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Abstract

In this paper, we propose FastDoc (Fast Continual Pre-training Technique using
Document Level Metadata and Taxonomy), a novel, compute-efficient framework that uti-
lizes Document metadata and Domain-Specific Taxonomy as supervision signals to continu-
ally pre-train transformer encoder on a domain-specific corpus. The main innovation is that
during domain-specific pretraining, an open-domain encoder is continually pre-trained using
sentence-level embeddings as inputs (to accommodate long documents), however, fine-tuning
is done with token-level embeddings as inputs to this encoder. We perform such domain-
specific pre-training on three different domains namely customer support, scientific, and
legal domains, and compare performance on 6 different downstream tasks and 9 different
datasets. The novel use of document-level supervision along with sentence-level embedding
input for pre-training reduces pre-training compute by around 1, 000, 4, 500, and 500 times
compared to MLM and/or NSP in Customer Support, Scientific, and Legal Domains, re-
spectively1. The reduced training time does not lead to a deterioration in performance. In
fact we show that FastDoc either outperforms or performs on par with several competitive
transformer-based baselines in terms of character-level F1 scores and other automated met-
rics in the Customer Support, Scientific, and Legal Domains. Moreover, reduced training
aids in mitigating the risk of catastrophic forgetting. Thus, unlike baselines, FastDoc shows
a negligible drop in performance on open domain.

1Code and datasets are available at https://github.com/manavkapadnis/FastDoc-Fast-Pre-training-Technique/
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1 Introduction

In present times, continual pre-training (Arumae et al., 2020; Gururangan et al., 2020) on unlabelled, domain-
specific text corpora (such as PubMed articles in medical domain, research papers in Scientific Domain,
E-Manuals in Customer Support Domain, etc.) has emerged as an important training strategy in NLP to
enable open-domain transformer-based language models perform various downstream NLP tasks such as
Question Answering (QA), Named Entity Recognition (NER), Natural Language Inference (NLI), etc. on
domain-specific datasets (Hendrycks et al., 2021; Beltagy et al., 2019; Nandy et al., 2021). Most of the pre-
training strategies involve variants of Masked Language Modelling (MLM) (Liu et al., 2019), Next Sentence
Prediction (NSP) (Devlin et al., 2019), Sentence Order Prediction (SOP) (Lan et al., 2019), etc. that use
local sentence/span-level contexts as supervision signals. However, such methods require a lot of pre-training
data and compute. For instance - pre-training of BERTBASE architecture on a 3.17 billion word corpus was
performed on 8 GPUs for around 40 days to obtain SciBERT (Beltagy et al., 2019).

MLM-style domain-specific pre-training makes an implicit assumption that the constituent documents are
independent of each other, which may not be true always. Documents from a particular domain (e.g.,
customer support, scientific papers, legal proceedings, etc.) may be categorized into different groups by
experts in that area, each group containing similar documents. This information is generally stored as either
‘metadata’ of the document (Borchert et al., 2020; 2022; Lipscomb, 2000), or in terms of a ‘taxonomy’
(Margiotta et al., 2022; Karamanolakis et al., 2020) of documents. For example, E-manuals of different
versions of a cell phone series are very similar, scientific articles written on a particular topic (e.g., pre-
training) follow a certain type of taxonomy, legal proceedings on related crimes are similar. While few
models such as LinkBERT (Yasunaga et al., 2022), MetricBERT (Malkiel et al., 2022), etc. have used
document metadata as an additional signal, no work to the best of our knowledge has singularly leveraged
taxonomy-based information 2.

Contrarily, in this paper, we completely replace the local context-based supervision (MLM, NSP, etc.) dur-
ing pre-training with (a). document similarity learning task using the available domain-specific metadata
(through a triplet network), and (b). hierarchical classification task that predicts the hierarchical categories
corresponding to the domain-specific taxonomy in a supervised manner.

However, to leverage document-level supervision, a robust encoding of documents is required. We use a
hierarchical architecture (Zhang et al., 2019) and propose various innovations (see Figure 1) - (a). We
initialize the lower-level encoder using a pre-trained sentence transformer (sBERT/sRoBERTa (Reimers
& Gurevych, 2019)) and freeze its weights. We then initialize the higher-level encoder using pre-trained
BERT/RoBERTa encoder, which now operates with a sentence embedding input, received via the lower-level
encoder. This design choice (inspired by works that initialize a larger encoder through a smaller pre-trained
encoder - e.g., Bert2BERT (Chen et al., 2022)) helps us to directly work with sentence embeddings as inputs
which in turn enables much larger contexts in a single input, and decreases the required pre-training compute
by a huge margin. (b). After pre-training, we use only the higher-level encoder for downstream sentence
and token-level tasks. As the higher-level encoder was originally pre-trained with token embedding inputs,
it can still be fine-tuned with token embedding inputs. We conduct various experiments to analyze this very
interesting and surprising aspect of interoperability of token and sentence embedding inputs.

Using these ideas, we propose FastDoc pre-training framework, and apply it to varied NLP tasks across
three disparate domains - Customer Support, Scientific Papers, and Legal Domain, to evaluate
the generalizability of FastDoc across multiple domains3. Customer Support requires answering consumer
queries related to device maintenance, troubleshooting, etc., and hence, we apply FastDoc on two Question
Answering tasks. In the domain of scientific papers, we focus on tasks such as extracting important scientific
keywords (Li et al., 2016; Kim et al., 2004; Doğan et al., 2014), extracting the type of relation between such
keywords (Kringelum et al., 2016; Luan et al., 2018), as well as classifying citation intents (Cohan et al.,

2Detailed Prior Art is described in Section 8 of Appendix.
3Continually Pre-training a single model across domains does not give good performance in all domains. That is why there

are works for developing models for a particular domain, such as BioBERT Lee et al. (2020), SciBERT Beltagy et al. (2019),
EManuals-BERT Nandy et al. (2021), Legal-BERT Chalkidis et al. (2020), FinBERT Huang et al. (2023)
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2019). In the legal domain, we focus on the task of automating contract review (Hendrycks et al., 2021),
which involves finding key clauses in legal contracts.

We show that FastDoc drastically reduces (order of 500x) pre-training compute across domains while still
achieving comparable to modestly better performance in downstream tasks. We further show that the result
holds even when we increase model size and consider situations where document metadata and taxonomy
may not be explicitly available. We also show that the frugal pre-training helps FastDoc resist catastrophic
forgetting so very common when transformers undergo continual in-domain pre-training (Gururangan et al.,
2020; Arumae et al., 2020).

Figure 1: End-to-end training pipeline using FastDoc

2 FastDoc Framework

The aim of FastDoc is to learn robust representations for documents (in specialized domains) using potent
document-level supervision signals. We treat a document as a sequence of sentences and provide pre-trained
sentence embeddings as input. This, in turn, helps in accommodating documents that contain more than
512 tokens even using a standard BERTBASE /RoBERTaBASE encoder (e.g. from Figure 3 in Section B
of Appendix, we observe that using sentences as inputs enable coverage of around 50% more documents
than when tokens are inputs). We train the network with two losses. (a). The first loss is a contrastive or
triplet loss based on the similarity or dissimilarity of a document with a pair of documents; (b). The second
loss is a supervised loss derived while classifying a document to a domain-specific taxonomy.

Figure 1 depicts the end-to-end training pipeline using the proposed FastDoc architecture (detailed pre-
training architecture shown in Figure 4 in Section B of Appendix). Typically a hierarchical document
encoder like HiBERT (Zhang et al., 2019) would be a suitable model for encoding documents. It has a
lower-level encoder with token inputs and a higher-level encoder with sentence-level inputs. In general,
during pre-training, both these encoders need to be tuned (which is computationally expensive) and only
the lower-level encoder is utilized for downstream sentence and token-level tasks such as QA, Relation
Classification, NER, etc. However, we propose a different, compute-efficient method. The steps in our
pipeline are - (a). The pipeline starts using an open-domain pre-trained transformer model (e.g. BERT
(Devlin et al., 2019)/RoBERTa (Liu et al., 2019)) for fast convergence in domain-specific scenarios. (b).
Its transformer layers excluding the input token embedding layer are used to initialize the higher-level
encoder, while the lower-level encoder is a frozen sBERT/sRoBERTa. The Document representation from
this document encoder is obtained by averaging the output context-aware sentence representations from the
higher-level encoder. (c). The higher-level encoder is (further) pre-trained with document-level supervision
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using the proposed FastDoc Framework on domain-specific documents. (d). Finally, only this higher-level
encoder is fine-tuned on downstream tasks, with input token embeddings copied from the open-domain
model.

Our specific design choices help in the following manner - (a) Freezing the sentence embeddings while training
the encoder with document-level loss helps in achieving fast pre-training, (b) While a hierarchical encoder
could also have used the document-level loss, the lower-level encoder using token inputs would be directly
used for fine-tuning, but this encoder would learn less robust pre-training task-specific, semantic features
as compared to the higher-level encoder (Tenney et al., 2019; van Aken et al., 2019). Our design trains
the higher-level encoder to make the best use of pre-training loss. Next, we describe the pre-training loss
functions in great detail. The inter-operability of input token and sentence embeddings is reasoned via
several experiments in Section 7.4 and Section G.4 of Appendix.

Contrastive Learning using document similarity labels.

We use a Triplet Network (Cohan et al., 2020), where three documents serve as input for three document
encoders, the first (anchor) and second (positive) documents being similar, and the first and third (negative)
documents being dissimilar (based on metadata). The encoders have hard parameter sharing (Caruana,
1993). The three encoded representations are used to formulate a triplet margin loss function, denoted by
Lt. Mathematically,

Lt(D1, D2, D3) = max{d(D1, D2) − d(D1, D3) + 1, 0} (1)

where D1, D2, D3 refer to the document representations of documents, and d(., .) represents the L2 norm
distance. We use a unit margin in accordance with prior art using the same or similar contrastive loss
functions (Oh Song et al., 2016; Weinberger & Saul, 2009).

Note that we do not use NT-Xent (normalized temperature-scaled cross entropy) Loss Function (Chen et al.,
2020), which uses multiple negatives for a given (anchor, positive) pair, as using such a large number of
negatives would significantly increase the compute (corresponding to the augmentation, forward pass, and
backpropagation for a large number of inputs), which defeats FastDoc’s purpose.

Hierarchical Classification using Hierarchical Labels.

Here we try to formulate a Supervised Hierarchical Classification Task based on a domain-specific hierarchical
taxonomy. Given a document, the task is to predict the hierarchical categories present in the taxonomy.

In FastDoc, each document’s representation is passed through H classification heads, H being the maximum
number of hierarchical levels present in the taxonomy. It may so happen that the hierarchy for a document
has less than H levels. Hence, to bring uniformity, a ‘null’ class is added to each remaining level. For
Hierarchical Classification, Local Classifier per Level (LCL) (Silla & Freitas, 2011) is used, where one multi-
class classifier is trained for each level of hierarchy. At each level, a classification head is an MLP layer
(followed by SoftMax). The hierarchical loss function Lhier is the sum of the categorical cross-entropy loss
(CELoss) over all the H classification heads, for all the N input documents per training sample (in our
case, N = 3). Mathematically,

Lhier =
N∑

i=1

H∑
j=1

CELoss(xij , yij), (2)

xij and yij are predicted and target class distributions respectively, for the ith document, and jth classifi-
cation head.

The loss L backpropagated during pre-training is the sum of the triplet margin loss and the hierarchical loss
functions.
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3 Pre-training Setup

We represent BERT-based and RoBERTa-based FastDoc as FastDocBERT and FastDocRoBERT a respec-
tively, along with abbreviation of the domain (Customer Support - Cus., Scientific Domain - Sci., Legal
Domain - Leg.). The proposed models and domain-specific baselines are pre-trained (in-domain) for 1 epoch.
We use a batch size of 32, and AdamW optimizer (Loshchilov & Hutter, 2018) with an initial learning rate
of 5 × 10−5, which linearly decays to 0.

We next outline the specifics of the dataset used, its associated taxonomy, metadata leveraged. Table 1
shows examples of sample triplets and hierarchies from each domain.

Domain, Data
Source

Example Triplet Example Hierarchy

Customer Support (E-
Manuals Corpus)

stereo equalizer E-Manual,
stereo equalizer E-Manual (of a different brand),
blu-ray player E-Manual

Stereo Equalizer
Electronics → Audio → Audio Players &
Recorders → Stereo Systems

Scientific Domain
(ArXiv)

Proximal Policy Optimization Algorithms
Generating Natural Adversarial Examples
Autonomous Tracking of RF Source Using a UAV Swarm

Generating Natural Adversarial Exam-
ples
Computer Science → Machine Learning

Legal Domain
(EURLEX57k)

“· · · import licences · · · dairy products”
“· · · market research measures · · · milk and milk products”
“ · · · importations of fishery and aquaculture products”

“· · · importation of olive oil · · · ”
Agriculture → Products subject to market or-
ganisation → Oils and fats

Table 1: Examples of triplets and hierarchies in the 3 domains. (When representing triplets, we specify
domain-specific metadata - product category in Customer Support, paper title in the Scientific Domain,
and certain key phrases from each document in the Legal Domain) [2nd column] Underlined phrases denote
“positive” documents; italicized phrases denote “negative” documents.

3.1 Pre-training in the Customer Support Domain

Dataset and Triplets Chosen. We pre-train FastDoc on a subset of the E-Manuals Corpus (Nandy
et al., 2021) - we sample 2, 000 E-Manual triplets, such that, the anchor and positive E-Manuals belong to
the same product category and the anchor and negative E-Manuals belong to different product categories.
The amount of data is a mere 3% of the entire E-Manuals Corpus.

Hierarchy considered. Google Product Taxonomy (GPrT)4 (5, 583 possible hierarchies across 7 levels of
hierarchy) is used to obtain hierarchical classification labels using (a single) category of an E-Manual. This
allows similar E-manuals (e.g. ‘TV’ and ‘Monitor’) to have more similar hierarchies compared to dissimilar
E-Manuals (e.g. ‘TV’ and ‘Refrigerator’). Details on mapping product category to hierarchy are mentioned
in Section C.1 of Appendix.

3.2 Pre-training in the Scientific Domain

Dataset and Triplets Chosen. We pre-train FastDoc on a subset of the ArXiv - we sample 2, 000 triplets
of scientific papers based on the “primary category” assigned to the paper, such that, the anchor and positive
papers belong to the same category, and the anchor and negative papers belong to different categories. For
each such triplet, we add another triplet, where the positive and anchor samples are swapped. The amount
of data used is negligible compared to the 1.14M Papers used by SciBERT (Beltagy et al., 2019) during
its pre-training. Note that several recent works have used citations as a similarity signal (Cohan et al.,
2020; Ostendorff et al., 2022; Yasunaga et al., 2022). However, a paper might cite another paper that is not
similar in terms of the content. Instead, similarity based on “primary category” would more intuitively lead
to content-based similarity.

Hierarchy Considered. ArXiv Category Taxonomy5 (consisting of 155 possible hierarchies across 3 levels
of hierarchy) is used to obtain hierarchical classification labels for each document, where each document is
already mapped to its corresponding hierarchy via the taxonomy.

4https://support.google.com/merchants/answer/6324436?hl=en
5https://arxiv.org/category_taxonomy
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3.3 Pre-training in the Legal Domain

Triplets Chosen. We pre-train FastDoc on a subset of the EURLEX57K dataset (Chalkidis et al., 2019)
of legislative documents - we sample 2, 000 document triplets based on the list of annotated EUROVOC
Concepts6 assigned to each document, such that, the anchor and positive documents have at least 1 Concept
in common, and the anchor and negative documents have no Concepts in common. We double the number
of triplets in a way similar to Scientific Domain. The amount of data used is negligible compared to the 8GB
of legal contracts used for domain-specific pre-training in Hendrycks et al. (2021).

Hierarchy Considered. The hierarchical class assignments of the documents in the EUR-Lex Dataset
(Loza Mencia et al., 2010) (consisting of 343 possible hierarchies across 4 levels of hierarchy) are used as
hierarchical classification labels, where each document is already mapped to its corresponding hierarchy.

4 Downstream Datasets/Tasks

The efficacy of the pre-training framework is tested through its performance in downstream tasks. We
describe those tasks and the corresponding datasets used (The names of all tasks, their corresponding
datasets, and domains are listed in Table 15 of Section D of Appendix).

4.1 Customer Support

We evaluate Question Answering Task on two datasets - single span QA on TechQA Dataset and multi-span
QA on S10 QA Dataset (described in Section D.1 of Appendix).

TechQA Dataset. TechQA (Castelli et al., 2020) is a span-based QA dataset with questions from a
technical discussion forum and the answers annotated using IBM Technotes, which are documents released
to resolve specific issues. The dataset has 600 training, 310 dev, and 490 evaluation QA pairs. Each QA
pair is provided with the document that contains the answer, along with 50 candidate Technotes retrieved
using Elasticsearch7.

Fine-tuning Setup. The fine-tuning is carried out in two stages - first on the SQuAD 2.0 Dataset (inspired
by Castelli et al. (2020)), and then on task-specific QA datasets, which is discussed in Section E.1 of
Appendix). Note that results without intermediate fine-tuning on SQuAD 2.0 deteriorate, as shown in
Section E.1 of Appendix.

4.2 Scientific Domain

We use multiple datasets from SciBERT Benchmark Datasets (mentioned in Beltagy et al. (2019)) for
training and evaluation. The following downstream tasks and corresponding datasets are used for evaluation
- (1) NER (Named Entity Recognition): We use the BC5CDR (Li et al., 2016), JNLPBA (Kim et al.,
2004), and NCBI-Disease (Doğan et al., 2014) NER Datasets of the Biomedical Domain. (2) REL (Re-
lation Classification): This task predicts the type of relation between entities. The ChemProt Dataset
(Kringelum et al., 2016) from the Biomedical Domain and SciERC Dataset (Luan et al., 2018) from the
Computer Science Domain are used for evaluation. (3) CLS (Text Classification): SciCite Dataset (Cohan
et al., 2019) gathered from Multiple Domains is used.

Fine-tuning Setup. We fine-tune and evaluate on the downstream tasks mentioned above. The hyperpa-
rameters are the same as that in Beltagy et al. (2019).

4.3 Legal Domain

CUAD (Contract Understanding Atticus Dataset) (Hendrycks et al., 2021) is used, which is annotated by
legal experts for the task of Legal Contract Review. It consists of 13, 101 clauses across 41 types of clauses

6http://eurovoc.europa.eu/
7https://www.elastic.co/products/elasticsearch
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annotated from 510 contracts. Given a contract, for each type of clause, the task requires extracting relevant
clauses as spans of text related to the clause type. Details of the dataset splits are given in Section D.3
of Appendix.

Fine-tuning Setup. We fine-tune and evaluate on the Contract Review Task on CUAD. The hyperparam-
eters are the same as that in Hendrycks et al. (2021).

5 Experiments and Results

To assess the performance of our proposed methods, we fine-tune and evaluate these methods and baselines
on the datasets described in Section 4, and draw inferences. Due to space constraints, the performance on the
S10 QA Dataset is reported in Section E.1 of Appendix. In all these experiments, we perform an ablation
study by considering each of the two losses of FastDoc separately i.e. we use only Triplet Loss (triplet)
and only Hierarchical Classification Loss (hier.). We perform several additional ablations (see Section E of
Appendix) - (1) Pre-training both lower and higher-level encoders (entire hierarchical architecture), followed
by fine-tuning the lower encoder worsens performance, suggesting - higher-level encoder learns better task-
specific features (2) replacing sBERT/sRoBERTa with BERT/RoBERTa worsens performance, suggesting
- sentence transformers provide effective sentence embeddings. (3). used a more fine-grained document
similarity criterion (changed Eq. 1) and found the result to be inferior, and (4). compared FastDoc with
the much larger GPT-3.5 model and found that GPT-3.5 models perform much inferior in 0 and 1-shot
settings.

5.1 Customer Support Domain

Baselines: We compare our pre-training approach to 3 types of pre-training baselines described below.
For the sake of completeness, we also compare with baselines using span/sentence-level supervision signals.
Domain-specific Continual Pre-training is carried out on the corpus of E-Manuals for all baselines (except
BERTBASE , RoBERTaBASE , and Longformer).
(1) Pre-training using masked language modeling (MLM) and/or Next Sentence Prediction
(NSP): We use BERTBASE (Devlin et al., 2019), RoBERTaBASE (Liu et al., 2019), LinkBERTBASE
Yasunaga et al. (2022), Longformer (Beltagy et al., 2020), EManualsBERT and EManualsRoBERTa (Nandy
et al., 2021) (domain continual pre-training of BERTBASE (Devlin et al., 2019) and RoBERTaBASE (Liu et al.,
2019), respectively, on the entire E-Manuals corpus). (2) Using intra-document contrastive learning:
DeCLUTR (Giorgi et al., 2021) and ConSERT (Yan et al., 2021) are the intra-document contrastive learning
methods. (3) Using inter-document contrastive learning: SPECTER (Cohan et al., 2020) is the
inter-document contrastive learning baseline used. (Details on tailoring SPECTER to Customer Support
are given in Section E.1 of Appendix).

Performance on TechQA Dataset The answer-retrieval performance on the development set (as per
Castelli et al. (2020)) is reported in Table 2. The model gives five candidate answers per question and
corresponding confidence scores. Each answer is assigned an ‘evaluation score’ - If the confidence score is
below a threshold provided by the model, ‘evaluation score’ is 1 if the question is actually unanswerable,
and 0 otherwise. However, if the confidence score is above the threshold, the ‘evaluation score’ is character
F1 between the predicted answer and ground truth and 0 if the question is actually unanswerable. The
evaluation metrics used, as mentioned in Castelli et al. (2020)8, are (a). F1 - ‘evaluation score’ for the
predicted answer (with the highest confidence score) averaged across all questions. (b). HA_F1@1 -
similar to F1, except that, the averaging is done on the answerable question set (160 out of 310 questions in
the dev set are answerable). (c). HA_F1@5 - macro average of the 5 best candidate answers per question,
averaged across the answerable question set.

From the results in Table 2, we can infer - (1). Among the baselines, (a) Longformer gives the best F1 and
HA_F1@1 and the second-best HA_F1@5. This is because of the long sequence length of 4, 096 compared to

8We do not use BEST_F1, as a threshold is tuned on the dev. set using F1 score, which is not realistic
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F1 HA_F1@1 HA_F1@5
BERTBASE 13.67 26.49 36.14
RoBERTaBASE 16.46 31.89 42.4
LinkBERTBASE 14.24 27.59 36.77
Longformer 16.57 32.1 42.66
EManualsBERT 13.41 25.98 36.69
EManualsRoBERTa 16.04 31.08 44.71
DeCLUTR 15.11 29.28 38.93
ConSERT 11.12 21.54 30.37
SPECTER 12.92 25.03 34.74
FastDoc(Cus.)BERT (hier.) 14.19 27.49 36.62
FastDoc(Cus.)BERT (triplet) 14.47 28.04 37.21
FastDoc(Cus.)BERT 14.56 28.2 35.54
FastDoc(Cus.)RoBERT a(hier.) 16.52 32.00 44.77
FastDoc(Cus.)RoBERT a(triplet) 16.39 31.76 46.59
FastDoc(Cus.)RoBERT a 17.52 33.94 44.96

Table 2: Results for the QA task on the TechQA Dataset.

512 of other models9. (b) SPECTER does not perform well, even though it uses document-level supervision,
as it cannot accommodate the entire document within 512 tokens, so only the first 512 tokens are used which
does not help much in learning. (c) ConSERT performs contrastive learning on sentence inputs, prohibiting
it from learning context beyond a single sentence (unlike FastDoc that learns inter-sentence context during
pre-training due to its hierarchical architecture), thus reducing performance on QA tasks. (d) In general,
contrastive learning baselines perform inferior to those using MLM/NSP. (2). FastDoc(Cus.)BERT variants
perform better than BERT-based baselines, and FastDoc(Cus.)RoBERT a variants than almost all RoBERTa-
based baselines, suggesting that our proposed pre-training methods are better than that of baselines. (3)
FastDoc(Cus.)RoBERT a variants perform better than FastDoc(Cus.)BERT variants, as RoBERTa (Liu
et al., 2019) performs better than BERT (Devlin et al., 2019) in span-based QA tasks such as SQuAD
(Rajpurkar et al., 2018; 2016). (4) FastDoc(Cus.)RoBERT a performs the best of all models in F1 and
HA_F1@1 and the second-best in HA_F1@5. FastDoc(Cus.)RoBERT a performs around 6% better than
the best baseline Longformer both in terms of F1 and HA_F1@1 (even though Longformer has a long
sequence length, it is not able to encode most documents properly).

Additionally, we perform a qualitative analysis in Table 20 of Section E.1 of Appendix by comparing
the ground-truth answers and the answers predicted by FastDoc and a well-performing baseline for 3
answerable questions in TechQA and S10 QA Datasets. This analysis suggests that FastDoc is comparatively
better at extracting numerical entities, tackling multiple questions in a sample, and answering location-based
questions.

5.2 Scientific Domain

Baselines: SciBERT (Beltagy et al., 2019) (pre-trained using MLM and NSP on a huge scientific corpus)10.

Performance on Different Datasets We fine-tune and evaluate on the datasets mentioned in Section 4.2.
The results on the test set for each task are shown in Table 3. We see that FastDoc(Sci.)BERT performs
better than SciBERT on 4 out of 6 datasets, and performs the best on the Relation Classification Tasks.
However, FastDoc(Sci.)BERT (hier.) performs the best on 3 datasets with NER and text classification tasks,
as (1) fine-grained NER benefits from fine-grained hierarchical information, and (2) text classification dataset
has samples from multiple domains, where diversity in the hierarchical categories helps.

9For completeness, we have also continually pre-trained Longformer on the data used by FastDoc, and it shows inferior
results to Longformer on 2/3 metrics due to the data being insufficient to adapt Longformer.

10vocabulary used for SciBERT is same as that of BERTBASE for consistency among SciBERT and FastDoc variants. Specif-
ically, we use this model as SciBERT - https://s3-us-west-2.amazonaws.com/ai2-s2-research/scibert/huggingface_pytorch/
scibert_basevocab_uncased.tar
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Field Task Dataset SciBERT FastDoc
(triplet)

FastDoc
(hier.) FastDoc

BIO NER
BC5CDR 85.55 87.7 87.94 87.81
JNLPBA 59.5 75.86 75.97 75.84
NCBI-D 91.03 84.15 87.81 84.33

REL ChemProt 78.55 75.12 80.28 80.48
CS REL SciERC 74.3 75.4 75.62 78.95
Multi CLS SciCite 84.44 84.31 84.48 83.59

Table 3: FastDoc(Sci.)BERT and its variants vs. SciBERT in tasks presented in Beltagy et al. (2019).
Following Beltagy et al. (2019), we report macro F1 for NER (span-level), and for REL and CLS (sentence-
level), except for ChemProt, where we report micro F1.

Since recent works have used citations as a similarity signal, we report the performance of FastDoc using
citations as a similarity signal in Table 22 of Section E.2 of the Appendix. This gives a satisfactory
performance, showing that FastDoc works on different types of metadata. However, on average, a system
using citations does not perform as well as when using “primary category".

5.3 Legal Domain

Baselines: We use baselines from Hendrycks et al. (2021) - BERTBASE , RoBERTaBASE , RoBERTaBASE +
Contracts Pre-training (domain-specific pre-training of RoBERTa-BASE on 8̃GB of unlabeled contracts
collected from the EDGAR database). Also, we use CDLM Caciularu et al. (2021), LEGAL-BERT-FP
(Chalkidis et al., 2020), and LEGAL-RoBERTa-BASE (Geng et al., 2021) as additional baselines.

Performance on CUAD Dataset

Model AUPR Precision@
80% Recall)

BERTBASE 32.4 8.2
LEGAL-BERT-FP 32.6 21.16
RoBERTaBASE 42.6 31.1
LEGAL-RoBERTa-BASE 42.9 31.7
RoBERTaBASE + Contracts Pre-training 45.2 34.1
CDLM 43.2 34.6
FastDoc(Leg.)BERT (triplet) 32.5 8.3
FastDoc(Leg.)BERT (hier.) 32.8 9.4
FastDoc(Leg.)BERT 32.6 9.4
FastDoc(Leg.)RoBERT a(triplet) 42.4 32.7
FastDoc(Leg.)RoBERT a(hier.) 42 32.3
FastDoc(Leg.)RoBERT a 44.8 34.6

Table 4: FastDoc(Leg.) and its variants vs. baselines in the Contract Review task on CUAD (AUPR - Area
Under Precision-Recall Curve).

CUAD exhibits class imbalance, rendering AUPR (Area Under Precision-Recall) and Precision@80% Re-
call as suitable metrics. Furthermore, AUPR effectively encapsulates model performance across various
confidence thresholds. From Table 4, we infer - (1) All FastDoc(Leg.)BERT variants perform better than
BERTBASE, and FastDoc(Leg.)RoBERT a performs better than RoBERTaBASE and Legal-RoBERTa-BASE
(2) FastDoc(Leg.)RoBERT a performs better than CDLM, even though CDLM has a long sequence length of
4096 (3) FastDoc(Leg.)RoBERT a gives the best Precision@80% Recall, and second-best AUPR, even though
it uses negligible domain-specific pre-training data compared to baselines.

Summary of the Experiments and Results. Note that although FastDoc uses document information, it
does not use the information derived from MLM during continual pre-training that many other conventional
domain-specific baselines use. Therefore, we maintain that our approach is both equitable and innovative
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when compared to the baselines. We observe that across various domains and different types of generalization,
FastDoc typically outperforms (albeit modestly) the baselines, and in cases where it falls short, the difference
is marginal. This happens despite using much less compute which is elaborated in Section 6.

5.4 Utility of the pre-training losses: Examples

We looked into the datasets and gauged the impact of the two pre-training losses in FastDoc’s performance.
Specifically, we took cases where FastDoc has produced better results than a well-performing baseline and
chose some representative examples to present. Table 5 shows examples from each domain where triplet and
hierarchical losses are beneficial, along with probable reasons. We can see that domain-specific knowledge
present in the metadata and taxonomy helps FastDoc in performing well on domain-specific downstream
tasks.

Dataset Triplet Loss is beneficial Hierarchical Loss is beneficial
Cus. S10 QA

(QA)
Q. How can I enable the accidental touch pro-
tection ?

Q. I need the registered fingerprint list. Where
can I find this?

Reasons “accidental touch” benefits from triplets hav-
ing anchor and positive as Touch-based device
E-Manuals, and negative as an E-Manual of a
device without touch screen.

“fingerprint” benefits from multiple hierarchies
with “Biometric Monitors”.

Sci. SciCite
(Text
Classifica-
tion)

A primary benefit of these models is the inclu-
sion of variability in model parameters (Parnell
et al. 2010). Output - “background”

The SVR can be considered as a novel train-
ing technique; the following section presents a
concise introduction to the SVR [33, 35, 38].
Output - “background”

Reasons Using triplets with anchor and positive belong-
ing to “Machine Learning" help in classifying
the text as “background", as “model param-
eters" is a common term used in “Machine
Learning" papers.

Although the first sentence could lead to the
inference that “SVR" is a new method, other
papers belonging to the hierarchy “Computer
Science → Machine Learning" would suggest
that “SVR" exists already.

Leg. CUAD
(Clause
Extrac-
tion)

..to make or have made the Products anywhere
in the world for import or sale in the Field in
the Territory in each case,..

..such commercial crops will be interplanted
as agriculture and forestry as well as medici-
nal materials;..

Reasons The triplet on the concepts of “import policy"
and “sale" in the anchor and positive is benefi-
cial.

the hierarchy “Agriculture → Products subject
to market organisation" helps here.

Table 5: Samples from each domain, where Triplet Loss and Hierarchical Loss are beneficial. Note that we
add outputs for the SciCite Text Classification Task for more clarity.

6 Pre-training Compute of FastDoc relative to the baselines

Domain Model Compute (in
GPU-hours)

Customer
Support

EManualsBERT 576
EManualsRoBERTa 980
DeCLUTR 370
ConSERT 40
SPECTER 600
FastDoc(Cus.)BERT 0.58
FastDoc(Cus.)RoBERT a 0.75

Scientific
Domain

SciBERT 7680
FastDoc(Sci.)BERT 1.7

Legal
Domain

RoBERTaBASE +
Contracts Pre-training 710

FastDoc(Leg.)RoBERT a 1.49

Table 6: Pre-training Compute of FastDoc vs. baselines
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We compare the compute (in terms of GPU-hours - GPUs needed multiplied by the number of hours) for
pre-training FastDoc with baselines. NVIDIA GeForce GTX 1080 Ti GPUs are used for pre-training.

Baselines in Customer Support and Legal Domains are continually pre-trained on the domain, while the
SciBERT baseline in Scientific Domain is pre-trained from scratch.

Customer Support: Table 6 shows that FastDoc(Cus.)BERT and FastDoc(Cus.)RoBERT a use roughly
1,000 times11 and 1,300 times less compute compared to EManualsBERT and EManualsRoBERTa respectively,
and require significantly less compute than all the baselines. It actually takes less than 1 GPU-hour for
pre-training FastDoc. ConSERT is the closest baseline in terms of compute time, as its inputs are a
limited number of sentence pairs, unlike a huge number of spans in DeCLUTR, a large number of triplets
in SPECTER, and several masked sentences in EManualsBERT and EManualsRoBERTa . Legal Domain:
FastDoc(Leg.)RoBERT a needs around 480 times less compute than continual pre-training of RoBERTa-
BASE on contracts as in Hendrycks et al. (2021).

Scientific Domain: FastDoc(Sci.)BERT needs around 4, 520 times less compute than SciBERT12. The
decrease in compute of FastDoc compared to the domain-specific baselines is much more compared to Cus-
tomer Support and Legal Domains, as SciBERT is pre-trained from scratch. FastDoc(Sci.)BERT continu-
ally pre-trains BERTBASE on Scientific Domain, and its downstream task performance and domain-specific
compute compared to SciBERT shows that domain-specific pre-training from scratch is not necessary.

Thus, these experiments demonstrate the remarkable efficiency of the proposed pre-training paradigm, as
well as the choice of the pre-training architecture used in FastDoc.

7 Analysis and Ablations

In this section, we report the following analysis and ablations - (1) Catastrophic Forgetting when evaluating
FastDoc in open-domain (2) absence of document supervision in the domain of interest (3) Effect of using a
larger backbone model for FastDoc (4) Reasons behind FastDoc working the way it does. Also, we apply
Parameter-Efficient training on FastDoc as an ablation in Section G.2 of Appendix, which gives very
poor downstream task results and is not beneficial from a compute perspective as well.

TASK CoLA SST2 MRPC STS QQP MNLI QNLI RTE

METRIC Matthews
CC Acc. F1-score Acc. Pearson

CC
Spearman

CC F1-score Acc. Acc. Acc. Acc.

RoBERTaBASE 63.71 94.15 92.71 89.71 90.91 90.66 89.1 91.84 87.24 92.26 80.14

FastDoc(Cus.)RoBERT a

62.57
(-1.14)

94.27
(+0.12)

93.1
(+0.39)

90.44
(+0.73)

90.98
(+0.07)

90.66
(0)

89.08
(-0.02)

91.84
(0)

87.22
(-0.02)

92.62
(+0.36)

79.06
(-1.08)

EManualsRoBERTa
51.82

(-11.89)
91.97

(-2.18)
91.42

(-1.29)
87.99

(-1.72)
88.4

(-2.51)
88.36
(-2.3)

88.65
(-0.45)

91.55
(-0.29)

85.15
(-2.09)

91.34
(-0.92)

70.4
(-9.74)

Table 7: Dev. set results on GLUE Benchmark (CC - Correlation Co-efficient, Acc. - Accuracy)

7.1 Catastrophic Forgetting in open-domain

Recent works show that continual in-domain pre-training of transformers leads to a significant performance
drop when fine-tuned on open-domain datasets (Arumae et al., 2020; Gururangan et al., 2020) resulting in
Catastrophic Forgetting (CF). Such works start with an open-domain model (e.g. BERT/RoBERTa) and
perform open-domain benchmark tasks (e.g. GLUE). Then, they consider a model pre-trained continually
on a specific domain (e.g. BioBERT) and re-assess performance on those tasks. Decrease in performance of
domain-specific model compared to the open-domain model determines degree of catastrophic forgetting.

Similarly, we fine-tune RoBERTaBASE (pre-trained on open-domain corpora), FastDoc(Cus.)RoBERT a, and
EManualsRoBERTa from customer support on the datasets of the (open-domain) GLUE (Wang et al., 2018)

11FastDoc(Cus.)BERT uses 33.3x less documents compared to EManualsBERT during pre-training. Additionally,
FastDoc(Cus.)BERT takes sentence embeddings as inputs, while EManualsBERT takes in token embeddings. There are
37.3 tokens per sentence in the pre-training corpus, meaning that there are 37.3x lesser samples for FastDoc(Cus.)BERT w.r,t
EManualsBERT for the same text, reducing compute further from 33.3x to 1000x (33.3 × 37 is ≈ 1000)

12According to Beltagy et al. (2019), it takes a minimum of 40 days on 8 GPUs (elaborated in Section F of Appendix)
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Figure 2: Relative change (in Log10 Scale) in the L1-norm of different types of parameters during pre-training
via MLM vs. FastDoc.

benchmark, and the results are shown in Table 7. The hyperparameters used are mentioned in Section
G.1 of Appendix.

We observe that - (a). FastDoc(Cus.)RoBERT a performs better than RoBERTaBASE in 4 out of 8 tasks
(although the improvement is minor), even after continual pre-training on E-Manuals, while the drop in
performance in the other 4 tasks is negligible. The performance improvement in tasks that require predicting
relation between sentence pairs, like STS, QNLI, MRPC, could be attributed to the Contrastive Learning
Objective when pre-training FastDoc (b). EManualsRoBERTa performs considerably worse compared to
RoBERTaBASE on all tasks, suggesting that MLM is not robust against domain change. The possible reason
behind the superior performance of FastDoc(Cus.)RoBERT a is that it requires only a small fraction of
pre-training data compared to what is used by domain-specific baselines such as EManualsRoBERTa, hence
making only small changes in the parameter space that helps retain open-domain knowledge while
learning essential domain-specific knowledge. We perform an experiment to test the proposition and plot
the relative change in L1-norm of different types of parameters such as attention query, key, value matrices,
and dense MLP parameters (similar to Wu et al. (2022)) during pre-training via MLM vs. FastDoc, as
shown in Figure 2. We observe that the relative change of parameters in FastDoc is about 100 times less
compared to MLM.

7.2 Absence of document level information

Model F1 HA_F1@1 HA_F1@5
RoBERTaBASE 16.46 31.89 42.4

FastDoc(Cus.)RoBERT a (7 hier. levels) 17.52
(+6.44%)

33.94
(+6.43%)

44.96
(+6.04%)

FastDoc(Cus.)RoBERT a

(w/o est. meta., tax., 7 hier. levels)
15.39

(-6.5%)
29.83

(-6.46%)
44.35

(+4.6%)
FastDoc(Cus.)RoBERT a

(w/o est. meta., tax., 15 hier. levels)
18.01

(+9.42%)
34.89

(+9.41%)
47.53

(+12.1%)

Table 8: Results on TechQA Dataset in Customer Support Domain with and without established domain-
specific document metadata and taxonomy

A pre-requisite of FastDoc has been the availability of document metadata and taxonomy. In this experi-
ment, we go beyond that and derive document similarity via similarity based on the ROUGE-L score among
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documents, followed by creating a custom taxonomy of document category hierarchies using Hierarchical
Topic Modeling (Grootendorst, 2022). Table 8 shows results on the Customer Support (see other domains’
results in Section G.3 of Appendix), and we can see that gives comparable performance when considering
same number of hierarchical levels as FastDoc. However, since the taxonomy is derived using topic mod-
eling, we are here not constrained by the number of hierarchies. We notice that the performance improves
when a larger number of hierarchical levels are used, showing great potential for adapting FastDoc to any
domain of interest. However, note that even though one can devise a (unsupervised) way to extract triplets
and document hierarchies, it is much more efficient to use metadata and taxonomy if and when available, as
there is some time and CPU involved in deriving content-similarity-based metrics like ROUGE-L score due
to the large size of the documents.

7.3 Effect of using a larger backbone model for FastDoc

Model F1 HA_F1@1 HA_F1@5
FastDoc(Cus.)RoBERT a 17.52 33.94 44.96

FastDoc(Cus.)RL
18.48

(+5.48%)
35.8

(+5.48%)
47.8

(+6.32%)

Table 9: Results on TechQA Dataset in Customer Support Domain (RL - RoBERTa-LARGE)

Field Task Dataset FastDoc(Sci.)BERT FastDoc(Sci.)BL

BIO NER
BC5CDR 87.81 88.45 (+0.73%)
JNLPBA 75.84 76.53 (+0.91%)
NCBI-D 84.33 86.18 (+2.19%)

REL ChemProt 80.48 84 (+4.37%)
CS REL SciERC 78.95 80.26 (+1.66%)
Multi CLS SciCite 83.59 85.76 (+2.6%)

Table 10: Results on tasks presented in Beltagy et al. (2019) (BL - BERT-LARGE)

Model AUPR Precision@
80% Recall

FastDoc(Leg.)RoBERT a 44.8 34.6

FastDoc(Leg.)RL
45.3

(+1.12%)
39.5

(+14.16%)

Table 11: Results on CUAD Dataset in Legal Domain (RL - RoBERTa-LARGE)

Tables 9, 10, and 11 compare the impact of using a larger backbone compared to the one used in the
proposed FastDoc (e.g. RoBERTa-LARGE vs. RoBERTa-BASE, BERT-LARGE vs. BERT-BASE). From
the results, we can see that using a larger model as a backbone further improves results due to an increased
number of trainable parameters.

7.4 Analysis of the interoperability of embeddings

FastDoc shows that using input sentence embeddings during pre-training helps when using token embed-
ding inputs during fine-tuning, as is evident from the potent downstream task performance. We analyze this
interoperability of embeddings by answering the following research questions (observations and exper-
iments elaborated in Section G.4 of Appendix) - (a). How does FastDoc learn local context? -
Similar documents have very-similar local (paragraph-level) contexts, suggesting that, using document-level
supervision during pre-training implicitly learns local context. Also, in an experiment, we randomly sample
500 sentences from each of the 3 domains. For each sentence, we mask a random token and calculate the
change in its prediction probability on masking other tokens in the sentence. Spearman Correlation of this
change between FastDoc and a domain-specific model pre-trained using MLM is moderately high for all
domains, showing that local context is learned by FastDoc to a reasonable extent. (b). Are relative
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representations preserved across the two embedding spaces? - Independent of whether inputs are
sentence or token embeddings, documents are clustered in a similar manner across the two representation
spaces, hence, relative representations are preserved.

8 Prior Art

Representation Learning using self-supervised learning methods: In recent times, downstream tasks
in NLP use representation learning techniques where transformers are pre-trained on large text corpora using
self-supervised learning methods like NSP (Devlin et al., 2019), MLM (Devlin et al., 2019; Liu et al., 2019),
contrastive learning (Giorgi et al., 2021; Yan et al., 2021; Wang et al., 2021; Cohan et al., 2020), etc.
before fine-tuning on downstream tasks. There are models pre-trained on domain-specific corpora such as
E-Manuals (Nandy et al., 2021), legal texts (Chalkidis et al., 2020), bio-medical documents (Lee et al., 2020),
etc.

Supervised Pre-training: Feng et al. (2022) proposes supervised pre-training on Leave-One-Out KNN that
improves transfer to downstream tasks. CLMSM (Nandy et al., 2023) uses recipe metadata as supervision
signal for pre-training. MVP (Tang et al., 2023) leverages labeled data from a corpus across 11 tasks for
pre-training, by unifying the data into text-to-text format. The paper also states that - unsupervised pre-
training likely incorporates noise that affects the downstream performance, making supervised pre-training a
better alternative. CLIP (Radford et al., 2021) utilizes the pre-training task of predicting which caption goes
with which image (natural language supervision), which is an efficient way to learn image representations.

Incorporating hierarchical information for enhancing representations: Hierarchical information in
the form of taxonomy and ontology has been used by some works to enhance learned representations. Barkan
et al. (2021) introduces a Variational Bayes entity representation model that leverages additional hierarchical
and relational information. Barkan et al. (2020) also uses a similar Bayesian approach to produce better
representations, especially for rare words.

Intra-document Contrastive Learning: DeCLUTR (Giorgi et al., 2021) uses a DistilRoBERTa-base
(Sanh et al., 2019) encoder. Spans overlapping or subsuming each other are considered as similar inputs, and
other spans are considered as dissimilar inputs. InfoNCE Loss Function (Sohn, 2016) brings representations
of similar spans closer and pushes representations of dissimilar spans farther away. ConSERT (Yan et al.,
2021) also uses contrastive loss, but it performs sentence augmentation using adversarial attack (Kurakin
et al., 2016), token shuffling, etc. It considers a sentence and its augmented counterpart to be similar, and
any other sentence pair as dissimilar. CLINE (Wang et al., 2021) creates similar and dissimilar samples from
a sentence by replacing some word(s) with their synonyms and antonyms using WordNet (Miller, 1995) and
then uses contrastive loss.

Inter-document contrastive learning: SPECTER (Cohan et al., 2020) uses a triplet margin loss to pull
similar documents closer to each other, and dissimilar ones are pushed away. The document representations
are obtained using a transformer encoder. However, their encoder is only able to encode a maximum of 512
tokens of a document. SDR (Ginzburg et al., 2021) uses a self-supervised method by combining MLM loss
and Contrastive Loss to learn document similarity. LinkBERT (Yasunaga et al., 2022) adds a Document
Relation Prediction Objective to MLM during pre-training, where the task is to predict whether two segments
are contiguous, random, or from linked documents. CDLM (Caciularu et al., 2021) leverages document-level
supervision by applying MLM over a set of related documents using Longformer (Beltagy et al., 2020). These
works are in line with our work, but they are unable to tackle the important technical challenges of large
input size and scalability and in turn, suffer from the problems of limited input size and high pre-training
compute.

9 Summary and Conclusion

Recent studies have repeatedly stressed the importance of domain-specific pretraining but also pointed to the
costly and elaborate operation that must be undertaken to achieve reasonable performance. This paper shows
that leveraging 1) document-level semantics, and 2) interoperability of input sentence embeddings (during
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pre-training) and token embeddings (during fine-tuning), substantially reduces the compute requirements
for domain-specific pre-training by at least 500 times, even while achieving better results on 6 different
downstream tasks and 9 different datasets. The frugal pretraining technique has an important side-effect, it
shows negligible catastrophic forgetting on the open-domain GLUE Benchmark. We also demonstrate that
the existence of well-defined metadata and taxonomy is not mandatory; FastDoc performs effectively when
discovering such metadata and taxonomy through unsupervised methods, illustrating its potential for future
application across various domains.

Limitations

• FastDoc is robust to a wide document similarity range across several domains. However, perfor-
mance in presence of high levels of noise in metadata is not guaranteed and further investigation is
required to characterize it.

• Applicability of the proposed model to decoder-only and encoder-decoder models: FastDoc can
be extended to decoder-only models like GPT-2 Radford et al. (2019), and encoder-decoder models
like BART-BASE Lewis et al. (2020). We apply FastDoc using GPT-2 backbone (referred to as
FastDocGP T −2) and the BART-BASE encoder as backbone (referred to as FastDocBART −BASE).
Downstream task is dialogue summarization (i.e., a text generation task) on TweetSumm Dataset
Feigenblat et al. (2021) in the Customer Support Domain. We compare it with GPT-2 and BART-
BASE.

Model ROUGE-1 ROUGE-2 ROUGE-L
GPT-2 0.151 0.066 0.119

FastDocGP T −2 0.134 0.058 0.104

Table 12: Results of FastDocGP T −2 vs. GPT-2 on TweetSumm Dataset

Model ROUGE-1 ROUGE-2 ROUGE-L
BART-BASE 0.523 0.314 0.472

FastDocBART −BASE 0.524 0.315 0.473

Table 13: Results of FastDocBART −BASE vs. BART-BASE on TweetSumm Dataset

Tables 12 and 13 show that FastDoc gives poor results when using a decoder-only model as the
backbone, and gives negligible improvement when using the encoder of an encoder-decoder model
as the backbone. Improvement in results needs changing the architecture and document supervision
objectives used in FastDoc to adapt to decoder and encoder-decoder models end-to-end. One way
to adapt FastDoc to decoder model backbones is hierarchical decoding (like hierarchical encoding
in FastDoc) in 2 stages - decoding special, representative sentence tokens, which are then used to
decode subword tokens. This is a potential future work.

• Applicability of the proposed model when downstream tasks are generation tasks: Tables 12 and
13 show that FastDocGP T −2 and FastDocBART −BASE do not perform well on a text generation
task. Improvement in results could be attained in a manner mentioned above.

Broader Impact Statement

The proposed methodology is, in general, applicable to any domain. Specifically, it can potentially be applied
to user-generated text available on the web and is likely to learn patterns associated with exposure bias.
This needs to be taken into consideration before applying this model to user-generated text crawled from
the web. Further, like many other pre-trained language models, interpretability associated with the output
is rather limited, hence users should use the output carefully.
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Appendix

The Appendix is organized in the same sectional format as the main paper. The additional material of a
section is put in the corresponding section of the Appendix so that it becomes easier for the reader to find
the relevant information. Some sections and subsections may not have supplementary material so only their
name is mentioned. The page numbers are in continuation from the Main Paper’s end page number.

A Introduction

B FastDoc Framework

Figure 3 shows the percentage of documents encoded entirely by RoBERTa-BASE encoder when the input
is 512 tokens vs. 512 sentences.

Figure 4 shows a detailed overview of the FastDoc Framework.

C Pre-training Setup

C.1 Pre-training in the Customer Support Domain

Table 14 shows 4 examples of E-manual product categories and the hierarchies assigned to them with the
help of the GPrT. We can see that more similar products tend to have more similar hierarchies.

Mapping E-Manual product category to hierarchy: It may so happen that the product category of
the E-Manual does not have an exact match with any leaf category in the GPrT. In that case, we map it to
that leaf category, where cosine similarity of mean word embeddings (Mikolov et al., 2013) of the product
category and the hierarchy’s last two entities is the highest. This choice gives qualitatively good mapping
when measured using human evaluation.

Triplet Count in Customer Support Note that we do not double the number of triplets by swapping
anchor and positive in case of Customer Support, as doing so leads to very similar results, while taking double
the compute. This is because in case of Customer Support, E-Manuals are written based on the product
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Figure 3: Percentage of documents encoded entirely by RoBERTa-BASE encoder when the input is 512
tokens vs. 512 sentences (The red bar of “Scientific Domain" has a negligible height, and is hence, not
visible.)

Figure 4: Depiction of FastDoc. Anchor, Positive, and Negative Documents are encoded using a Sentence
Transformer, followed by a transformer encoder, to give document representations. A combination of Triplet
and Hierarchical Classification Losses is used to get the Total Loss

category metadata, while the metadata for Scientific and Legal Domains are assigned after the document is
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Product
Category

Hierarchical categories assigned to the
product

blu-ray
player

Electronics > Audio > Audio Accessories
> MP3 Player Accessories > MP3 Player &
Mobile Phone Accessory Sets

stereo
equalizer

Electronics > Audio > Audio Players &
Recorders > Stereo Systems

laptop
docking
station

Electronics > Electronics Accessories
> Computer Accessories > Laptop Docking
Stations

hot bever-
age maker

Home & Garden > Kitchen & Dining
> Kitchen Appliance Accessories > Coffee
Maker & Espresso Machine Accessories > Cof-
fee Maker & Espresso Machine Replacement
Parts

Table 14: Examples of product categories and their corresponding hierarchical categories assigned with the
help of the Google Product Taxonomy. Similar products have similar hierarchies

written. Thus, the product category in Customer Support is much more precise and well-defined compared
to primary category and overlap in EUROVOC Concepts used in Scientific and Legal Domains respectively,
thus requiring lesser data.

D Downstream Datasets/Tasks

Datasets used in our work

Table 15 lists all the downstream datasets used in our work, along with their corresponding tasks and
domains.

Domain Task Dataset

Customer
Support

single-span
QA TechQA

multi-span
QA

S10 QA
Dataset

Scientific
Domain

NER
BC5CDR
JNLPBA
NCBI-D

Relation
Classification

ChemProt
SciERC

Text
Classification SciCite

Legal
Domain

Contract
Review

(Span-based
Clause

Extraction)

CUAD

Table 15: List of all the datasets along with their corresponding tasks and domains.

D.1 Customer Support

S10 Question Answering Dataset. The S10 QA Dataset (Nandy et al., 2021) consists of 904 question-
answer pairs curated from the Samsung S10 Smartphone E-Manual13, along with additional information on

13https://bit.ly/36bqs5E
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the section of the E-Manual containing the answer. However, the answer might not be a continuous span,
i.e., the answer may be present in the form of non-contiguous sentences of a section. The tasks of section
and answer retrieval are performed. The dataset is divided in the ratio of 7:2:1 into training, validation, and
test sets, respectively.

D.2 Scientific Domain

D.3 Legal Domain

The dataset is split 80/20 into train/test, with a small validation set for the preliminary experiments to
perform hyperparameter grid search.

E Experiments and Results

Here we report certain extra experiments which could not be accommodated in the main paper due to want
of space. We also report additional ablation analysis on the TechQA Dataset below.

E.1 Customer Support Domain

Baselines: Details on SPECTER - When pre-training on E-Manuals, instead of initializing the en-
coder with SciBERT (Beltagy et al., 2019) (as in Cohan et al. (2020)), we initialize the model using
EManualsBERT (Nandy et al., 2021), sample about the same number of E-Manual triplets stated in Co-
han et al. (2020) as inputs (using product category information), and use the first 512 tokens per input
E-Manual.

Fine-tuning Setup

Fine-tuning on SQuAD 2.0 (Rajpurkar et al., 2018). SQuAD 2.0 is a span-based open-domain
reading comprehension dataset, consisting of 130, 319 training, 11, 873 dev, and 8, 862 test QA pairs. Before
fine-tuning on the task-specific dataset, we fine-tune the encoder on the SQuAD 2.0 training set, as it has
been shown to improve the performance on QA tasks (Castelli et al., 2020). The hyperparameters used are
the same as mentioned in Rajpurkar et al. (2018).

Fine-tuning on TechQA Dataset: The encoder is fine-tuned on the TechQA Dataset with the same
training architecture used when fine-tuning on SQuAD 2.0. Since this is a QA task, a question and one of
the candidate technotes separated by a special token is the input. If the technote contains the answer, the
target output is the start and end token of the answer, and it is unanswerable otherwise. The hyperparameters
used are the ones mentioned in the default implementation14 of Castelli et al. (2020).

Fine-tuning on S10 QA Dataset: The S10 Dataset is accompanied by 2 sub-tasks - (a) Section Re-
trieval - given the question and top 10 candidate sections retrieved using BM25 IR Method (Nogueira et al.,
2019)15, the task is to find out the section that contains the answer. (b) Answer Retrieval - Given a
question and the relevant E-Manual section, the task is to retrieve the answer to the question. For section
retrieval, a (question, candidate section) pair separated by special tokens (‘[CLS]’ and ‘[SEP]’ in case of
BERT (Devlin et al., 2019) and ‘<s>’ and ‘</s>’ in case of RoBERTa (Liu et al., 2019)) is input to the
model, and the ground truth is 0/1 depending on whether the section contains the answer or not. Similarly,
in the case of answer retrieval, the question paired with a sentence of the section containing the answer
(separated by special tokens) is the input to the model, and the ground truth is 0/1 depending on whether
the sentence is a part of the answer or not. In both sub-tasks, the classification token’s (‘[CLS]’ or ‘<s>’)
encoder output is fed to a linear layer (followed by Softmax function) to get a probability value. Fine-tuning
on each of the sub-tasks yields separate models which are used during inference time for completion of the
respective task.

14https://github.com/IBM/techqa - Apache-2.0 License
15BM25 is better than TF-IDF used in Nandy et al. (2021)

24

https://github.com/IBM/techqa


Published in Transactions on Machine Learning Research (05/2024)

F1 HA_F1@1 HA_F1@5
BERTBASE 8.63 16.72 22.52
RoBERTaBASE 13.98 27.1 43.02
Longformer 15.39 29.82 42
EManualsBERT 10.1 19.56 29.87
EManualsRoBERTa 13.62 26.38 38.67
DeCLUTR 12.52 24.26 29.59
ConSERT 10.78 20.88 31.55
SPECTER 0.69 1.34 7.24
FastDoc(Cus.)BERT (hier.) 9.12 17.68 26.52
FastDoc(Cus.)BERT (triplet) 10.76 20.84 31.81
FastDoc(Cus.)BERT 7.8 15.11 24.78
FastDoc(Cus.)RoBERT a(hier.) 13.83 26.8 37.84
FastDoc(Cus.)RoBERT a(triplet) 12.93 25.06 40.84
FastDoc(Cus.)RoBERT a 14.89 28.85 39.04

Table 16: Results for the QA downstream task on the TechQA Dataset, without intermediate SQuAD
2.0 fine-tuning (Values in red/green indicate if the values are less than/greater than the values got using
intermediate SQuAD 2.0 fine-tuning)

For all the fine-tuning experiments on S10 QA Dataset, we use a batch size of 16 (except for the pre-trained
DeCLUTR model with DistilRoBERTaBASE backbone, where a batch size of 32 is used), and train for 4
epochs with an AdamW optimizer (Loshchilov & Hutter, 2018) and an initial learning rate of 4 × 10−5, that
decays linearly.

Results

Performance on TechQA Dataset

Analyzing impact of fine-tuning on SQuAD 2.0: Table 16 shows the results on the TechQA Dataset
without intermediate fine-tuning on SQuAD 2.0 Dataset. Intermediate SQuAD 2.0 fine-tuning definitively
improves results for 6 out of 8 baselines, and all the FastDoc variants.

Additional Ablation Analysis

We perform the following ablations on FastDoc(Cus.)RoBERT a - (1) We pre-train both the lower and higher-
level encoders and fine-tune the lower encoder. This is referred to as FastDoc(Cus.)RoBERT a(FULL) (2)
We replace the lower encoder sRoBERTa (sentence transformer) with RoBERTa-BASE (still keeping its
weights frozen) and refer to it as FastDoc(Cus.)RoBERT a(lower − RoBERTa).

F1 HA_F1@1 HA_F1@5
FastDoc(Cus.)RoBERT a(F ULL) 17.4 33.71 46.23
FastDoc(Cus.)RoBERT a(lower − RoBERT a) 15.76 30.54 42.52
FastDoc(Cus.)RoBERT a 17.52 33.94 44.96

Table 17: Additional Ablation Analysis on TechQA Dataset.

Table 17 shows the results corresponding to the ablations and FastDoc on TechQA Dataset. We can see
that FastDoc performs better than FastDoc(Cus.)RoBERT a(lower − RoBERTa) on all 3 metrics, and
gives better F1 and HA_F1@1 than FastDoc(Cus.)RoBERT a(FULL).

An alternative to the Triplet Loss: We also observe the effect of using an alternative for triplet loss. We
use “quadruplet loss”, which breaks similarity into 3 categories instead of the binary notion in triplet loss.
We sample 4 documents per input - Anchor(A), near positive(NP), far positive(FP), negative(N). NP is most
similar to anchor, followed by FP, and N. E.g. in Customer Support, NP has same brand, category as that
of anchor, FP has same category, different brand, and N has neither same brand nor category. Quadruplet

25



Published in Transactions on Machine Learning Research (05/2024)

Figure 5: FastDoc(Q) Pre-training Architecture - It is similar to that of FastDoc. Differences are - (1)
Instead of using a Triplet Loss Function (as in FastDoc), a Quadruplet Loss Function is used in this case.
(2) Anchor, Near Positive, Far Positive, and Negative Documents are taken as inputs.

Loss, denoted by Lt, can be mathematically stated as

Lq = Lt(A, NP, N) + K.Lt(A, FP, N) (3)

, where K(0 < K < 1) is a constant to reduce weight of the second loss term in Equation 3, as distance
between A and NP is to be reduced more than that between A and FP. We denote this variation of FastDoc
as FastDoc(Q), as depicted in Figure 5. From Table 18, we observe that FastDoc performs better than
FastDoc(Q) for K = 0.1, 0.5 w.r.t all 3 metrics on the TechQA Dataset.

F1 HA_F1@1 HA_F1@5
FastDoc(Cus.)RoBERT a(Q, K = 0.1) 16.1 31.2 43.04
FastDoc(Cus.)RoBERT a(Q, K = 0.5) 15.72 30.45 40.42
FastDoc(Cus.)RoBERT a 17.52 33.94 44.96

Table 18: Performance of FastDoc(Q) vs. FastDoc on the TechQA Dataset

Performance on the S10 QA Dataset

Table 19 shows the performance of baselines and proposed variants on Section Retrieval and Answer Retrieval
tasks on S10 QA Dataset. Results are reported on the test set, similar to Nandy et al. (2021). For Section

26



Published in Transactions on Machine Learning Research (05/2024)

Retrieval we report HITS@K - the percentage of questions for which, the section containing the ground
truth answer is one of the top K retrieved sections. We report values for K = 1, 3. In Answer Retrieval
a single answer is retrieved, hence HA_F1@1 is reported. The other metrics reported are (a). ROUGE-L 16

(Lin, 2004), and (b). Sentence and Word Mover Similarity (S+WMS) 17 (Clark et al., 2019)18.

We draw the following inferences from Table 19 - (1) Longformer does not perform well, as global at-
tention does not help in learning local contexts required for answer retrieval. (2) Among the baselines,
EManualsRoBERTa gives the best HITS@1, RoBERTaBASE gives the best ROUGE-L F1, and DeCLUTR
gives the best S+WMS score and HA_F1@1. This shows that MLM and span-based contrastive learn-
ing help extract non-contiguous answer spans. (3) Similar to TechQA, FastDoc(Cus.)RoBERT a variants
perform better than FastDoc(Cus.)BERT variants. (4) Compared to TechQA, HA_F1@1 scores on S10
QA Dataset are better, as answering questions from a single device is easier than answering questions
from diverse sources. (5) In Section Retrieval, FastDoc(Cus.)RoBERT a gives the best HITS@1, suggest-
ing that, pre-training using document-level supervision helps generalize to a device not seen during pre-
training. (6) FastDoc(Cus.)RoBERT a gives the best ROUGE-L F1 and the second-best S+WMS score,
while FastDoc(Cus.)RoBERT a(hier.) gives the best S+WMS score, and the second-best ROUGE-L F1 and
HA_F1@1, as mapping documents to hierarchical labels during pre-training can generalize to the context
of a device E-Manual not seen during pre-training. The hierarchy is particularly robust due to the variety
in hierarchical labels. Combining it with triplet loss improves the lexical context, as can be seen from the
value of ROUGE-L F1.

HITS@K Answer Retrieval

K = 1 K = 3 ROUGE
-L F1

S+
WMS

HA_
F1@1

BERTBASE 76.67 91.11 0.792 0.411 44.87
RoBERTaBASE 80 93.33 0.812 0.454 45.39
Longformer 75.56 93.33 0.768 0.415 41.1
EManualsBERT 81.11 93.33 0.8 0.429 44.25
EManualsRoBERTa 82.22 93.33 0.82 0.444 44.73
DeCLUTr 76.67 92.22 0.818 0.455 46.71
ConSERT 78.89 92.22 0.778 0.389 40.85
SPECTER 77.78 93.33 0.802 0.429 43.59
FastDoc(Cus.)BERT (hier.) 81.11 93.33 0.791 0.427 43.18
FastDoc(Cus.)BERT (triplet) 77.78 93.33 0.798 0.419 42.93
FastDoc(Cus.)BERT 78.89 93.33 0.79 0.412 41.75
FastDoc(Cus.)RoBERT a(hier.) 78.89 92.22 0.82 0.478 46.69
FastDoc(Cus.)RoBERT a(triplet) 80 93.33 0.811 0.437 43.78
FastDoc(Cus.)RoBERT a 82.22 93.33 0.828 0.463 46.22

Table 19: Results on the S10 QA Dataset (Best value for each metric is marked in bold, while the second-
best value is underlined).

Qualitative Analysis of answers predicted by a proposed variant and a baseline

We discuss qualitative results with 2 questions from TechQA Dataset and 1 question from S10 QA Dataset
and the answers FastDocRoBERT a and a consistently well-performing baseline EManualsRoBERTa

19 provide
for each question. These questions, ground truth and predicted answers are listed in Table 20. The first
question is a procedural question (‘How’ type), where both models give extra information w.r.t the ground
truth. However, FastDocRoBERT a performs better in extracting the exact number corresponding to the
‘Fix’ which EManualsRoBERTa misses. The second question is in essence two questions together where one

16used https://pypi.org/project/py-rouge/
17used https://github.com/eaclark07/sms
18ROUGE-L F1, S+WMS are reported, as all questions in the S10 QA Dataset are answerable, and these metrics make sense

when each question has a ground truth answer.
19Note that even though Longformer performs well on TechQA, it does not perform well on S10 QA Dataset. For compactness,

we chose only one consistently well performing baseline. However, the illustrations will be similar.
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is procedural (‘How type’) and the other is factual (‘Is’ type) question. Both the models output short
answers that have minimal overlap with the ground truth, suggesting that it is difficult to answer multiple
questions of different types at one go. However, FastDocRoBERT a is nearer to the answer, as it suggests the
issue is related to ‘WS-Proxies’ (mentioned in the ground truth), but that does not appear in the baseline’s
answer. The third question is a location-based question (‘Where’ type). FastDocRoBERT a answers it
almost correctly, with just some extra information on the paragraph containing the answer, whereas the
baseline confuses ‘fingerprint list’ for ‘fingerprint recognition’. The observations point to the proposition that
FastDocRoBERT a performs better at extracting numerical entities, tackling multiple questions
in a sample, and answering location-based questions.

Dataset Question Ground Truth Answer FastDoc(Cus.)RoBERT a EManualsRoBERTa
We are using Portal Server
8.5 and when starting the
Portal server we see follow-
ing error:\n\n0000005e
MBeanStarter E
com.ibm.wps.scripting.server.
MBeanStarter load-
Extensions failed to
load extension: key:
ServerExt.applications
/ value:
com.ibm.wps.scripting.server.
ApplicationServerExten-
sions How can we resolve
this error?

A code fix for this issue is
integrated into the Web-
Sphere\n Portal & WCM
Combined Cumulative Fix
05 (PI31198 [http://www-
01.ibm.com/support/
docview.wss?
uid=swg1PI31198]) for
Portal 8.5.0.0 available
from Fix Central:

A code fix for this is-
sue is integrated into
the WebSphere\n Por-
tal & WCM Com-
binedCumulative Fix 05
(PI31198 [http://www-01
.ibm.com/support/docview.
wss?uid=swg1PI31198])
for Portal\n 8.5.0.0 avail-
able from Fix Central:
<LONG URL>

A code fix for this is-
sue is integrated into
the WebSphere\n Por-
tal & WCM Combined
Cumulative Fix 06
(PI36060 [http://www-01
.ibm.com/support/docview.
wss?uid=swg1PI36060])
for Portal\n 8.5.0.0 avail-
able from Fix Central:
<LONG URL>

TechQA
Dataset I have made changes to a

WSDL stored in DP local
filesystem. How can I make
the WSP reflect this change
since DataPower Gateway
7.1.0 WebService Proxy We-
bGUI doesn’t offer the \"Re-
fresh\" button anymore? Is
there a best practice to re-
fresh the WSP if I modified
my WSDL?

In a WS Proxy, you
can refresh WSDL from an
URL using WSDL Cache
policy. However, if the
WSDL is hosted on the
DataPower appliance, such
as in local:///, rather
than on an external URL,
the WSDL Cache Policy
does not apply. For in-
stance, changes made to
local:///test.wsdl are not
picked up by WS Proxy
.... To refresh a WSDL in
the local:/// directory, dis-
able and re-enable the ser-
vice.

To minimize the impact
of this issue, consider
creating additional WS-
Proxies to reduce the
number of WSDLs per
proxy.

Add/remove the WSDL
from the WSP Gateway
each time you change the
WSDL. 2) Add one char
to the user summary and
then backspace it. The ap-
ply button will be enabled
now. 3) Add a WSDL
Cache Policy.

S10 QA
Dataset

I need the registered finger-
print list. Where can I find
this?

From Settings, tap Biomet-
rics and security >Finger-
prints for the following op-
tions: The list of registered
fingerprints is at the top of
this list. You can tap a
fingerprint to remove or re-
name it.

Add, delete, and rename
fingerprints. From Set-
tings, tap Biometrics and
security > Fingerprints for
the following options: The
list of registered finger-
prints is at the top of this
list. You can tap a finger-
print to remove or rename
it.

Use fingerprint recognition
to verify your identity in
supported apps and ac-
tions. From Settings,
tap Biometrics and secu-
rity >Fingerprints. This is
not available on the Galaxy
S10e. This is only available
on the Galaxy S10e.

Table 20: Qualitative Analysis of answers predicted by FastDoc(Cus.)RoBERT a and the
EManualsRoBERTa baseline on the TechQA and S10 QA Datasets. (The parts in green overlap with
the ground truth, and the parts in red do not overlap.)

In an effort to understand the reason behind FastDoc being better at extracting numerical entities or an-
swering location-based questions, we see how well are such entities shared by anchor and positive documents
compared to anchor and negative documents in Table 21.
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Number of common entities
between anchor and positive

Number of common entities
between anchor and negative

Number of common entities
in (anchor, positive) and

not in negative
Numerical 20.7 10.2 13.3

Noun Phrase 61.5 6.6 57.9

Table 21: Analysis of the distribution of numerical and noun phrase entities across document triplets

We observe that overlap between anchor and positive is more than that between anchor and negative. Also,
number of entities in (positive, anchor) and not in negative is more than the number of common entities
between anchor and negative. Hence, numerical entities and locations (subset of noun phrases) are shared
across highly similar documents, which is captured in the contrastive learning task performed during pre-
training FastDoc. Hence, FastDoc is proficient at answering numerical entity and location-based questions.

E.2 Scientific Domain

Since recent works have used citations as a similarity signal, we report the performance of FastDoc using
citations as a similarity signal in Table 22. This gives a satisfactory performance, showing that FastDoc
works on different metadata types. However, on average, a system using citations does not perform as well as
when using “primary category". In line with the recent works on Contrastive Learning, we apply FastDoc
on triplets sampled using citations as a similarity signal and denote it as FastDoc(Sci.-Cit.)BERT . We can
see in Table 22 that on an average, FastDoc(Sci.)BERT performs better than FastDoc(Sci.-Cit.)BERT .

Field Task Dataset FastDoc(Sci.-Cit.)BERT FastDoc(Sci.)BERT

BIO NER
BC5CDR 87.55 87.81
JNLPBA 75.9 75.84
NCBI-D 85.12 84.33

REL ChemProt 73.8 80.48
CS REL SciERC 80.8 78.95
Multi CLS SciCite 84.13 83.59

AVERAGE 81.22 81.83

Table 22: FastDoc(Sci.)BERT vs. FastDoc(Sci.-Cit.)BERT in tasks presented in Beltagy et al. (2019). We
report macro F1 for NER (span-level), and for REL and CLS (sentence-level), except for ChemProt, where
we report micro F1.

Comparison with GPT-3.5

We compare FastDoc with GPT-3.5 in the zero and one-shot settings for some tasks in the Scientific Domain
in Tables 23 and 24 respectively. We can see that our proposed FastDoc performs much better compared
to the highly capable and much larger GPT-3.5 in both zero and one-shot settings.

Field Task Dataset FastDoc(Sci.)BERT GPT-3.5 (Zero-Shot)

BIO NER
BC5CDR 87.81 56.04 (-36.18%)
JNLPBA 75.84 41.25 (-45.61%)
NCBI-D 84.33 50.49 (-40.13%)

REL ChemProt 80.48 34.16 (-57.56%)

Table 23: Results of FastDoc vs. zero-shot GPT-3.5 on some of the tasks presented in Beltagy et al. (2019).

Field Task Dataset FastDoc(Sci.)BERT GPT-3.5 (One-Shot)
BIO REL ChemProt 80.48 48.64 (-39.56%)

Table 24: Results of FastDoc vs. one-shot GPT-3.5 on some of the tasks presented in Beltagy et al. (2019).
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E.3 Legal Domain

F Pre-training Compute of FastDoc relative to the baselines

Choice of GPU-Hours as a metric for measuring pre-training compute

FastDoc and the baselines in Table 6 use a BERT/RoBERTa backbone, making modules of sharding, data
parallelism, etc. uniform across models. Hence, GPU-Hours is appropriate for compute. Also, several works
on pre-training such as Devlin et al. (2019); Liu et al. (2019); Cohan et al. (2020); Giorgi et al. (2021) report
the number of GPUs and the time needed for pre-training, i.e., they support the metric of GPU-Hours.

Also, we compare the metrics of GPU-Hours and FLOPS (Floating-point operations per second) in Table
25. Note that FLOPS is another reliable metric for measuring computer performance20, and hence, training
compute.

FLOPS GPU-Hours
EManualsRoBERTa 4.46 × 1018 980

FastDoc(Cus.)RoBERT a 2.56 × 1015 0.75
Speedup 1745 1307

Table 25: Comparison of the speedup obtained using FastDoc in GPU-Hours vs. FLOPS

We observe that the compute speedup (or reduction) in FastDoc compared to the EManualsRoBERTa base-
line is very close for the two metrics of GPU-Hours and FLOPS, suggesting that GPU-Hours, like FLOPS,
is indeed a reliable metric for measuring pre-training compute.

Clarification of calculation of pre-training compute of SciBERT

We would like to present the following evidence accompanied by suitable reasoning in support of the calcu-
lated value of the pre-training compute -

1. The blog referred to in Footnote 5 of Beltagy et al. (2019) (https://timdettmers.com/2018/10/
17/tpus-vs-gpus-for-transformers-bert/), titled “TPUs vs GPUs for Transformers (BERT)",
discusses the compute requirements for BERT-LARGE and BERT-BASE using different GPU and
TPU configurations and specifications. A line from a section of the blog titled “BERT Training Time
Estimate for GPUs” states - “On an 8 GPU machine for V100/RTX 2080 Tis with any software
and any parallelization algorithm (PyTorch, TensorFlow) one can expect to train BERT-LARGE
in 21 days or 34 days". This does not match the sentence in the footnote, which suggests that it
is expected to take 40-70 days for pre-training on an 8 GPU machine. Hence, we believe that the
sentence in the footnote does not correspond to BERT-LARGE, rather, it intuitively corresponds to
SciBERT. The blog was referred to give the reader an idea of how a comparison of GPU and TPU
is made.

2. We must mention here that the TPU versions used in Beltagy et al. (2019) and Devlin et al. (2019)
are in all probability different. Beltagy et al. (2019) reports its pre-training time corresponding to
TPU v3, whereas Devlin et al. (2019) does not mention the exact version of the Cloud TPU used.
Also, according to the Google Cloud TPU Release Notes (https://cloud.google.com/tpu/docs/
release-notes#October_10_2018) we see that the TPU v3 was first introduced (in beta release)
on October 10, 2018. However, the first version of the BERT Paper was added to ArXiv (https:
//arxiv.org/abs/1810.04805v1) on October 11, 2018, just 1 day after the beta release of TPU v3
- indicating that, some earlier version of TPU was used for the pretraining experiments.

20https://kb.iu.edu/d/apeq
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G Analysis and Ablation

G.1 Catastrophic Forgetting in open-domain

Hyperparameters: For all such experiments, we fine-tune for 10 epochs, with a learning rate of 3 × 10−5,
input sequence length of 512, and batch size of 32. For a task, the best development set results across all
epochs is reported.

G.2 Parameter-Efficient training

The trainable parameters of the encoder during fine-tuning are the same as that in the domain-specific pre-
training stage. Hence, as an ablation, we explore the impact of a reduced number of trainable parameters
during pre-training by incorporating Parameter-Efficient Training.

Field Task Dataset FastDoc(Sci.)BERT FastDoc(Sci.)BERT (LoRA)

BIO NER
BC5CDR 87.81 88.59 (+0.89%)
JNLPBA 75.84 61.24 (-19.25%)
NCBI-D 84.33 39.57 (-53.08%)

REL ChemProt 80.48 74.32 (-7.65%)
CS REL SciERC 78.95 62.19 (-21.23%)
Multi CLS SciCite 83.59 81.35 (-2.68%)

Table 26: Results of FastDoc trained using LoRA vs. proposed FastDoc on tasks presented in Beltagy
et al. (2019).

Table 26 shows the results of the parameter-efficient training technique of LoRA (Low-Rank Adaptation)
(Hu et al., 2022) to observe the effect of using a reduced number of trainable parameters during continual
domain-specific pre-training of FastDoc in the Scientific Domain. LoRA is applied on the upper encoder
of FastDoc during pre-training. FastDoc performs significantly better compared to when using LoRA in
downstream NER, when there are a large number of classes (as in JNLPBA, which has 11 classes), or when
the dataset is extremely imbalanced (as in NCBI-Disease, where 91.72% of the training samples belong to a
single class). We attribute this to an insufficient number of trainable parameters when using LoRA during
pre-training. Similarly, LoRA performs poorly in Relation and Text Classification. On the contrary, there is
a meagre reduction in compute from 1.7 to 1.66 GPU-Hours when using FastDoc(Sci.)BERT (LoRA) instead
of FastDoc(Sci.)BERT , suggesting that LoRA is not beneficial from a compute perspective as well.

G.3 Absence of document supervision

Dataset SciBERT FastDoc
(3 hier. levels)

FastDoc
(w/o est. meta, tax.

3 hier. levels)

FastDoc
(w/o est. meta, tax.

11 hier. levels)
BC5CDR 85.55 87.81 87.6 87.88
JNLPBA 59.5 75.84 75.91 76.06
NCBI-D 91.03 84.33 85.02 85.05
ChemProt 78.55 80.48 76.9 76.6
SciERC 74.3 78.95 79.26 81.21
SciCite 84.44 83.59 83.6 83.6

Table 27: Results of FastDoc on tasks mentioned in Beltagy et al. (2019) in Scientific Domain with and
without established domain-specific document metadata and taxonomy, compared to a well-performing base-
line
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Model AUPR Precision@
80% Recall

b+ Contracts Pre-training 45.2 34.1

FastDoc(Leg.)RoBERT a (4 hier. levels) 44.8
(-0.88%)

34.6
(+1.47%)

FastDoc(Leg.)RoBERT a

(w/o est. meta., tax., 4 hier. levels)
46.7

(+3.32%)
38.7

(+13.49%)
FastDoc(Leg.)RoBERT a

(w/o est. meta., tax., 17 hier. levels)
47.9

(+5.97%)
42

(+23.17%)

Table 28: Results of FastDoc on CUAD Dataset in Legal Domain with and without established domain-
specific document metadata and taxonomy, compared to a well-performing baseline

G.4 Why FastDoc works: Analysis of the interoperability of embeddings

Interoperability of pre-trained encoder parameters for input token and sentence embeddings

We present experiments and observations to support the surprising interoperability of input embeddings, in
response to the following research questions -

Q1. How does FastDoc learn local context?

Nature of pre-training inputs: We contrast the paragraph-level similarity between similar and dissimilar
input documents used during pre-training. Given a pair of E-Manuals (from the Customer Support Domain),
each paragraph in the two E-Manuals is converted to a fixed-size vector using Doc2Vec model (Le & Mikolov,
2014) trained on Wikipedia, and the similarity score (cosine) with the most similar paragraph from the other
E-Manual is considered as a ‘Paragraph Similarity Score’. The distribution of this score across similar and
dissimilar document pairs is plotted in Fig. 6.

Figure 6: Distribution of ‘Paragraph Similarity Score’ across similar and dissimilar document pairs

We can infer that paragraph pairs from similar documents are skewed towards higher similarity, with more
than half of the samples having a ‘Paragraph Similarity Score’ > 0.7. The sections where the similarity is
even higher are mainly the specific sections where some procedure/task is specified like ‘How to calibrate
a wireless thermometer?’ or the device specifications and/or warnings about using the device/service are
given, which would indirectly help the model in the downstream QA task. Similarly, (even the most similar)
paragraph pairs in dissimilar documents are skewed towards lower similarity, with a majority of the samples
having a ‘Paragraph Similarity Score’ < 0.5. Thus similar documents have very-similar local (paragraph-
level) contexts, suggesting that, using document-level supervision during pre-training also helps in learning
local contexts.
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Analysis of Local Context learned using FastDoc: Document-level supervision using FastDoc per-
forms well on token-level tasks that require learning from local context (such as NER, relation classification,
etc.), even though it was not explicitly trained on learning local context. To validate this, we measure the
influence of local context on a random token vis-a-vis a standard MLM model (that learns from local context
in accordance with the supervision signal). We randomly sample 500 sentences from each of the 3 domains.
For each sentence, we take a random token and calculate the change in its prediction probability on masking
other tokens in the sentence. Table 29 shows the Spearman Correlation of this change between two models
(FastDoc and a domain-specific model pre-trained using MLM) for each domain. We observe that the
correlation is moderately high for all domains, showing that the local contexts is learned by FastDoc to a
reasonable extent.

Domain Model using FastDoc Model using MLM Correlation
Customer
Support FastDoc(Cus.)RoBERT a EManualsRoBERTa 0.368

Scientific
Domain FastDoc(Sci.)BERT SciBERT 0.481

Legal
Domain FastDoc(Leg.)RoBERT a

RoBERTaBASE +
Contracts Pre-training 0.393

Table 29: Correlation of the change in masked token prediction probability between FastDoc and MLM,
corresponding to other masked tokens, across domains.

Q2. Are the relative representations preserved across the two embedding spaces?

Qualitative Evaluation of Relative Document Representations: We analyze the relative document
representations learnt by the pre-trained encoder in FastDoc(Cus.)RoBERT a, for both sentence-level and
token-level input embeddings. For 4 different product categories (printer, plumbing product, battery charger,
indoor furnishings), we consider 5 E-Manuals each containing between 400 − 512 tokens so that it complies
with the maximum number of tokens accepted by BERTBASE or RoBERTaBASE as inputs. The cosine
similarity between the E-Manual representations of each of the

20
C2 = 190 E-Manual pairs corresponding to

both types of input embeddings is obtained, and normalized (using max-min normalization). The similarity
values corresponding to the two types of input embeddings are positively correlated to each other, with
the Pearson Correlation value being 0.515. We further take the category-wise average representations, and
repeat this experiment. We find that the Correlation for the similarity values is 0.977. Hence, the relative
representations in both the representation spaces are highly correlated, which justifies good downstream
performance when an encoder pre-trained on sentence embedding inputs is fine-tuned on token embedding
inputs.

For a visual analysis of these E-manuals, PCA (Principal Component Analysis) is applied over the document
representations to reduce the vector dimension from 768 to 2. These representations are then plotted (as
shown in Fig. 7) for the pre-trained encoder in FastDoc(Cus.)RoBERT a and two types of input embeddings
(sentence and token level). Different product categories are shown in different colors. We infer that indepen-
dent of whether the inputs are sentence or token-level embeddings, the E-Manuals are clustered in a similar
manner across the two representation spaces, and hence, the relative representations are preserved across
the two embedding spaces.

Q3. How are pre-training and fine-tuning compatible?

Compatibility between pre-training using FastDoc and downstream tasks via few-shot fine-
tuning: To test this compatibility, we fine-tune on a small number of samples in a few-shot setting. We
perform 50-shot fine-tuning (i.e., fine-tuning on 50 training samples) on 3 tasks from 3 domains - Span-
Based Question Answering on TechQA Dataset from Customer Support (with no intermediate SQuAD
Fine-tuning), Text Classification on SciCite Dataset from Scientific Domain, and Span Extraction on CUAD
Dataset from Legal Domain. We compared FastDoc (pre-trained using document-level supervision) with
RoBERTaBASE /BERTBASE (pre-trained without any document-level supervision). Tables 30, 31, and 32
show the results, along with the respective improvements when using FastDoc. Better performance of
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(a) with sentence embeddings as inputs

(b) with token embeddings as inputs

Figure 7: 2D Plots of first two principal components of the document representations of 20 E-Manuals from
4 product categories using FastDoc(Cus.)RoBERT a for different types of input embeddings

FastDoc across all 3 domains in few-shot fine-tuning setting suggests that (1) Pre-training using document-
level supervision is effective across 3 domains (2) FastDoc Pre-training and Fine-tuning are compatible.

Additional Analysis

Experiment on analyzing local context similarity of input embeddings: Fig. 8 shows the distribu-
tion of WL (Window Length) corresponding to input sentence and token embeddings for RoBERTa-based
FastDoc(Cus.)RoBERT a encoder for similar and dis-similar document pairs, for documents that have be-
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Model F1 HA_F1@1 HA_F1@5
RoBERTaBASE 0.71 1.38 2.71

FastDoc(Cus.)RoBERT a
0.86

(+21.1%)
1.66

(+20.3%)
4.85

(+79%)

Table 30: Results on TechQA Dataset in Customer Support Domain

Model Macro F1
BERTBASE 37.75

FastDoc(Sci.)BERT
40.16

(+6.4%)

Table 31: Results on SciCite Dataset in Scientific Domain

Model AUPR
RoBERTaBASE 0.13

FastDoc(Leg.)RoBERT a
0.14

(+7.69%)

Table 32: Results on CUAD Dataset in Legal Domain

tween 400 − 512 tokens. Given a pair of documents, the first being an anchor, WL is 1 more than the
distance between an input embedding of the first document, and the most similar input embedding of the
second document, averaged across all embeddings of the first document. If similar embeddings are present
at nearby positions in two documents, WL will tend to be smaller. Thus WL quantifies the local context
similarity of the input embeddings. We observe that the distribution of WL is skewed towards smaller values
(i.e., inputs are locally more similar) in similar pairs compared to dis-similar pairs, irrespective of the input
(token or sentence) embeddings. Additionally, this also suggests that similar documents inherently induce
learning of similarity between sentences and tokens when using FastDoc, thus learning from local contexts.
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(a) Sentence Embeddings of similar pairs (b) Sentence Embeddings of dis-similar pairs

(c) Token Embeddings of similar pairs (d) Token Embeddings of dis-similar pairs

Figure 8: Distribution of WL for sentence and token embeddings as inputs to pre-trained
FastDoc(Cus.)RoBERT a encoder for similar and dis-similar document pairs
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