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A man in a red sweater is sitting in 
the library reading a book, while a 
woman in a white shirt next to him 
pets a dog. The man is shown in 
Image A, the woman in Image B, 
and the dog in the Concept.

A woman in a white long-sleeve 
blouse with lace details and a blue 
pleated skirt is walking a dog down 
the street. The woman is shown in 
Image E, the blouse and skirt in Image 
F, and the dog is Concept.

A man in a black shirt is 
reading a book and a sks 
dog (Concept) is siting in 
front of his  head. The man 
is the right man in Image D.

A sks dog and a short-haired 
woman with a wrinkled face are 
standing in front of a bookshelf in 
a library. The dog is in the 
Concept, and the woman is 
oldest woman in Image H

A man and a woman are sitting 
at a classroom desk teaching a 
sks dog. The man is the man 
with yellow hair in Image G. 
The woman is the woman on 
the left of Image C. The dog is 
the one in Concept.

A B C

D E F G H

Concept personalization for composition

On a snowy mountain topIn a pool with palm trees around In a city at night Crowded, on a beach sunset Surrounded by autumn in forest

Church Rock (Outdoor) 

Office (indoor)
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Top view

I = white desk+chair+computer I+books I+coffee cup I+a plant beside the computer I+papers scattered on the desk I+a clock on the wall

Figure 1: This figure illustrates the tasks achieved using our Decompositional Efficient Fine-Tuning
(DEFT) method across diverse settings. It includes in-context learning for a variety of image
generation tasks, concept personalization for composition, where these compositions emphasize the
personalization of the environment and the interaction between characters and pets, blending various
scenarios. Moreover, it highlights outdoor and indoor scene personalization, featuring Church Rock
and the office. All the tasks fine-tune the baseline OmniGen model [48] using DEFT.

Abstract

Efficient fine-tuning of pre-trained Text-to-Image (T2I) models involves adjusting
the model to suit a particular task or dataset while minimizing computational
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resources and limiting the number of trainable parameters. However, it often faces
challenges in striking a trade-off between aligning with the target distribution:
learning a novel concept from a limited image for personalization and retaining
the instruction ability needed for unifying multiple tasks, all while maintaining
editability (aligning with a variety of prompts or in-context generation). In this
work, we introduce DEFT, Decompositional Efficient Fine-Tuning, an efficient
fine-tuning framework that adapts a pre-trained weight matrix by decomposing its
update into two components with two trainable matrices: (1) a projection onto the
complement of a low-rank subspace spanned by a low-rank matrix, and (2) a low-
rank update. The single trainable low-rank matrix defines the subspace, while the
other trainable low-rank matrix enables parameter adaptation within that subspace.
We conducted extensive experiments on the Dreambooth and Dreambench Plus
datasets for personalization, the InsDet dataset for object and scene adaptation, and
the VisualCloze dataset for a universal image generation framework through visual
in-context learning with both Stable Diffusion and a unified model. Our results
demonstrated state-of-the-art performance, highlighting the emergent properties of
efficient fine-tuning. Our code is available on DEFT.

1 Introduction

Text-to-image (T2I) models have revolutionized the way we generate images, transforming abstract
concepts and textual descriptions or prompts into compelling visual representations. Models such as
Stable Diffusion have gained significant attention for their ability to generate high-quality images
across various domains. Despite these impressive capabilities, adapting T2I models to specific
tasks—such as personalization for novel concepts [34, 31] or multi-task generalization [25]—remains
a challenge. Traditional fine-tuning approaches often require substantial computational resources and
large amounts of reference data to train or adapt the model [19], which limits their practicality for
many applications. This limitation is particularly evident in tasks requiring personalization, such as
adapting a model to generate images of a specific subject or scene, where training or reference data is
often scarce. For instance, Custom Diffusion [19] tends to overfit when trained on a limited number
of reference images, leading to poor generalization across prompts [45, 34].

DreamBooth [35] introduced a personalized image generation method in which Low-Rank Adaptation
(LoRA) [17] was employed to enable subject-specific tuning by applying learned LoRA modules
at inference time, thereby preserving the identity of the subject during image generation. Although
DreamBooth and other LoRA-based methods, such as LoraMerge [6] and ComposLoRA [56],
improve subject personalization and separation using a limited number of reference images, they
still lack fine-grained control over pose, spatial positioning, and lighting. These methods also often
struggle with convergence and overfitting, especially when the low-rank updates are unconstrained and
do not align well with the pre-trained weights. Furthermore, many existing LoRA-based approaches
suffer from limited instruction following capabilities, particularly in complex scenarios involving
multiple subjects or scenes (See the Figure 1).

In this work, we introduce DEFT (Decompositional Efficient Fine-Tuning), a novel fine-tuning
framework that overcomes these limitations by decomposing the weight matrix update into two
components: (1) a projection onto the orthogonal complement of a low-rank subspace, and (2) a
low-rank update that allows for flexible adaptation within that subspace. This decomposition enables
more efficient adaptation of pre-trained models to new tasks without sacrificing the model’s ability to
generalize to a wide range of scenarios. By using two trainable low-rank matrices, DEFT extends the
adaptability of the model while maintaining stability during the adaptation process, ensuring that the
model doesn’t suffer from catastrophic forgetting.

We evaluate DEFT on several challenging datasets, including Dreamboot [34] and Dreambench Plus
[31] for personalization, the InsDet [37] dataset for object and scene adaptation, and the Visual-
Cloze [25] dataset for universal image generation via visual in-context learning. Our experiments
demonstrate that DEFT achieves better performance than state-of-the-art methods, highlighting its
effectiveness and flexibility in fine-tuning models for diverse tasks. In particular, DEFT excels in
tasks such as multi-concept composition, expanding model capabilities to universal image generation
[25], and reducing overfitting on small datasets. Moreover, we show that DEFT offers significant
improvements in personalization, especially when adapting models to multiple subjects or complex
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scenes [37], overcoming issues such as blending artifacts and limited control over pose and context.
Unlike other methods, DEFT overcomes challenges such as blending artifacts and offers finer control
over pose and context. Using its low-rank update in subspace, DEFT maintains a balance between
efficient adaptation and generalization, providing greater flexibility in fine-tuning while minimizing
the risk of catastrophic forgetting, advantages that are not fully realized by existing methods like
DreamBooth or LoRA. The key contribution of the paper can be summarized as follows.

• We propose a novel fine-tuning framework, DEFT, which improve adaptability by decomposing
weight updates into two components: a projection onto a low-rank subspace and a low-rank
adjustment. This structure enables efficient weight editing while preserving prior knowledge.

• DEFT supports efficient fine-tuning with minimal data, enabling personalization and adaptation to
new tasks without extensive retraining or risk of overfitting.

• We validate DEFT with extensive experiments on datasets such as DreamBooth, Dreambench Plus,
VisualCloze, and InsDet, demonstrating its effectiveness in personalization and universal image
generation. DEFT shows performance across subjects, scenes, and multi-concept compositions.

2 Related work

Personalized Diffusion Models by tuning: A simple yet effective way to adapt concepts in text-to-
image models is by selectively tuning a subset of parameters, tailoring them to the desired concepts
[8], [35], [7], [43], [54], [33], [55]. Methods like DreamBooth [35] fine-tune all model weights on
a few images but are resource-intensive and prone to overfitting. Textual Inversion [8] is a lighter
approach, learning a new token embedding to represent a concept without modifying the model.
While efficient, it struggles with fine details. Custom Diffusion [19] fine-tunes a subset of parameters,
learning concepts in minutes, and supports multi-concept training. Perfusion [41] and AnyHyper
[2, 10] reduce trainable parameters but still face issues like overfitting and interference. These
methods improve the text embedding space [8], use fine-tuning [35, 19, 17, 11, 14, 6, 28], or provide
adapters [29, 53] for personalized control, with some training-free approaches [5, 10, 18, 38, 46].
LoRA [17] and SVDiff [14] decompose matrices in diffusion models, but these focus on adjusting
scale rather than structure. PaRa [4] eliminates components during personalization for more stable,
robust model mixing, avoiding the overfitting risks of scale adjustments [26, 13, 15]. Our dynamic
framework adapts fine-tuning methods like LoRA [6] and PaRa [4], which project onto a low-rank
subspace and have a flexible low-rank update for new concepts or tasks.

Unified Models fine-tuning: Unified [48, 25] are the single transformer-based models support
image generation tasks where text and images are encoded and concatenated, separated tokens and
fed to the single transformer models. These models share the same transformer blocks and can
utilize objectives such as MaskGIT [3] or [27] for image generation. Unified models also support
in-context learning along with a prompt. Combining multiple personalized concepts in one image is
more complex than generating a single concept. Fine-tuning a model on multiple concepts can lead
to interference or dominance of one concept over others [19, 12]. Early methods inserted multiple
learned tokens into prompts, but diffusion models often fail to distinctly generate all concepts,
especially if they share attributes or were not jointly trained. Kumari et al. [19] addressed this by
fine-tuning individual concept models at low rates or merging them, allowing composition of new
concepts with quality trade-offs. Mix-of-Show [12] uses a fusion LoRA and additional guidance
such as sketches, improving composition, but requiring extra input and retraining. Without guidance,
it suffers from concept vanishing or mixing [12]. LoRA-Composer [56] merges multiple LoRAs
inference without retraining, maintaining concept isolation and visibility, demonstrating improved
results in 2-3 concept compositions. Wu et al. [47] introduced the LoRA Expert Mixture (MOLE),
which combines LoRA through learned gating weights, balancing multiple concepts. These methods
show promise, but still require manual tuning or supervised training, and may struggle with many
concepts or without guided layouts. In this work, we employ low-rank DEFT adapters to fine-tune
models for new tasks, including tasks that were not originally supported by the base models.

3 Methodology

Figure 2 provides an overview of DEFT and compares it to other efficient fine-tuning techniques,
namely PaRa [4] and LoRA [6]. We begin by considering image generation models such as Stable
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Diffusion (SD) [32] and the unified Omnigen [48] model as our base architectures. SD, a latent text-
to-image generation model, is based on Diffusion Probabilistic Models (DDPM) [16, 39]. Similar to
LoRA’s approach in diffusion models [6], we introduce low-rank adapters to the UNet and condition
encoders that operate in the latent space [30]. In the case of unified models, we apply low-rank
adapters to the linear layers of the transformer.

In this methodology, we first describe the foundational low-rank adaptation mechanism, then build
upon this to introduce DEFT, which enhances flexibility while maintaining model generalization.
The following sections explain these methods in detail.

Rank Rank Rank

LoRa PaRa DEFT

Figure 2: The figure illustrates the difference between our DEFT and other similar efficient fine-
tuning techniques: (a) LoRA (Low-Rank Adaptation) modifies the pre-trained weight matrix W
by adding a low-rank update αBTA, where A and B are trainable low-rank matrices. (b) PaRa
(Parameter-efficient Rank Adaptation) introduces a similar low-rank update, W −QQTW , with Q
representing the low-rank orthonormal basis. (c) DEFT (Decompositional Efficient Fine-Tuning)
further decomposes the update into two components: a projection onto the subspace, W − PPTW ,
and a low-rank adjustment, PRT , where P and R are trainable matrices that enable more flexible
adaptation while preserving the model’s generalization ability.

3.1 Decompositional Efficient Fine-Tuning

Let M = {W1,W2, . . . ,Wn;Wi ∈ Rmi×ni pre-trained weights. Instead of updating the full weight
matrix Wi, which can be computationally expensive requiring O(mn) per matrix, the update is
decomposed into smaller matrices to reduce the number of trainable parameters. We can assume a
W ∈ M ∈ Rm×n pre-trained weight matrix. We aim to compute adapted weights W ′, such that:
W ′ = W +∆W where ∆W is a low-rank update constrained to rank r ≪ min(m,n) so that O(mn)
reduce significantly. DEFT builds on the concept of low-rank adaptation, as introduced in techniques
like LoRA [6] and PaRa[4]. While LoRA injects trainable low-rank matrices into specific layers,
our approach goes further by decomposing the low-rank update into two components: the projection
onto a subspace and the low-rank adjustment. This decomposition allows us to adapt the model more
flexibly to a broader range of tasks while preserving its original performance. LoRA injects trainable
low-rank matrices into specific layers while freezing the original weights. For a linear layer with
input x ∈ Rn, the modified forward pass becomes: h = Wx+∆Wx = Wx+BAx, A is initialized
with random Gaussian weights, and B with zeros, ensuring ∆W = 0 at initialization.

The efficacy of low-rank updates is grounded in the observation that neural networks reside on low
intrinsic manifolds during adaptation [1]. For a pre-trained weight W , the update ∆W amplifies
task-specific feature directions not emphasized in W . Let UΣV ⊤ be the SVD of W . The projection
of ∆W onto W ’s singular vectors reveals that ∆W primarily modifies directions orthogonal to W ’s
dominant singular vectors.

Inspired by this orthogonal direction, PaRa [4] introduced the low rank update in the orthogonal
complement of the freeze weight, and they used rank reduction via the following formulation:
W = W0 − QQTW0, where Q is an orthonormal basis matrix and W0 is the pre-trained weight
matrix (Please refer to Appendix B for the proof). This operation reduces the rank of the weight matrix
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W0, ensuring that the model’s adaptation is constrained to a smaller and more relevant subspace for
the target task.

We extend the idea of modifying subspace with the low-rank update to improve the flexibility for
diverse tasks in DEFT. The column space of Wtotal = (I −QQ⊤)W0 +QR extends the subset of
W0’s column space by incorporating QR(For the full proof, please refer to Appendix C), enabling
adaptation to new tasks which can be described as a decomposition in trainable matrices Appendix D
as:

Wtotal = (I −QQ⊤)W0 +QR (1)

By adding QR to Wreduce, the total column space col(Wtotal) becomes:

col(Wtotal) = col(Wreduce) + col(QR) ⊆ col(W0) + col(Q).

If col(Q) ⊈ col(W0), the subspace is extended, allowing adaptation to new tasks. That can be seen
as a low-rank update, where low-rank updates inject task-specific directions into the weight matrix. .

3.1.1 Decomposition approaches

To generalize the rank-reduction mechanism beyond QR decomposition, we extend our method
to support several decomposition techniques for constructing the projection matrix P ∈ Rd×d

used to eliminate subspaces from the original weight matrix W0. In QR decomposition, B is
decomposed as B = QR, where Q is orthonormal, and R is upper triangular. TruncatedSVD [21]
uses B = USV ⊤, where U contains the top r left singular vectors, and S is a diagonal matrix
of singular values. Low-rank matrix factorization (LRMF) [51] uses a scaled basis Ũ = U

√
S,

while non-negative matrix factorization (NMF) [23] decomposes B into non-negative matrices
B ≈ WH . Eigen decomposition computes BB⊤ ∈ Rd×d and performs eigen decomposition to
form the projection matrix P = VrΛrV

⊤
r . In all cases, the projection matrix follows the form

Wreduce = W0 − PPTW0 + PR, with the linear transformation. The final DEFT update equation
becomes:

h = Wreducex = W0x− PPTW0x+ PRx. (2)
Non-negative shadow of PFull span of P

Figure 3: Displacement field visualiza-
tion of the DEFT update. Left: subtrac-
tion using the full span of P , where both
positive and negative entries contribute
to the removed subspace. Right: subtrac-
tion using only the non-negative shadow
ReLU(P ), which restricts removal to
additive components and yields weaker,
more selective displacements.

As illustrated in Figure 3, when using PP⊤ the up-
date removes components aligned with the entire span
of P , producing strong displacements along both positive
and negative directions. By contrast, replacing it with
ReLU(P )ReLU(P )⊤ eliminates only the non-negative
portion of the span, leading to sparser and more struc-
tured updates. This connects naturally to NMF, where
non-negativity encourages additive feature combinations.

To further stabilize optimization, the framework applies
a higher learning rate to R compared to P , mirroring the
design of LoRA. This modular formulation enables differ-
ent structural biases to be introduced in a plug-and-play
manner during fine-tuning, potentially improving adapt-
ability under different data regimes or downstream tasks.
To update on the framework works with the increased
learning rate for R compared to P , so this turns out to
follow a similar path as LoRA. This modular formulation
allows different structural biases to be introduced in a plug-
and-play fashion during fine-tuning, potentially improving
adaptability under different data regimes.

4 Experiments

4.1 Experimental details

To check the effectiveness of DEFT, we conducted extensive experiments. We wrote the library of
the DEFT using Torch, which can be adapted to any model. We follow the similar design choice
like LoRA [17]. DEFT aim to inject knowledge through low-rank updates while maintaining the
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original model’s stability. We use rank (r) equal to 4 for DreamBench Plus [31] benchmarking
for all of the methods. For Visual cloze [25] universal image generation, we used r = 32. For
evaluation purpose, we conducted experiments on universal image generation from Visualcloze [25],
image personalization on DreamBoot [34], subject (live, no-living, and styles) personalization, and
scene personalization. Please see the Figure 1, for the tasks supported with qualitative results. All
experiments were conducted with 4 NVIDIA RTX A6000 50GB GPUs.

Baseline: We extend stable diffusion and stable diffusion XL (SDXL) [32] image personalization,
along with Omnigen [48], into a unified model. This model utilizes a single transformer-based
image generation framework, simultaneously modeling text tokens and image tokens for multi-
concept composition. The goal is to expand the model’s capabilities to support the DEFT module,
enabling subject-wise parameter tuning and controlled scene generation without requiring full model
fine-tuning. For training and evaluation, we use the diffuser library [42].

Dataset: For evaluation, we use several datasets, including the DreamBooth Benchmark [34],
which contains 30 personalized concepts across 15 categories, with 4–6 images per concept and
25 challenging prompts. Additionally, we curate datasets for single-subject and multi-subject
personalization, ensuring diverse compositions. Key datasets include VisualCloze [25] (We created
3M instructions for in-context learning for fine-tuning), DreamBooth (30 concepts for subject-driven
generation), DreamBench Plus [31] (150 concepts for human-aligned benchmarks), and InsDet
[37], the high-resolution dataset for instance detection with 100 objects and 5 scenes. We created
instructions for these 100 objects with an average of 22+ images using Blip2 [24], and for the scene,
we used Qwen 32B [50] for the details description.

4.2 Results and Analysis

4.2.1 DEFT improves Instruction following abilities

Table 1 reports CLIP-T scores, measuring image–text alignment across T2I models. Traditional
methods (Textual Inversion, DreamBooth) and recent variants (LoRA, BLIP-Diffusion, PaRa) show
varying performance on SD v1.5 and SDXL. Our DEFT, built on SDXL v1.0, achieves the best score
(0.361), surpassing LoRA (0.341) and PaRa (0.354). This improvement stems from DEFT’s low-rank
injection, which expands the fine-tuning subspace, retaining the original model’s instruction-following
capabilities, enabling more coherent image generation in personalization tasks.

Table 1: This table illustrates the performance of
several T2I models on 150 subjects with eight
different and diverse prompts from the Dream-
bench Plus [31] dataset. We evaluated with their
associated CLIP-T scores used for image-text
alignment. The results show the ability of each
model to integrate visual and textual information
across different versions of models, such as SD
v1.5 and SDXL v1.0. For our DEFT, we used
the same setting as DreamBooth LoRA [6], in-
cluding the SDXL.

Frameworks T2I Model CLIP-T

Textual Inversion [9] SD v1.5 0.302
DreamBooth [34] SD v1.5 0.323
DreamBooth LoRA [6] SDXL v1.0 0.341
BLIP-Diffusion [24] SD v1.5 0.286
Emu2 [40] SDXL v1.0 0.310
IP-Adapter-Plus [52] ViT-H SDXL v1.0 0.282
IP-Adapter [52] ViT-G SDXL v1.1 0.309
PaRa [4] SDXL v1.0 0.354
DreamBooth DEFT (Ours) SDXL v1.0 0.361

Table 2: Style transfer and conditional genera-
tion comparison for quantitative performance on
Visualcloze [25] test dataset. In Visualcloze re-
sults, FLUX.1dev [20] is represented as dev and
FLUX.1-Fill-dev as Fill. Both DEFT are evalu-
ated on rank = 32 fine-tuned with the OmniGen
[48] model. Different scores are used for the two
distinct tasks.

Condition Method CLIP-Score Image Consistency

Image DINOv1 DINOv2

Canny
OmniGen 95.45 87.13 87.60

VisualCloze 89.32 – –

DEFT (Ours) 95.78 90.37 90.65

Depth
OmniGen 92.02 85.16 77.39
VisualCloze 87.56 – –

DEFT (Ours) 93.18 88.98 85.75
Style Type Method Text Score(↑) Image Score(↑) F1(↑)

InstantStyle

InstantStyle [44] 0.27 0.60
OmniGen [48] 0.27 0.52 0.55
VisualCloze-dev [25] 0.30 0.53
VisualCloze-fill [25] 0.29 0.55
DEFT (Ours) 0.28 0.69 0.59

ReduxStyle

OmniGen [48] 0.27 0.58 0.47
VisualCloze-dev [25] 0.29 0.53
VisualCloze-fill [25] 0.27 0.55
DEFT (Ours) 0.26 0.69 0.49
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4.2.2 Universal Image Generation through Adapter

Beyond personalization, we assess DEFT’s generalization by fine-tuning OmniGen [48] on Visual-
Cloze [25]. Tables 2 and 3 show that DEFT consistently outperforms OmniGen and VisualCloze in
both style transfer and conditional generation.

For image consistency, DEFT yields higher CLIP and DINO scores under Canny Edge and Depth
Map conditions, demonstrating stronger alignment between text and visuals. In style transfer, it
achieves the best Image Scores (0.69) and F1 metrics across both InstantStyle and ReduxStyle tasks,
indicating better preservation of textures and styles.

Table 3 further highlights DEFT’s advantage in controllability and quality. Under Canny Edge, DEFT
achieves the highest F1 and SSIM, with competitive FID. Under Depth Map, it maintains strong
controllability (F1 = 0.86) while substantially improving SSIM (0.72). These results confirm that
DEFT enhances both structural fidelity and perceptual quality, making it well-suited for universal
image generation.

Table 3: Comparison of various methods on controllability and quality metrics across Canny Edge
and Depth Map conditions. Our DEFT fine-tune OmniGen [48].

Canny Edge Depth Map
Controllability Quality Controllability Quality

Method F1 ↑ RMSE ↓ FID ↓ SSIM ↑ F1 ↑ RMSE ↓ FID ↓ SSIM ↑
ControlNet [53] 0.13 - 46.06 0.34 0.13 23.7 36.83 0.41
OmniControl [49] 0.47 - 29.58 0.61 0.47 21.44 36.23 0.52
OneDiffusion [22] 0.39 - 32.76 0.55 0.39 39.03 39.03 0.49
OmniGen 0.43 4.55 51.58 0.47 0.85 9.83 115.54 0.69
VisualCloze_dev 0.39 - 30.36 0.61 0.39 25.06 42.14 0.53
VisualCloze_Fill 0.35 - 30.6 0.55 0.35 10.31 33.88 0.54
DEFT (Ours) 0.48 4.11 46.62 0.66 0.86 9.38 46.74 0.72

4.2.3 Qualitative comparison

In Figure 4, we compare the consistency of reference images across various tasks from DreamBench
Plus [31]. The DEFT method outperforms LoRA in generating consistent, high-quality images.
DEFT effectively maintains visual coherence and fine details, such as textures and proportions, when
adapting to diverse prompts involving cat, horse, and pixel warrior. For example, the horse color is
maintained in most of the images compared to LoRA.

In Figure 5, we showcase various objects and live subjects from Dreambench Plus [31]. LoRA and
our DEFT shows comparable results but there are some details that can seen. For instance, in the
Jellyfish Image, DEFT captures delicate transparency and lighting, which PaRa and LoRA fail to
replicate. Similarly, in the Taxi Image, DEFT preserves sharp details like streetlights and reflections,
while the other methods show blurred elements. The Drum Image demonstrates DEFT’s ability to
maintain fine textures and lighting, unlike PaRa and LoRA, which produce less-defined results. In
the Pokémon Figures Image, DEFT preserves vibrant colors and detailed textures, while PaRa and
LoRA produce duller, less detailed images. Lastly, DEFT excels at reproducing fine fur textures and
eye clarity in the Cat Image, where PaRa and LoRA struggle with detail preservation.

4.2.4 Emergent properties efficent-finetuning

The emergent properties of efficient fine-tuning are evident when a model, initially unaware of
specific concepts, is trained on a small set of images representing diverse scenarios. In the Figure
6, we show the multi-concept personalization by finetuning omnigem, which does not require a
separate LoRA adapter for each task like LoRAMerge [6]. In the first row, the model is fine-tuned on
a few pet-related images, such as a Corgi dog and a teddy bear, in various environments. It learns to
recognize key features of pets, like shape, color, and behavior, despite having no prior knowledge. In
the second row, the model demonstrates its ability to generalize these learned features, successfully
recognizing pets in new contexts—such as outdoors or with people—under different lighting and
settings. The third row shows the model fine-tuned on a small number of object-related images,
including toys and accessories. Here, the model learns to identify objects based on features like shape,
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DEFT

LoRA

DEFT

LoRA

DEFT

LoRA

Figure 4: Comparison of image generation consistency between our DEFT and LoRA across various
categories to check the consistency of the reference. The images show results for different subjects,
including cats, horses, and pixel worrier (Zoom for best view).

DEFTOriginal PaRa DEFTLoRA Original PaRa LoRA

Figure 5: This figure compares the performance of LoRA, PaRa, and DEFT models in object-based
tasks using the DreambenchPlus dataset. All methods use the same prompt, with the ideal model
exhibiting results that closely resemble the original while maintaining diversity.

size, and texture. In the fourth row, the model’s generalization ability is further tested as it accurately
recognizes these objects in new, unseen conditions, such as backpacks in varied environments like
parks, streets, and cityscapes. This illustrates how efficient fine-tuning, with minimal data, empowers
the model to not only learn specific concepts but also extend its knowledge to handle a wide array of
tasks and environments without requiring extensive retraining.
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Figure 6: This figure demonstrates the emergent properties of the model, which adapts the training
set to generate diverse combinations under varying testing conditions. The model successfully
generates new and creative image variations by combining elements from different objects and scenes,
showcasing its ability to generalize beyond the original training data and produce novel compositions.
All the results on the right side were obtained after fine-tuning OmniGen [48] using DEFT.

4.3 Ablation study

To better understand DEFT’s behavior, we include ablations on decomposition methods, training
duration, and novel capabilities.

Effect of decomposition. In Sec. 3.1.1, we described the various decomposition methods that can
function the eqn 1 other than QR decomposition. In Figure 7, we provide a visual example of different
decompositions on fine-tuning in the DEFT style. All methods, including LRMF, NMF, QR, TSVD,
and Relaxing P, closely mimic the reference image, each capturing key aspects such as lighting,
subject clarity, and environmental context. In the default setting of our DEFT, we used it without
decomposition because this configuration provides a baseline for evaluating the performance of the
model with minimal modifications. By avoiding decomposition initially, we ensure that any observed
improvements or changes in performance can be directly attributed to the fine-tuning process itself,
rather than the additional complexity introduced by matrix decompositions.

Decomposition Methods. As shown in Table 4 and Figure 7, alternative decompositions (e.g., NMF,
QR, TSVD) achieve competitive performance, with learnable variants (Relaxing P, Pnmf) providing
stronger prompt control. This highlights that DEFT is flexible to different factorization strategies,
though our default setting avoids decomposition for simplicity.

Table 4: Performance comparison of different decomposition methods as discussed in section 3.1.1.
Relaxing P and Pnfm indicates the learnable matrix which directly adapts the W0 as shown in the
Eq 2. Pnfm is a non-negative version for adaptation as shown in the Figure 3. All decomposition
approaches demonstrate competitive performance, with Pnfm showing significant control over prompts,
highlighting the value of structural non-negativity as a fine-tuning bias. All results are evaluated with
DreamBooth [34] Dog (See Figure 7) with 8 diverse prompts.

Method Speed (ms) CLIP-I CLIP-T DINO-V1 Aesthetic Sharpness
LRMF 29.10 0.827± 0.038 0.220± 0.051 0.307± 0.040 0.014± 0.005 349± 414

NMF 5.16 0.883± 0.033 0.222± 0.042 0.357± 0.068 0.015± 0.003 206± 91

QR 5.38 0.875± 0.043 0.217± 0.041 0.340± 0.060 0.017± 0.003 215± 106

TSVD 28.72 0.875± 0.031 0.223± 0.041 0.333± 0.062 0.016± 0.004 331± 134

Relxing P 5.22 0.879± 0.030 0.235± 0.041 0.330± 0.058 0.015± 0.003 340± 150

Relexing Pnmf 5.22 0.923± 0.037 0.266± 0.033 0.440± 0.096 0.016± 0.003 175± 25
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lrmf nmf qr tsvdRefernce Image Relexing P

1. A realistic photo of a 

sks dog on a beach 

during sunset.

2. A close-up photo of a 

sks dog in a kitchen 

with warm lighting.

Relexing Pnmf 

Figure 7: This figure showcases various rank-reduction techniques for personalization. By extending
traditional decomposition methods such as QR, Truncated SVD, LRMF, and NMF, Relaxing P enables
the projection matrix P to adapt and refine the original weight matrix W0 (See Eq 2), effectively
generating new image concepts without any decomposition required.

Training Steps. Table 5 compares DEFT with LoRA at different training horizons. While both
improve with more steps, DEFT maintains stable instruction adherence (CLIP-T) and image quality,
whereas LoRA suffers degraded alignment at longer training. This makes DEFT more suitable for
extended fine-tuning.

Table 5: Effect of training steps on fine-tuning OmniGen with DreamBooth’s Dog [34]. We compare
DEFT (using QR decomposition with rank 8) against LoRA (also with rank 8). DEFT maintains a
balance between image quality and instruction-following capability across training durations, whereas
LoRA suffers a significant drop in instruction adherence, especially at longer training horizons.

Training Steps = 2000 Training Steps = 8000
Method CLIP-I CLIP-T Aesthetic Sharpness CLIP-I CLIP-T Aesthetic Sharpness
DEFT 0.811± 0.066 0.302± 0.026 0.015± 0.005 294± 261 0.882± 0.059 0.319± 0.025 0.015± 0.003 320± 364

LORA 0.836± 0.039 0.286± 0.033 0.016± 0.004 449± 334 0.876± 0.024 0.219± 0.023 0.013± 0.002 65± 3

Camera-Aware Generation. To test whether fine-tuning can add new abilities beyond style or
subject adaptation, we evaluate DEFT on 3D-aware generation using SFM data [36] extracted from
a drone video of a church (see the last row of Figure 6). We trained OmniGen with all 11 intrinsic
and extrinsic camera parameters using a special token. Table 6 compares pretrained, instruction-only
(DEFTINS), and camera-augmented (DEFTSFM) inference. DEFTSFM shows slight but consistent
gains in CLIP-I, CLIP-T, and Sharpness over both baselines, suggesting that DEFT can be extended
toward camera-aware generation. A camera position encoding could further improve this capability.

Table 6: Testing DEFT’s
camera-aware generation on
SFM data: pretrained vs.
instruction-only vs. instruc-
tion+camera parameters.

CP-I CP-T DO-V1 Sharp

Pre 0.475 0.201 0.220 1179
DEFTINS 0.647 0.210 0.350 1813
DEFTSFM 0.660 0.213 0.343 1852

Efficiency. Furthermore, we analyzed training efficiency for the
rank-64 configuration with a batch size of 2 on the OmniGen 3.762B
parameter model. LoRA achieved 12 steps/sec, as it does not re-
quire decomposition or matrix multiplication, with a peak memory
usage of 8.03 GB and 37.7M trainable parameters. DEFT ran at 11
steps/sec with 7.95 GB peak memory and the same 37.7M trainable
parameters; even with relaxed P (no decomposition), matrix mul-
tiplication is still required. PaRa operated at 8 steps/sec with a peak
memory usage of 7.86 GB and 25.2M trainable parameters

5 Conclusion

In this work, we have introduced DEFT, a novel framework designed to optimize the fine-tuning
process of pre-trained models. DEFT improves the model’s adaptability by decomposing weight
updates into two key components: a projection onto a low-rank subspace and a flexible low-rank
update. This decomposition allows the model to fine-tune efficiently, maintaining high performance
while reducing the computational burden. Using DEFT, we have shown that fine-tuning can be
efficient without sacrificing flexibility or model generalization. This work highlights the potential of
DEFT to overcome the challenges of personalization and adaptability in text-to-image generation
models. Additionally, our results suggest that DEFT could be a future fine-tuning framework.
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A Preliminaries and Notation

Let W0 ∈ Rm×n denote a fixed (pretrained/frozen) weight matrix. Let Q ∈ Rm×r with r ≪ m
denote a matrix whose columns are orthonormal, i.e., Q⊤Q = Ir. We write PQ := QQ⊤ ∈ Rm×m

for the orthogonal projector onto the subspace span(Q) ⊆ Rm; then I − PQ is the projector onto
span(Q)⊥.

We use col(A) for the column space (image) of a matrix A. For two subspaces U ,V ⊆ Rm, the sum
U + V := {u+ v : u ∈ U , v ∈ V} and dim(U + V) = dimU + dimV − dim(U ∩ V).

We define the reduced baseline Wreduce := (I − PQ)W0 = (I −QQ⊤)W0, and the adapted total
weight Wtotal := Wreduce +QR = (I −QQ⊤)W0 +QR, where R ∈ Rr×n is trainable (low rank
through r).

B Proof of Column Space Subset

Claim: The column space (image) of Wreduce = W0 −QQ⊤W0 is a subset of the column space of
W0.

Proof: Let S0 = col(W0), the column space of W0 and Q be an orthogonal matrix from the QR
decomposition of P , so Q⊤Q = I .

Now any vector v ∈ col(Wreduce) can be written as:

v = Wreducex = (IQQ⊤)W0x,

where x is an arbitrary input vector.

To decompose W0x, let y = W0x. By definition, y ∈ S0. The term QQ⊤y is the orthogonal
projection of y onto col(Q). If col(Q) ⊆ S0, then QQ⊤y ∈ S0, since projections onto subspaces of
S0 remain in S0.

First, we will check the Linearity of S0. Since S0 is a subspace, it is closed under addition and scalar
multiplication. Therefore, yQQ⊤y ∈ S0, as both y and QQ⊤y are in S0. Every v = (IQQ⊤)y lies
in S0. Thus, col(Wreduce) ⊆ col(W0).

We assumes col(Q) ⊆ col(W0). This is enforced during training by:

• Initializing P to zero, ensuring Q starts within S0.
• Fine-tuning P on task-specific data, which implicitly aligns col(Q) with directions in S0

relevant to the task.

By subtracting components of W0 along learned orthonormal bases Q, the method reduces the output
space within S0, preserving the original model’s expressivity while enabling parameter-efficient
adaptation. The rank reduction is controlled by the dimensionality of Q, which is typically small
(e.g., r = 4).

The column space of Wreduce is a subset of W0’s column space because Wreduce = (IQQ⊤)W0, and
the projection QQ⊤W0 removes components of W0 only within the subspace spanned by Q. Since Q
is learned to lie in col(W0) during training, the difference W0QQ⊤W0 remains entirely in col(W0).
This ensures dimensionality reduction without exiting the original output space, as required.

C Extension of Column Space with Wtotal

Claim: The column space of Wtotal = (IQQ⊤)W0 +QR extends the subset of W0’s column space
by incorporating QR, enabling adaptation to new tasks.

Proof:

The total weight matrix Wtotal is given by:

Wtotal = (IQQ⊤)W0︸ ︷︷ ︸
Wreduce

+ QR︸︷︷︸
Low-rank adaptation

.
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The term Wreduce projects W0 onto the orthogonal complement of Q’s column space, as proven earlier.
The term QR adds a trainable low-rank component derived from P .

Based on the previous proof Appendix B, we know that:

col(Wreduce) ⊆ col(W0).

This implies that Wreduce retains the original model’s learned features but in a reduced subspace.

Since Q is orthogonal (from P = QR), we have the column space of QR; col(QR) = col(Q). The
column space of Q depends on the learned matrix P . If P evolves to include directions outside
col(W0), then col(Q) ⊈ col(W0).

The column space of Wtotal is the sum of the column spaces of Wreduce and QR:

col(Wtotal) = col(Wreduce) + col(QR).

Substituting the results from the previous steps:

col(Wtotal) ⊆ col(W0) + col(Q).

If col(Q) ⊈ col(W0), then the sum col(W0) + col(Q) is strictly larger than col(W0). This occurs
when P (and hence Q) is trained on task-specific data to capture new directions outside the original
subspace of W0.

LoRA parametrizes weight updates as ∆W = AB, where A and B are low-rank. In this case, QR
serves the role of ∆W , with Q acting as orthonormal bases and R as adaptable coefficients. Both
methods enable adaptation by expanding the column space with low-rank updates.

Conditions:

• B is initialized to zero but fine-tuned on task-specific data.

• Gradient updates allow B (and Q) to explore directions beyond col(W0), breaking the initial
assumption that col(Q) ⊆ col(W0).

• B ∈ Rd×r, with r ≪ d, ensuring parameter efficiency while still enabling the expansion of
the column space.

By adding QR to Wreduce, the total column space col(Wtotal) becomes:

col(Wtotal) = col(Wreduce) + col(QR) ⊆ col(W0) + col(Q).

If col(Q) ⊈ col(W0), the subspace is extended, allowing adaptation to new tasks. This mirrors
LoRA’s mechanism, where low-rank updates inject task-specific directions into the weight matrix.

D Decomposing weight matrix

1. Decomposing a single column wi.

Let wi ∈ Rm be any column of W and let P := QQ⊤ denote the orthogonal projector onto
span(Q) ⊆ Rm.

1. Parallel part (projection onto span(Q)).

P wi = Q
(
Q⊤wi

)
∈ span(Q).

Here Q⊤wi ∈ Rr is the coordinate vector of wi in the basis Q; multiplying by Q lifts those
coordinates back to the ambient space Rm.

2. Orthogonal part (component orthogonal to span(Q)).

(I − P )wi, with Q⊤(I − P )wi = 0.

3. Reconstruction.
wi = P wi + (I − P )wi.
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Geometrically, P wi is the foot of the perpendicular dropped from wi onto span(Q); the residual
vector (I − P )wi completes the decomposition.

2. Extending the idea to the whole matrix W .

Write W = [w1 w2 . . . wn ]. Applying the column-wise decomposition to every wi yields

W =
[
Pw1 Pw2 . . . Pwn

]
+

[
(I − P )w1 (I − P )w2 . . . (I − P )wn

]
= P [w1 w2 . . . wn ] + (I − P )[w1 w2 . . . wn ]

= P W + (I − P )W.

Because P = QQ⊤, the first term can be expressed more compactly:

P W = Q
(
Q⊤W

)
,

so the final matrix decomposition is

W = Q(Q⊤W ) + (I −QQ⊤)W .

We are replacing this Q⊤W with a trainable low rank matrix R that extends flexibility to adapt for
new tasks, keeping W weights frozen. Hence, the final equation will become:

W = QR + (I −QQ⊤)W .
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Supplementary Material: Emergent Properties of Efficient Fine-Tuning in
Text-to-Image Models

� Dream Branch Plus Comparison: https://anonymousdreambranchplus.netlify.app

® Omnigen-Visualcloze: https://anonymouscloze.netlify.app/

® InsT Objects Qualitative Results: https://anonymousinstobjets.netlify.app

S1 Further Quantitative and qualitative results

S1.0.1 Image generation consistency

In this section, we present a detailed comparison of various fine-tuning methods for different subjects
using the CLIP-image score on the Dreambooth dataset, as shown in Table 7. The methods include
the proposed DEFT, PaRa [4], and LoRA [6], alongside previous approaches such as Texture
Inversion and DreamBooth. The table compares performance across three distinct subject categories:
BEAR_PLUSHIE, CAT, and DOG8. Our proposed DEFT method, with a rank of 4, achieves high
CLIP-image scores of 0.8339 for BEAR_PLUSHIE, 0.9280 for CAT, and 0.8721 for DOG8. Notably,
PaRa with rank 4 shows slightly improved results, especially for DOG8, with a score of 0.8838. In
contrast, LoRA methods, particularly with ranks 4 and 8, show lower performance scores, especially
for BEAR_PLUSHIE. Compared to previous methods such as PaRa [4] and SVDIFF [14], our
proposed methods, DEFT, exhibit competitive or superior results in terms of image-text alignment
across all subject categories, underlining their effectiveness for multimodal image generation tasks.

"A photo of [V]" BEAR_PLUSHIE CAT DOG8
DEFT (rank=8) (Our) 0.8415 0.9504 0.8882
DEFT (rank=4) (Our) 0.8339 0.9280 0.8721
PaRa [4](rank=4) 0.8271 0.9315 0.8780
PaRa [6] (rank = 8) 0.8051 0.9467 0.8955
LoRA [6](rank=4) 0.7741 0.8057 0.7773
LoRA [34] (rank = 8) 0.7943 0.8583 0.8295
SVDIFF [14] 0.7818 0.8854 0.8363
DREAMBOOTH [34] 0.7921 0.8893 0.8392
TEXTURE INVERSION [9] 0.7421 0.8048 0.7432

Table 7: Comparison of Various Methods for Different Subjects Using Clip-Image Score on Dream-
booth Dataset: The table presents the comparison of different fine-tuning methods on the Dreambooth
dataset, evaluated using the CLIP-image score. It highlights the performance of the proposed DEFT,
PaRa, and LoRA methods against previous approaches, including Texture Inversion and DreamBooth,
across multiple subject categories like BEAR_PLUSHIE, CAT, and DOG8.

S1.0.2 Qualitative comparison

Furthermore, the Figure 8 presents qualitative results comparing different fine-tuning strategies and
DEFT applied to the Unified Omnigen model. It showcases various image generations of a dog
across different environments and prompts, including a lush green field, a beach, a snowy landscape,
a cityscape, a garden, and a forest. Each model—Base, LoRA, PaRa, and DEFT—produces distinct
results, emphasizing how these fine-tuning methods affect image generation based on specific prompts.
The outcomes demonstrate the ability of these techniques to enhance the generalization and adaptivity
of the model while maintaining high-quality, realistic results. The comparisons underline the impact
of efficient fine-tuning in improving the model’s ability to generate diverse, accurate images across
various scenarios.

Furthermore, the Figure 9, demonstrates the model’s impressive ability to generalize across a wide
range of unseen prompts. The image features four different outputs generated based on distinct
themes: abstract, fantasy, futuristic, and historical prompts. Despite the varied nature of the inputs,
the model consistently produces high-quality results, showing its adaptability to different styles
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Figure 8: Qualitative Results on Unified Omnigen Model Comparing Efficient Fine-Tuning and
DEFT: This figure presents qualitative results comparing efficient fine-tuning strategies and DEFT on
the Unified Omnigen model. The outcomes demonstrate the capability of these techniques to enhance
model generalization and adaptivity while maintaining high-quality results.

and concepts. The figure emphasizes the model’s versatility, highlighting its capacity to maintain
visual coherence and output quality across diverse scenarios, from abstract landscapes to historical
depictions. This illustrates the robustness of the model in handling various types of prompts while
ensuring consistency in the final image outputs.

S1.0.3 Qualitative and quantitative differences

The qualitative and quantitative comparison between the methods DEFT and LoRA, as shown in
both the table 8 and the images 10 on dreambench plus [31] with SDXL [32] finetuning, reveals
distinct strengths for each model in generating images of cats and horses. From the quantitative
perspective, LoRA consistently achieves higher scores across DINOv1 and DINOv2 for both the
Kitten and HORSE images. For example, LoRA outperforms DEFT in DINOv1 and DINOv2 for the
Kitten image (83.5538 vs. 79.9416 for DINOv1, and 72.2653 vs. 65.0358 for DINOv2), and similarly
for the HORSE images (83.5538 vs. 77.8501 for DINOv1, and 72.2653 vs. 65.0358 for DINOv2).
These results suggest that LoRA is better at capturing complex features and achieving higher-quality
representations in these metrics, which might reflect its greater flexibility and artistic adaptability.

In contrast, DEFT demonstrates a stronger performance in CLIP-I and CLIP-T for some images,
especially for the Kitten images (83.5867 for DEFT vs. 81.3446 for LoRA in CLIP-I), indicating its
ability to produce more realistic, detailed representations that preserve the original essence of the
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Figure 9: Diverse Prompt Generalization: This figure shows the generalization capabilities of the
model across diverse prompts, emphasizing its ability to handle a variety of inputs while maintaining
consistent output quality.

DEFT

LoRA

DEFT

LoRA

Figure 10: Qualitative comparison of the DEFT and LoRA methods for generating images of cats
and horses. The first row shows images of cats, while the second row shows horses. DEFT produces
realistic, detailed images, while LoRA introduces more artistic and stylized elements, showcasing its
flexibility in adapting to creative representations.

animals. DEFT’s output tends to have clearer textures, sharper details, and more lifelike features,
showcasing its strength in realism and faithful reproduction.

The images generated by DEFT are more grounded in reality, with clear textures and natural settings.
In the case of the HORSE images, DEFT retains more authentic anatomical features and textures,
reflecting a more realistic depiction of the animals. On the other hand, LoRA brings a more artistic
flair to the HORSE images, with creative use of colors, dynamic poses, and abstract elements. While
LoRA’s outputs are more vibrant and imaginative, they may not always preserve the natural look and
feel of the animals as consistently as DEFT does.

Despite LoRA’s higher scores in DINOv1 and DINOv2, these results do not fully capture its ability
to maintain realistic features across all images. LoRA excels in producing creative, artistic rep-
resentations, but at the cost of some consistency in realism. DEFT, with its emphasis on realism,
demonstrates more stable, high-fidelity outputs, particularly for complex subjects like horses.

This analysis shows that while LoRA excels in artistic flexibility and creative interpretation, achieving
higher DINOv1 and DINOv2 scores, DEFT remains superior in generating more realistic and detailed
images. The choice between the two methods ultimately depends on the desired outcome—whether
the goal is to prioritize artistic creativity or to maintain realistic accuracy.

S1.0.4 Scene personalization

Figures 11 and 12 showcase the model’s scene personalization capabilities, demonstrating its profi-
ciency in generating high-quality visual content with specific environmental characteristics.
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Method Image DINOv1 DINOv2 CLIP-I CLIP-T
DEFT Kitten 79.9416 73.5553 83.5867 35.5409
DEFT Stork 67.9085 62.7926 76.3276 36.8799
DEFT Kitten 2 77.8501 65.0358 77.6003 36.7579
DEFT HORSE 77.8501 65.0358 77.6003 36.7579
LoRA Kitten 82.9492 77.9071 86.7823 33.7977
LoRA Stork 70.1220 61.8301 74.9231 36.9636
LoRA Kitten 2 83.5538 72.2653 81.3446 34.1923
LoRA HORSE 83.5538 72.2653 81.3446 34.1923

Table 8: Comparison of DEFT and LoRA across multiple evaluation metrics (DINOv1, DINOv2,
CLIP-I, CLIP-T) for images of cats and horses. The table highlights how LoRA consistently achieves
higher scores in DINOv1 and DINOv2, indicating its strength in capturing complex features, while
DEFT excels in CLIP-I and CLIP-T, reflecting its focus on realism and detailed preservation of the
original subjects.

Figure 11, titled Church Rock Scene Personalization, illustrates how the model adapts the Church
Rock scene to various settings. These scenes include dynamic backgrounds, such as a pool surrounded
by palm trees, a futuristic city at night, a snowy mountain top, a crowded street market, and a forest
with autumn leaves. Each personalized scene is a result of fine-tuning, reflecting how the model can
generate diverse visual representations of the same object in unique environments, showcasing its
flexibility in handling scene-specific details.

Figure 12, titled Table Scene Personalization, further exemplifies the model’s ability to adapt to
specific environments. In this case, the model personalizes a simple table scene by generating various
configurations of objects like bottles and caps, based on detailed prompts. The generated scenes show
different bottles, one filled with orange liquid and another empty, both with distinct cap colors. This
reflects the model’s ability to generate high-quality content by adapting to specific setups, maintaining
both object clarity and spatial coherence within the scene.

On a snowy mountain topFloating in a pool 

surrounded by palm 

trees

An artistic rendering 

in a futuristic city at 

night

A crowded street 

market with vibrant 

colors and lights on a 

beach during sunset

Surrounded by autumn 

leaves in a forest

Figure 11: This figure illustrates the scene personalization capabilities of the model using the church
rock scene, showcasing how fine-tuning allows for detailed control over scene-specific characteristics.
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A transparent plastic bottle 

filled with orange sits upright 

with a black cap.

Standing bottles a transparent plastic bottle empty 

sits upright with a red cap

Figure 12: Table Scene Personalization: The figure demonstrates how the model personalizes a table
scene, reflecting the ability to adapt and generate high-quality visual content in specific environments.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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tions to faithfully reproduce the main experimental results, as described in supplemental
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Answer: [Yes]
Justification: Everything we be available on GitHub and Huggingface online for repro-
ducibility.
Guidelines:
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public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
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Answer: [Yes]
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material.
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information about the statistical significance of the experiments?
Answer: [No]
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
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• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We only used 4 GPUs throughout all the experiments.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research in the paper adheres to the NeurIPS Code of Ethics, ensuring
transparency, fairness, and respect for participants’ rights. The experiments conducted are in
accordance with established ethical standards, and the paper does not involve any unethical
practices, such as misrepresentation of results or the use of biased datasets.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: Image generation can have a positive and negative impact, but we mainly
targeted the fine-tuning approach, which mainly depends onthe problem we are solving.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: We do not describe in the main paper but we will certainly release with the
supplemntry.
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• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The paper properly credits the creators and original owners of all assets
used, including code, data, and models, as evident in the citations for methods such as
DreamBooth, LoRA, and OmniGen. The license and terms of use for these assets are
explicitly referenced in the relevant sections, ensuring that the work complies with the usage
rights of these resources.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper introduces new assets, including the DEFT framework and its
associated implementation code. These assets are well-documented, with clear explanations
provided alongside the release. Additionally, the paper includes appropriate references and
acknowledgements for any third-party resources used.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: We only used the public dataset and llm to generate the instructions.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core methods in this research do not involve large language models
(LLMs) as an important, original, or non-standard component. LLMs were not used in the
development of the core methodology or in any original research aspects, and their usage is
not central to the scientific rigor or contributions of the paper. The LLMs used for writing,
editing, or formatting do not impact the overall methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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