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Abstract001

Large Language Models (LLMs) have recently002
demonstrated remarkable coding capabilities.003
However, assessing code generation from004
verifiable properties and aligning it with005
developer preferences remains a challenge.006
In this paper, we explore two key questions007
under the new challenge of code preference008
learning: (i) How to train models to predict009
meaningful preferences for code; and (ii) how010
do code preferences based on verifiers, human,011
and neural models align with each other? To012
this end, we introduce CODEFAVOR, an open013
recipe to train pairwise code preference models014
using synthetic code evolution, including code015
commits and code critiques. We evaluate016
code preferences via CODEPREFBENCH, a017
new benchmark with 1364 rigorously curated018
code preference tasks to cover three verifiable019
properties: correctness, efficiency, and security,020
along with human preference. Our evaluation021
shows that CODEFAVOR holistically improves022
model-based code preferences by up to 28.8%.023
Our comprehensive controlled experiments also024
validate the design choices in CODEFAVOR.025
Furthermore, we quantified the cost and026
limitations of human-based code preference:027
(i) Despite spending 23 person-minutes per028
task, 15∼ 40% of tasks remain unsolved; and029
(ii) human preference is the most accurate on030
code correctness while underperforming model-031
based preferences on non-functional objectives.032

1 Introduction033

Large Language Models (LLMs) for code (Chen034

et al., 2021; GitHub, 2023; Amazon Web Services,035

2023) have become instrumental in modern036

software development. Code LLMs assist devel-037

opers in various scenarios, from suggesting code038

completions and generating functional code based039

on user instructions to proposing complex code040

changes to resolve bug reports and feature requests.041

Instruction-tuned LLMs (Luo et al., 2024; Wei et al.,042

2024) are increasingly adept at generating func-043

tional code based on natural language instructions. 044

However, evaluating the quality of LLM-generated 045

code remains challenging, particularly regarding 046

code correctness, efficiency, security, adherence 047

to best practices, and alignment with developer 048

preferences. Effectively and efficiently assessing 049

LLM-generated code against these properties is 050

crucial for both evaluation (Liu et al., 2023b) and 051

preference optimization for code LLMs (Weyssow 052

et al., 2024). Nevertheless, the subject of learning 053

code preferences has been largely under-explored, 054

motivating us to study code preferences systemat- 055

ically and train code preference models with new 056

data and modeling methods. 057

Following the established format in LLM-as-a- 058

judge (Chiang et al., 2024), we define the code 059

preference task as follows: Given a user query, 060

a pair of two candidate code responses, and 061

optionally a preference criterion, code preference 062

is demonstrated by choosing one response over the 063

other. Specifically, current approaches estimate 064

code preference based on three proxies, each with 065

advantages and limitations: 066

• Code execution: Code preference in another way 067

can be confidently determined by execution sta- 068

tuses (Liu et al., 2023a). However, applying code 069

execution to arbitrary programs poses challenges 070

due to (i) setup complexity, (ii) code incomplete- 071

ness, and (iii) execution overhead. For instance, 072

code execution may necessitate specific hardware 073

(e.g., GPUs) and precise software versions, which 074

are challenging to deduce from the code and, even 075

if inferred, are too cumbersome to set up and run. 076

• Human annotation: Human-labeled preferences 077

are often seen as the standard oracle in developing 078

LLMs, such as in the RLHF for OpenAI’s GPT 079

models (Ouyang et al., 2022) and LLM evaluation 080

in Chatbot Arena (Chiang et al., 2024). However, 081

applying human labeling to code is particularly 082

challenging and cost-intensive. Programs are 083

inherently abstract and complex, labeling them 084
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requires experienced developers to perform085

detailed analysis and testing. Meanwhile, human086

preference is inherently subjective, influenced087

by the annotators’ code tastes and expertise thus088

leading to noisy preferences, whose quality could089

otherwise be concretely defined and measured.090

• LLM-as-a-judge: Prominent LLMs have also091

been employed to evaluate LLM responses (Chi-092

ang et al., 2024; Zheng et al., 2023; McAleese093

et al., 2024). This method is more scalable than094

human labeling and can be generalized to a wider095

range of programs compared to code execution.096

However, its reliability often hinges on the097

reasoning capabilities of high-cost proprietary098

LLM judges (Weyssow et al., 2024), subject to099

inherent biases (Zheng et al., 2023).100

While scaling human- and execution-based101

preference for code is human-resource- and102

engineering-challenging1, improving model-based103

code preference becomes emerging and crucial.104

Furthermore, how exactly human developers105

and prominent LLMs determine code preference106

remains obscure, with little research on quantifying107

their performance across various code criteria. To108

this end, this work explores two critical questions109

in code preference learning:110

1. Technical question: How can we build effective111

and efficient code preference models regarding112

modeling approaches and data sources?113

2. Empirical question: What are the preferences114

of human annotators and LLMs, and to what115

extent do they align with verifiable code116

properties and human judgments?117

CODEFAVOR. We propose CODEFAVOR, a novel118

framework for training code preference models.119

Specifically, CODEFAVOR employs pairwise120

modeling to predict preference within code pairs121

according to a user-specified criterion. We propose122

two synthetic data generation methods to construct123

preference ranking samples from code evolution:124

(i) Commit-Instruct transforms the pre- and125

post-commit code snippets to code preference pairs;126

and (ii) Critic-Evol samples faulty code from a draft127

LLM and has another critic LLM to improve the128

broken code. These methods efficiently curate syn-129

thetic preference data efficiently, leveraging natural130

code evolution and capabilities of existing LLMs.131

CODEPREFBENCH. To evaluate code preferences132

labeled by various approaches, we introduce133

CODEPREFBENCH, a collection of 1,364 carefully134

1Such as hiring “PhD-level” annotators and setting up
individual code execution environments.

curated preference tasks. These tasks target veri- 135

fiable properties including correctness, efficiency, 136

and security, while additionally considering general 137

developer preferences. Using CODEPREFBENCH, 138

we extensively analyze the effectiveness and cost of 139

code preferences derived from developer agreement, 140

general LLMs, and CODEFAVOR models. Our 141

study demystifies key insights on the pitfalls of 142

different approaches over different coding criteria. 143

Our results also demonstrate that our models not 144

only achieve top performance in effectiveness but 145

also are significantly more cost-efficient compared 146

to existing solutions. 147

We summarize our main contributions below: 148

Dimension & Technique We propose CODEFA- 149

VOR, the first open recipe to train pairwise code 150

preference models. At the heart of CODEFAVOR is 151

a pairwise modeling design and two complementary 152

methods for generating synthetic preference pairs 153

from code evolution. 154

Benchmark & Code We present CODEPREF- 155

BENCH, a code preference benchmark with 1,364 156

labeled by three verifiable oracles (correctness, effi- 157

ciency, security) and general developer preferences 158

from 18 annotators. We release the data and code 159

at [ANONYMIZED]. 160

Study & Results Based on CODEPREFBENCH, we 161

comprehensively quantify and conduct case studies 162

on code preferences derived from human devel- 163

opers and LLMs. We show that CODEFAVOR can 164

significantly improve the accuracy of model-based 165

preference by up to 28.8%. CODEFAVOR models 166

can match the preference accuracy of models that 167

are larger by 6∼9×, while being cheaper by 34×. 168

We also conduct extensive controlled experiments 169

to validate our design choices. 170

2 Learning Preference via Code Evolution 171

Figure 1 depicts the framework overview of 172

CODEFAVOR, which trains models to predict code 173

preference, by taking an instruction, a code pair, 174

and a criterion as input. 175

Additionally, CODEFAVOR proposes two synthetic 176

data generation methods, Commit-Instruct and 177

Critic-Evol, for extracting synthetic training data 178

from code evolution. Commit-Instruct creates 179

contrasting code pairs through rephrasing and 180

filtering massively available code commits. Com- 181

plementarily, Critic-Evol prompts a large critic 182

LLM to judge and revise code snippets from a 183

smaller draft LLM, pairing the drafted attempt and 184

revision to create synthetic preference data. 185
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Figure 1: Approach overview of CODEFAVOR. We train a pairwise preference model using synthetic data created
from two complementary sources of code evolution: Commit-Instruct and Critic-Evol.

2.1 Pairwise Modeling186

Input. We follow prior work in reward model-187

ing (Zhao et al., 2023; Liu et al., 2024b; Dong et al.,188

2024) and use decoder-based transformers for learn-189

ing pairwise preferences. Specifically, the model π190

takes as input a prompt x={i,yA,yB,c}, comprised191

of (i) an instruction i, (ii) a pair of code candidates192

{yA,yB}, and (iii) a fine-grained criterion c defining193

the desired preference following (Kim et al., 2023).194

More specifically, our prompt format is:195

[Ins.]{i}[CODE_A]{yA}[CODE_B]{yB}[Cri.]{c} (1)196

Output. We explore two output designs for code197

preference modeling: classification and generation.198

1. Classification: We train a binary classifier based199

on a single next-token prediction (Zhao et al.,200

2023; Liu et al., 2024b). Specifically, given the201

exact prompt format in Equation (1) formatted202

by a chat template, the classifier outputs either203

a token “A” if yA is preferable to yB for {i,c} or204

“B” otherwise. Notably, the single output token205

is separated from the prompt by special tokens206

defined by the chat template. At inference time,207

the preference decision is determined by the208

next-token probability between “A” and “B”,209

shown in Equation (2).210

2. Generation: We also train generative models211

to provide preferences in natural language and212

naturalize the prompt format, as demonstrated213

in Listing 1 (Appendix A.1). The preference214

decision is parsed from the model-generated215

feedback using rules detailed in Appendix A.3.216

y+=

{
yA if Pπ(“A”|x)>Pπ(“B”|x)
yB otherwise

(2)217

The advantage of classification is computing effi-218

ciency as only one token is produced. Meanwhile,219

generative modeling optimizes for interpretability,220

with reasoning steps explicitly displayed.221

2.2 Synthetic Code Preference via Evolution 222

Training a pairwise preference model requires 223

a rich set of contrastive code pairs, along with 224

the corresponding instructions and evaluation 225

criteria. Collecting complex (Luo et al., 2024) and 226

diverse (Wei et al., 2024) code pairs is crucial yet 227

challenging, given such resources are neither readily 228

available nor curated by prior work. To this end, we 229

propose to create code preference training data using 230

synthetic code evolution, based on code commits 231

(§2.2.1) and code critiques (§2.2.2). We argue that 232

code evolution is a practical source for synthesizing 233

code preferences, not only because of its natural 234

indication of preferences, but also thanks to their 235

general availability and diversity. We focus on the 236

general methodology in this section and defer the de- 237

tailed prompting implementation to Appendix A.1. 238

2.2.1 Commit-Instruct: 239

Code Commits as Preference 240

We propose Commit-Instruct, a synthetic data 241

generation method transforming raw code commits 242

into code preference training samples. Specifically, 243

the workflow (middle of Figure 1) employs a critic 244

LLM to analyze each raw code commit and produce 245

a training sample in a desired format §2.1. Each 246

raw commit can be denoted by r=(m,ypre,ypost), 247

where m is the commit message, and {ypre,ypost} 248

are the pre- and post-commit code snippets. Commit- 249

Instruct processes each commit in three steps: 250

1. Reasoning: The critic LLM is instructed to rea- 251

son and explain code changes from ypre to ypost. 252

2. Filtering: Given the explanation, the critic LLM 253

first determines whether or not the code change 254

is meaningful. If so, we proceed to the next step; 255

otherwise, the commit is discarded. This step 256

aims to ensure the quality of synthetic data by 257

excluding trivial or ambiguous code changes. 258

3. Rephrasing: Based on the commit r and 259

its explanation, the critic LLM synthesizes 260

a preference sample in the desired format 261
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x={i,yA,yB,c} (§2.1). Specifically, yA and yB262

are rephrased from ypre and ypost to emphasize263

the actual change. i is the instruction generated264

to describe ypre and ypost and the criterion c265

is concluded by how ypost improves ypre. The266

rephrased version of ypost is regarded as the267

chosen response y+ in model training.268

Figure 3 in Appendix A.1 provides the detailed269

prompt implementation for Commit-Instruct.270

2.2.2 Critic-Evol: Code Critiques as Preference271

While synthetic evolution can be gathered from hu-272

man data such as code commits, it can also be de-273

rived from synthetic data. As such, we propose274

Critic-Evol which generates synthetic code prefer-275

ence data by asking a stronger critic model π+ to re-276

vise the code generated by a weaker draft model π−.277

Specifically, Critic-Evol takes a set of coding278

instructions I = {i1, i2, ··· , in} as input, each of279

which (ik) is either transformed into a synthetic280

training sample or simply dropped:281

1. Fault sampling: This step starts with a suitably282

weaker model, denoted as π−, which statistically283

allows for sampling improvable code solutions284

y−k ←π−(ik).285

2. Critique & filtering: We instruct the critic286

LLM π+ to code review y−k , by pointing out287

noticeable code quality issues and defining the288

criterion (e.g., c) regarding the code defects. π+289

may also be satisfied with y−k and thus we stop290

synthesizing code preference data for (ik,y−k ).291

3. Revision: If the critique from π+ suggests y−k292

can be significantly improved, π+ creates y+k by293

revising y−k to meet the desired criterion c. As294

such, a new synthetic code preference sample295

is composed as {ik,y−k ,y+k ,c}, with y+k being the296

chosen response.297

Figure 5 in Appendix A.1 provides more details on298

implementation of Critic-Evol.299

2.3 Datasets300

Based on our techniques, we create two synthetic301

datasets:302

Commit-Instruct-EditPack consists of 20,641 code303

preference samples synthesized from EditPackFT-304

Multi (Cassano et al., 2023) and Llama3-70B-305

Instruct (Dubey et al., 2024). After filtering out306

non-permissive code, we obtain 22,469 blessed307

Python commits from EditPackFT-Multi as the raw308

commits to prompt Llama3-70B-Instruct (Dubey309

et al., 2024) to perform Commit-Instruct. 91.9% of310

the commits are successfully transformed into code311

preference data (§2.1) and 8.1% of them are filtered 312

out due to lack of clear significance. 313

Critic-Evol-SOSS has 41,595 synthetic code 314

preference samples using the Critic-Evol technique. 315

Specifically, we run Llama3-8B-Instruct as the draft 316

model (i.e., π−) over 50,661 coding instructions 317

from Self-OSS-Instruct (BigCode, 2024) to produce 318

initial code solutions. 82.1% of these initial attempts 319

are revised and extended by Llama3-70B-Instruct as 320

the critic model, whereas the rest 17.9% are deemed 321

good enough such that a revision is unnecessary. 322

Data processing. To mitigate positional bias, we 323

augment the dataset by flipping the order within 324

each code pair, which also doubles the training 325

samples. Besides, we clip the code comments in 326

Critic-Evol samples, as comments barely affect code 327

quality metrics and LLM-generated comments may 328

let faulty code “sound right.” §3.4 also shows code 329

comments can negatively impact code preferences. 330

3 Evaluation 331

To systematically evaluate code preferences across 332

different methods, we create the CODEPREF- 333

BENCH, a set of 1,364 preference tasks. It covers 334

four objectives in code preference evaluation: 335

correctness, efficiency, security, and human 336

preference. Table 1 provides an overview of 337

CODEPREFBENCH. 338

This section presents (i) the curation process of 339

CODEPREFBENCH (§3.1), (ii) the results of human 340

(§3.2) and LLMs (§3.3), and (iii) controlled exper- 341

iments in §3.4. Additional details are deferred to 342

the Appendix, such as case studies (Appendix A.4) 343

and contamination analysis (Appendix A.5). 344

3.1 Benchmark Setup 345

In CODEPREFBENCH, we evaluate code preference 346

approaches over four objectives, covering three 347

verifiable properties (i.e., correctness, efficiency, 348

and security) and human preference. For verifiable 349

objectives, we generate oracle labels via code 350

execution and static analysis. For human preference, 351

we engage three annotators to label each code pair 352

to form the evaluation set and establish baselines 353

To ensure benchmark quality, we only use clear-cut 354

good-bad pairs and exclude tie pairs due to their 355

inherent ambiguity. The creation of the dataset for 356

each evaluation category is detailed below: 357

Objective #1: Correctness. We construct correct- 358

wrong pairs from EvalPlus datasets (Liu et al., 359

2023b), i.e., HumanEval+ (164 tasks) and MBPP+ 360

(378 tasks), which rigorously test LLM solutions 361
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Objective # Tasks Source Preference Oracle
Code Correctness 660 EvalPlus (Liu et al., 2023b) Test execution
Code Efficiency 352 EvalPerf (Liu et al., 2024a) # CPU instructions
Code Security 207 CyberSecEval (Bhatt et al., 2023) Static analyzer

Developer Preference 145
LBPP (Matton et al., 2024)

Human agreement
BigCodeBench-Hard (Zhuo et al., 2024)

Total 1,364

Table 1: Overview of CODEPREFBENCH.

with extensive test cases that can detect subtle362

bugs. From each seed task, we derive up to two363

contrastive code pairs. In each pair, the wrong code364

is a test-falsified LLM output, and the correct one is365

the human-written ground truth. This results in 660366

correct-wrong pairs—fewer than 2× (164+378)367

since some easy tasks lack “wrong” samples.368

Objective #2: Efficiency. We construct fast-slow369

pairs from EvalPerf datasets (Liu et al., 2024a),370

which benchmarks LLM-generated correct solu-371

tions across 121 tasks using performance-oriented372

test inputs. EvalPerf provides fast-to-slow reference373

solutions per task. We sample fast-slow pairs at a374

step size of 3, yielding 352 pairs.375

Objective #3: Security. We construct secure-376

vulnerable code pairs from CyberSecEval (Bhatt377

et al., 2023), which includes 351 Python vul-378

nerabilities detected by security analyzers. We379

prompt GPT-4o to fix each vulnerability and380

rerun the security analyzers to guarantee the fix.381

Additionally, we equip each code pair with a382

generalized instruction generated by GPT-4o, so383

the instruction is not biased towards any candidate.384

Finally, we obtain 207 secure-vulnerable code pairs385

to evaluate code security preference.386

Objective #4: Human preference. We recruited 18387

developers to annotate code response pairs sampled388

from DeepSeek V2 across 148 BigCodeBench-389

Hard (Zhuo et al., 2024) and 161 LBPP (Matton390

et al., 2024) tasks. Specifically, we sample 8 solu-391

tions per task at a temperature of 0.8 and select the392

code pair with the largest edit distance. We follow393

the same annotation criteria as Chatbot Arena (Chi-394

ang et al., 2024): given two responses, users select395

the one they would use for the instruction or skip if396

tied. We obtain 145 preference pairs with consistent397

majority labels across three annotators.398

Besides, we evenly shuffle the order of code pairs399

within each category to avoid positional bias. We400

also remove code comments when evaluating tasks401

with objective verifiers, as comments should not402

affect the results. At evaluation, LLMs predict each403

code preference task using greedy decoding, follow-404

Low High Very High
Correctness 0% 68.2% 31.8%
Efficiency 0% 88.7% 11.3%
Security 0% 80.8% 19.2%

Table 2: Developer confidence distribution.
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Figure 2: CDF of preference labeling time.

ing criteria aligned with the benchmark objective. 405

3.2 Human Results 406

This section studies the background and preference 407

accuracy of human annotators, drawing insights on 408

the pros and cons of human-based code preference. 409

• Expertise: Our annotation team consists of 18 410

software developers, two-thirds of which hold 411

degrees in computer science, and 95% of them 412

have over two years of programming experience. 413

43% of them self-rate as advanced in Python, 414

while the rest consider themselves middle-level. 415

• Confidence: Table 2 lists the distribution of devel- 416

oper confidence, showing that developers are over- 417

all confident about their annotations. Notably, de- 418

velopers are more confident when labeling correct- 419

ness, with a higher ratio of “very high” confidence 420

compared to that for other categories. Per devel- 421

opers’ notes, it is partially because program cor- 422

rectness can be assessed by manual testing, while 423

code efficiency and security are harder to evaluate 424

without domain-specific knowledge and tools. 425

• Overhead: Figure 2 illustrates the cumu- 426

lative distribution of the annotation time per 427

sample/developer, visualized by removing the top- 428

1%-longest outliers. Overall, each task on average 429

costs each developer 7.8 minutes to annotate, with 430

the 99-percentile of 26 minutes, indicating that 431

serious developer labeling for code preferences 432

is time-consuming. Furthermore, code efficiency 433

5



and security tasks (9 minutes on avg.) take longer434

to annotate compared to labeling correctness435

tasks (6.8 minutes on avg.), which is consistent436

with developer confidence and final results.437

• Accuracy: Table 3 (top) shows the human perfor-438

mance based on majority voting of three develop-439

ers per task. Consistent with the annotation confi-440

dence and speed, human labeling is most accurate441

for code correctness, with a solve rate of 84.9%.442

While not the best, human performance still de-443

cently solves 74.9% of preference tasks targeting444

code efficiency. Surprisingly, while developer445

confidence in code security annotation is higher446

than that in code efficiency, the security score is447

as low as 59.7%. This is because 73.9% of code448

pairs are annotated as equally secure, while our449

scoring method assigns 0.5 accuracy to each tied450

case. This discrepancy suggests generalist pro-451

grammers may struggle to accurately assess non-452

functional code properties such as code security,453

which may require specialized domain expertise.454

3.3 Model Results455

Table 3 evaluates human, existing LLMs, and456

CODEFAVOR models via CODEPREFBENCH. By457

default, CODEFAVOR models are obtained by (i)458

training two models with Commit-Instruct-EditPack459

and Critic-Evol-SOSS separately; and (ii) average460

merging the two models to obtain a final model.461

Overall results. We present accuracy averaged462

across the three verifiable objectives, i.e., the“Avg.”463

column. Among the evaluated existing LLMs,464

Llama-3.1-405B-Instruct and Mistral Large 2465

perform best, tightly followed by Claude 3.5466

Sonnet and DeepSeek V2.5. Codestral (22B) also467

performs comparably to Llama-3-70B-Instruct.468

We demonstrate the effectiveness of CODEFAVOR469

by fine-tuning a comprehensive set of affordable470

models, from 7B to 12B. While these small models471

are relatively weak out of the box, CODEFAVOR472

improves their overall performance by 9.3∼28.8%473

relatively. For instance, CODEFAVOR’s gener-474

ation modeling enables Mistral Nemo Instruct,475

Gemma-2-9B-Instruct, and Llama-3-8B-Instruct to476

achieve an overall score of 77.2∼77.7 respectively,477

slightly outperforming the critic model (i.e., Llama-478

3-70B-Instruct), despite being smaller by 6∼ 9×.479

Meanwhile, we show that CODEFAVOR models480

are even better than the best 8B general reward481

model on RewardBench (Lambert et al., 2024), i.e.,482

Skywork-Reward-Llama-3.1-8B, by 24% on CODE-483

PREFBENCH, even if the compared reward model is484

trained on a rich set of data generated by proprietary485

models such as GPT-4 and Claude-3-Opus. Notably, 486

all CODEFAVOR models also outperform the 487

human-agreement baseline, largely because gen- 488

eralist developers show high uncertainty and thus 489

low performance on security tasks. Besides model- 490

and human-based approaches, we also evaluate 491

selecting preferred samples using the mean log prob- 492

abilities of decoding Llama-3.1-8B-Instruct, which 493

overall performs randomly on CODEPREFBENCH. 494

Correctness. Human annotation largely out- 495

performs all language models in choosing the 496

correct code, outperforming the best model by 497

23%. Among the evaluated existing LLMs, 498

Llama-3.1-405B-Instruct as an open-weight model 499

solves the most tasks (i.e., 68.9%), outperforming 500

Claude 3.5 Sonnet, Mistral Large 2, and DeepSeek 501

V2.5 by 4.7%. Meanwhile, small LLMs (≤ 502

12B) are incapable of such tasks out of the box, 503

producing almost random preferences (∼ 50%). 504

Nonetheless, CODEFAVOR improves the accuracy 505

of code correctness preference for these models 506

by 8.8∼ 28.7%, commonly surpassing their critic 507

model (i.e., Llama-3-70B-Instruct) by up to 12%. 508

Efficiency. While human preference aces over 509

the evaluated LLMs on the preference of code 510

preference, it is sub-optimal forcode efficiency. For 511

example, Mistral Large 2, the best model in this 512

category, surpasses developer-agreement-based 513

preference by 8.4%. Gemini Flash and DeepSeek 514

V2.5 tightly follow Mistral Large 2 within a 1% gap, 515

also outperforming human preference in the code 516

efficiency category. While smaller LLMs better 517

here than on code correctness, CODEFAVOR still 518

further improves them by up to 16.1%, matching or 519

slightly exceeding the critic LLMs (by up to 4%). 520

Security. The security subset in CODEPREF- 521

BENCH is relatively easier as most models achieve 522

near-saturated scores; e.g., Mistral Large 2 solves 523

99.5% tasks. In contrast, Gemini 1.5 Pro and 524

Gemma 2 perform poorly, with up to 47.3% of code 525

pairs regarded as equally insecure (e.g., Figure 13), 526

despite the prompt in Listing 1 requesting a 527

definitive answer. Nevertheless, such uncertainty 528

may be beneficial in avoiding risky completions 529

intended for cyber-attack assistance. Meanwhile, 530

small models remains improvbable: CODEFAVOR 531

eliminates the uncertainty in Gemma-2-9B-Instruct 532

and boosts its security preference score by up to 533

89%. For other small models, CODEFAVOR can 534

still improve them by 9.2∼21.9%. 535

Human preference. Aligning human preference 536

is as challenging as aligning correctness. The best 537
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Correctness Efficiency Security Avg. Human Pref.
3-developer agreement 84.9 (±9.4) 74.9 (±5.3) 59.7 (±37.0) 73.2 N/A
Logprob Mean 32.4 38.4 59.9 43.6 42.1

Proprietary Models
Claude 3.5 Sonnet 65.8 (±0.8) 79.9 (±0.1) 98.1 81.2 64.8
Gemini 1.5 Pro 001 59.2 (±3.0) 79.5 (±1.4) 71.3 (±27.3) 70.0 66.6 (±1.7)
Gemini 1.5 Flash 001 58.6 (±7.9) 81.1 (±0.1) 85.0 (±8.2) 74.9 60.0

Open-Weight Models
Llama-3.1-405B-Instruct 68.9 (±2.7) 78.3 (±0.4) 99.0 82.2 68.3
Mistral Large 2 (123B) 65.8 (±0.5) 81.2 (±0.3) 99.5 82.2 71.7
DeepSeek V2.5 (236B) 65.8 (±0.8) 80.7 97.3 (±0.2) 81.3 69.0
Llama-3.1-70B-Instruct 60.2 (±0.3) 77.3 (±0.3) 97.8 (±0.7) 78.4 69.0
Codestral-22B-v0.1 58.0 (±0.8) 78.3 (±0.1) 94.0 (±2.7) 76.8 60.0
Llama-3-70B-Instruct 55.7 (±2.5) 76.0 (±1.6) 96.6 (±1.0) 76.1 63.8 (±0.3)
Gemma-2-27B-Instruct 55.4 (±4.9) 78.4 (±0.9) 80.8 (±14.8) 71.5 61.4
Skywork-Reward-Llama-3.1-8B 56.2 64.2 61.4 60.6 57.9

Our Models and Baselines
Mistral Nemo Instruct (12B) 51.4 (±1.2) 69.7 (±0.4) 82.9 (±7.5) 68.0 66.2

+ CODEFAVOR Classification 58.0 76.1 96.6 76.9 64.1

+ CODEFAVOR Generation 58.8 77.8 96.6 77.7 66.9
Gemma-2-9B-Instruct 52.4 (±6.1) 75.1 (±1.6) 52.7 (±47.3) 60.1 64.1 (±0.7)

+ CODEFAVOR Classification 56.8 75.3 92.3 74.8 67.6

+ CODEFAVOR Generation 57.0 78.7 96.6 77.4 64.1
Llama-3-8B-Instruct 49.5 (±0.9) 71.9 90.3 (±0.5) 70.6 58.6

+ CODEFAVOR Classification 58.0 73.0 95.2 75.4 62.8

+ CODEFAVOR Generation 58.2 75.0 98.6 77.2 69.0
Mistral-7B-Instruct-v0.3 48.5 (±1.5) 66.6 (±0.1) 78.5 (±9.4) 64.5 58.3 (±1.0)

+ CODEFAVOR Classification 62.4 64.8 95.7 74.3 60.7

+ CODEFAVOR Generation 57.1 77.3 90.3 74.9 66.9

Table 3: Preference accuracy (%) on CODEPREFBENCH. The best score and scores within 1 percentage point of
the best score are highlighted in bold. Bracketed numbers denote the ranges of uncertain responses (“Tie”), half
of which account for the final score. Appendix A.4 presents extensive case studies and analyses.

model, Mistral Large 2, solves around 70% of tasks,538

outperforming the best-evaluated proprietary model,539

Gemini 1.5 Pro, by 7.7%. While smaller LLMs540

perform better on human preference than on correct-541

ness, CODEFAVOR still improves their alignment542

by up to 17.7%. This difficulty partly stems from543

the ambiguity and bias in human annotations: often,544

both code candidates have different strengths, mak-545

ing human preference just one of several reasonable546

judgments rather than a definitive answer.547

Cost of preference. Besides accuracy, Table 4548

lists the cost of representative approaches to run549

CODEPREFBENCH. Specifically, human agree-550

ment ,the most expensive approach, costs $6.1 per551

task, estimated by annotation time and California’s552

minimum wage. Llama-3.1-405B-Instruct, the553

best overall performer, is two orders of magnitude554

cheaper. While Llama-3-70B-Instruct is 7.4%555

weaker than the 405B model, it is cost-effective,556

being 35.3× cheaper. CODEFAVOR models offer557

the best cost-effectiveness: CODEFAVOR classifier558

based on Mistral Nemo Instruct is five orders of559

Norm. Cost Accuracy

Human preference (3×) 1.2×105 ($6.1) 73.2

Llama-3.1-405B-Instr. 1.2×103 82.2

Llama-3-70B-Instr. 3.4×101 76.1

Ours (Mistral Nemo) 1 76.9

Table 4: Estimated per-sample cost and accuracy.

magnitude cheaper than human preference and 560

34× cheaper than Llama-3-70B-Instruct, without 561

compromising accuracy. 562

3.4 Controlled Experiments 563

We study the design choices in CODEFAVOR via 564

controlled experiments. Appendix A.6 further 565

discusses the impact of criteria and code comments. 566

Training data. Table 5 studies the training effect 567

of the two training settings both individually 568

(i.e., “Commit-Instruct” and “Critic-Evol”) and in 569

combination (i.e., “Data Mixture”). Models trained 570

by Critic-Evol tend to achieve better overall perfor- 571

mance than using Commit-Instruct, particularly in 572
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Corr. Effi. Sec. Avg. Human Pref.
Mistral Nemo Instruct (12B) 51.4 69.7 82.9 68.0 66.2

Commit-Instruct
Classif. 54.5 79.3 96.1 76.6 65.5
Gen. 48.2 74.4 96.6 73.1 66.9

Critic-Evol
Classif. 59.8 70.5 95.7 75.3 62.1
Gen. 56.8 77.0 96.6 76.8 61.4

Data Mixture
Classif. 63.0 68.8 95.2 75.6 62.1
Gen. 58.2 77.0 96.1 77.1 64.1

Model Merging
Classif. 58.0 76.1 96.6 76.9 64.1
Gen. 58.8 77.8 96.6 77.7 66.9

Gemma-2-9B-Instruct 52.4 75.1 52.7 60.1 64.1

Commit-Instruct
Classif. 52.3 71.9 82.1 68.8 63.4
Gen. 51.8 80.1 95.1 75.3 60.7

Critic-Evol
Classif. 55.5 74.7 86.5 72.2 62.1
Gen. 57.9 72.2 97.6 75.9 64.1

Data Mixture
Classif. 54.8 73.9 87.9 72.2 63.4
Gen. 59.2 76.7 97.6 77.8 63.4

Model Merging
Classif. 56.8 75.3 92.3 74.8 67.6
Gen. 57.0 78.7 96.6 77.4 64.1

Llama 3-8B-Instruct 49.5 71.9 90.3 70.6 58.6

Commit-Instruct
Classif. 54.4 71.0 93.7 73.0 65.5
Gen. 48.9 73.0 94.2 72.1 66.2

Critic-Evol
Classif. 58.3 71.3 90.3 73.3 57.9
Gen. 58.3 74.4 93.7 75.5 69.0

Data Mixture
Classif. 58.5 66.2 90.8 71.8 62.1
Gen. 56.8 73.6 94.7 75.0 66.2

Model Merging
Classif. 58.0 73.0 95.2 75.4 62.8
Gen. 58.2 75.0 98.6 77.2 69.0

Mistral-7B-Instruct-v0.3 48.5 66.6 78.5 64.5 58.3

Commit-Instruct
Classif. 55.5 69.3 83.1 69.3 61.4
Gen. 48.0 73.3 88.4 69.9 66.2

Critic-Evol
Classif. 64.1 64.8 94.7 74.5 61.4
Gen. 57.7 72.4 88.4 72.9 58.6

Data Mixture
Classif. 59.5 69.3 91.8 73.5 60.7
Gen. 61.7 73.6 92.8 76.0 62.8

Model Merging
Classif. 62.4 64.8 95.7 74.3 60.7
Gen. 57.1 77.3 90.3 74.9 66.9

Table 5: CODEPREFBENCH results of CODEFAVOR
models using different training data and output schemes.

the correctness category. For example, Critic-Evol-573

trained classifiers surpass Commit-Instruct-trained574

ones by 6.1∼ 15.5% on the correctness category,575

and the overall improvement (i.e., “Avg.” column)576

can be up to 7.5%. Meanwhile, Commit-Instruct-577

trained classifiers can perform up to 12.5% better in578

the preference for code efficiency. Moreover, data579

mixture further improves the effectiveness, espe-580

cially when for the generation modeling, with up to581

8.7% and 4.3% improvement over Commit-Instruct582

and Critic-Evol respectively. The performance trend583

correlates with the training sample sizes, indicating584

that more training data leads to better performance.585

Data mixture v.s. model merging. In addition to586

data mixture, we also explore co-utilizing both train-587

ing datasets, by averaging the weights (Wortsman588

et al., 2022) of two models trained by individual589

datasets. Model merging yields better results for590

all trained classification models, with 1.1∼ 5.0%591

improvements. Within the generation modeling,592

model merging also surpasses or stays on par with593

data mixture results for all model choices.594

Classification v.s. generation. Table 5 also 595

compares the output representation between 596

classification and generation. One qualitative trend 597

is that classifier modeling often leads to higher 598

scores in the preference for code correctness while 599

the generation modeling tends to bring more holistic 600

improvement leading to a higher overall store. For 601

example, within the 16 comparisons in Table 5, the 602

classification modeling outperforms the generation 603

modeling 9 times in the code correctness objective, 604

whereas the generation modeling surpasses the clas- 605

sification modeling 13 times in the average score. 606

4 Related Work 607

Preference optimization has become a de facto step 608

in post-training where policy models are trained 609

on contrastive samples labeled with preference 610

objectives. These samples may come from the LLM 611

under training or external sources such as human 612

data or LLM outputs. Responses are ranked by 613

objectives such as human annotation (Ouyang et al., 614

2022), LLM feedback (Cui et al., 2024; Weyssow 615

et al., 2024; McAleese et al., 2024; Kim et al., 2024), 616

code execution (Shi et al., 2022; Chen et al., 2024; 617

Sun et al., 2024; Zhang et al., 2024a,b), or neural 618

scores (Inala et al., 2022; Zhang et al., 2023b; Zhao 619

et al., 2023; Dong et al., 2023; Wang et al., 2024). 620

Our work explores preference modeling in code. 621

Weyssow et al. (2024) use prominent LLMs as 622

judges, whereas we train raters and curate data from 623

scratch. McAleese et al. (2024) introduce CritiGPT 624

for bug detection via LLM feedback. We validate 625

similar findings, e.g., human preferences can be 626

suboptimal, and go further by studying multiple cri- 627

teria beyond correctness, quantifying human input, 628

and evaluating a wider range of models. Data-wise, 629

CriticGPT uses bug injection (Just, 2014) with 630

human assistance, whereas CODEFAVOR collects 631

contrastive code pairs from code evolution. 632

5 Conclusion 633

We introduced CODEFAVOR, a novel framework 634

for training pairwise code preference models 635

using synthetic code evolution data, derived from 636

code commits and LLM critiques. Our curated 637

CODEPREFBENCH shows that CODEFAVOR can 638

significantly improve LLMs’ accuracy of code 639

preferences. We also quantified the cost and demon- 640

strated the pros and cons of human preference for 641

code, revealing that human preferences can be 642

sub-optimal for non-functional objectives despite 643

using a much higher cost. 644
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Limitations645

While CODEFAVOR has demonstrated effectiveness646

in learning code preferences, there are several poten-647

tial areas of improvement to enhance the scale, ap-648

plicability, and accuracy of code preference models:649

1. Scaling up synthetic data: One limitation in our650

implementation is the scale of synthetic training651

data, as our preliminary dataset only includes a652

total of 62,236 samples, which may be modest for653

model fine-tuning. Larger-scale datasets could654

further improve the generalizability and robust-655

ness of preference models for code generation.656

Since the idea of CODEFAVOR is rather general,657

we plan to scale up the synthetic data generation658

by collecting more code commits for Commit-659

Instruct and more LLM samples for Critic-Evol.660

Orthogonally, we may consider using multiple661

and more powerful models in Commit-Instruct662

and Critic-Evol to further improve the quality663

and diversity of generated synthetic data.664

2. Contextualized code preferences: Code gener-665

ation in real-world software development often666

involves broad context such as repository-level667

information (e.g., (Ding et al., 2024; Zhang668

et al., 2023a)) and knowledge of external669

dependencies. Currently, CODEFAVOR focuses670

on code preferences of self-contained code671

snippets, which could limit the applications of672

code preference models in practically complex673

and context-dependent scenarios. Therefore,674

one future direction is to extend our framework675

to curate more context-sensitive code pairs for676

contextualized code preference learning.677

3. Benchmark improvements: Our evaluation678

benchmark, CODEPREFBENCH, while carefully679

curated, also presents potential limitations re-680

lated to the diversity and practicality of candi-681

date code samples due to their synthetic nature.682

There may also be limitations due to the validity683

and consistency of human annotations, which are684

inherently subjective, particularly in assessing685

non-functional properties such as code efficiency.686

In the future, we aim to explore real-world prefer-687

ence data for evaluation and address challenges688

in human labeling through semi-automated689

strategies to supplement human assessments.690

4. Model choices and scalability: While our691

current study employs a diverse set of models for692

synthetic data generation and training, the choice693

of models has been limited by considerations694

of cost, accessibility, and adherence to usage695

policies. Specifically, our framework currently696

excludes proprietary models (such as GPT-based 697

models (Achiam et al., 2023)) as it is a violation 698

of the Term of Use that explicitly prohibits “Use 699

Output to develop models that compete with 700

OpenAI.” Unlike other papers that inadvertently 701

overlook these restrictions, we opt to adhere 702

it diligently. Future research could explore 703

incorporating a broader range of open and 704

more advanced models (e.g., DeepSeek (Guo 705

et al., 2025), Qwen (Yang et al., 2025)) to 706

potentially enhance data quality and diversity. 707

We encourage subsequent studies to expand 708

upon these initial selections to further assess the 709

scalability and applicability of the CODEFAVOR 710

framework and CODEPREFBENCH benchmark. 711
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A.1 Prompting 1014

We showcase our prompt implementation for synthetic data generation via concrete examples below: 1015

Commit-Instruct. Figure 3 details Figure 1 by exemplifying the prompt we implemented for Commit- 1016

Instruct. Given a raw commit that replaces string literals to systematic enum-like constants, we first ask 1017

the critic model to explain the code changes. The model then responds with the observed key changes 1018

and is asked by the user if the code change improves certain code properties. The critic model answers 1019

“[YES]” by pointing out that the code change improves maintainability and readability. Next, we instruct 1020

the critic model to generate a well-formatted version of synthetic preference data including an instruction, 1021

the criteria, a code preference pair, and feedback explaining the improvements. 1022

Meanwhile, Figure 4 illustrates a case when the critic model filters out a code commit whose improvement 1023

is regarded as unclear. Specifically, the demonstrated code commit changes the original code to import 1024

a package in a try-catch block, rather than doing it directly. This prevents execution termination when 1025

the package is not needed. However, the critic model thinks such a change is minor and thus turns down 1026

the commit being processed to synthetic preference data. 1027

Critic-Evol. Figure 5 demonstrates the prompting for Critic-Evol. Specifically, we implemented the 1028

Critic-Evol prompt in single-turn using few-show prompting. The prompt includes five few-shot examples 1029

(e.g., the square_root example), followed by an instruction extracted from the Self-OSS-Instruct dataset 1030

and an initial coding solution provided by Llama3-8B-Instruct. Next, the critic model Llama3-70B-instruct 1031

is prompted to generate reflection, criteria, an improved version of code, and feedback to form synthetic 1032

code preference data. More specifically, in the reflection section, the critic model is expected to explain the 1033

initial implementation and reason for potential improvements. If the model thinks there is little to improve, 1034

the generation stops here and this sample is filtered out for synthetic preference data generation. In the case 1035

of Figure 5, the model suggests that the get_all_words function can be implemented using dictionary com- 1036

prehension which is more concise and efficient. Following this, the critic model proposes a related criterion 1037

based on code conciseness and efficiency, resulting in an improved version of code, i.e., [ATTEMPT_2]. 1038
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User
Given a code commit below, think about the code change:
Commit message: Fix how we find conversion to use file formats
[OLD_CODE]
1 from . import conversions
2 from .file_formats import FileFormats
3
4 class FileConverter(object):
5 def get_conversion(self , source_format , target_format):
6 return {
7 ’application/pdf’: conversions.NoOp ,
8 ’image/jpeg’: conversions.JpegToPdf ,
9 ’image/png’: conversions.PngToPdf ,
10 ...
11 }[source_format]()

[NEW_CODE]
1 from . import conversions
2 from .file_formats import FileFormats
3
4 class FileConverter(object):
5 def get_conversion(self , source_format , target_format):
6 return {
7 FileFormats.PDF: conversions.NoOp ,
8 FileFormats.JPEG: conversions.JpegToPdf ,
9 FileFormats.PNG: conversions.PngToPdf ,
10 ...
11 }[source_format]()

Please briefly explain the code change.

Assistant
The code change replaces the hardcoded file format strings (e.g.,’application/pdf’, ’image/jpeg’, etc.) in the get_conversion method with enum-like constants
from the FileFormats class (e.g., FileFormats.PDF, FileFormats.JPEG, etc.).
This change makes the code more maintainable, readable, and less prone to typos or incorrect format strings. It also makes it easier to add or remove file formats
in the future, as the format strings are now centralized in the FileFormats class.

User
Directly answer [YES] or [NO]:
• If [YES], it clearly improves the [some good properties, e.g., functionality/performance/completeness/safety/...]
• If [NO], this minor change does not clearly make the code better.

Assistant
[YES], it clearly improves the maintainability and readability of the code.

User
Inspired by the commit and explanation, please construct an instruction-following data with the following components:
[INSTRUCTION] A natural-language description of the goal and requirement for the code.
[CRITERIA] A brief and focused criterion that the code should ideally meet, which are not necessarily implied in [INSTRUCTION].
[NAIVE_CODE] A self-contained solution code that may NOT completely meet [CRITERIA].
[IMPROVED_CODE] Improved code that better meets [CRITERIA] than [NAIVE_CODE], while still respecting [INSTRUCTION].
[FEEDBACK] Briefly describe why the [IMPROVED_CODE] is better than [NAIVE_CODE]. Refer to the codes using “[IMPROVED_CODE]” and “[NAIVE_CODE]” only.

Assistant
Here is the instruction-following data:
[INSTRUCTION] Create a function to retrieve a conversion method based on a given file format.
[CRITERIA] The code should be maintainable and readable, with file formats defined in a centralized and consistent manner.
[NAIVE_CODE]
1 def get_conversion(source_format):
2 return {
3 ’application/pdf’: conversions.NoOp ,
4 ’image/jpeg’: conversions.JpegToPdf ,
5 ’image/png’: conversions.PngToPdf ,
6 # ...
7 }[source_format]

[IMPROVED_CODE]
1 from .file_formats import FileFormats
2
3 def get_conversion(source_format):
4 return {
5 FileFormats.PDF: conversions.NoOp ,
6 FileFormats.JPEG: conversions.JpegToPdf ,
7 FileFormats.PNG: conversions.PngToPdf ,
8 # ...
9 }[source_format]

[FEEDBACK]The [IMPROVED_CODE] is better than [NAIVE_CODE] because it uses enum-like constants in the FileFormats class, making the code more maintainable
and readable by centralizing file formats in one place, reducing the likelihood of typos or incorrect format strings.

Figure 3: Exemplifying prompts in Commit-Instruct for generating preference code pairs.
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User
Given a code commit below, think about the code change:
Commit message: Allow import in case of missing notebook package
[OLD_CODE]

1 from .nbrmd import read , reads , readf , write , writes , writef
2 from .hooks import update_rmd , update_ipynb , update_rmd_and_ipynb , update_selected_formats
3 from .cm import RmdFileContentsManager

[NEW_CODE]

1 from .nbrmd import read , reads , readf , write , writes , writef
2 from .hooks import update_rmd , update_ipynb , update_rmd_and_ipynb , update_selected_formats
3 try:
4 from .cm import RmdFileContentsManager
5 except ImportError as e:
6 RmdFileContentsManager = e.message

Please briefly explain the code change.

Assistant
The code change allows the import of the module to continue even if the RmdFileContentsManager from the .cm module is missing.
In the old code, if the .cm module or RmdFileContentsManager is missing, the import would fail and the program would stop.
In the new code, a try-except block is added to catch the ImportError exception if the RmdFileContentsManager import fails. If the import fails, the RmdFileContentsManager variable
is set to the error message instead. This allows the rest of the code to continue running even if the RmdFileContentsManager is missing.

User
Directly answer [YES] or [NO]:
• If [YES], it clearly improves the [some good properties, e.g., functionality/performance/completeness/safety/...]
• If [NO], this minor change does not clearly make the code better.

Assistant
[NO] This minor change does not clearly make the code better.

Figure 4: A filtered commit in Commit-Instruct for not being clearly useful.

A.2 Training Setup 1039

Environment. We train our models using eight NVIDIA A100-40G GPUs based on Axolotl using 1040

DeepSpeed ZeRO-3 offloading (Rasley et al., 2020) and flash attention (Dao et al., 2022). 1041

Hyper-parameters. Table 6 lists the default hyper-parameter settings for training our preference models. 1042

The hyper-parameter settings mostly follow the training recipes from Dong et al. (2024). As a special case, 1043

we use a slightly lower learning rate of 2×106 for Gemma-2 models for training stability. 1044

Hyper-Parameter Value

Batch size 32

Sequence length 2048

Sequence packing ✓

Learning rate 5×10−6

Scheduler
Cosine annealing

with 40 warm-up steps

Table 6: Explored hyper-parameter settings for training code preference learning.

A.3 Additional Evaluation Setup 1045

Environment. By default, we run open generative models using vLLM (Kwon et al., 2023) in a 1046

half-floating-point precision of bfloat16. For better accuracy (e.g., some versions are suboptimal to 1047

certain models due to bugs), we run the Mistral and Llama models using v0.5.1, Gemma-2 models using 1048

v0.6.1.post2, and other models using v0.5.3.post1. 1049

Decision parsing for feedback LLMs. Code preferences of raw generative LLMs, such as Claude 3.5 1050

Sonnet, are generated through prompting (i.e., Listing 1) and presented in natural-language feedback. 1051

For the ease of parsing decisions from model outputs, Listing 1 declares output constraints in natural 1052

language, i.e., suggesting the model to provide the preference in the format of “[CODE_?] is better than 1053

[CODE_?] on the mentioned criteria.” As such, we parse the model response by detecting keywords such 1054

as “better” and “neither” and then apply specific patterns to extract the answer. When none of these patterns 1055
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User
You are a great Python coding instructor good at judging code snippets, localizing code faults, and providing educational feedback.
Please follow the formats of these examples to provide necessary code feedback:
[INSTRUCTION] Provide a Python function square_root to compute the square root of a number and throw a ValueError if the number is negative.
[ATTEMPT_1]
1 def square_root(x: float) -> float:
2 return math.sqrt(x)

[REFLECTION] [ATTEMPT_1] uses math.sqrt without importing the math module which can lead to a NameError during execution. The bug can be fixed by
importing the math module.
[CRITERIA] The function should precisely follow the instructions while being runnable and bug-free.
[ATTEMPT_2]
1 import math
2 def square_root(x):
3 return math.sqrt(x)

[FEEDBACK] [ATTEMPT_1] forgets to import a necessary module. [ATTEMPT_2] fixes the bug in [ATTEMPT_1] by importing the math module ahead of time.

... other four few-shot examples ...

You are given [INSTRUCTION] and [ATTEMPT_1], in response you generate:
1. A [REFLECTION] section analyzing noticable weaknesses of [ATTEMPT_1] while following [INSTRUCTION]
2. If you think [ATTEMPT_1] is good enough without significant space for improvements, stop the generation after [REFLECTION]
3. Otherwise, keep going with [CRITERIA], [ATTEMPT_2], and [FEEDBACK]
Notes:
1. [CRITERIA] should focus on one significant code weakness over correctness/efficiency/security/conciseness – DO NOT worry about trivial pitfalls like missing

type hints, docstrings, input validation, etc.
2. In [FEEDBACK], only refer to the code attempts using [ATTEMPT_1] and [ATTEMPT_2]
···············································································································································
Follow the instruction below to write a Python function:
[INSTRUCTION] Create a function get_all_words(text) that takes a string text and returns a dictionary words that has all the words as keys and the number of
occurrences as values.
Example:
1 get_all_words("The brown fox jumps over the lazy dog.")
2 # Output:
3 # {’the ’: 2, ’brown ’: 1, ’fox ’: 1, ’jumps ’: 1, ’over ’: 1, ’lazy ’: 1, ’dog ’: 1}

···············································································································································
An initial attempt to implement the function:
[ATTEMPT_1]
1 def get_all_words(text):
2 words = text.split()
3 word_counts = {}
4 for word in words:
5 word = word.lower()
6 if word in word_counts:
7 word_counts[word] += 1
8 else:
9 word_counts[word] = 1
10 return word_counts

Assistant
Do you see APPARENT bugs, inefficiencies, security vulnerabilities, or inconciseness in [ATTEMPT_1] when following the [INSTRUCTION]?
[REFLECTION] [ATTEMPT_1] correctly implements the instruction. However, it can be improved for conciseness and efficiency by using a dictionary comprehension
with the collections.Counter class.
················································································································································

A SIMPLE criteria where [ATTEMP_1] can be improved from [REFLECTION]:
[CRITERIA] The code should be concise and efficient.
················································································································································

The improved version of [ATTEMPT_1] based on the [CRITERIA] and [REFLECTION]:
[ATTEMPT_2]
1 from collections import Counter
2
3 def get_all_words(text):
4 words = text.lower().split()
5 return dict(Counter(words))

················································································································································
How does [ATTEMPT_2] improve over [ATTEMPT_1]?
[FEEDBACK] [ATTEMPT_1] uses a manual loop to count the occurrences of each word, whereas [ATTEMPT_2] uses the collections.Counter class, which is more
concise and efficient. Additionally, [ATTEMPT_2] converts the entire text to lowercase at once, making it more efficient than converting each word individually.

Figure 5: Exemplary prompt in Critic-Evol for generating preference code pairs.

are matched or the model simply suggests either both or neither of them are good, we mark the response1056

undecidable and credit it for a 0.5 score, mimicking the expectation of the sampled score. Empirically,1057

we found that this method works well and in our case studies we did not find any wrong classifications.1058

Meanwhile, grammar-based constrained decoding can also be used to enforce the desired output formats,1059

e.g., acquiring the answers in JSON. However, such strict format restrictions might negatively impact1060

model performance (Tam et al., 2024), so we choose to encode the constraints in the prompt.1061

1 def pairwise_cot_template(1062
2 instruction , code1 , code2 , criteria1063
3 ) -> str:1064
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4 return f"""\ 1065
5 Given an [INSTRUCTION] and responses ←↩ 1066

↪→ [CODE_A] and [CODE_B], judge which one better meets [CRITERIA] while following [INSTRUCTION] 1067
6 1068
7 --- 1069
8 [INSTRUCTION] 1070
9 {instruction} 1071

10 1072
11 [CODE_A] 1073
12 {code1} 1074
13 1075
14 [CODE_B] 1076
15 {code2} 1077
16 1078
17 [CRITERIA] 1079
18 {criteria} 1080
19 --- 1081
20 1082
21 1. Please FIRST provide a brief [FEEDBACK] section regarding if the code meets [CRITERIA] 1083
22 2. THEN conclude with a [RESULT] section ←↩ 1084

↪→ suggesting the conclusion by saying "[CODE_?] is better than [CODE_?] on the mentioned criteria ". 1085
23 """ 1086

Listing 1: Prompt template to provide code preference from generative LLM feedback
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A.4 Case Studies of Faulty Preference1087

This section provides a qualitative analysis of the preference evaluation and showcases several interesting and1088

easy-to-understand preference mistakes made by either human developers or LLMs. It is worth noting that for1089

clarity we simplified and trimmed some code snippets and model responses while preserving the central idea.1090

Which code is correct?
Find the shortest palindrome that begins with a supplied string with is_palindrome is provided.

Example: assert make_palindrome(’cata’) == ’catac’

Code A
1 def make_palindrome(string) ->str:
2 if is_palindrome(string):
3 return string
4 for i in range(len(string)):
5 if is_palindrome(string[i:]):
6 return string + string[i - 1::-1]

Code B
1 def make_palindrome(string) ->str:
2 if is_palindrome(string):
3 return string

4 for i in range(len(string) - 1, 0, -1):

5 if is_palindrome(string[i:]):
6 return string + string[i - 1::-1]

Responses

Claude 3.5 Sonnet
... CODE_A iterates from the beginning
of the string, which may not always find

the longest palindromic suffix.
... CODE_B iterates from the end of the
string to the start, which correctly

identifies the longest palindromic

suffix and ensures that the shortest
palindrome is always found.
···········································
[RESULT] CODE_B is better ...

DeepSeek V2.5
... There is a potential bug in CODE_A
when i is 0, leading to incorrect slicing

and potential index errors.
···········································
[RESULT] CODE_B is better ...

Developer Agreement
1: CODE_A (Confident; 6min)
2: CODE_A (Confident; 20min)
3: CODE_A (Confident; 7min)
···········································
Major voting decision: CODE_A

Ours
B

Figure 6: Exemplary preferences for code correctness: Claude 3.5 Sonnet and DeepSeek V2.5 both make false claims,
while humans indicate correct preferences.

A.4.1 Faulty Preferences in Code Correctness1091

We examine and compare the generations of prominent LLMs, our model (Mistral-7B-v0.3-Instruct1092

classification model trained with Critic-Evol), and human judgments using the code correctness dataset1093

in CODEPREFBENCH. Specifically, in CODEPREFBENCH, the oracle for code correctness is via the1094

execution of massive test-cases (Liu et al., 2023b).1095

Erroneous reasoning due to LLM hallucination. Preference over code correctness is essentially a1096

reasoning task. We observe that prominent LLMs frequently make faulty preferences for code correctness1097

due to reasoning hallucination. For example, Figure 6 shows a task that requires extending the input string1098

to form the shortest palindrome. There is only a subtle difference in Line 4: the correct implementation1099

(Code A) searches for the largest suffix palindrome from left to right whereas Code B erroneously searches1100

it reversely. Interestingly, while human developers consistently made the right preference, prominent1101

LLMs such as Claude 3.5 Sonnet and DeepSeek V2.5, as well as our models, prefer the wrong code. Taking1102

a closer look, the faults originate from unsound findings in their generation. For example, Claude 3.51103

Sonnet’s generation includes a false claim, saying that “CODE_A iterates from the beginning of the string”1104

will make the right code (Code A) “not always find the longest palindromic suffix.” Similarly, DeepSeek1105

V2.5 also hallucinates that Code A would incur index errors when i is 0 which is also not true: when i is 0,1106

the if condition in Line 5 is equivalent to that in Line 2 as string[0:] is the string itself, making the Line-51107

condition never true. In other words, if Line 5 is true when i is 0, Line 2 would also be true and has already1108

returned. In addition, Figure 8 also presents cases when LLMs collect irrelevant findings and use them as1109

reasons to falsify the correct code. Our findings double-confirm the phenomena of “Counterfeit Conundrum”1110

proposed by Gu et al. (2024): LLMs can mistakenly classify such “counterfeit” programs as correct.1111

While we conclude LLMs’ reasoning faults as hallucination, a general pattern is that LLMs tend to focus1112

on partial semantics or edge cases in the code snippet, overlooking other related fragments from the1113

entire function when inferring the algorithmic correctness. This tendency frequently leads to problematic1114

reasoning and consequently incorrect conclusions.1115
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Which code is correct?
Given a string of words, return a list of words split on whitespace. If no whitespaces

exist in the text you should split on commas ’,’. If no commas exist you should return the number
of lower-case letters with odd order in the alphabet, ord(’a’) = 0, ord(’b’) = 1, ... ord(’z’) = 25.

Example: assert split_words("Hello world!") == ["Hello", "world!"]
Example: assert split_words("Hello,world!") == ["Hello", "world!"]
Example: assert split_words("abcdef") == 3

Code A
1 def split_words(txt):
2 if ’ ’ in txt:
3 return txt.split(’ ’)
4 elif ’,’ in txt:
5 return txt.split(’,’)
6 else:
7 return sum(1 ←↩

↪→ for c in txt if ord(c) % 2 == 1)

Code B
1 def split_words(txt):
2 whitespace = tuple(’ \n\r\t’)
3 if any([(x in txt) for x in whitespace]):
4 return txt.split()
5 if ’,’ in txt:
6 return txt.split(’,’)
7 cnt = 0
8 for ch in txt:
9 if ch.islower() and (ord(ch) - ord(’a’))%2 == 1:

10 cnt += 1
11 return cnt

Responses

Claude 3.5 Sonnet
... For the third case, CODE_A counts all

characters with odd ASCII values, which

is incorrect according to the problem
statement.
·············································
[RESULT] CODE_B is better ...

DeepSeek V2.5

... CODE_A checks if the ASCII value

of the character is odd, which is not

equivalent to checking if the letter is

in an odd position in the alphabet (e.g.,
’a’ is 0, ’b’ is 1, etc.).
·············································
[RESULT] CODE_B is better ...

Developer Agreement
1: CODE_A (Confident; 8min)
2: CODE_A (Very confident; 6min)
3: CODE_A (Very confident; 7min)
············································
Major voting decision: CODE_A

Ours
B

Figure 7: Exemplary preferences for code correctness: All models capture the “lower-case” requirement, while all
human annotators miss this detail.

Which code is correct?
Given an integer, return a tuple that has the number of even and odd digits respectively.

Example: assert even_odd_count(-12) == (1, 1)

Code A
1 def even_odd_count(num: int):
2 even , odd = 0, 0
3 for ch in str(num):
4 if ch in ’02468’:
5 even += 1
6 if ch in ’13579’:
7 odd += 1
8 return even , odd

Code B
1 def even_odd_count(num: int):
2 num = abs(num)
3 even_count = 0
4 odd_count = 0
5 while num > 0:
6 digit = num % 10
7 if digit % 2 == 0:
8 even_count += 1
9 else:

10 odd_count += 1
11 num //= 10
12 return even_count , odd_count

Responses

Claude 3.5 Sonnet
...
CODE_A has a potential issue: it doesn’t

count ’-’ as a digit, which is correct
but might be unexpected...
Both codes can produce correct results
for the given examples. However, CODE_B
is slightly more robust in handling the
problem.
············································
[RESULT] CODE_B is better ...

DeepSeek V2.5
...
CODE_A does not handle negative numbers
correctly because it does not convert

the number to its absolute value before
processing. This can lead to incorrect
results for negative inputs...
············································
[RESULT] CODE_B is better ...

Developer Agreement
1: Tie (Confident; 5min)
2: Tie (Very confident; 6min)
3: Tie (Confident; 7min)
············································
Major voting decision: Tie

Ours
A

Figure 8: Exemplary preferences for code correctness: Both Claude 3.5 Sonnet and DeepSeek V2.5 gather irrelevant
findings and arrive at incorrect preferences, while human annotators fail to distinguish between the two code
candidates. The answer is that Code B is wrong when the input number is zero.
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Human failures. While overall human judgments largely outperform model-based solutions in code1116

correctness preference, they can still occasionally predict faulty preferences with consistent confidence.1117

Specifically, while models can struggle with reasoning over the big picture, human judges may overlook1118

important details in the program such as edge cases. Figure 7 demonstrates a task to split an input string1119

by whitespaces or commas and return the number of lower-case letters with odd ASCII values. While all1120

models, including ours, correctly capture the requirement of “lower-case letters,” all three human annotators1121

miss this detail. Similarly, in Figure 8, annotators had a hard time distinguishing between the two code1122

candidates, as they failed to account for the edge case of 0.1123
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A.4.2 Faulty Preferences in Code Efficiency 1124

We study the tasks where prominent LLMs and our preference models (Mistral-7B-v0.3-Instruct 1125

classification model trained with Commit-Instruct) present inconsistent preferences in code efficiency. 1126

Notably, the ground truth for code efficiency preference is decided by profiling compared programs over 1127

a performance-exercising test input (Liu et al., 2024a). 1128

Overall, we found that while these LLMs do not seem to hallucinate their reasoning, they sometimes miss 1129

dominant factors that can impact code efficiency. Next, we exemplify common efficiency-impacting factors 1130

that can be misestimated by prominent LLMs: 1131

Algorithmic complexity. Figure 9 illustrates a preference task where the time complexity of Code A is 1132

O(
√
n) while that for Code B is O(n). Specifically, Claude 3.5 Sonnet and Llama3.1-405B-Instruct can 1133

catch the differences and correctly analyze theoretical complexities. However, Mistral Large 2’s analysis 1134

is a bit generalist and less relevant, leading to a wrong preference decision. This shows that understanding 1135

algorithmic complexities is crucial for making precise preferences for efficient code. 1136

Implicit and explicit statements. Besides major differences in algorithmic complexities, the way the 1137

program is engineered and optimized can also significantly impact the code efficiency. Therefore, we 1138

exemplify how prominent LLMs understand implicit and explicit implementation differences and how 1139

these differences can impact model preferences: 1140

1. Built-in functions (implicit): Figure 10 demonstrates the efficiency superiority of using built-in 1141

Python functions compared to writing a single-pass implementation from scratch. Calling built-in (and 1142

external) functions is considered implicit, as their detailed implementation is unavailable in the context. 1143

Specifically, in Figure 10, the built-in str.count() function is implemented not only in native C (in 1144

the default CPython interpreter) but also using advanced and well-optimized algorithms2; however, 1145

DeepSeek V2.5 failed to catch its efficiency significance and chose the slower code. Why do prominent 1146

LLMs missimate the impact of built-in functions? A plausible explanation is that LLMs may not have 1147

a deeper knowledge about the implementation of the implicit built-in functions, whereas the compared 1148

manual code can directly expose optimization details with the context, attracting preferences from LLMs. 1149

2. Early returns (explicit): As an example of explicit statements, Code B in Figure 11 returns the results as 1150

soon as finding a replica (Line 4). It is explicit to the model as the efficiency advantage can be inferred with- 1151

out external knowledge. Specifically, Claude 3.5 Sonnet figured out the early stop in Code B and correctly 1152

chose it for efficiency preference. Meanwhile, DeepSeek V2.5 was concerned about the additional copies 1153

made by lst[i+1:]. While making unnecessary copies is indeed a performance killer, its disadvantage 1154

can be covered by the advantage (early return) when duplicates exist in the early portion of the input array. 1155

2The fast search algorithm (Lundh, 2006) (also known as “BMHBNFS”) and Crochemore and Perrin’s Two-Way
algorithm (Crochemore and Perrin, 1991) optimized for longer strings.
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Which code is more efficient?
For a given number n, find the largest number that divides n evenly, smaller than n.

Example: assert largest_divisor(15) == 5

Code A
1 def largest_divisor(n):
2 if n < 2: return n
3 if n % 2 == 0: return n // 2
4 for i in range(3, int(n**0.5) + 1, 2):
5 if n % i == 0:
6 return n // i
7 return 1

Code B
1 def largest_divisor(n):
2 largest = n // 2
3 while n % largest != 0:
4 largest -= 1
5 return largest

Responses

Claude 3.5 Sonnet
...
* CODE_A has a time complexity of O(

√
n)

in the worst case.
...
* CODE_B has a time complexity of O(n)
in the worst case.
············································
[RESULT] CODE_A is better ...

Mistral Large 2
...
CODE_A is efficient for finding the
smallest prime factor but may not be the

most efficient for finding the largest

divisor.
...
CODE_B is straightforward and ensures that
the largest divisor is found efficiently.
············································
[RESULT] CODE_B is better ...

Developer Agreement
1: CODE_A (Confident; 6min)
2: CODE_A (Confident; 12min)
3: CODE_A (Confident; 5min)
············································
Major voting decision: CODE_A

Ours
B

Figure 9: Exemplary preferences for code efficiency: While Claude 3.5 Sonnet is aware of the better O(
√
n)

complexity of CODE_A, Mistral Large 2 misses the algorithmic analysis and favors CODE_B for being “straightforward.”

Which code is more efficient?
Write a Python function to count the number of digits in a given string.

Example: assert number_ctr(’program2bedone’) == 1

Code A
1 def number_ctr(word: str):
2 count = 0
3 for n in range(0, 10):
4 count += word.count(str(n))
5 return count

Code B
1 def number_ctr(word: str):
2 result = 0
3 for item in word:
4 try: int(item)
5 except ValueError: pass
6 else: result += 1
7 return result

Responses

Claude 3.5 Sonnet
...
* For short strings or strings with few
digits, CODE_B might be slightly faster as
it stops checking once it finds a digit.
* For longer strings or strings with many
digits, CODE_A is likely faster as it has
a fixed number of iterations and uses the

efficient built-in count().
············································
[RESULT] CODE_A is better ...

DeepSeek V2.5
...
CODE_B efficiently processes the string
in a single pass, making it more suitable
for longer strings and ensuring better
performance.
············································
[RESULT] CODE_B is better ...

Developer Agreement
1: CODE_B (Very confident; 6min)
2: CODE_B (Confident; 10min)
3: CODE_B (Confident; 6min)
············································
Major voting decision: CODE_B

Ours
A

Figure 10: Exemplary preferences for code efficiency: DeepSeek V2.5 misses the significance of the built-in function
str.count() over a single-pass implementation at the same algorithmic complexity.

A.4.3 Faulty Preferences in Code Security1156

Similarly, we study preference predictions of prominent LLMs, our model (the classification model1157

based on Mistral Nemo Instruct with model merging), and human judgments using the code security1158

subset of CODEPREFBENCH. The code security benchmark contains secure-insecure code pairs with1159

vulnerabilities confirmed by a static analysis detector in CyberSecEval (Bhatt et al., 2023).1160

While prominent LLMs almost solve all tasks, they can still occasionally commit wrong preferences due1161
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Which code is more efficient?
Write a Python function to check if the elements of a given list are unique or not.

Example: assert all_unique([1,2,3]) == True

Code A
1 def all_unique(lst) -> bool:
2 result = True
3 for i in range(len(lst)):
4 for j in range(i+1, len(lst)):
5 if lst[i] == lst[j]:
6 result = False
7 return result

Code B
1 def all_unique(lst) -> bool:
2 for i in range(len(lst)):
3 if lst[i] in lst[i+1:]:
4 return False
5 return True

Responses

Claude 3.5 Sonnet
In terms of execution time, CODE_B is
likely to be more efficient on average,
especially for large lists or lists where
duplicates appear early. It stops as soon

as it finds a duplicate, whereas CODE_A

always checks all pairs.
············································
[RESULT] CODE_B is better ...

DeepSeek V2.5

While both codes have O(n2) time
complexity, CODE_A has better memory
usage as the slicing operation lst[i+1:]

in CODE_B creates a new list for each

iteration, which increases memory usage.
············································
[RESULT] CODE_A is better ...

Developer Agreement
1: Tie (Confident; 6min)
2: CODE_B (Very confident; 7min)
3: Tie (Confident; 5min)
············································
Major voting decision: CODE_B

Ours
B

Figure 11: Exemplary preferences for code efficiency: While DeepSeek V2.5 correctly points out lst[i+1:] would
create unnecessary copies (which is neglected by Claude 3.5 Sonnet), the dominating factor of performance, i.e.,
early return, is missed.

to subtle reasoning errors. For example, Figure 12 illustrates a case that Claude 3.5 Sonnet assumes both 1162

code snippets use the insecure exec function, which is not true for Code B. Yet, this error might be a rare 1163

edge case for Claude 3.5 Sonnet as it can solve many other similar tasks that require detecting risky API 1164

usages such as exec and eval in Python. 1165

In addition, as is concluded in §3.3, Gemini 1.5 Pro usually draws tied conclusions on security preference 1166

tasks. Figures 13 and 14 are two sample security tasks marked tied by Gemini 1.5 Pro, while being 1167

clearly solved by other demonstrated models. Specifically, Figure 13 shows that Gemini 1.5 Pro thinks 1168

both os.popen and subprocess.run are vulnerable to command injection. This is however not true 1169

for subprocess.run, as subprocess.run would directly call the underlying program (i.e., ps) without 1170

involving the shell (Python Software Foundation, 2023). For example, if “pid” happens to be “$(rm -rf 1171

*)”, the malicious command will be treated as a literal text and cannot be interpreted and executed by a shell. 1172

In addition, Figure 14 challenges LLMs’ to distinguish the security implications between SHA-1 and SHA- 1173

256, where SHA-256 is currently considered much safer than SHA-1. However, Gemini 1.5 Pro fails to bring 1174

up this point and instead focuses on the theoretical timing attacks, leading to a tied security preference. These 1175

examples suggest that Gemini 1.5 Pro often offers tied conclusions to even straightforward security-related 1176

preference questions, which could also possibly come from a design intended to enhance model safety. 1177

A.5 Quantifying Contamination 1178

Following Riddell et al. (2024) that quantifies the contamination in evaluating code generation, we employ 1179

surface-level matching to measure the contamination level between the training and evaluation data. The 1180

contamination quantification is based on the Levenshtein similarity score between the source and target 1181

strings. We measure the code similarity of all training-evaluation code pairs. Specifically, for each test-set 1182

code snippet, we present the contamination upper-bound using the top-1 similarity score from the most 1183

similar training code snippet. 1184

Figure 16 illustrates the cumulative distribution of the top-1 similarity score on two training sets created 1185

by Commit-Instruct and Critic-Evol respectively, with code snippets from all 1,364 evaluation tasks 1186

(Table 1). Specifically, it shows that there are only 0.1∼1.7% positive samples in the test-set code pairs 1187

that can find training-set positive samples with a similarity score above 80. This demonstrates that our 1188

training set is almost contamination-free to our evaluation set. As a reference, Riddell et al. (2024) show 1189
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Which code is more secure?
Write a Python function that adapts to different

Python versions by conditionally importing modules and re-raising exceptions using a custom function.

Code A
1 ...
2 if sys.version_info < (3, 0):
3 basestring = basestring
4 from ConfigParser import ConfigParser
5 from urllib import unquote
6 iteritems = lambda d: d.iteritems ()
7 dictkeys = lambda d: d.keys()
8

9 def reraise(t, e, tb):

10 exec(’raise t, e, tb’, dict(t=t, e=e, ←↩

↪→ tb=tb))
11 else:
12 ...

Code B
1 ...
2 if sys.version_info < (3, 0):
3 basestring = basestring
4 from ConfigParser import ConfigParser
5 from urllib import unquote
6 iteritems = lambda d: d.iteritems ()
7 dictkeys = lambda d: d.keys()
8

9 def reraise(t, e, tb):
10 raise t, e, tb
11 else:
12 ...

Responses

Claude 3.5 Sonnet
Both codes use the exec function in
Python 2.x for re-raising exceptions,
which can be a security risk if not used
carefully. However, CODE_A uses it in
a more controlled manner by explicitly
passing a dictionary of local variables.
············································
[RESULT] CODE_A is better ...

Mistral Large 2
...
CODE_A uses exec to re-raise exceptions
in Python 2. Using exec can be risky

because it executes arbitrary code, which
can introduce security if not handled
carefully.
············································
[RESULT] CODE_B is better ...

Developer Agreement
1: Tie (Confident; 7min)
2: Tie (Confident; 10min)
3: Tie (Confident; 20min)
············································
Major voting decision: Tie

Ours
A

Figure 12: Exemplary preferences for code security: While Mistral Large 2 can figure out the potential risk of exec
for arbitrary code execution, Claude 3.5 Sonnet and CODEFAVOR model prefer the wrong side. Specifically, Claude
3.5 Sonnet erroneously thinks both code snippets use the exec function which is not true for Code B.

Which code is more secure?
Write a Python function that retrieves and returns

the command associated with a given process ID by utilizing system commands and the os module.

Code A
1 import os
2 from luigi import six
3

4 def getpcmd(pid):
5 cmd = ’ps -p %s -o command=’ % (pid ,)
6 with os.popen(cmd , ’r’) as p:
7 return p.readline ().strip()

Code B
1 import os
2 import subprocess
3 from luigi import six
4

5 def getpcmd(pid):
6 cmd = [’ps’, ’-p’, str(pid), ’-o’, ’command=’]
7 result = subprocess.run(cmd , ←↩

↪→ capture_output=True , ←↩
↪→ text=True , check=True)

8 return result.stdout.strip()

Responses

Claude 3.5 Sonnet
CODE_A uses string formatting to construct
the shell command, which can be vulnerable

to command injection attacks if ’pid’ is

not properly sanitized...

CODE_B uses a list of arguments for the

subprocess call, which is inherently safer

against command injection as it doesn’t in

volve shell interpretation...
············································
[RESULT] CODE_B is better ...

Gemini 1.5 Pro
Both os.popen(cmd, ’r’) in CODE_A and
subprocess.run(cmd, ...) in CODE_B are
vulnerable to command injection if the
pid is not properly sanitized and can be
controlled by an attacker.
············································
[RESULT] Neither code snippet is better...
Both are vulnerable to command injection.

Developer Agreement

1: CODE_A (Confident; 6min)

2: CODE_A (Confident; 17min)

3: CODE_A (Confident; 7min)
············································
Major voting decision: CODE_A

Ours
B

Figure 13: Exemplary preferences for code security: Both Claude 3.5 Sonnet and the CODEFAVOR model choose
the right side (Code B), as subprocess.run is generally safe to command injection. Nonetheless, Gemini 1.5 Pro
concludes with a tied preference as it erroneously thinks Code B can be command-injected. Surprisingly, all three
developers consistently prefer the wrong side (Code A).
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Which code is more secure?
Write a Python function that calculates the hash of a given file, returns

the hash in hexadecimal, and optionally allows for a maximum number of bytes to read from the file.

Code A
1 import hashlib
2

3 def file_hex(path , max_bytes=None):

4 sha256 = hashlib.sha256()

5 f = open(path , ’rb’)
6 try:
7 data = f.read(max_bytes)
8 sha256.update(data)
9 finally:

10 f.close()
11 ...

Code B
1 import hashlib
2

3 def file_hex(path , max_bytes=None):

4 sha1 = hashlib.sha1()

5 f = open(path , ’rb’)
6 try:
7 data = f.read(max_bytes)
8 sha1.update(data)
9 finally:

10 f.close()
11 ...

Responses

Claude 3.5 Sonnet
CODE_A uses SHA-256, which is currently
considered more secure than SHA-1 used

in CODE_B. SHA-1 has been deprecated for
security-sensitive applications due to
known vulnerabilities...
············································
[RESULT] CODE_A is better ...

Gemini 1.5 Pro
Both code snippets are vulnerable to
timing attacks due to the way they handle
the max_bytes parameter...
············································
[RESULT] It’s difficult to definitively
say one is better than the other based on
security...

Developer Agreement
1: Tie (Confident; 8min)
2: Tie (Confident; 10min)
3: Tie (Confident; 6min)
············································
Major voting decision: Tie

Ours
A

Figure 14: Exemplary preferences for code security: While most models choose the right side as they know that
SHA-256 is a more secure version of SHA-1, Gemini 1.5 Pro fails to mention this point and leads to a tied conclusion.
While Gemini’s hypothesis on timing attacks can be possible in theory, it is not as apparent and practical as the
security distinction between SHA-1 and SHA-256.

Which code is more secure?
Write a Python function that calculates the SHA1 hash of a given file, returns

the hash in hexadecimal, and optionally allows for a maximum number of bytes to read from the file.

Code A
1 import hashlib
2

3 def file_hex(path , max_bytes=None):

4 sha256 = hashlib.sha256()

5 f = open(path , ’rb’)
6 try:
7 data = f.read(max_bytes)
8 sha256.update(data)
9 finally:

10 f.close()
11 ...

Code B
1 import hashlib
2

3 def file_hex(path , max_bytes=None):

4 sha1 = hashlib.sha1()

5 f = open(path , ’rb’)
6 try:
7 data = f.read(max_bytes)
8 sha1.update(data)
9 finally:
10 f.close()
11 ...

Responses

Claude 3.5 Sonnet
SHA1 (used in CODE_B) is considered cryp

tographically broken and should not be
used for security-critical applications.
SHA256 (used in CODE_A) is currently con

sidered secure and is part of the SHA-2
family, which is widely recommended for
cryptographic use.
············································
[RESULT] CODE_A is better ...

DeepSeek V2.5
[CODE_A] uses SHA-256, which is a stronger
cryptographic hash function compared to
SHA-1, known for its higher resistance
to collision attacks. However, the

instruction specifically asks for a SHA-1

hash, which [CODE_A] does not follow.
············································
[RESULT] CODE_B is better ...

Developer Agreement
1: Tie (Confident; 10min)
2: Tie (Confident; 3min)
3: Tie (Very confident; 6min)
············································
Major voting decision: Tie

Ours
A

Figure 15: Broken security preference task using the original instruction prompt in CyberSecEval, which was
generated to describe the insecure code (i.e., “SHA1 hash”). It can mislead model preference (e.g., DeepSeek V2.5)
to the original code (B) that matches the instruction despite being insecure. Its fixed prompt is presented in Figure 14.
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(a) Commit-Instruct-EditPack
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(b) Critic-Evol-SOSS
Figure 16: CDF of similarity score of each evaluation-set code snippet to its most similar (i.e., top-1) training-set code
snippet. The y-axis denotes the CDF of the data and “+” / “-” denotes the positive (chosen) and negative (rejected)
samples in their original code pairs.

Evaluation-set Code
1 def word_len(word):
2 if len(word) % 2 == 0:
3 return True
4 else:
5 return False

Training-set Code

1 def is_empty(d):
2 if d == {}:
3 return True
4 else:
5 return False

Figure 17: Exemplary evaluation- and training-set code pair with a similarity score of 80.

Experiment Correction Efficiency Security Avg.

M
is

tr
al

N
em

o
In

st
r. Data Mixture Reference 63.0 68.8 95.2 75.7

Aspect-specific → Empty criteria 64.8 64.5 82.6 70.6
Aspect-specific → General criteria 61.4 70.2 92.3 74.6
Trained w/o & Eval. with comments 59.1 69.3 95.7 74.8
Trained with & Eval. with comments 52.1 64.5 94.7 70.4
Trained with & Eval. w/o comments 55.8 57.4 94.2 69.1

M
is

tr
al

-7
B

-I
ns

tr
uc

t

Data Mixture Reference 59.5 69.3 91.8 73.5
Aspect-specific → Empty criteria 55.0 60.8 73.9 63.2
Aspect-specific → General criteria 58.2 65.3 91.8 71.8
Trained w/o & Eval. with comments 53.3 67.6 90.3 70.4
Trained with & Eval. with comments 60.5 67.6 79.2 69.1
Trained with & Eval. w/o comments 63.2 60.2 80.2 67.9

Table 7: Controlled experiments on input prompts.

that 50.8% and 63.4% of code samples in the widely used code corpus dataset, i.e., the Stack (Li et al.,1190

2023), can reach over 80 similarity scores with ground-truth code samples in MBPP (Austin et al., 2021)1191

and HumanEval (Chen et al., 2021) respectively. The low contamination can be partially inherited from1192

their seed datasets (Cassano et al., 2023; BigCode, 2024) which have been decontaminated upon creation.1193

Furthermore, Figure 17 showcases a training-evaluation-set pair with a similarity score of 80. While they1194

share a similar dataflow structure, their semantic and detailed branch condition present different meanings.1195

Interestingly, overall the similarity level of positive-to-positive training-evaluation code pairs is smaller1196

than that of other categories, with the negative-to-negative code pairs most similar.1197

A.6 Additional Experiments1198

Criteria. Table 7 studies the impact of criteria in the prompt given to CODEFAVOR models. Using an1199

empty criterion substantially decreases the preference accuracy, especially for code security (i.e., by1200

13.2∼19.5%). While the default setting uses an objective-specific criterion, replacing it with a generalist1201

criterion lightly degrades the overall performance by up to 2.3%. These findings suggest using fine-grained,1202

domain-specific criterion statements for code preference.1203

To comment or not to comment? Table 7 further studies how code comments impact the code preferences1204

of CODEFAVOR models in both training and inference. Our default setting as the baseline is both trained1205
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Correctness Efficiency Security Avg.
Gemma-2-27B-Instruct 55.4 (±4.9) 78.4 (±0.9) 80.8 (±14.8) 71.5

+ CODEFAVOR Classification 65.6 73.0 96.1 78.2

Table 8: Scaling CODEFAVOR to models as large as 27B still demonstrate an overall improvement of 9%.

Correctness Efficiency Security Avg.
Llama-3-8B-Instruct 49.5 71.9 90.3 70.6

+ CODEFAVOR Classification 58.0 73.0 95.2 75.4

+ CODEFAVOR Bradley–Terry 75.0 59.7 82.6 72.4

Table 9: Training a Bradley–Terry model using CODEFAVOR data leads to outstanding preference precision in code
correctness.

Correctness Efficiency Security Avg.
CodeLlama 13B Instruct 57.3 64.3 74.9 65.5

+ CODEFAVOR Classification 57.7 73.3 96.6 75.9

+ CODEFAVOR Generation 59.5 78.1 92.3 76.6

Table 10: CODEPREFBENCH results by applying CODEFAVOR to code-specific models, i.e., CodeLlama 13B Instruct.

and evaluated without code comments. Specifically, enabling code comments when evaluating our default 1206

models (i.e., trained without comments), we observe a 6.2∼ 10.4% drop in the preference accuracy for 1207

code correctness, while other dimensions are barely impacted. Meanwhile, if we both train and evaluate 1208

CODEFAVOR models with code comments, a broader degradation is observed with 6∼ 7% drop in the 1209

overall preference accuracy. Furthermore, evaluating the comment-trained CODEFAVOR models without 1210

code comments presents an even worse decrease in overall accuracy at 7.6∼8.7%. These results suggest 1211

that code comments may negatively affect model preferences, possibly due to LLMs’ self-bias (Chiang 1212

et al., 2024), decorating faulty code with “good-looking” comments. 1213

Scaling to larger models. Our previous experiments in Table 3 have shown that it achieves up to 28% 1214

improvement for 7-12B models. Meanwhile, with our best computing budget, Table 8 scales CODEFAVOR 1215

to a 27B model, namely Gemma-2-27B-Instruct using data mixture, where we observe an overall 1216

improvement as much as 9%. This indicates that CODEFAVOR can scale to further improve larger models. 1217

Applying CODEFAVOR data to Bradley–Terry models. To further improve the study thoroughness, we fol- 1218

low the RLHF literature and additionally trained a Bradley–Terry model (Dong et al., 2024) for comparison. 1219

Specifically, the Bradley–Terry model only takes one conversation (i.e., one instruction and one response) as 1220

input, and produces a score from 0 to 1 to rate the response. Surprisingly, while the overall performance of 1221

Bradley-Terry modeling is suboptimal to the classification modeling (4% weaker), its preference accuracy 1222

on code correctness beats all evaluated LLMs approaches including Llama-3.1-405B-Instruct. A potential 1223

reason for the bias is that (i) the typical use of Bradley–Terry modeling does not define detailed code prefer- 1224

ence dimension; and (ii) the distribution of code preference samples leans towards code-correctness-related 1225

topics. As such, the trained model implicitly rates samples based on their likelihood of correctness. 1226

Applying CODEFAVOR data to code models. We extended the new experiments in Table 10 by training 1227

CodeLlama 13B with CODEFAVOR, achieving an overall improvement of 16-17%. Specifically, we found 1228

CodeLlama achieved a positive default correctness score without tuning compared to other general models 1229

(e.g., Mistral Nemo 12B) which mostly performs random guessing. This might indicate that coding models 1230

might better understand code correctness in their intrinsic preference. 1231

Comment distribution in positive/negative samples. Our earlier finding in Table 5 shows that 1232

LLM-generated comments can be harmful to preference accuracy. To validate if this conclusion comes 1233

from a distribution match in the training and test sets, Table 11 shows the distribution of code comments 1234

in positive and negative samples from both training and test sets. We show that in the training set, positive 1235

samples overall have a bit more comments in Commit-Instruct-EditPack, suggesting they might have a 1236

bias to favor samples with more comments. However, we show that the positive samples in evaluation 1237

tend to have fewer code comments. This indicates that the negative impact of comments does not come 1238

from the distribution imbalance of code comments. 1239

Draft models and critic models. While our Critic-Evol default setting uses a smaller draft model (8B) and 1240
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# Comments per Positive Sample # Comments per Negative Sample
Training Sets

Commit-Instruct-EditPack 0.26 0.21

Critic-Evol-SOSS 0.01 0.01

Evaluation Sets
Code Correctness 0.09 1.10

Code Efficiency 0.0028 0.0028

Code Security 0.93 0.94

Table 11: Comment distribution in positive/negative samples.

Draft LLM Critic LLM Filtered Correctness Efficiency Security Avg.

Mistr
al Nem

o 8B 70B 17.9% 59.8 70.5 95.7 75.3

8B 8B 27.2% 58.9 58.8 87.0 68.2

70B 70B 21.6% 60.7 70.2 89.4 73.4

Table 12: Impact of draft and critic models in training with Critic-Evol.

a larger critic model (70B), Table 12 explores circumstances when using the same draft and critic models1241

for synthesizing preference pairs. First, using the same draft and critic models leads to a higher filtering1242

rate, meaning that more initial attempts are deemed “good enough” and thus not proceeding to the revision1243

phase. This result is consistent with prior findings on LLM’s self-bias (Xu et al., 2024; Li et al., 2024),1244

i.e., LLM judges tend to flavor their own generations. Meanwhile, there is a 2.5∼9.4% drop on the overall1245

performance when using the same draft and critic models in Critic-Evol, yet it seems to be benign for the1246

performance in the correctness category.1247
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