is under-reconstructed. This can happen if
the scene needs to be represented with more Gaussians and the covariance of the current Gaussian
is too small. In contrast, if the scene needs to be represented with more detail and the covariance of
the current Gaussian is too large, the Gaussian undergoes splitting, where the mean positions of the
new Gaussians are sampled from the probability density function of the original Gaussian.

4 MOTIVATION

In this section, we present an in-depth analysis of the 3D Gaussian Splatting (3DGS) optimization
process (Kerbl et al., 2023), focusing on the impact of different initial point cloud qualities. We begin
by conducting both quantitative and qualitative comparisons using various point cloud initialization
which is shown in Section 4.1. From this comparison, we reveal two characteristics of 3DGS: 1)
3DGS heavily depends on accurate initialization, showing large performance drops even with little
noise, and 2) As the initialization becomes more inaccurate, 3DGS suffers from the scene being
under-reconstructed which results in particular objects in the scene being left un-reconstructed. To
further understand this behavior, we conduct a deeper analysis of the 3DGS optimization scheme in
Section 4.2, which reveals a critical limitation: limited Gaussian transportability. We show that this
limitation is the primary cause of the scene being under-reconstructed.

4.1 ANALYSIS OF VARIOUS POINT CLOUD INITIALIZATIONS

To analyze the relationship between the accuracy of initial point clouds and performance, we per-
form quantitative and qualitative comparisons using various initializations in 3DGS. In addition to
point clouds from SfM and random initialization, we also introduce the noisy SfM initialization
setting where we perturb the positions of the SfM initialized point cloud by adding a small noise.
Noisy SfM is introduced to mimic the situations where the point cloud from SfM algorithms is not
perfect (e.g., textureless regions, dynamic movements) 1.

Specifically, we train 3DGS on the Mip-NeRF360 (Barron et al., 2022), Tanks&Temples (Knapitsch
et al., 2017), and Deep Blending Hedman et al. (2018) dataset with SfM, noisy SfM, and random
point clouds. For SfM point clouds, we use the estimated point clouds from COLMAP (Schonberger
& Frahm, 2016). For noisy SfM point clouds, we perturb the point cloud achieved from COLMAP

1In addition, as noisy SfM with a very large noise is similar to the random case, this shows the tendency of
the performance of 3DGS to the amount of noise in the initial point cloud.
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Initial
point clouds

Mip-NeRF360 Tanks&Temples Deep Blending Average
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

SfM 27.462 0.814 0.219 23.142 0.841 0.183 29.623 0.900 0.251 26.742 0.852 0.218
Noisy SfM 27.004 0.799 0.243 22.592 0.816 0.219 29.515 0.899 0.256 26.370 0.838 0.239

Random 25.893 0.764 0.273 21.862 0.795 0.227 29.523 0.897 0.257 25.759 0.819 0.252

Table 1: Quantitative comparison on Mip-NeRF360 (Barron et al., 2022),
Tanks&Temples (Knapitsch et al., 2017), and Deep Blending (Hedman et al., 2018) dataset
using different initial point clouds. The results show that 3DGS heavily depends on the accuracy
of initial point clouds, showing performance drops when trained with noisy SfM and random point
clouds.

by adding noise 2 sampled from the Normal distribution ϵ ∼ N(0, 0.5). For random point clouds, we
follow previous approaches (Kerbl et al., 2023; Kheradmand et al., 2024) where points are randomly
sampled from the bounding box defined by three times the bound calculated with camera poses.

The quantitative comparison shown in Table 1 indicates that 3DGS heavily depends on accurate
initialization for point clouds, where small noise in the initial point cloud (noisy SfM) can also
lead to large performance drops. The qualitative comparison shown in Figure 1, further identifies
the primary cause of performance degradation, which is mainly due to under-reconstruction. When
compared to (a) and (b), the house in the background remains missing in (c) and (d) (visualized in
the red bounding box).

(a) Ground Truth (b) SfM

(c) Noisy SfM (d) Random

Figure 1: Qualitative comparisons on ‘bicycle’ scene rendered using different initial point
clouds. The red-bounding box region shows examples of under-reconstruction, where the house
in the background remains un-reconstructed.

4.2 ANALYSIS OF 3D GAUSSIAN SPLATTING OPTIMIZATION

As 3DGS (Kerbl et al., 2023) represents the scene using explicit 3D Gaussians, under-reconstruction
can occur if Gaussians are absent or insufficient in regions where the scene geometry exists. How-
ever, when the scene is under-reconstructed due to the lack of sufficient Gaussians, 3DGS inherently
has the ability to mitigate this issue by increasing the number of Gaussians through cloning. There-
fore, we first hypothesize that 3DGS lacks the ability to effectively transport Gaussians, making the
scene under-reconstructed due to the absence of Gaussians.

To understand this behavior, we begin with revisiting the analysis of pixelSplat (Charatan et al.,
2023), where they mention the proneness of 3DGS falling into local minima due to two main rea-
sons. 1) The Gaussians can only receive gradients close to their means, mostly from the range not

2Note that this value is very small when compared to the initial range of SfM point clouds. A detailed
explanation can be found in Section A.1 of the Appendix.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

exceeding the distance of a few standard deviations, and 2) there is no existing path for the Gaus-
sians that will decrease the loss monotonically. As Gaussians in local minima cannot move to other
locations, they become trapped and unable to explore and cover under-reconstructed regions.

However, their analysis is not directly applicable to our setting, as their analysis is limited to settings
where 3DGS is trained without any per-scene optimization and without the cloning and splitting
method. Therefore, we extend their analysis to the per-scene optimization setting which has not yet
been explored. Specifically, we evaluate the total transportation distance of each of the Gaussians,
including the movement caused by cloning and splitting. We keep the amount of movement each
Gaussian takes every iteration, where we sum all the movements in length until the end of training 3.

SfM Noisy SfM Random

Means 0.704 0.650 0.395
Stds 2.207 0.729 0.402
Top 1% 10.755 3.646 1.923

Table 2: Movement of Gaussians.

We evaluate the total movement of the points specifically on
the Mip-NeRF360 (Barron et al., 2022) dataset, where the av-
erage scene bound 4 is approximately 92 × 53 × 95. As SfM
point clouds already contain the information about where the
scene geometry is located, starting from noisy SfM or random
point clouds requires more transportation during optimization.
However, as shown in Table 2, starting from SfM point clouds
results in the most transportation, revealing the lack of ability of 3DGS to relocate Gaussians to
correct locations through optimization.

In addition, we also show the visualization of Gaussians before and after training. Specifically, we
show the Gaussians on the ‘Truck’ scene of the Tanks&Temples (Knapitsch et al., 2017) datasets
trained with SfM, noisy SfM, and random point clouds in Figure 2. This visualization also verifies
that starting with SfM results in Gaussians moving the most. This indicates that if the Gaussians are
not initialized close to where scene geometry exists, the cloning process of ADC is not sufficient
to resolve all under-reconstruction scenarios. This effectively verifies our hypothesis and highlights
the need for an additional method that can effectively transport the Gaussians.
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(a) 3DGS (Random) (b) 3DGS (Noisy SfM) (c) 3DGS (SfM)

Figure 2: Visualization of Gaussians before and after training. The visualization shows the
position of the Gaussians before and after training done in the ‘truck’ scene of the Tanks&Temples
dataset using different initialization (SfM, Noisy SfM, and random). The visualization indicates
that SfM shows the most difference, whereas starting from random initialization shows almost no
difference.

5 METHODOLOGY

Based on our findings revealed from the in-depth analysis of 3DGS in Section 4, we propose a
simple yet effective baseline strategy RAIN-GS (Relaxing Accurate INitialization Constraint for
3D Gaussian Splatting). This strategy mainly focuses on alleviating the current limitation of the
3DGS optimization scheme, namely the limited ability to transport Gaussians which leads to under-
reconstructed scenes. Specifically, RAIN-GS consists of three main components: 1) Sparse-Large-

3A detailed explanation of how this experiment is conducted can be found in Section A.2 of the Appendix.
4The scene bound is calculated by the bound of SfM point clouds. The bound value for each scene can be

found in the Table 8 in Appendix.
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Variance (SLV) initialization (Section 5.1), 2) Progressive Gaussian low-pass filter (Section 5.2),
and 3) Adaptive Bound-Expanding Split (ABE-Split) algorithm (Section 5.3).

5.1 SPARSE-LARGE-VARIANCE (SLV) INITIALIZATION

As discussed in Section 4.2, Gaussians easily fall into local minima due to receiving gradients from
a very local region and become stuck, lacking the ability to move to other locations. To prevent
the Gaussians from falling into local minima, we propose a simple yet effective modification to
the original random initialization method of 3DGS (Kerbl et al., 2023). Specifically, we follow the
initialization of the Gaussian parameters where covariance is determined by the distances to the
three nearest neighbors but significantly reduce the initial number of Gaussians from N = 100, 000
to N = 10. Despite being implementable with a simple one-line code change, this modification
leads to several key improvements.

By reducing the number of initial Gaussians, the average distance between neighboring Gaussians
becomes substantially larger, resulting in increased initial covariance values. This leads to what we
call Sparse-Large-Variance (SLV) Initialization, wherein the Gaussians are initialized with greater
spatial coverage. These larger Gaussians project to cover broader regions in the image plane, thereby
receiving gradient information from larger regions during optimization. Consequently, they are more
capable of learning the global structure of the scene during the optimization process, effectively
mitigating scenarios where the Gaussians are overfitted to represent very local regions.

In addition to learning from larger regions, SLV initialization also provides benefits in transporting
Gaussians to further locations via the splitting process. Since the splitting of Gaussians is performed
by sampling from the probability density function (PDF) of the original Gaussian parameters, ini-
tializing with a larger variance naturally encourages the newly split Gaussians to explore a wider
spatial area. This helps mitigate the issue of Gaussians being unable to move from local minima,
allowing them to better cover the scene. Thus, SLV enhances the ability of Gaussians to adaptively
explore the scene throughout the optimization process, effectively mitigating the Gaussians from
falling into local minima.

5.2 PROGRESSIVE GAUSSIAN LOW-PASS FILTERING

Although our SLV initialization method is effective, we find that after multiple densification steps,
the number of 3D Gaussians increases exponentially due to the adaptive density control, which
can collapse into similar problems with the original random initialization. In order to ensure the
Gaussians to receive gradients from a sufficiently large area during the optimization step, we propose
a novel progressive control of the Gaussian low-pass filter which is utilized in the rendering stage.
Gaussian low-pass filter for 3DGS. In the rendering stage of 3DGS, the 2D Gaussian G′

i pro-
jected from a 3D Gaussian Gi is defined as follows:

G′
i(x) = e−

1
2 (x−µ′

i)
TΣ′

i
−1(x−µ′

i). (4)

However, directly using projected 2D Gaussians can lead to visual artifacts when they become
smaller than the size of a single pixel (Kerbl et al., 2023; Yu et al., 2023). To ensure coverage
of at least one pixel, (Kerbl et al., 2023) enlarge the 2D Gaussian’s scale by adding a small value to
the covariance’s diagonal elements as follows:

G′
i(x) = e−

1
2 (x−µ′

i)
T (Σ′

i+sI)−1(x−µ′
i), (5)

where s is a pre-defined value of s = 0.3 and I is an identity matrix. This process can also be
interpreted as the convolution between the projected 2D Gaussian G′

i and a Gaussian low-pass filter
h (mean µ = 0 and variance σ2 = 0.3) of G′

i ⊗ h, which is shown to be an essential step to prevent
aliasing (Zwicker et al., 2002). After applying convolution with the low-pass filter, the area of the
projected Gaussian G′

i is approximated by a circle. The radius of this circle is defined by three times
the larger eigenvalue from the 2D covariance matrix (Σ′

i + sI)5.

Progressive low-pass filter control. Instead of using a fixed value of s through the entire opti-
mization process, we notice that this value s can ensure the minimum area each Gaussians have to

5We provide a detailed proof in Section B.1 in the Appendix.
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cover in the screen space. As Gaussians only receive gradients inside the range of a few standard
deviations (Charatan et al., 2023), learning from wider areas is essential for the Guassians to receive
sufficient gradients. Therefore, to ensure the Gaussians to receive sufficient amount of gradient dur-
ing training, we control s to regularize the Gaussians to cover wider areas during the early stage of
training and progressively learn from a more local region. Specifically, as the value s ensures the
projected Gaussians area to be larger than 9πs6, we define s as s = HW/9πN , where N indicates
the number of Gaussians and H,W indicates the height and width of the image respectively.

5.3 ADAPTIVE BOUND-EXPANDING SPLIT (ABE-SPLIT) ALGORITHM

The ABE-Split method is a straightforward extension to the original splitting algorithm in 3DGS,
designed to address scenarios where under-reconstruction occurs due to the absence of Gaussians. In
the original algorithm, two new Gaussians are sampled locally from the PDF of an existing Gaussian,
which limits the ability to address globally under-reconstructed regions. Although SLV initialization
partially addresses this problem by enabling the Gaussians to be redistributed to larger regions,
we find that after multiple splitting steps, the variance of the Gaussian becomes small, where new
Gaussians can be only placed locally. To overcome this limitation, we propose ABE-Split, where an
additional Gaussian is split during the early stages of optimization. Specifically, we initialize a third
Gaussian at a position outside the current bounds defined with the positions of the Gaussians, by
multiplying a scalar to the current Gaussian coordinate. Although this approach is extremely simple,
when combined with our SLV initialization, we can effectively expand the bounds of the Gaussians,
ensuring the Gaussians to be actively re-distributed in globally under-reconstructed areas.

6 EXPERIMENTS

6.1 IMPLEMENTATION DETAILS

We implement our model based on the 3DGS (Kerbl et al., 2023). We follow the same training
process of the existing implementation in all datasets. For our sparse-large-variance (SLV) random
initialization, we set the initial number of Gaussians to N = 10. For progressive low-pass filter
control, we find that re-defining the value s as s = min(max(HW/9πN, 0.3), 300.0) every 1,000
steps results in better results compared to changing the value every step and adopt this strategy
as default. For training SH coefficients, we set the maximum degree as 3 following the original
implementation. As we regularize the Gaussians to learn from larger regions to receive a sufficient
amount of gradient, we lower the divide factor from 1.6 to 1.4. In addition, as spherical harmonics
should be learned with higher degrees when the Gaussians are modeling local regions, we increase
the SH degree after 5,000 steps which is approximately when the low-pass filter value becomes
s = 0.3. All other hyperparameters are left unchanged.

6.2 DATASETS

We conduct experiments on multiple datasets, including experiments on the dataset where the
initial point cloud is not accessible. Specifically, we use Mip-NeRF360 (Barron et al., 2022),
Tanks&Temples (Knapitsch et al., 2017), and Deep Blending (Hedman et al., 2018) dataset pre-
viously utilized in 3DGS (Kerbl et al., 2023). For the evaluation of these datasets, we follow the
evaluation protocol of 3DGS, where every 8th image is used as the test set and outdoor images and
indoor images of the Mip-NeRF360 dataset are downscaled by the factor of four and two respec-
tively. We further conduct experiments on the RealEstate-10K (Re10K) dataset (Zhou et al., 2018),
to demonstrate the effectiveness of our strategy when initial point clouds are not accessible 7. For
Re10K, every 8th image is also used as the test set without downscaling the images.

6.3 BASELINES

We compare against 3DGS, Mip-Splatting (Yu et al., 2023), 2D Gaussian splatting (Huang et al.,
2024). We also compare with 3DGS trained from random initialization. For 3DGS, as their public
code shows slightly better performance compared to their reported values, we show both the reported
values (3DGS) and the values achieved from their public code (3DGS (re-run)).

6We provide a detailed proof in Section B.2 in the Appendix.
7Re10K only provides the camera poses of the images estimated from ORB-SLAM (Mur-Artal et al., 2015)
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(a) GT (b) 3DGS (c) 2DGS (d) Mip-Splatting (f) RAIN-GS(Ours)(e) 3DGS(Random)

Figure 3: Qualitative results on Mip-NeRF360 (Barron et al., 2022),
Tanks&Temples (Knapitsch et al., 2017) and Deep Blending (Hedman et al., 2018) datasets.
We compare the results with both methods that utilize SfM point clouds ((b),(c),(d)) and the method
that uses random point clouds ((e),(f)). Unlike (e), which shows under-reconstructed regions, our
method (g) effectively captures missing details.

(a) 3DGS (SfM) (b) 3DGS (Random) (c) RAIN-GS (Ours) (d) GT

Figure 4: Qualitative results on RealEstate-10K (Zhou et al., 2018) dataset. We compare the
results with 3DGS trained from SfM and random point clouds. As RE10K does not provide initial
point clouds, we have preprocessed COLMAP (Schonberger & Frahm, 2016) to train 3DGS (SfM).
Note that although Ours and 3DGS (Random) is not trained with the COLMAP poses, Ours show
competitive results with 3DGS (SfM).

For RealEstate-10K, we specifically compare against 3DGS trained from SfM and random initial-
ization. As Re10K does not provide any initial point clouds, to evaluate 3DGS from SfM, we have
pre-processed the images with COLMAP (Schonberger & Frahm, 2016). Note that Ours and 3DGS
from random point clouds utilize the camera poses from the dataset without further refinement.
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Method SfM
points

Mip-NeRF360 Outdoor Scene
bicycle flowers garden stump treehill

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM ↑ LPIPS↓ PSNR↑ SSIM ↑ LPIPS↓

Plenoxels Yu et al. (2021) ✗ 21.912 0.496 0.506 20.097 0.431 0.521 23.495 0.606 0.386 20.661 0.523 0.503 22.248 0.509 0.540
INGP-Base Müller et al. (2022) ✗ 22.193 0.491 0.487 20.348 0.450 0.481 24.599 0.649 0.312 23.626 0.574 0.450 22.364 0.518 0.489
INGP-Big Müller et al. (2022) ✗ 22.171 0.512 0.446 20.652 0.486 0.441 25.069 0.701 0.257 23.466 0.594 0.421 22.373 0.542 0.450

3DGS (Kerbl et al., 2023) ✓ 25.246 0.771 0.205 21.520 0.605 0.336 27.410 0.868 0.103 26.550 0.775 0.210 22.490 0.638 0.317
3DGS(re-run) (Kerbl et al., 2023) ✓ 25.195 0.764 0.211 21.507 0.602 0.339 27.325 0.863 0.108 26.689 0.771 0.216 22.472 0.632 0.328
Mip-Splatting (Yu et al., 2023) ✓ 25.250 0.765 0.243 21.600 0.605 0.371 27.470 0.869 0.124 26.640 0.774 0.251 22.650 0.633 0.381
2DGS (Huang et al., 2024) ✓ 24.770 0.733 0.302 21.140 0.572 0.403 26.690 0.843 0.166 26.200 0.758 0.299 22.360 0.616 0.433

3DGS (Kerbl et al., 2023) ✗ 23.781 0.652 0.333 20.450 0.539 0.384 26.417 0.834 0.140 23.067 0.667 0.303 21.456 0.593 0.385
RAIN-GS (Ours) ✗ 25.373 0.750 0.244 22.118 0.632 0.315 27.277 0.863 0.110 27.029 0.783 0.207 22.887 0.647 0.328

Method SfM
points

Mip-NeRF360 Indoor Scene Mip-NeRF360
Averageroom counter kitchen bonsai

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM ↑ LPIPS↓ PSNR↑ SSIM ↑ LPIPS↓

Plenoxels Yu et al. (2021) ✗ 27.594 0.842 0.419 23.624 0.759 0.441 23.420 0.648 0.447 24.669 0.814 0.398 23.080 0.625 0.462
INGP-Base Müller et al. (2022) ✗ 29.269 0.855 0.301 26.439 0.798 0.342 28.548 0.818 0.254 30.337 0.890 0.227 25.302 0.671 0.371
INGP-BigMüller et al. (2022) ✗ 29.690 0.871 0.261 26.691 0.817 0.306 29.479 0.858 0.195 30.685 0.906 0.205 25.586 0.699 0.331

3DGS (Kerbl et al., 2023) ✓ 30.632 0.914 0.220 28.700 0.905 0.204 30.317 0.922 0.129 31.980 0.938 0.205 27.205 0.815 0.214
3DGS(re-run) (Kerbl et al., 2023) ✓ 31.538 0.918 0.224 28.989 0.906 0.204 31.181 0.925 0.129 32.266 0.941 0.209 27.462 0.814 0.219
2DGS (Huang et al., 2024) ✓ 30.370 0.906 0.317 28.100 0.892 0.292 30.410 0.916 0.179 31.300 0.931 0.280 26.810 0.796 0.297
Mip-Splatting (Yu et al., 2023) ✓ 31.540 0.918 0.286 29.040 0.907 0.258 31.250 0.926 0.155 31.960 0.941 0.254 27.490 0.815 0.258

3DGS (Kerbl et al., 2023) ✗ 29.987 0.893 0.267 27.963 0.874 0.253 30.353 0.914 0.143 29.562 0.905 0.249 25.893 0.764 0.273
RAIN-GS (Ours) ✗ 30.866 0.916 0.218 28.681 0.905 0.195 31.416 0.926 0.125 31.610 0.940 0.188 27.473 0.818 0.215

Methods SfM
points

Tanks&Temples Deep Blending
Truck Train DrJohnson Playroom

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM ↑ LPIPS↓

Plenoxels Yu et al. (2021) ✗ 23.221 0.774 0.335 18.927 0.663 0.422 23.142 0.787 0.521 22.980 0.802 0.465
INGP-Base Müller et al. (2022) ✗ 23.260 0.779 0.274 20.170 0.666 0.386 27.750 0.839 0.381 19.483 0.754 0.465
INGP-Big Müller et al. (2022) ✗ 23.383 0.800 0.249 20.456 0.689 0.360 28.257 0.854 0.352 21.665 0.779 0.428

3DGS (Kerbl et al., 2023) ✓ 25.187 0.879 0.148 21.097 0.802 0.218 28.766 0.899 0.244 30.044 0.906 0.241
3DGS(re-run) (Kerbl et al., 2023) ✓ 25.344 0.878 0.149 21.965 0.811 0.209 29.098 0.898 0.247 29.865 0.901 0.246
Mip-Splatting (Yu et al., 2023) ✓ 24.360 0.857 0.108 21.820 0.795 0.172 28.804 0.898 0.242 30.118 0.908 0.235
2DGS (Huang et al., 2024) ✓ 23.830 0.843 0.123 16.410 0.583 0.529 28.894 0.897 0.259 30.009 0.900 0.260

3DGS (Kerbl et al., 2023) ✗ 22.685 0.821 0.201 21.039 0.768 0.254 28.874 0.892 0.262 30.172 0.901 0.253
RAIN-GS (Ours) ✗ 24.816 0.865 0.169 21.436 0.786 0.244 28.675 0.896 0.260 30.165 0.903 0.250

Table 3: Quantitative comparison on Mip-NeRF360, Tanks&Temples and Deep Blending
datasets. We compare our method with previous approaches trained from either SfM or random
point clouds. Ours trained from random point clouds show competitive performance with previous
methods that utilize SfM initializations.

Methods COLMAP
scene12 scene20 scene30 scene46 scene57

Avg. PSNR Avg. Time
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

3DGS Kerbl et al. (2023) ✓ 31.647 0.944 0.090 32.454 0.964 0.061 36.555 0.967 0.072 29.089 0.923 0.105 21.282 0.741 0.283 30.205 (6m 24s)† + 6m 82s
3DGS(Random) Kerbl et al. (2023) ✗ 18.750 0.689 0.326 13.183 0.427 0.493 30.113 0.930 0.128 24.298 0.841 0.195 19.946 0.571 0.303 21.258 9m 01s
RAIN-GS (Ours) ✗ 32.822 0.953 0.075 34.730 0.972 0.051 36.767 0.967 0.080 32.298 0.953 0.074 24.095 0.838 0.213 32.142 6m 74s

Table 4: Quantitative comparison on RealEstate-10K dataset. We compare our method with
3DGS trained from either SfM or random point cloud on randomly sampled scenes. Ours
achieve better performance and time when compared to 3DGS, even without the preprocessing of
COLMAP (Schonberger & Frahm, 2016). † refers to the time spent running COLMAP to obtain the
SfM point clouds.

When comparing the results of Ours and 3DGS from random point clouds, both point clouds are
initialized in the same bound following 3DGS. We follow the same protocol for all datasets.

6.4 QUANTITATIVE AND QUALITATIVE COMPARISON

Quantitative comparisons of image quality. To assess the image quality, we report the PSNR,
LPIPS, and SSIM metrics of the synthesized images. We show the quantitative comparison on Mip-
NeRF360, Tanks&Temples, and Deep Blending dataset on Table 3 and the quantitative comparison
on RealEstate-10K dataset on Table 4. In all datasets, our method shows competitive or even better
performance even when trained with random point clouds outperforming other methods trained with
point clouds achieved from SfM, demonstrating the effectiveness of our strategy.

Quantitative comparisons of training time. In Table 4, we compare the execution times of
COLMAP+3DGS, 3DGS (Random), and our method in a setting where initial SfM point cloud
is not available. Our method achieves the best performance in the shortest time, whereas 3DGS re-
quires running COLMAP to obtain the point cloud, which takes almost as much time as the training
itself in order to achieve good performance. This demonstrates that, in scenarios where a high-
quality point cloud is unavailable, our method can deliver superior performance in significantly less
time.
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(a) 3DGS (Random) (b) Ours (c) GT

Figure 5: Qualitative results of 3DGS (Random) and Ours trained with generated images using
DimensionX (Sun et al., 2024).

Qualitative comparisons. To qualitatively demonstrate the effectiveness of our method, we visu-
ally compare the image quality of each method across various datasets. We present the results in
Figure 3 and Figure 4. The red bounding boxes illustrate the regions that 3DGS using random point
clouds experiences issues due to under-reconstruction. In contrast, our method, despite its simplic-
ity, exhibits its effectiveness in addressing these challenges showing the results on par with the one
of 3DGS using SfM point clouds. Additional results can be found in Section C in Appendix.

Low-pass filter Init. ABE-Split PSNR↑ SSIM↑ LPIPS↓

Constant N = 100K ✗ 25.893 0.764 0.273
Constant N = 100K ✓ 26.970 0.805 0.227
Constant SLV ✗ 25.815 0.759 0.280
Constant SLV ✓ 26.395 0.785 0.231

Ours SLV ✗ 26.288 0.769 0.273
Ours SLV ✓ 27.473 0.818 0.215

Table 5: Ablation on core components

Ablation studies. In Table 5, we validate the
effectiveness of each component in our method
trained in the Mip-NeRF360 dataset. For the
ablation of our SLV initialization, we directly
compare the performance of the original ran-
dom initialization method N = 100K. As SLV
becomes similar to the original random initial-
ization setting due to the splitting method as
mentioned in Section 5.2, using SLV alone does not show any improvements over the original ran-
dom initialization. However, when combined with the low-pass filter and ABE-Split algorithm, SLV
initialization shows the best performance verifying our design choice. More detailed ablation studies
can be found in Section A.3 of the Appendix.

Methods
Scene 1 Scene 2

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

3DGS(Random) 12.278 0.712 0.413 11.173 0.404 0.509
Ours 32.751 0.951 0.129 25.262 0.789 0.216

Table 6: Quantitative comparison on generated
images using DimensionX (Sun et al., 2024).

Training with generated images. Our
method can be effectively utilized when train-
ing with generated images. We train 3DGS
from random point clouds with the generated
images from DimensionX (Sun et al., 2024),
with the camera poses given as condition. Both
qualitative results in Figure 5 and quantitative
results in Table 6 verify the effectiveness of our method. Note that SfM algorithms (Schonberger &
Frahm, 2016) fail to converge in these images failing to provide initial point clouds.

7 CONCLUSION

In this work, we introduced RAIN-GS, a novel strategy to address the limitations of 3D Gaussian
Splatting (3DGS), particularly its reliance on accurate initial point clouds and the limited transporta-
bility of Gaussians. By leveraging Sparse-Large-Variance (SLV) initialization, progressive Gaussian
low-pass filtering, and the Adaptive Bound-Expanding (ABE) split algorithm, RAIN-GS effectively
mitigates under-reconstruction issues, enabling Gaussians to explore the scene more globally and
improve reconstruction quality. Our extensive experiments demonstrate that RAIN-GS achieves
competitive or superior results even when using random initializations, significantly reducing the
dependence on high-quality point clouds and making 3DGS a more robust solution for novel view
synthesis. We believe that our RAIN-GS can broaden the applicability of 3DGS in real-world sce-
narios where obtaining accurate initial point clouds may not be feasible.
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A DETAILS OF ANALYSIS

A.1 ANALYSIS OF VARIOUS POINT CLOUD INITIALIZATIONS

Initialization
Outdoor Scene

bicycle flowers garden stump treehill
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM ↑ LPIPS↓ PSNR↑ SSIM ↑ LPIPS↓

SfM 25.195 0.764 0.211 21.507 0.602 0.339 27.325 0.863 0.108 26.689 0.771 0.216 22.472 0.632 0.328
SfM + ϵ 24.836 0.729 0.267 21.190 0.575 0.368 27.043 0.854 0.125 26.479 0.762 0.233 22.455 0.625 0.356
SfM+constant 23.619 0.625 0.358 21.139 0.569 0.364 25.663 0.809 0.163 23.382 0.641 0.335 21.989 0.593 0.380

Initialization
Indoor Scene

Average
room counter kitchen bonsai

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM ↑ LPIPS↓ PSNR↑ SSIM ↑ LPIPS↓

SfM 31.538 0.918 0.224 28.989 0.906 0.204 31.181 0.925 0.129 32.266 0.941 0.209 27.462 0.814 0.219
SfM + ϵ 31.038 0.907 0.249 28.211 0.888 0.233 29.863 0.915 0.141 31.922 0.935 0.219 27.004 0.799 0.243
SfM+constant 30.790 0.899 0.264 28.041 0.875 0.250 30.203 0.914 0.145 31.006 0.924 0.230 26.204 0.761 0.277

Table 7: Quantitative comparison on Mip-NeRF360 dataset in noisy initial SfM point cloud
settings. We compare 3DGS method with different noisy inital SfM point cloud. We report PSNR,
SSIM, LPIPS.

In Table 1, we present detailed results to further investigate the ability of the 3DGS optimization
scheme to transport Gaussians to the correct 3DGS locations on Mip-NeRF360 datasets. Here, we
conduct this experiments by adding random noise ϵ ∼ N (0, 0.5) and constant systematic noise,
whose value equals 2, to the initial SfM points. The results shown in Table 7 prove that 3DGS
strongly depends on the initial point. Figure 6 shows initial SfM points and points with noise ϵ.
Even with the small amount of noise, 3DGS fails to move to the correct position.

Figure 6: Visualization of SfM points and points with noise ϵ.

A.2 ANALYSIS OF MOVEMENT OF EACH GAUSSIAN

In our analysis of Gaussian movement, we have carefully accounted for the complex dynamics in-
troduced by cloning and splitting processes. We track these Gaussians throughout the optimization
process, maintaining their original identifiers as they undergo cloning or splitting events. This ap-
proach allows us to trace the lineage of each Gaussian from its initial state to its final position.

Experiment details are as follows : Assume that we have 10 initial Gaussians, saving the coordinates
of each to track their movement. To distinguish them, each Gaussian is assigned a label ranging
from 1 to 10. Throughout the process, Gaussians undergo cloning and splitting. When a Gaussian is
cloned, the new Gaussian retains the original label. Similarly, when a Gaussian undergoes splitting,
both resulting Gaussians are assigned the same label.

Since new Gaussians are generated solely through cloning and splitting, by the end of the optimiza-
tion, we have N Gaussians, each still labeled within the original range of 1 to 10. To calculate the
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Figure 7: Displacements of Gaussians from initial positions.

overall movement, we determine the displacement of each Gaussian by measuring the Euclidean
distance between the post-optimization coordinates of the N Gaussians and the initial coordinates of
the 10 original Gaussians.

To observe the movement of the each Gaussian, we measure how far the Gaussian moves from its
initial position during the training. An additional parameter is incorporated to record the initial
position, ensuring that even when Gaussians are split or cloned, the initial position parameters are
retained. Then, the movement is calculated as difference between the final position of each Gaussian
after training and its respective initial position.

We conduct analysis on “Truck” scene of Tanks&Temples dataset, comparing the settings of 3DGS
with SfM point initialization, 3DGS with random initialization, and our method. The mean, stan-
dard deviation, and the top 1% values of the movements are shown in Table 2. Additionally, Figure 7
shows the overall scene from the same camera viewpoint for each experiment to observe the differ-
ences in distribution of overall Gaussians between the beginning and 30,000 steps. In case such
as 3DGS with SfM initialization and random initialization, the positions of the Gaussians does not
change significantly. However, our method shows substantial changes in comparison.

Scene x y z

treehill 156.24 62.91 155.93
flowers 89.89 35.69 80.28
stump 209.00 156.39 219.48
counter 25.84 24.39 26.53
garden 100.88 41.41 59.47
bicycle 108.81 43.51 138.92
kitchen 49.25 44.02 64.99
room 45.80 34.08 59.80
bonsai 40.61 35.73 48.83
Average 91.81 53.13 94.91

Table 8: Bounds for each scene in the MipNeRF360 dataset. Each value is calculated by the
bound of SfM point clouds and represents the width in the corresponding direction.

A.3 ABLATION STUDY OF PROGRESSIVE LOW-PASS FILTER CONTROL

To demonstrate the effectiveness of our progressive Gaussian low-pass filter control strategy, we
employ three different decreasing functions of convex, linear, and concave to control the Gaussian
low-pass filter value s. Different from our strategy, where the value s is defined adaptively by
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image height, width, and the number of Gaussians N at each time step, the remaining functions
are manually defined to achieve s = 300 at step 0 and s = 0.3 at about 3,000 steps across all
scenes. The intuition behind this design is based on our analysis that our adaptive Gaussian low-
pass filter value reaches 0.3 between 2,000-3,000 steps. Also, we empirically find that the initial
Gaussian low-pass filter value s > 300 offers no significant improvement, only making the overall
computation inefficient. Based on these findings, we define the max value of the Gaussian low-pass
filter as s = 300.

For the convex function, we use the following formula for s scheduling:

s = max(7−
x

1000 ∗ 300, 0.3). (6)

For the linear function, we use the following formula for s scheduling:

s = max(300− 0.0997084x, 0.3). (7)

For the concave function, we use the following formula for s scheduling:

s = max(300 ∗ (1 + 7−3 − 7
x−3000
1000 ), 0.3). (8)

The illustration of different Gaussian low-pass value formulas is shown in Figure 8 and Figure 9
where our formula is adaptively defined, showing different functions for each scene.
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Figure 8: Illustration of different Gaussian
low-pass filter value formulas.

0 1000 2000 3000 4000 5000

steps

0.3

50

100

150

200

250

300

lo
w

-p
as

s
fi

lt
er

si
ze

(s
)

bicycle

bonsai

counter

Figure 9: Illustration of our Gaussian low-
pass filter value formula.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Splatting Splatting

(a) (b)

Low-Pass Filter

Figure 10: Visualization of low-pass filter. This figure shows the visualization of the effect of the
low-pass filter. As shown in (b), the convolution of the splatted 2D Gaussian with the low-pass filter
expands the area the Gaussian is splatted onto, resulting in the Gaussians affecting larger areas than
naı̈ve splatting as shown in (a).

B PROOF

B.1 PROOF ON RADIUS OF A GAUSSIAN CONVOLVED WITH A LOW-PASS FILTER

As mentioned in Section 5.2 of our main paper, the 3D Gaussians Gi is projected to 2D Gaussians
G′

i in the screen space as follows:

G′
i(x) = e−

1
2 (x−µ′

i)
TΣ′

i
−1(x−µ′

i). (9)

To ensure the 2D Gaussian G′
i to cover at least one pixel, 3DGS adds a small value s to the diagonal

elements of the 2D covariance Σ′
i as follows:

G′
i(x) = e−

1
2 (x−µ′

i)
T (Σ′

i+sI)−1(x−µ′
i), (10)

where I is the 2× 2 identity matrix. This process can be understood as the convolution between the
2D Gaussian G′

i and the Gaussian low-pass filter h (mean µ = 0 and variance σ2 = s = 0.3) of
G′

i⊗h. This is due to the nature of Gaussians where the convolution of Gaussians with the variance
matrices V and Z results in a Gaussian with the variance matrix V + Z as follows:

G1(x) = e−
1
2 (x−µi)

TV −1(x−µi) G2(x) = e−
1
2 (x−µi)

TZ−1(x−µi), (11)

(G1 ⊗G2)(x) = e−
1
2 (x−µi)

T (V+Z)−1(x−µi). (12)

Following the convolution process, 3DGS estimates the projected 2D Gaussian’s area to identify
its corresponding screen tiles. This is done by calculating k times the square root of the larger
eigenvalue of (Σ′

i + sI), which represents the radius of the approximated circle, and k is the hy-
perparameter that determines the confidence interval of the 2D Gaussian. Figure 10 illustrates the
low-pass filter’s effect, where the projected Gaussian is splatted to wider areas in (b) compared to
(a).

B.2 PROOF ON PROGRESSIVE LOW-PASS FILTER SIZE

In Section 5.2 of our main paper, we define the value s for our progressive Gaussian low-pass filter
control based on the fact that the area of the projected 2D Gaussians is at least 9πs. As the area
of the projected 2D Gaussian is defined as the circle whose radius is k times the square root of the
larger eigenvalue of (Σ′

i + sI), we have to first calculate the eigenvalues of (Σ′
i + sI). If we define

the eigenvalues of Σi as λi1, λi2, since the eigenvalue of sI is s, the eigenvalues of (Σ′
i + sI) can

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

be defined as λi1 + s, λi2 + s. This leads to the following proof:

r = k ·
√

max(λi1, λi2) + s,

r ≥ k ·
√
s,

πr2 ≥ k2πs,

(13)

where k is the hyperparameter that defines the confidence interval of the Gaussian. We follow the
original implementation of 3DGS as k = 3 which gives the 99.73% confidence interval. Using the
value k = 3 leads to the proof of the area of each Gaussian being at least 9πs.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

C ADDITIONAL QUALITATIVE RESULTS

We show additional qualitative results in Figure 11.

(a) INGP (b) 3DGS(Random) (c) 3DGS (d) Ours (e) GT

Figure 11: Additional qualitative results.
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(a) GT image and SfM pointcloud (b) 1D Signal (spatial) (c) 1D Signal (frequency)

Figure 12: Analysis of SfM initialization in 3DGS. (a) The top shows the GT image, and the bottom
is the rendered image by 3DGS after only 10 steps with SfM initialization. We can observe that the
rendered image is already coarsely-close to GT image. We randomly sample a horizontal line from
the image marked in red. (b) The pixel intensity along this line are shown, with the GT indicated
in blue and the rendered image in orange. (c) This graph visualizes the magnitude of the frequency
components of (b). Since frequencies further from the middle of the x-axis represent high-frequency
components, we observe that SfM provides coarse approximation of the true distribution.

D ADDITIONAL ANALYSIS

Although point cloud can be noisy or unavailable in real-world scenarios (Bian et al., 2023; Zhang
et al., 2022), 3DGS shows large performance drops depending on the accuracy of the initial point
cloud (Kerbl et al., 2023). To understand the large performance gap of 3DGS, we conducted an
in-depth analysis of the original 3DGS optimization scheme in Section 4 of the main paper. In this
section, we further explore additional benefits from accurate initialization. Specifically, we analyze
SfM initialization in the frequency domain. Our analyses reveal two important characteristics of the
optimization scheme of 3DGS: 1) the optimization scheme of 3DGS struggles to transport Gaussians
from their initialized locations and 2) the coarse structure information (low-frequency components)
provided by the accurate initialization enables the adaptive density control method of 3DGS to
robustly model the remaining fine details of the scene in a coarse-to-fine manner.

3DGS lacks the ability to transport Gaussians. To represent and learn the scene with explicit 3D
Gaussians, 3DGS first initializes the Gaussians Gi in the world space, whose means µi are defined
by the initial point cloud. The point cloud can be either achieved from SfM or initialized randomly.

As mentioned in (Charatan et al., 2023), the process of fitting a 3DGS model is similar to fitting a
Gaussian Mixture Model (GMM), which is well-known for being non-convex and generally solved
with the Expectation-Maximization (EM) algorithm (Dempster et al., 1977). They further note that,
similar to the EM algorithm, training 3DGS from randomly initialized point cloud becomes prone
to falling into local minima due to two main reasons. 1) The Gaussians can only receive gradients
close to their means, mostly from the range not exceeding the distance of a few standard deviations,
and 2) there is no existing path for the Gaussians that will decrease the loss monotonically.

Although (Charatan et al., 2023) only analyzes the case of starting from random initialization, we
verify that Gaussians can also easily fall into local minima when SfM-initialized point cloud become
noisy. As shown in Table 1, we find that adding a small constant noise or adding a small noise ϵ
sampled from a normal distribution (ϵ ∼ N (0, 0.5)) to the SfM-initialized point cloud, leads to
large performance drops. Based on these observations, we hypothesize that the optimization scheme
of 3DGS lacks the ability to correct or move the positions of the Gaussians. We empirically verify
our hypothesis by calculating the average distance each Gaussian traversed after optimization, as
shown in Table 2. It can be seen that the average distance each Gaussian moved is close to zero,
indicating that the optimization scheme of 3DGS lacks the ability to move Gaussians, which can
lead to the failure of capturing objects located far from the initial positions of the Gaussians. This
emphasizes the need for a strategy that can enable the Gaussians to transport further from their
initialized locations, in order to successfully train 3DGS from sub-optimal initializations.

Accurate initialization guides 3DGS to learn in a coarse-to-fine manner. To further investigate
the benefits of SfM initialization, we analyze the rendered images in the frequency domain using
Fourier transform (Nussbaumer & Nussbaumer, 1982). As shown in Figure 12, the analysis in the
frequency domain demonstrates that SfM initialization provides a coarse approximation of the target
distribution.
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As the goal of novel view synthesis is to understand the 3D distribution of the scene, it is neces-
sary to model both low- and high-frequency components of the true distribution. However, prior
NeRF frameworks (Lin et al., 2021; Park et al., 2021; Yang et al., 2023) argue that NeRF is prone
to overfitting and naı̈ve optimization leads to over-fast convergence of high-frequency components,
expressed with high-frequency artifacts in the rendered image. To circumvent this problem, they
adopt a coarse-to-fine learning strategy, which regularizes NeRF to learn the low-frequency compo-
nents first. Similarly, prior works (Eckart et al., 2016; Hertz et al., 2020) utilizing GMMs for the
task of point cloud registration or generation also mention that naı̈ve fitting of GMMs can result
in converging to local minima. In order to robustly train GMMs, they also adopt a coarse-to-fine
strategy, implemented by starting with a small number of Gaussians and recursively increasing the
number of total Gaussians. In both NeRFs and GMMs, coarse-to-fine strategy guides the network
to learn more robustly, leading to better performance.

In this perspective, starting the optimization of 3DGS from SfM-initialized point cloud can be un-
derstood as benefitting from a similar coarse-to-fine process, where SfM provides the low-frequency
components (Figure 12), and the adaptive density control method of 3DGS adds the Gaussians to
learn the remaining high-frequency details. Based on our observations, the success of 3DGS from
accurate initialization can be attributed to the low-frequency components guiding the overall train-
ing process, preventing the Gaussians from falling into local minima. This highlights the need for
a strategy that can prioritize the learning of the low-frequency components even from sub-optimal
initializations, which will then be used to guide the remaining optimization process of 3DGS.
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Figure 13: Toy experiment to analyze different initialization methods. This figure visualizes the
result of our toy experiment predicting the target distribution using a collection of 1D Gaussians,
starting from different initialization methods.

E ADDITIONAL INTERPRETATION ABOUT SPARSE-LARGE-VARIANCE (SLV)
INITIALIZATION

Drawing inspiration from GMMs (Eckart et al., 2016; Nichol et al., 2022), which gradually increase
the number of Gaussians to accurately model target point cloud, we observe that the adaptive density
control of 3DGS can be viewed as a similar process. Through cloning and splitting operations, 3DGS
generally increases the number of Gaussians to find the adequate number of Gaussians required to
represent the scene. Based on our findings, we hypothesize that initializing 3DGS with a sparse
set of Gaussians will prioritize the learning of low-frequency components, akin to the progressive
refinement approach employed by GMMs. This sparse initialization strategy is expected to capture
the overall structure of the target point cloud in the early stages of the optimization process, with
finer details being added as the number of Gaussians increases.

To verify our hypothesis, we conduct a toy experiment in a simplified 1D regression task. Following
the original 3DGS which can be interpreted as the learning process of a 3D target distribution with
multiple Gaussians, we use N Gaussians each with learnable means, variances, and weights, which
are then blended to model a 1D target signal. Specifically, we follow the initialization methods of
3DGS (Kerbl et al., 2023), where the means are initialized randomly and the variances are initialized
based on the distances of the three nearest neighbors. As a result, sparse initialization of Gaussians
leads to a larger initial covariance (SLV) and dense initialization leads to a smaller covariance (DSV).
To verify our hypothesis that learning with sparse Gaussians will prioritize the learning of low-
frequency components, we conduct our toy experiment using N = 15 and N = 1000 for the SLV
and DSV initialization respectively. Note that our 1D toy experiment without the adaptive density
control method of 3DGS provides a controlled environment isolating the effects of initialization.

As shown in Figure 13, SLV initialization prioritizes the learning of low-frequency components
compared to DSV initialization verifying our hypothesis. After 1,000 steps, SLV also shows a better
prediction of the target distribution. Similar results can be observed when SLV is applied to 3DGS,
as lowering the number of initial Gaussians N in randomly initialized settings significantly improves
performance. Following the random initialization method of (Kerbl et al., 2023), which randomly
samples point cloud from a scene extent defined as three times the bounding box of the camera
poses, SLV prioritizes the learning of low-frequency components, producing fewer high-frequency
artifacts. Surprisingly, SLV becomes more effective even until extremely sparse settings (e.g., as
low as N = 10), verifying the effectiveness of our novel SLV initialization method.
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F ADDITIONAL EXPERIMENTS

F.1 ABLATION ON CORE COMPONENTS

In Table 9, we show a more detailed ablation of our core components: SLV initialization, Progressive
Gaussian low-pass filtering, and ABE-Split. SLV indicates that we initialize N = 10 Gaussians. The
ablations verify our choice as leveraging all three of our components yields the best performance.

Low-pass filter Init. ABE-Split PSNR↑ SSIM↑ LPIPS↓

Constant N = 100K ✗ 25.893 0.764 0.273
Constant N = 100K ✓ 26.970 0.805 0.227
Constant SLV ✗ 25.815 0.759 0.280
Constant SLV ✓ 26.395 0.785 0.231

Ours N = 100K ✗ 26.116 0.765 0.273
Ours N = 100K ✓ 26.982 0.808 0.226
Ours SLV ✗ 26.288 0.769 0.273
Ours SLV ✓ 27.473 0.818 0.215

Table 9: Ablation on core components.

F.2 RAIN-GS WITH OTHER GAUSSIAN SPLATTING METHOD

Method SfM
points

Mip-NeRF360 Outdoor Scene
bicycle flowers garden stump treehill

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM ↑ LPIPS↓ PSNR↑ SSIM ↑ LPIPS↓

Scaffold-GS (Lu et al., 2024) ✓ 24.50 0.705 0.259 21.44 0.592 0.382 27.17 0.842 0.136 26.27 0.784 0.277 23.15 0.640 0.373
Scaffold-GS (Lu et al., 2024) ✗ 23.05 0.609 0.379 19.79 0.503 0.400 26.38 0.827 0.162 22.48 0.604 0.362 21.33 0.551 0.430
Scaffold-GS + RAIN-GS (Ours) ✗ 25.32 0.738 0.268 21.82 0.619 0.312 27.75 0.866 0.106 26.45 0.757 0.238 23.06 0.641 0.324

Method SfM
points

Mip-NeRF360 Indoor Scene Mip-NeRF360
Averageroom counter kitchen bonsai

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM ↑ LPIPS↓ PSNR↑ SSIM ↑ LPIPS↓

Scaffold-GS (Lu et al., 2024) ✓ 31.93 0.925 0.275 29.34 0.910 0.256 31.30 0.928 0.156 32.70 0.946 0.249 27.53 0.808 0.263
Scaffold-GS (Lu et al., 2024) ✗ 30.65 0.896 0.264 28.15 0.875 0.253 29.43 0.890 0.181 30.66 0.918 0.241 25.77 0.741 0.297
Scaffold-GS + RAIN-GS (Ours) ✗ 31.93 0.921 0.201 29.57 0.908 0.187 31.82 0.924 0.126 32.21 0.939 0.180 27.77 0.812 0.216

Table 10: Quantitative comparison of Scaffold-GS with various initializations on Mip-
NeRF360 dataset.

Our proposed strategy does not involve modifying the model architecture of 3D Gaussian Splatting
(3DGS) which enables RAIN-GS to be seamlessly integrated with various 3DGS-based methods in
a plug-and-play manner. However, there are also various extensions of 3DGS (Lu et al., 2024) which
modify the overall 3DGS optimization algorithm. For these methods, it becomes less straightforward
to integrate our method in these approaches. However, instead of directly integrating our method,
it is also possible to interpret our method as a coarse-to-fine approach that jointly learns the 3DGS
model and an ideal point cloud during the training process. We show that even with the SfM-
initialized point clouds being available, the intermediate point clouds generated during the initial
stages of RAIN-GS training can serve as superior starting points for other methods.

Specifically, in this section, we show the results of training Scaffold-GS (Lu et al., 2024) with the
initial point clouds achieved from our method. Instead of directly training Scaffold-GS with random
point clouds, we train RAIN-GS with random point clouds. We find that after training RAIN-GS for
7000 steps, the number of Gaussians is similar to the number of point clouds generated during the
SfM pipeline. Therefore, we save the positions of the Gaussians at 7000 steps as point clouds and
train Scaffold-GS using these point clouds as initialization. We show the performance of Scaffold-
GS trained on Mip-NeRF360 dataset (Barron et al., 2022) in Table 10. The comparison reveals that
Scaffold-GS trained with the point clouds obtained from RAIN-GS yields the best performance,
even surpassing Scaffold-GS trained with SfM point clouds. This reveals that RAIN-GS can be
further utilized to boost the performance of existing 3DGS methods by replacing the initial point
clouds and also enabling these methods to be trained even from random point clouds.
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Methods

Mip-NeRF360 Average
(w/o camera pose optimization)

Mip-NeRF360 Average
(w/ camera pose optimization)

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

3DGS (Random) 16.026 0.386 0.623 18.916 0.453 0.572
Ours 16.492 0.404 0.607 21.060 0.538 0.475

Table 11: Quantitative results on noisy camera pose setting. We evaulate our method with 3DGS
(Random) on noisy camera pose setting (Park et al., 2023). Both with and without camera pose
optimization, ours achieve better results.

Method SfM
points

Mip-NeRF360 Outdoor Scene
bicycle flowers garden stump treehill

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM ↑ LPIPS↓ PSNR↑ SSIM ↑ LPIPS↓

RAIN-GS (Resolution) ✗ 25.039 0.743 0.244 21.778 0.618 0.323 26.985 0.856 0.114 26.882 0.776 0.205 22.511 0.630 0.332
RAIN-GS (Ours) ✗ 25.373 0.750 0.244 22.118 0.632 0.315 27.277 0.863 0.110 27.029 0.783 0.207 22.887 0.647 0.328

Method SfM
points

Mip-NeRF360 Indoor Scene Mip-NeRF360
Averageroom counter kitchen bonsai

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM ↑ LPIPS↓ PSNR↑ SSIM ↑ LPIPS↓

RAIN-GS (Resolution) ✗ 30.675 0.907 0.245 28.551 0.895 0.220 31.220 0.920 0.138 31.552 0.935 0.217 27.244 0.809 0.226
RAIN-GS (Ours) ✗ 30.866 0.916 0.218 28.681 0.905 0.195 31.416 0.926 0.125 31.610 0.940 0.188 27.473 0.818 0.215

Table 12: Progressive Low-pass filtering vs. Resolution-based training.

F.3 RAIN-GS WITH NOISY CAMERA POSES

When camera poses are obtained solely from sensors (e.g., IMU) or when SfM algorithms fail to
provide accurate camera poses, the performance of both NeRF and 3DGS has been shown to de-
grade significantly (Lin et al., 2021; Fu et al., 2024). To evaluate the robustness of our approach
under noisy camera poses, we conduct additional experiments on the Mip-NeRF360 dataset (Barron
et al., 2022) with noisy camera poses. Noisy camera poses were generated by following the pro-
tocol of CamP (Park et al., 2023), introducing approximately 5 degrees of noise to all poses. As
the original rasterizer of 3DGS does not propagate gradients to camera poses, we implemented a
custom rasterizer for both 3DGS and our method to enable camera pose correction during training.
The average results, both with and without camera pose optimization, are summarized in Table 11.
The results show that while noisy camera poses significantly degrade the reconstruction quality, our
method consistently outperforms the original random point cloud initialization. The superior per-
formance of our approach can be attributed to the progressive Gaussian low-pass filtering and SLV
initialization, which share similarities with the coarse-to-fine training strategies used for handling
noisy poses in NeRF (Lin et al., 2021). Combined with our earlier experiments in Table 1, these
results demonstrate that our approach can robustly train 3DGS models regardless of whether the
initial point cloud or the camera poses are noisy.

F.4 PROGRESSIVE LOW-PASS FILTERING VS. RESOLUTION-BASED TRAINING

The progressive Gaussian low-pass filtering method is similar to the coarse-to-fine training
paradigm, where 3D Gaussians are trained from low-resolution images to high-resolution images.
Larger values of the low-pass filter cause Gaussians to cover larger areas, resulting in blurrier im-
ages, akin to coarse representations. However, our approach differs from training 3DGS directly
from low-resolution images in two significant ways. First, encouraging Gaussians to cover larger
areas ensures sufficient gradient propagation during training, enabling effective cloning and split-
ting of Gaussians and preventing overfitting to highly localized regions. Second, our method uses
a consistent high-resolution ground truth for supervision, avoiding the aliasing artifacts that can oc-
cur when training with multi-scale images, as noted in Mip-Splatting (Yu et al., 2023). To compare
these approaches, we conduct an experiment on the Mip-NeRF360 dataset, replacing our progressive
Gaussian low-pass filtering with a coarse-to-fine strategy using low-resolution to high-resolution im-
ages, with other strategies remain same. The results, presented in Table 12, show that our method is
more robust and achieves better performance across various scenes.
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SfM Noisy SfM Random RAIN-GS (Ours)

Means 0.704 0.650 0.395 16.403
Stds 2.207 0.729 0.402 14.606
Top 1% 10.755 3.646 1.923 68.919

Table 13: Movement of Gaussians.

(d) RAIN-GS (Ours)(c) 3DGS(a) 3DGS (Random)

In
it

ia
l 

P
o

in
t

3
0

,0
0
0
 s

te
p
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Figure 14: Displacements of Gaussians from initial positions including Grendel-GS (Zhao et al.,
2024).

F.5 ANALYSIS OF MOVEMENT OF EACH GAUSSIAN IN RAIN-GS.

Through the extended analysis of Section A.2 and Table 2, we assess how effectively RAIN-GS
mitigates the transportability issues associated with conventional Gaussian Splatting methods. By
combining our methods (SLV initialization, progressive Gaussian low-pass filtering, and ABE-Split)
RAIN-GS successfully mitigates the problem of lack of transportability. Starting from very sparse
number of Gaussians, RAIN-GS can successfully transport the Gaussians to where the scene is
located. For quantitative comparisons of the Gaussians movements shown in Table 2, we provide
the overall movements of RAIN-GS in the Mip-NeRF 360 dataset in Table 13. As shown in the
analysis, RAIN-GS shows the largest movements throughout the overall optimization process. This
is straightforward as starting from random indicates that the initial point clouds need to move more
to fully represent the scene.

F.6 ADDITIONAL ANALYSIS ON GRENDEL-GS

In this section, we further investigate if other training strategies can mitigate the limitation of the
lack of transportability of Gaussians. Specifically, we analyze Grendel-GS (Zhao et al., 2024),
which introduces batch-wise training for the 3DGS optimization. We extend our previous analysis of
evaluating the total movements of the Gaussians throughout the optimizations in the Mip-NeRF360
dataset. Table 14 reveals that batch-wise training slightly mitigates the limitation of the original
3DGS, showing larger average movements when compared to 3DGS (Random). However, even
with larger movements it still shows smaller movements when compared to 3DGS (SfM) which
indicates the lack of sufficient movement as mentioned in Section 4.2. Figure 14 shows that similar
to 3DGS (Random), the learned Gaussians fail to learn the structure of the scene, maintaining the
bounding-box like shape even after optimization. Figure 15 shows that due to the lack of sufficient
movement, the Gaussians fail to model the house in the red bounding box that is located in a distant
region. This additional analysis reveals the effectiveness of our approach, where both Table 13
and Figure 14 verify that our approach robustly learns the structure of the scene showing large
movements.
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(a) Ground Truth (b) RAIN-GS (Ours)

(c) 3DGS (Random) (d) Grendel-GS (Random)

(a) Ground Truth (b) RAIN-GS (Ours)

(c) 3DGS (Random) (d) Grendel-GS (Random)

Figure 15: Qualitative comparisons on ‘bicycle’ scene rendered using different initial point
clouds including Grendel-GS (Zhao et al., 2024). The red-bounding box region shows examples
of under-reconstruction, where the house in the background remains un-reconstructed.
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3DGS (SfM) 3DGS (Noisy SfM) 3DGS (Random) Grendel-GS (Random) RAIN-GS (Ours)

Means 0.704 0.650 0.395 0.641 16.403
Stds 2.207 0.729 0.402 0.678 14.606
Top 1% 10.755 3.646 1.923 2.760 68.919

Table 14: Movement of Gaussians including Grendel-GS (Zhao et al., 2024).
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