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Abstract

Recently, enhancing the capabilities of Large
Language Models (LLMs) through interaction
with external tools has gathered widespread
interest, where tool retrieval emerges as a cru-
cial step. Existing tool retrieval approaches
only focus on semantic matching. However,
effective tool retrieval requires consideration of
collaborative invocation among multiple tools
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(a) Pipeline of user interaction with tool-augmented LLMs.
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£3 @ [ 1 would like to know the value of 5 ounces of gold plus
1 million AMZN stocks in CNY.

With Complete Tools:

rather than solely evaluating the utility of in-
dividual tools, which presents a challenge to
existing tool retrieval methods. To address this,
we propose a novel COllaborative Learning-

941,200,000 CNY...

: ... 5 ounces of gold is A =
%)) | 69,495.49 CNY and 1 million AMZN stocks is @1‘[‘ ‘“J}

One Is Incorrect: ... | don’t have real-time data or
internet access to look up current stock prices or
gold prices...

m
!

65

Two Are Incorrect: ... Sorry, | am an Al model and |

don’t have real-time data or the ability to provide

based Tool Retrieval approach, COLT, which
manages not only the semantic matching be-
tween user queries and tool descriptions but
also takes into account the collaborative infor-
mation of tools. Extensive experiments on both
the open benchmark and the introduced TOOL-
LENS dataset show that COLT achieves supe-
rior performance. Notably, the performance of
BERT-mini (11M) with our COLT framework
outperforms BERT-large (340M), which has 30
times more parameters. Our codes and data
are publicly available at https://anonymous.
4open.science/r/COLT-4D13.

1 Introduction

The integration of tool learning into large language
models (LLMs) has emerged as a groundbreak-
ing advancement (Schick et al., 2023; Parisi et al.,
2022; Li et al., 2023; Ye et al., 2024), facilitating
access to real-time data and the execution of com-
plex computations. By integrating tool learning,
LLMs transcend the confines of their outdated or
limited pre-trained knowledge (Brown et al., 2020),
offering responses to user queries with markedly
enhanced accuracy and relevance (Huang et al.,
2023; Qin et al., 2023b). However, as real-world
systems usually have a vast number of tools, it
is infeasible to take the descriptions of all tools
as input for LLMs due to the length limitations
and latency constraints. Thus, as illustrated in Fig-
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(b) Ilustration of different response with different tools.

Figure 1: An illustration of tool retrieval for LLMs with
tool learning.

ure 1(a), developing an efficient tool retrieval sys-
tem becomes essential to fully exploit the potential
of tool-augmented LLMs (Gao et al., 2024).
Typically, existing tool retrieval approaches di-
rectly employ dense retrieval techniques (Qin et al.,
2023b; Yuan et al., 2024), solely focusing on match-
ing semantic similarities between queries and tool
descriptions. Yet, these approaches fall short when
addressing multifaceted queries that require a col-
laborative effort from multiple tools to formulate
a complete response. For instance, in Figure 1(b),
consider a user’s request to calculate the value of
5 ounces of gold plus 1 million AMZN stocks in
CNY. Such a query necessitates the simultaneous
use of tools for gold prices, stock values, and cur-
rency exchange rates. The absence of any of these
tools yields an incomplete answer, underscoring
the limitations of dense retrieval methods that over-
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look the necessity for tools to interact collabora-
tively. Therefore, ensuring the completeness of
the retrieved tools is an essential aspect of a tool
retrieval system, which is often neglected by tradi-
tional tool retrieval approaches.

Toward this end, this paper proposes COLT, a
novel COllaborative Learning-based Tool retrieval
approach, aiming at completeness-oriented tool re-
trieval. In order to capture the intricate collabora-
tive relationship among tools, a concept of scene
is proposed to indicate a group of collaborative
tools. Based on this, COLT integrates three bi-
partite graphs among queries, scenes, and tools.
More specifically, given the initial semantic em-
bedding from the pre-trained language model, the
high-order collaborative relationship is better inte-
grated via the message propagation and cross-view
graph contrastive learning among these graphs. To
facilitate the concurrent acquisition of a variety
of tools from the entire ground-truth set without
favoring any specific tool, the learning objective
incorporates a list-wise multi-label loss.

Moreover, traditional retrieval metrics like Re-
call and NDCG (Jarvelin and Kekéldinen, 2002)
fail to capture the completeness necessary for ef-
fective tool retrieval. As illustrated in Figure 1(b),
the exclusion of any essential tool from the ground-
truth tool set compromises the ability to fully ad-
dress user queries, indicating that metrics focused
solely on individual tool ranking performance do
not suffice when multiple tools are required. To
bridge this gap, we introduce COMP@ K, a new
metric designed to assess tool retrieval performance
based on completeness, which can serve as a reli-
able indicator of how well a tool retrieval system
for downstream tool learning applications. Addi-
tionally, we construct a new dataset called TOOL-
LENS, in which a query is typically paired with
multiple tools, reflecting the multifaceted nature of
user requests in real-world scenarios.

To summarize, our main contributions are:

* The collaborative relationships among multi-
ple tools in LLLMs have been thoroughly studied,
which reveals that incomplete tool retrieval hinders
accurate answers, underscoring the integral role
each tool plays in the collective functionality.

* We introduce COLT, a novel tool retrieval ap-
proach that uses message propagation and cross-
view graph contrastive learning among queries,
scenes, and tools, incorporating better collaborative
information among various tools.

* The extensive experimental results demonstrate
the superior performance of COLT against state-of-
the-art dense retrieval methods in both tool retrieval
and downstream tool learning. Additionally, we
release a new dataset and introduce a novel eval-
uation metric, both of which are tailor-made for
assessing multi-tool usage in LLMs.

2 Ouwur Approach: COLT

In this section, we first introduce the formulation
of tool retrieval. Then we describe the details of
the proposed COLT approach.

2.1 Task Formulation

Formally, given a user query ¢ € Q, the goal of
tool retrieval is to filter out the top-K most suit-
able tools {t(,+®?) .. ¢} from the full tool
set T = {(t1,d1), (t2,d2), ... (tn,dN)}, where
each element represents a specific tool ¢; associ-
ated with its description d; and N is the number of
tools in the tool set.

2.2 Overview of COLT

As illustrated in Figure 2, COLT employs a two-
stage learning strategy, encompassing semantic
learning followed by collaborative learning. In
the first phase, the semantic learning module pro-
cesses both queries and tools to derive their se-
mantic representations, which aims to align these
representations closely within the semantic space.
Subsequently, the collaborative learning module
enhances these preliminary representations by in-
troducing three bipartite graphs among queries,
scenes, and tools. Through dual-view graph con-
trastive learning within these three bipartite graphs,
COLT is able to capture the high-order collabo-
rative information between tools. Furthermore, a
list-wise multi-label loss is utilized in the learn-
ing objective to facilitate the balanced retrieval of
diverse tools from the complete ground-truth set,
avoiding undue emphasis on any specific tool.

In the following sections, we will present the
details of these two key learning stages in COLT.

2.3 Semantic Learning

In the first stage of COLT, we adopt the established
dense retrieval (DR) framework (Zhao et al., 2023;
Guo et al., 2022), leveraging pre-trained language
models (PLM) like BERT (Kenton and Toutanova,
2019) to encode both the query ¢ and tool ¢ into
low-dimensional vector. Specifically, we employ a
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Figure 2: The architecture of the proposed two-stage learning framework COLT for tool retrieval.

bi-encoder architecture, with the cosine similarity
between the encoded vectors serving as the prelim-
inary relevance score:

@\SL(CL t) = Sim(eQ7 et)7

where e, and e; denote the mean pooling vec-
tors from the final layer of the chosen PLM, and
sim(-, -) represents the cosine similarity function.

For training, we utilize the InfoNCE loss (Gut-
mann and Hyvérinen, 2010; Xiong et al., 2020), a
standard contrastive learning technique in training
DR models, which contrasts positive pairs against
negative ones. This semantic learning phase en-
sures good representations for each query and tool
from the text description view. Yet, relying solely
on semantic-based retrieval is insufficient for com-
plete tool retrieval, as it often falls short in address-
ing multifaceted queries effectively.

2.4 Collaborative Learning

Bipartite Graphs in Tool Retrieval. To capture
the collaborative information between tools and
achieve completeness-oriented tool retrieval, we
first formulate the relation between queries and
tools with three bipartite graphs. Specifically, we
conceptualize the ground-truth tool set for each
query as a ‘“scene”, considering that a collabora-
tive operation of multiple tools is essential to fully
address multifaceted queries. Given the query “I
want to travel to Paris.”, it doesn’t merely seek a sin-
gle piece of information but initiates a “scene” of
travel planning, requiring an array of tools for nav-
igation, weather forecasting, transportation, and
accommodation. This scenario underscores the
need for scene matching beyond traditional seman-
tic search or recommendation scenarios, where the
focus is on selecting any relevant documents or
items without considering their collaborative utility.

Accordingly, we construct three bipartite graphs
linking queries, scenes, and tools, i.e., Q-S (Query-
Scene) graph, Q-T (Query-Tool) graph, and S-T
(Scene-Tool) graph. By formulating these three
graphs, we can further capture the high-order rela-
tionships among tools with graph learning, facili-
tating a scene-based understanding that aligns to
achieve a completeness-oriented tool retrieval.

Dual-view Graph Collaborative Learning.
Leveraging the initial query and tool representa-
tions derived from the first-stage semantic learning,
along with the three constructed bipartite graphs,
we introduce a dual-view graph collaborative learn-
ing framework. This framework is designed to
capture the relationships between tools, as depicted
in Figure 2 (b). It assesses the relevance between
queries and tools from two views:

e Scene-centric View: Through the Q-S graph
and S-T graph, this view captures the relevance be-
tween queries and tools mediated by a scene. This
offers a nuanced view that considers the collabo-
rative context in which tools operate together to
fulfill a query’s requirements.

e Tool-centric View: Utilizing the Q-T graph,
this view establishes a direct relevance between
each query and its corresponding tools, providing
a straightforward measure of their relevance.

This dual-view framework allows for compre-
hensive accessing of query-tool relevance, integrat-
ing both direct relevance and the broader context of
tool collaboration within scenes, thereby enhancing
the completeness of the tool retrieval.

For the scene-centric view, we adopt the sim-
ple but effective Graph Neural Network (GNN)-
based LightGCN (He et al., 2020) model to delve
into the complex relationships between queries and
scenes. This is achieved through iterative aggre-
gation of neighboring information across I layers
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where N7, N @ represent the sets of neighbors of
query ¢ and scene s in Q-S graph, respectively.

5(0) comes from the representations learned in the

first semantic learning stage, while ef(o) is derived
from the mean pooling of the representations of

ground-truth tools associated with each scene:
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where NI represents the set of first-order neigh-
bors of scene s in S-T graph.

Then we sum the representations from the 0-th
layer to the /-th layer to get the final query repre-
sentations eqS and scene representation e? for the
scene-centric view:
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In parallel to the scene-centric view, the tool-
centric view utilizes LightGCN on the Q-T graph to
refine query and tool representations through itera-
tive aggregation. For each layer 7, the enhanced rep-
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where N, qT , /\/tQ represent neighbors of query ¢ and

tool ¢ in Q-T graph, respectively. eg“(o) and ef(o)

are obtained from the first-stage semantic learning.

Then we sum the representations from the 0-
th layer to the I-th layer to derive the final query
representations eqT and tool representation e} for
the tool-centric view:
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Furthermore, leveraging the learned tool repre-
sentations e/ and the S-T graph, the scene rep-
resentation e’ within the tool-centric view can be
obtained by pooling all related tool representations:
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In summary, our dual-view graph collaborative
learning framework yields two sets of embeddings:
e;? and ef from the scene-centric view, and eqT
and e!’ from the tool-centric view, for queries and
scenes respectively. Then, the final matching score
of each given query-tool pair (g, t) is implemented
according to the following formula:

ST)

J(g,t) = sim(e), ef ) +sim(e] , ef). (7)

q

Learning Objective. To effectively capture high-
order collaborative relationships between tools and
align the cooperative interactions across two views,
we utilize a cross-view contrastive loss. Specif-
ically, the representations of queries and scenes
can be learned by optimizing the cross-view In-
foNCE (Gutmann and Hyvérinen, 2010) loss:

1
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where 7 is the temperature parameter.

To ensure the complete retrieval of diverse tools
from the full set of ground-truth tools, without fa-
voring any particular tool, we design a list-wise
multi-label loss as the main learning objective
loss. Given a query ¢, the labeled training data is
Ly =A{Tq = {ti,di},y = {y(q, ts)}[1 <@ < L},
where 7, denotes a tool list with length L, com-
prising IV, ground-truth tools and L — N, negative
tools that are randomly sampled from the entire
tool set. y(q, t;) is the binary relevance label, tak-
ing a value of either O or 1, and the ideal scoring
function should meet the following criteria:

s1m(e €y /T

7 ®

emm(e

r_ (g, t)
Yver, 1y(a, 1))

(10)

where pfl is the probability of selecting tool ¢.
v(y(g:t)) = 1if y(g,t) = 1and y(y(g,t)) = O if
y(g;t) = 0.
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Figure 3: An overview of the dataset construction pipeline of TOOLLENS.

Similarly, given the predicted scores As shown in Figure 3, the creation of TOOL-

{Z/J(q7t1)7 . 7@\((],75L)}, the
selecting tool ¢ can be derived:

probability of
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Therefore, the list-wise multi-label loss function
is then formulated to minimize the discrepancy
between these two probability distributions:
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Based on the multi-label loss Lj; and the con-

trastive loss Eg, the final loss £ for our proposed
COLT is formally defined as:

L= Liig + ML+ £F), (13)

where ) is the co-efficient to balance the two losses.

3 Datasets

To verify the effectiveness of COLT, we utilize two
datasets for multi-tool scenarios: ToolBench and a
newly constructed dataset, TOOLLENS.

ToolBench. ToolBench (Qin et al., 2023b) is a
benchmark commonly used to evaluate the capa-
bility of LLMs in tool usage. For our experiments,
we have chosen its I3 subset. After preprocessing,
it comprises 23,734 queries and 1,419 tools, with
each query linked to 2-4 ground-truth tools.

TOOLLENS. While existing datasets like Tool-
Bench (Qin et al., 2023b) and TOOLE (Huang
et al., 2023) provide multi-tool scenarios, they
present limitations. TOOLE encompasses merely
497 queries, and ToolBench’s dataset construction,
which involves providing complete tool descrip-
tions to ChatGPT, results in verbose and seman-
tically direct queries. These do not accurately re-
flect the brief and often multifaceted nature of real-
world user queries. To address these shortcomings,
we introduce TOOLLENS, crafted specifically for
multi-tool scenarios.

LENS involves a novel five-step methodology: 1)
Tool Selection: Starting with the diverse tool set
from ToolBench, we filter out tools not applica-
ble to everyday user queries, such as those for au-
thentication or testing, retaining 464 high-quality,
callable tools. 2) Scene Mining: Utilizing GPT-4,
we generate scenes relevant to the detailed descrip-
tions of the selected tools. 3) Query Generation:
We then employ GPT-4 to craft queries based on
the provided scene and the parameters required for
tool calling. 4) Tool Aggregation: To enhance the
relevance of queries across multiple tools, we repro-
cess them through GPT-4 to identify categories of
potentially applicable tools, which are then aligned
with our tool set through dense retrieval and manual
verification. 5) Query Rewriting: Finally, GPT-4
reformulate the queries to include essential parame-
ters, yielding concise yet intentionally multifaceted
queries that better mimic real-world user behaviors.
This comprehensive construction pipeline en-
sures TOOLLENS accurately simulates the dynam-
ics of real-world tool retrieval scenarios. For a
detailed description of the dataset construction
process, please refer to Appendix A.1. Through
the outlined method, we construct the TOOLLENS
dataset, featuring 18,770 queries and 464 tools,
with each query linked to 1-3 ground-truth tools.

Discusion. Different from prior datasets for tool
learning, TOOLLENS uniquely focuses on creating
queries that are natural, concise, and intentionally
multifaceted to more accurately reflect the complex
demands in real-world scenarios. Furthermore, we
evaluate the quality of TOOLLENS, finding that it is
generally better than both ToolBench and TOOLE,
particularly in creating natural and multifaceted
queries, as detailed in Appendix A.2.

4 Experiments

In this section, we first describe the experimental
setups and then conduct an extensive evaluation
and analysis of the proposed COLT.



TOOLLENS ToolBench

Methods

R@3 R@5 N@3 N@5 C@3 C@5 R@3 R@5 N@3 N@5 C@e3 C@5
BM25 21.58 2688 23.19 2609 3.89 613 2933 3588 3220 3508 552 978
ANCE 80.62 94.17 8235 90.15 5423 8583 65.11 76.63 6927 74.14 3468 53.64
+COLT (Ours) 9215 97.78" 92,78 96.10 80.50 94.40 7337 83.97 7795 8214 46.01 66.41
TAS-B 81.26 9406 8254 8994 5466 8572 66.04 77.64 7041 7534 3569 5575
+COLT (Ours) 9149 9691 9248 9563 79.00 9222 7449 84.58 79.03 8295 48.16 68.35
coCondensor  82.37 94.69 8390 91.06 5637 8673 6697 7930 7120 7650 37.08 58.66
+COLT (Ours) 92.65 97.78" 93.16 96.17 8225 94561 7548 84.97 80.00 83.55 49.17 68.64'
Contriever 83.58 95.17 8498 91.69 59.46 88.65 68.58 80.05 7286 77.69 3970 60.89
+COLT (Ours) 93.647 97.75 94.537 96917 84.557 94.08 76.637 85507 81.217 84.18" 52.007 68.47

Table 1: Performance comparison of different tool retrieval methods on TOOLLENS and ToolBench datasets. “f”
denotes the best results for each column. “+COLT (Ours)” indicates that dense retrieval backbones are equipped with
our proposed method. R@ K, N@ K, and C@ K are short for Recall@ K, NDCG@ K and COMP@ K, respectively.

4.1 Experimental Setups

Evaluation Metrics. As discussed in Figure 1(b),
traditional retrieval metrics like Recall and NDCG
do not adequately fulfill the requirements of re-
trieval completeness that are crucial for effective
tool retrieval. To further tailor our assessment to
the specific challenges of tool retrieval tasks, we
also introduce a new metric, COMP@ K. This met-
ric is designed to measure whether the top-K re-
trieved tools form a complete set with respect to
the ground-truth set:

where ®, denotes the set of ground-truth tools for
query g, \Ifé( represents the top-K tools retrieved
for query ¢, and I(-) is an indicator function that
returns 1 if the retrieval results include all ground-
truth tools within the top- K results for query ¢, and
0 otherwise.

Baselines. COLT is benchmarked against several
established methods, including the lexical retrieval
model BM25 (Robertson et al., 2009) and four
state-of-the-art PLM-based dense retrieval mod-
els: ANCE (Xiong et al., 2020), TAS-B (Hofstitter
et al., 2021), coCondensor (Gao and Callan, 2021),
and Contriever (Izacard et al., 2021). For more
details, please refer to Appendix D.1.

4.2 Experimental Results

Retrieval Performance. Table 1 presents the over-
all results of different tool retrieval methods on
TOOLLENS and ToolBench. From the results, we
have the following observations and conclusions:

Evaluation Aspects

Coherence  Relevance Comprehensiveness Overall

BM25 848 845 860 780
ANCE 934 936 946 1016
TAS-B 995 991 988 1028
coCondensor 1031 1036 1041 1035
Contriever 1076 [ 1082 8 1044 1046

COLT (Ours) 1116 [ 1110 (0 1121 0 1096 [0

Table 2: Elo ratings for different models w.r.t. “Coher-
ence”’, “Relevance”, “Comprehensiveness” and “Over-
all” evaluated by GPT-4.

The BM25 model significantly lags behind PLM-
based dense retrieval methods, highlighting the su-
perior performance of the latter in leveraging con-
textual information for tool retrieval. Despite this
advantage, PLM-based methods fall short in the
COMP metric, designed specifically for evaluating
completeness in tool retrieval scenarios. This sug-
gests that while effective for general retrieval tasks,
PLM-based methods may not fully meet the unique
demands of tool retrieval.

All base models equipped with COLT exhibit
significant performance gains across all metrics on
both datasets, particularly in the COMP @3 metric.
These improvements demonstrate the effectiveness
of COLT, which can be attributed to that COLT
adopts a two-stage learning framework with se-
mantic learning followed by collaborative learning.
In this way, COLT can capture the intricate col-
laborative relationships between tools, resulting in
effectively retrieving a complete tool set.

Downstream Tool Learning Performance. To
verify that improvements of COLT in tool retrieval
genuinely enhance the downstream real-world tool
learning applications, we further conduct a valida-
tion study using GPT-4. Specifically, we randomly
select 100 queries from the TOOLLENS test set



TOOLLENS ToolBench
Methods
R@INI C@INI R@INI C@INI
Contriever+COLT (Ours) 92.76 82.95 75.40 49.81
w/o semantic learning 65.21 30.90 53.33 19.63
w/o collaborative learning ~ 80.60 54.44 68.20 36.91
w/o contrastive learning 84.58 60.52 69.46 39.02

Table 3: Ablation study of the proposed COLT.

and use various retrieval models to return the top-
3 tools for each query. We then utilize GPT-4 as
an evaluator, examining the responses generated
with different retrieved tools across four dimen-
sions: Coherence, Relevance, Comprehensiveness,
and Overall. Finally, we employ a pairwise evalua-
tion method and use Elo ratings to demonstrate the
performance, with details provided in Appendix C.

The results in Table 2 show that superior tool
retrieval models can significantly improve down-
stream tool learning performance. Moreover, re-
sponses generated with the retrieved tools from
COLT notably outperform those from other meth-
ods, achieving the highest Elo ratings in all four
assessed dimensions. These results highlight the
pivotal role of effective tool retrieval in enhancing
the performance of downstream applications and
further confirm the superiority of COLT.

4.3 Further Analysis

Next, we delve into investigating the effectiveness
of COLT with Contriever as the base model since
it achieves the best performance when equipped
with COLT in Table 1. The results with other dense
retrieval models as backbones demonstrate simi-
lar trends and are provided in Appendix D.2. Re-
call@INI and COMP@INI are adopted as evaluation
metrics, with INI representing the count of ground-
truth tools suitable to each query.

Ablation Study. We conduct ablation studies to
assess the impact of various components within our
COLT. The results presented in Table 3, highlight
the significance of each element:

w/o semantic learning denotes an off-the-shelf
PLM is directly employed to get the initial rep-
resentation for the following collaborative learn-
ing stage without semantic learning on the given
dataset in § 2.3. The absence of semantic learning
significantly diminishes the performance, confirm-
ing its essential role in aligning the representations
of tools and queries as the basic of the following
collaborative learning.

w/o collaborative learning is a variant that the
collaborative learning state is omitted (i.e., only

ver
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Figure 4: Performance comparison regarding different
sizes of ground-truth tool sets.

semantic learning). The significant decline in per-
formance in this variant further supports the ef-
fectiveness of COLT in capturing the high-order
relationships between tools through graph collabo-
rative learning, thereby achieving a comprehensive
tool retrieval.

w/o contrastive learning refers to a variant that
optimizes without the contrastive learning loss de-
fined in Eq. (8) and (9); This omission also leads
to a noticeable performance drop, emphasizing
the benefit of introducing contrastive learning to
achieve better representation for queries and tools
from a dual-view learning framework.

Performance w.r.t. Different Tool Sizes. The
TOOLLENS dataset encompasses queries that re-
quire 1-3 tools, while ToolBench includes queries
needing 2-4 tools. To assess how well COLT
adapts to queries with diverse tool requirements,
we divide each dataset into three subsets accord-
ing to the number of tools required by each query
and conduct a focused analysis on these subsets.
As shown in Figure 4, there is a discernible de-
cline in performance as the number of ground-truth
tools increases, reflecting the escalating difficulty
of achieving complete retrieval. However, COLT
demonstrates consistent performance improvement
across all subsets. This improvement is especially
significant in the most challenging cases, where
queries require up to three or four tools. These re-
sults consistently highlight the robustness of COLT
and its potential to meet the complex demands of
tool retrieval tasks across various scenarios.

Performance w.r.t. Model Size of PLM. To verify
the adaptability and effectiveness of COLT across
varying sizes of PLMs, we explore its integration
with a range of BERT models, from BERT-mini
to BERT-large. This analysis aims to determine
whether COLT could generally enhance tool re-
trieval performance across different model sizes.
Figure 6 presents the results, illustrating a clear
trend: while the performance of the base model nat-
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Figure 5: Sensitivity analysis of COLT performance to hyper-parameters. (a) shows the dependency of model
performance on temperaturer. (b) illustrates the influence of loss weight A. (c) examines the effect of list length L.
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Figure 6: Comparison of different model sizes of PLM.

urally improves with larger PLM sizes, the equip-
ping of COLT consistently boosts performance
across all sizes. Remarkably, even BERT-mini
equipped with COLT, significantly outperforms a
much larger BERT-large model (30x larger) oper-
ating without our COLT. These results underscore
the generalization and robustness of COLT, proving
its potential to significantly improve tool retrieval
performance for PLMs of any scale.

Hyper-parameter Analysis. Figure 5 illustrates
the sensitivity of COLT to the temperature parame-
ter 7 and the loss weight A, but shows relative in-
sensitivity to variations in the sampled list length L.
The influence of 7 varies across two datasets, sug-
gesting that its impact is dependent on the specific
data distribution. Conversely, the pattern observed
for A across both datasets is consistent, marked by
an initial performance improvement that eventually
plateaus, underscoring the importance of carefully
selecting A to maximize the effectiveness of COLT.

5 Related Work

Tool Learning. Recent studies highlight the poten-
tial of LLMs to utilize tools in addressing complex
problems (Qin et al., 2023a; Mialon et al., 2023).
Existing tool learning approaches can be catego-
rized into two types: tuning-free and tuning-based
methods (Gao et al., 2024). Tuning-free methods
rely on black-box LLMs such as ChatGPT, em-
ploying in-context learning through demonstration

examples for tool invocation (Shi et al., 2023). Con-
versely, tuning-based methods fine-tune LLMs on
specific datasets to master tool usage and amal-
gamate diverse reasoning strategies such as Re-
Act (Yao et al., 2022), DFSDT (Qin et al., 2023b),
and self-consistency (Wang et al., 2022) to enhance
the inferential abilities of LLMs.

Tool Retrieval. Tool retrieval aims at finding top-
K most suitable tools for a given query from a
vast tool set. State-of-the-art retrieval methods
can be categorized into two types: term-based and
semantic-based. Term-based methods, such as TF-
IDF (Sparck Jones, 1972) and BM25 (Robertson
et al., 2009), prioritize term matching via sparse
representations. Conversely, semantic-based meth-
ods utilize neural networks to learn the seman-
tic relationship between queries and tool descrip-
tions (Xiong et al., 2020; Hofstitter et al., 2021),
and then calculate the semantic similarity using
methods such as cosine similarity. Despite the ad-
vancements, existing tool retrieval methods over-
look the importance of the collaborative potential
among multiple tools, thereby falling short of meet-
ing the completeness criterion for tool retrieval.
Our work tries to deal with these issues through the
incorporation of graph collaborative learning.

6 Conclusion

This study introduces COLT, a novel two-stage ap-
proach designed to enhance the completeness of
tool retrieval tasks. By incorporating graph collab-
orative learning and cross-view contrastive learn-
ing, COLT captures the collaborative relationships
among tools. Extensive experimental results and
analysis demonstrate the effectiveness of COLT,
especially in handling multifaceted queries with
multiple tool requirements. Furthermore, we re-
lease a new dataset TOOLLENS and introduce a
novel evaluation metric COMP, both of which are
valuable resources for tool retrieval.



Limitations

In our study, we showcase the efficacy of our in-
novative tool retrieval method, COLT. However,
COLT is developed without the incorporation of
LLMs, which possess a greater number of param-
eters and wield stronger capabilities. Considering
that tool retrieval ultimately serves LLMs, integrat-
ing them into the retrieval process could potentially
enhance the performance of tool retrieval. More-
over, certain tool combinations involve sequential
calls, where the output of one tool might serve as
input for another. Unfortunately, COLT does not
account for such interactions. Future work could
explore ways to incorporate LLMs and dependen-
cies among tools into the method, thereby improv-
ing the performance of tool retrieval.

Ethics Statement

In this work, we present a new dataset towards tool
retrieval, TOOLLENS, which is created through
the utilization of GPT-4 and subsequent human
manual quality checks. We believe that our dataset
will help advance the field of tool retrieval and
tool learning by providing high-quality tool set and
quries for researchers.

The tools in our TOOLLENS are sourced from
publicly available sources, and queries are gener-
ated through GPT-4. So it does not encompass
issues related to user privacy. Moreover, the use of
human manual quality check ensures a higher level
of quality in TOOLLENS, but it also raises ethical
considerations. Given that the evaluation of qual-
ity for queries relies on common sense, which can
differ significantly among individuals from various
backgrounds. We acknowledge the potential for
human annotation to harbor errors or biases.
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Appendix
A ToOLLENS DATASET DETAILS

In this section, we introduce the TOOLLENS
dataset details, featuring 18,770 user queries and
464 tools.

A.1 Details Of Dataset Construction

We propose a novel five-step methodology to con-
struct our dataset:

* Tool Selection: In order to construct a high-
quality tool dataset, we initially conduct rigorous
filtering of the original tool collection from Tool-
Bench, focusing on tools that are both existent and
directly callable. To better tailor our dataset to the
practical query requirements of real-world users,
we exclude tools requiring authentication, testing,
and ID mapping, which are not applicable to every-
day user queries;

* Scene Mining: As shown in Table 8 (I), we de-
sign an instruction and require GPT-4 to generate
potential scenes relevant to the detailed descrip-
tions of the selected tools;

* Query Generation: As shown in Table 8 (II),
we then design an another instruction to employ
GPT-4 to craft user queries based on the provided
scene and only the parameters of the tool (not the
whole tool description);

* Tool Aggregation: The queries generated in
aforementioned way are only relevant to a single
tool. To enhance the relevance of the query across
multiple tools, as shown in Table 8 (III), we utilize
GPT-4 to generate the categories of tools poten-
tially capable of resolving the query. To align the
generated categories of tools with our existing tool
set, the query’s originating tool is first matched to
one of these categories. we then utilize dense re-
trieval to retrieve the most relevant tools within our
tool set corresponding to the remaining categories,
which are then designated as the ground-truth tool
for the query.

* Query Rewriting: As shown in Table 8 (IV),
to ensure the query comprehensively includes all
necessary parameters for invoking tools, we uti-
lizing GPT-4 to revise the query to encompass all
the essential parameters by providing it with both
the initial query and a list of necessary parameters,
thereby producing the final query.

A.2 Quality Verification

To assess the quality of TOOLLENS, following pre-
vious works (Gao et al., 2024; Liu et al., 2023b;
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Evaluator TOOLLENS vs. ToolBench TOOLLENS vs. TOOLE
Whether the query is natural?

o él;lf A; ~ ToOLLENS ToolBench Equal TOOLLENS TOOLE Equal
68% 14% 18% 44% 36% 20%

) ’I;u’m’a; "~ ToOLLENS ToolBench Equal TOOLLENS TOOLE Equal
64% 10% 26% 54% 24% 22%

‘Whether the user intent is multifaceted?

o (;1;5 é; "~ ToOLLENS ToolBench Equal TOOLLENS TOOLE Equal
62% 14% 24% 50% 24% 26%

) ’}’Iu’n;a; "~ ToOLLENS ToolBench Equal TOOLLENS TOOLE Equal
60% 12% 28% 58% 18% 24%

Table 4: Quality verification of TOOLLENS.

Scene TOOLLENS ToolBench

I’'m organizing a dinner party for my
friends and I need some recipe sugges-
tions. Please provide me with a variety
of chicken recipes and their nutritional
information. Also, I would appreci-
ate some cocktail recommendations to
complement the meal.

I’'m planning a meal
using the ingredient
beef.

Cooking

I’m planning a family vacation to Lon-
don in August. Can you help me find
the best hotels in London for a fam-
ily of four? Also, provide me with
the distance between Birmingham, Al-
abama, and Sacramento, California.
Lastly, recommend some fun activities
for kids in London.

I want to travel to

Travel
rave Paris.

I’m a teacher and I want to plan an en-
gaging lesson on current events for my
students. Can you provide me with spe-
cific articles related to bitcoin from dif-
ferent news sources? Additionally, I'd
like to gather information about crypto
news and the latest trends in the mar-
ket. Finally, could you recommend
any climate change news from reliable
sources to discuss the impact on the
economy?

I am currently
tracking my
cryptocurrency
investments.

Investment

Table 5: The comparison of some typical queries in the
TOOLLENS and ToolBench datasets.

Sottana et al., 2023), we employ GPT-4 as evaluator
and human evaluation where three well-educated
doctor students are invited to evaluate 50 randomly
sampled cases from TOOLLENS, ToolBench and
TOOLE in the following two aspects:(1) Natural-
query: whether the query is natural. (2) Multi-
faceted intentions: whether the user intent is multi-
faceted. The results are illustrated in Table 4. In
most cases, TOOLLENS outperforms ToolBench
and TOOLE. Furthermore, using GPT-4 as the eval-
uator shows a high degree of consistency with hu-
man evaluation trends, which underscores the va-
lidity of employing GPT-4 as an evaluator.

A.3 Case Study

Table 5 displays the comparison of three typical in-
stances of the user queries in TOOLLENS and Tool-
Bench datasets. The queries within TOOLLENS,
crafted through our innovative five-step method-
ology, exhibit notable distinctions from those in
the ToolBench dataset, underscoring the superior-



Algorithm 1 The Learning Algorithm of COLT

Input: PLM, semantic learning training epoch E,Query-
scene bipartite graph, query-tool bipartite graph, scene-
tool bipartite graph, learning rate lr, weight decay, layer
number I, contrastive loss weight )\, temperature coefi-
cient 7, list length L;

Parameter: Learnable parameters 0;

Output: COLT Model;

Semantic Learning:

1: fore =1to E do

2 Calculate the MultipleNegativesRankingl.oss;

3:  Update parameter of PLM using AdaW;

4: end for

Collaborative Learning:

Calculate inital eg(o), el e and etT( using the

embeddings obtained from the first-stage semantic learn-

ing and Eq. (2);

(0 0
s. T(0) )

6: while COLT Not Convergence do

7:  fori=1todo

8: Conduct message propagation using Eq. (1) and

Eq. (4);

9:  end for

10: Calculate final eqs, e’, eg, el and ef using Eq. (3),
Eq. (5) and Eq. (6);

11:  Calculate two-view contrastive loss ﬁg and £§ using
Eq. (8) and Eq. (9);

12:  Calculate multi-label loss Liis; using Eq. (12);

13:  Calculate total loss £ using Eq. (13);

14: Update model parameter using Adam;

15: end while
16: return 6

ity of our dataset. As can be observed, the queries
within TOOLLENS are concise, appear more nat-
ural and more multifaceted. For example, in the
travel scene, the query from TOOLLENS may sim-
ply express a desire to visit Paris, making them
more natural and more multifaceted. Conversely,
the ToolBench dataset contains queries that explic-
itly seek information about hotels, distance and
tourist attractions.

B Algorithm

The learning algorithm of COLT is shown in Algo-
rithm 1.

C Evaluation Details

C.1 Pairwise Comparison

Pairwise ranking is a powerful method used to im-
prove search results and the performance of rec-
ommendations (Dai et al., 2023; Sun et al., 2023;
Liang et al., 2023). In these systems, pairwise rank-
ing involves comparing pairs of items, such as web
pages, products, or documents, to identify which
one is more relevant or preferable in response to a
user query or profile.

To assess response quality, we employ a pair-
wise comparison approach. In this method, the
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user query and a pair of responses are utilized as
prompts to guide GPT-4 in determining the su-
perior response. Additionally, we also consider
that LL.Ms may respond differently to the order in
which text is presented in the prompt (Lu et al.,
2022; Tang et al., 2023; Hou et al., 2024; Liu et al.,
2023a). To mitigate potential biases associated
with this, we execute each comparison twice, re-
versing the response order for the second evaluation
which ensures a more reliable assessment.

C.2 Elo Ratings

Utilizing GPT-4 for pairwise comparisons, we es-
tablish a tournament-style competition where mod-
els compete against each other on Elo ratings sys-
tem that are widely employed in chess and other
two-player games to measure the relative skill lev-
els of the players (Dettmers et al., 2023; Wu and
Aji, 2023). Each player is assigned an Elo score.
Given two players a and b with their Elo ratings
R, and Ry, the expected score E, and F, for these
two players are:

1
 Ra—Ry "
1410 20

1
Ea_ b —

1+10

[
400

For instance, a player with an Elo of 1100 com-
peting against a player with an Elo of 1000 has an
expected win rate of approximately 65%, When
both players have the same Elo score, their ex-
pected win rate against each other is 50%. The
outcome of matches between players leads to ad-
justments in their Elo scores, the updated Elo rat-
ings R; and R;) are:

R, = Ry+ K(Sa—E,), Ry = Ry+ K (S, — Ey),

where S, and Sj, are the actual score of players
a and b, K is the K-factor that determines the
maximum amount of points a player’s rating can
change from a single game outcome.

Following previous works (Chiang et al., 2023),
we start with a score of 1000 and set K = 32.
Additionally, in order to reduce the influence of
match sequences on Elo score computations, we
repeatedly conduct these calculations 10000 times
using different random seeds, ensuring the control
of ordering effects.

C.3 Case Study

Table 9 displays the comparison of responses gen-
erated by GPT-4 that integrates information from



Dataset #Query # Query In Training # Query In Testing

18,770 16,893 1,877
23,734 21,361 2,373

TOOLLENS
ToolBench

Table 6: Statistics of the experimental datasets.

multiple tools retrieved through different tool re-
trievers in response to user queries. As can be
observed, due to the more comprehensive and com-
plete tools retrieved by COLT, the responses gener-
ated by GPT-4 based on the tools offered by COLT
are more comprehensive and effective.

D More Experiments

D.1 More Details Of Experimental Setups

Datasets. We randomly selected 10% of the entire
dataset to serve as the test data. The statistics of
both datasets after preprocessing are summarized
in Table 6.

Baselines. BM25 (Robertson et al., 2009) is a
classical lexical retrieval model that employs an
inverted index for identifying suitable tools based
on the exact term matching. ANCE (Xiong et al.,
2020) is a dense retrieval model that employs a
dual-encoder architecture to globally select hard
negatives across the entire corpus via an asyn-
chronously updated ANN index for training. TAS-
B (Hofstitter et al., 2021) is a bi-encoder trained
with a balanced margin sampling technique that
samples queries out of a cluster per batch, en-
suring efficiency in the sampling process. co-
Condenser (Gao and Callan, 2021) incorporates
a query-agnostic contrastive loss based on the re-
trieval corpus that clusters text segments from the
same document while distinguishing unrelated seg-
ments for enhanced retrieval performance. Con-
triever (Izacard et al., 2021) employs inverse cloze
task and cropping for generating positive pairs and
momentum contrastive learning for training dense
retrievers, achieving state-of-the-art zero-shot re-
trieval performance.

Implementation Details. We utilize the
BEIR (Thakur et al., 2021) framework to im-
plement the dense retrieval baselines, set the
training epochs to 5 with the learning rate of 2e-5,
weight decay of 0.01, and using the AdamW
optimizer. As our approach is model-agnostic,
we directly apply dense retrieval for the semantic
learning stage, and in the collaborative learn-
ing stage, we set the batch size as 2048 and

14

= 100.0 ZZEZ:::EZ: +COLT(Ours) s 60.0 ) \ ZZEZ:::zZ:r+coLT(0urs)
Z 800 N N Za | i
g \ \\ \ S 400 § \
S 600 N \ = \ \ A
g N o N 5 200 \ N N
« XN XN =N e B
1 2 3 2 3 4
NI N
s 100.0 N iﬁ:i COLT(Ours) s 60.0 \ ::;}:::E+(;0L1(0urs)
g 80.0 B N 540.0 N
g 60.0 \ N | S \ s
é A § § 5 200 N \ N
8 B | °N <N
1 3 3 2 3 4
NI N
3 1000 - :Ef; +COLT(Ours) [ 60.0 ‘\ ::E;wnmnm)
Z 800 y N Z 400
® N \ N [She \ N
% 0o \ § i % 200 \ \
o | \| \ o N N
40.0 \\| \\ \ \\ \\ \\
1 2 3 2 3 4
NI N

(a) TOOLLENS (b) ToolBench

Figure 7: Performance comparison at different sizes
of ground-truth tool sets of COLT using coCodensor,
TAS-B, ANCE as the backbone.

carefully tune the hyper-parameters learning
rate, weight decay, layer number I, contrastive
loss weight A, temperature coeficient 7, list
length L among {le-3,5e-3,1le—4, 5e-4, le-5},
{le-5,1e-6,1e-7}, {1,2,3}, {0.02,0.04,0.1},
{0.05,0.1,0.15,0.2,0.25}, {5,10, 15,20, 25}.
All the experiments are conducted on NVIDIA
RTX A6000 48G GPUs using Ubuntu 18.04.1
SMP.

D.2 More Results and Analysis

We also conduct analysis experiments using other
PLLM-based dense retrieval models as the backbone.

Performance w.r.t. Different Tool Sizes. As
shown in Figure 7, using coCondensor, TAS-B,
ANCE as the backbone exhibit similar trends to
Contriever. our method demonstrates consistent ef-
ficacy across all subsets and backbones, achieving
significant improvements in retrieval completeness
under various testing conditions.

Hyper-parameter Analysis. As shown in Figure 8,
using coCondensor, TAS-B, ANCE as the back-
bone reveals similar trends to those oberved with
the Contriever backbone; Specifically, there is a
noticeable sensitivity to temperature 7 and lambda
A, while the response to list length L is insensitive.

Ablation Study. As shown in Table 7, we conduct
ablation experiments to assess the effectiveness of
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Figure 8: Sensitivity analysis of COLT performance to hyper-parameters. (a) shows using coCondensor as the
backbone. (b) shows using TAS-B as the backbone. (c) shows using ANCE as the backbone.

TOOLLENS ToolBench

Methods
R@INI C@INI R@INI C@INI
coCondensor+COLT (Ours) 9149 79.86 74.00 47.49
w/o semantic learning 30.38 5.54  25.07 2.27
w/o contrastive learning 86.78 67.07 6892  37.80
w/o collaborative learning 78.83  50.61 6438 33.08
TAS-B+COLT (Ours) 9029 7773 7284 4546
w/o semantic learning 38.49 9.16  32.16 5.47
w/o contrastive learning 84.86 62.65 67.66 36.36
w/o collaborative learning 76.86 47.83 63.61 31.73
ANCE+COLT (Ours) 91.08 7836 7222 4428
w/o semantic learning 36.49 6.84  21.92 1.60
w/o contrastive learning 85.63 6387 6657 34.55
w/o collaborative learning 7736  49.01 6239 30.12

Table 7: Ablation study of the proposed COLT using
coCodensor, TAS-B, ANCE as the backbone.

various design component within COLT using co-
Condensor, TAS-B, ANCE as the backbone. The
results reveal that each component enhances the
retrieval performance of COLT, mirroring trends
observed when using Contriever as the backbone.
Notably, the omission of semantic learning ele-
ments markedly reduces performance across co-
Condensor, TAS-B, and ANCE more so than with
Contriever. This highlights Contriever’s superior
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ability in zero-shot learning scenarios compared
to the other models, underscoring the importance
of semantic learning in initial retrieval stages. Ad-
ditionally, our analysis indicates that contrastive
learning is particularly vital for Contriever, as its
absence results in performance lagging behind the
other models. This underscores the pivotal role of
contrastive learning in refining retrieval efficiency.

E Complete Response

The complete responses illustrated in Figure 1(b)
are detailed in Table 10. We can find that the ab-
sence of any essential tool from the ground-truth
tool set compromises the ability to fully address
user queries. Moreover, the transition from having
two missing tools to two incorrect ones results in
a marked decline in the quality of responses gen-
erated by GPT-4. This observation demonstrates
that providing redundant tools does not necessarily
facilitate problem-solving.. Such shortcomings im-
pede successful query resolution, emphasizing the
necessity of both a complete and accurate tools for
achieving optimal performance.



I: Scene Mining

/* I: Task prompt */

Your task is to generate potential scenes where a specific tool function might be used. Below is the description of the tool
function. Please provide a scene where this tool function could be utilized. Just give the scene, no explanation needed. Here
is an example:

/* Example */

The given tool description is:

{category_name:Food, tool_name:Worldwide Recipes, api_name: Suggestions, api_description: Get Suggestions,
required_parameters:[ {"name": "q", "type": "STRING", "description": "", "default": "chicken" }], optional_parameters: [],
method: GET, template_response: {"success": "bool", "message": "str", "results": {"ingredients": ["list of str with length
413"], "searches": ["list of str with length 10"]}}}

Your response would be: cooking.

I* Generation of Scene */

The API description is: ...

Your response is:

II: Query Generation (Single-Tool)

/* Task prompt */

Your task is to create a potentially multifaceted user instruction based on a given scene. The instruction should be presented
as a declarative sentence. It should include both required and optional parameters, for which you need to generate random
information. For required parameters like IP address, location, coordinates, etc., provide specific details. For example,
instead of simply stating “an address”, provide the exact road and district names. Here is an example:

/* Example */

The given scene is Going out fishing

The given required and optional parameters are as follows:

required_parameters: [{“name”: “longitude”,“type”: “STRING”,“description”: “”,“default”: “-79.99”},{“name”: “date”,
“type”: “STRING”,“description™: “”,“default”: “2022-01-01"},{*“name”:“latitude”, “type”: “STRING”,“description”: “”,
“default”: “39.53”}], “optional_parameters”: []

Your response would be: I'm planning a fishing trip at the coordinates 51.5074 N, -0.1278 W for the date 2020-06-15.

/* Generation of Query */

The scenario for this task is: ...

The required and optional parameters are as follows: ...

Your response is:

III: Tool Aggregation (Category Generation)

/* Task prompt */

You will be provided with a user query, and your task is to provide three types of API functions that can better answer this
query.

/* Generation of Categories */

The user query is: ...

Your response is:

IV: Query Rewritting (Multi-Tool)

/* Task prompt */

Your task is to rewrite the user query based on the given user query and the required parameters. The original user query may
not include all the required parameters, and you need to change it to a user query that includes all the required parameters, for
which you need to generate random information. For required parameters like IP address, location, coordinates, etc., provide
specific details. For example, instead of simply stating ‘an address’, provide the exact road and district names. Try to rewrite
the user query as if it were a human inquiry, without dividing it into three separate parts.

/* Generation of Query */

The user query is: ...

The required parameters are as follows: ...

Your response is:

Table 8: The prompt for GPT-4 for scene generation, query generation (single-tool) and query rewrite (multi-tool).
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Query
Input query: I’'m planning a picnic outing in Helsinki.

BM25:

That sounds wonderful! Helsinki has a number of beautiful parks that would be perfect for a picnic. Just to name a few, there
are the Esplanade Park, Kaisaniemi Park, and Kaivopuisto Park. These parks have areas with picnic tables and open fields
where you could spread out a blanket. Enjoy your picnic!

ANCE:

Planning a picnic in Helsinki can be a wonderful experience, as the city offers many beautiful parks and natural settings.
Here are some steps and tips to help you plan your outing:1. Choose a Date and Check the Weather: Helsinki’s weather can
be quite variable, so check the forecast to choose a date with pleasant weather. During summer, the days are warm and long,
making it an ideal time for picnics. 2. Select a Location: Some popular picnic spots in Helsinki include: Suomenlinna: A sea
fortress and UNESCO World Heritage site offering green areas with sea views. Kaivopuisto: A park with wide green spaces,
views of the sea, and nice spots for picnics. Enjoy your picnic in Helsinki, and remember to soak in the beauty of the Finnish
capital!

TAS-B:

That sounds like a great plan! Here are some wonderful picnic spots in Helsinki: 1. Kaivopuisto Park: This park is one of the
oldest and best known in Helsinki, providing stunning views over the sea. 2. Esplanade Park: Located in the city center with
lots of cafes and shops nearby. Concerts and events often take place here during summer. 3. Suomenlinna: A picnic on the
fortress island of Suomenlinna is a unique experience. After a picnic, you can tour the historic fortifications and visit the
museums on the island. 4. Seurasaari Island: A great place for an outdoor picnic. You can also tour the open-air museum and
feed the squirrels on this island. 5. Hietaniemi Beach: If you want a picnic by the beach, this is a great spot. It’s a great place
for swimming, too. Enjoy your picnic!

coCondensor:

When planning a picnic outing in Helsinki, consider the following tips: 1. Check the Weather: Helsinki has a northern
continental or subarctic climate, so always check the weather forecast ahead of time. Summers can be pleasant for picnics,
usually from late May through August, with temperatures ranging from 15°C to 25°C (59°F to 77°F). Remember that weather
can be unpredictable, so it’s good to have a backup plan in case of rain. 2. Select a Location: Some popular parks and
coastal areas in Helsinki perfect for picnics are: Kaivopuisto: Located by the sea, offering lovely views and open green
spaces. Suomenlinna: A sea fortress that’s been turned into a park, accessible by ferry, providing a historic setting for a
picnic. To6lonlahti: A bay area surrounded by a park in the center of the city, ideal for a relaxed outdoor meal. Enjoy your
picnic outing, and remember to be prepared for any changes in weather, protect the environment, and savor the local flavors!

Contriever:

Planning a picnic outing in Helsinki is a great idea, especially during the warmer months. Here’s a helpful guide to assist you
in organizing a lovely picnic: 1. Check the Weather: Make sure you monitor the weather forecast for Helsinki, so you pick
a day with pleasant weather. The best months for a picnic are typically May through September when the temperature is
moderate and the risk of rain is lower. 2. Select a Location: Kaivopuisto Park: Offers beautiful sea views and lots of green
spaces for a picnic. Suomenlinna: A sea fortress island that provides historical sights as well as picnic areas. T6616nlahti
Bay: Surrounded by a park that features walking paths and green areas perfect for picnicking. Esplanadi Park: Located in the
heart of Helsinki, this park is perfect for people-watching and enjoying urban nature. Seurasaari Island: Gives you a taste of
Finnish nature and traditional architecture, with plentiful picnic spots. 3. Prepare Your Picnic Basket: Fill it with snacks and
food items that do not require immediate refrigeration. Don’t forget to bring drinks, and if you fancy something local, pick
up some Finnish rye bread and cold cuts for sandwiches, or grab Karelian pastries from a local bakery. Enjoy your picnic!

COLT:

When planning a picnic outing in Helsinki, here are some steps and tips to consider: 1. Choose a Location: Helsinki offers
many stunning spots for picnic outings. Some of the popular locations include: Suomenlinna Island: A UNESCO World
Heritage site accessible by ferry, offering beautiful views and green spaces. Kaivopuisto: A seaside park with large grassy
areas, perfect for a picnic and views of the sea. Central Park (Keskuspuisto): A large park area offering a natural setting
for a quiet and relaxing picnic. To6616nlahti Bay: A bay area surrounded by parks where you can enjoy a waterside picnic.
2. Check the Weather: The weather in Helsinki can be unpredictable, so before you head out, check the current weather
conditions and forecast. Make sure you bring appropriate clothing for the weather, and consider bringing an umbrella or
waterproof blanket if there’s a chance of rain. 3. Pack Your Picnic: Prepare a basket or cooler with your favorite picnic foods.
Don’t forget to pack: Food: Sandwiches, fruits, salads, snacks, etc. Beverages: Water, juice, or soft drinks; and if you desire,
a bottle of wine or champagne (but make sure to check local laws regarding alcohol consumption in public spaces). Utensils:
Plates, cutlery, napkins, and cups if needed. Extras: Condiments, a cutting board, a knife, and a bottle opener. 4. Bring
Comfort Items: For a comfortable picnic, consider packing: A large blanket to sit on. Cushions or foldable chairs for extra
comfort. Sunscreen and sunglasses on a sunny day. 5. Entertainment and Games: Change things up from just eating, to also
having some fun. Bring along: A frisbee, soccer ball, or other sports equipment. A kite if it’s a windy day. Board games,
playing cards, or books for a relaxed time. 6. Respect the Environment: When you’re ready to leave, make sure to clean up
after yourself. Bring trash bags and recycle any waste if possible. 7. Local Amenities: Check if there are nearby restrooms
and if pets are allowed if you plan to bring one. 8. Transportation: Helsinki has an excellent public transportation system
including buses, trams, metro, and ferries. If you plan to visit somewhere like Suomenlinna, check the ferry schedule ahead
of time. For locations within the city, you can use HSL’s journey planner to find the best route. Now you’re all set for your
picnic in Helsinki! Enjoy the beautiful scenery and the tasty food with good company.

Table 9: The comparison of responses generated by Large Language Model integrating information from multiple
tools retrieved via different tool retrievers in response to user query.
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Query
Input query: 1 would like to know the value of 5 ounces of gold plus 1 million AMZN stocks in CNY.

With Complete Tools:

First, let’s calculate the value of 5 ounces of gold in USD: 5 ounces * 1919.7605807522993 USD/ounce = 9598.802903761497
USD. Then, let’s calculate the value of 1 million AMZN stocks in USD: 1,000,000 stocks * 130 USD/stock = 130,000,000
USD. Now, let’s convert these values to YNC using the exchange rate: 9598.802903761497 USD * 7.24 YNC/USD =
69,495.48654289563 YNC for the gold. 130,000,000 USD * 7.24 YNC/USD = 941,200,000 YNC for the stocks. So, the
value of 5 ounces of gold is approximately 69,495.49 YNC and the value of 1 million AMZN stocks is approximately
941,200,000 YNC.

One Is Incorrect:

Sorry, I can’t provide the current value as I am an Al model trained by OpenAl and I don’t have real-time data or internet
access to look up current stock prices or gold prices. However, you can calculate it by finding the current price of gold per
ounce and the current stock price of AMZN, then multiply by the amount you have and the current exchange rate.

Two Are Incorrect:

Sorry, I am an Al model developed by OpenAl and I don’t have real-time data or the ability to provide current stock prices or
the value of gold. I recommend checking a reliable financial news website or a stock market app for the most accurate and
up-to-date information.

One Is Missing:

The value of 5 ounces of gold in YNC would be calculated by first finding the value in USD and then converting it to YNC.5
ounces of gold in USD =5 * XAU USD =5 * 1919.7605807522993 = 9598.802903761497 USD. Then, convert this to YNC
using the exchange rate: 9598.802903761497 USD * 7.24 YNC/USD = 69,495.4893405 YNC. As for the value of 1 million
AMZN stocks, we would need the current price of AMZN stocks in USD to calculate it. Without that information, we cannot
provide the value in YNC.

Two Are Missing:

As an Al I don’t have real-time data or future predictions. However, I can tell you how to calculate the value based on
the information you provided. First, calculate the value of 5 ounces of gold: 5 ounces * 1919.7605807522993 USD/ounce
=9598.802903761497 USD. Then, calculate the value of 1 million AMZN stocks: 1,000,000 stocks * 130 USD/stock =
130,000,000 USD. Finally, to convert these values to YNC, you would need the exchange rate between USD and YNC.
Unfortunately, I don’t have that information. Once you have the exchange rate, you can multiply the values in USD by the
exchange rate to get the values in YNC.

Without Tools:
Sorry, but as an Al, I’'m not able to provide real-time data or future predictions for stock prices or the value of gold. I
recommend checking a reliable financial news source or financial services website for the most current information.

Table 10: The complete responses generated by GPT-4 that vary according to the different tools employed.
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