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Abstract

The recent Segment Anything Model (SAM) represents a big leap in scaling up
segmentation models, allowing for powerful zero-shot capabilities and flexible
prompting. Despite being trained with 1.1 billion masks, SAM’s mask prediction
quality falls short in many cases, particularly when dealing with objects that have
intricate structures. We propose HQ-SAM, equipping SAM with the ability to
accurately segment any object, while maintaining SAM’s original promptable
design, efficiency, and zero-shot generalizability. Our careful design reuses and
preserves the pre-trained model weights of SAM, while only introducing minimal
additional parameters and computation. We design a learnable High-Quality Output
Token, which is injected into SAM’s mask decoder and is responsible for predicting
the high-quality mask. Instead of only applying it on mask-decoder features, we
first fuse them with early and final ViT features for improved mask details. To train
our introduced learnable parameters, we compose a dataset of 44K fine-grained
masks from several sources. HQ-SAM is only trained on the introduced detaset of
44k masks, which takes only 4 hours on 8 GPUs. We show the efficacy of HQ-SAM
in a suite of 10 diverse segmentation datasets across different downstream tasks,
where 8 out of them are evaluated in a zero-shot transfer protocol. Our code and
pretrained models are at https://github.com/SysCV/SAM-HQ.

1 Introduction

Accurate segmentation of diverse objects is fundamental for a wide range of scene understanding
applications, including image/video editing, robotic perception, and AR/VR. Trained with billion-
scale mask labels, the Segment Anything Model (SAM) [21] was recently released as a foundational
vision model for general image segmentation. SAM is capable of segmenting a wide range of objects,
parts, and visual structures in diverse scenarios, by taking a prompt consisting of points, a bounding
box, or a coarse mask as input. Its zero-shot segmentation abilities have led to a rapid paradigm shift,
as it can be transferred to numerous applications through simple prompting.

While SAM has achieved impressive performance, its segmentation results are still unsatisfactory
in many cases. In particular, SAM suffers from two key problems: 1) Coarse mask boundaries,
often even neglecting the segmentation of thin object structures, as shown in Figure 1. 2) Incorrect
predictions, broken masks, or large errors in challenging cases. This is often related to SAM
misinterpreting thin structures, such as the kite lines in the rightmost column of Figure 1. These types
of failures severely limit the applicability and effectiveness of foundational segmentation models,
such as SAM, in particular for automated annotation and image/video editing tasks, where highly
accurate image masks are crucial.

We propose HQ-SAM, which can predict highly accurate segmentation masks, even in very challeng-
ing cases (see Figure 1), without compromising the strong zero-shot capabilities and flexibility of the
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Figure 1: The predicted masks of SAM vs. our HQ-SAM, given the same red box or several points
on the object as input prompts. HQ-SAM produces significantly more detailed results with very
accurate boundaries. In the rightmost column, SAM misinterprets the thin structure of the kite lines,
and produces a large portion of errors with broken holes for the input box prompt.

original SAM. To preserve the efficiency and zero-shot performance, we propose a minimal adaptation
of SAM, adding less than 0.5% parameters, to extend its capability to high-quality segmentation.

Directly fine-tuning the SAM decoder or introducing a new decoder module severely degrades the
general zero-shot segmentation performance. We therefore propose the HQ-SAM architecture, which
tightly integrates with and re-uses the existing learned SAM structure, in order to fully preserve the
zero-shot performance. First, we design a learnable HQ-Output Token that is input to SAM’s mask
decoder, alongside the original prompt and output tokens. Unlike the original output tokens, our
HQ-Output Token and its associated MLP layers are trained to predict a high-quality segmentation
mask. Second, instead of only re-using the SAM’s mask decoder features, our HQ-Output Token
operates on a refined feature set to achieve accurate mask details. In particular, we use both global
semantic context and local fine-grained features by fusing SAM’s mask decoder features with early
and late feature maps from its ViT encoder. During training, we freeze the entire pre-trained SAM
parameters, while only updating our HQ-Output Token, its associated three-layer MLPs, and a small
feature fusion block.
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Figure 2: Performance vs. speed vs. model size
for an array of SAM variants [21, 52].

Learning accurate segmentation requires a dataset
with accurate mask annotations of diverse objects
with complex and detailed geometries. SAM
is trained on the SA-1B dataset, which contains
11M images with 1.1 billion masks automatically
generated by a SAM-like model. However, us-
ing this extensive dataset presents significant cost
implications and falls short of achieving the de-
sired high-quality mask generations pursued in our
work, as evident by SAM’s performance in Fig-
ure 1. Consequently, we compose a new dataset,
called HQSeg-44K, which contains 44K extremely
fine-grained image mask annotations. HQSeg-
44K is constructed by merging six existing image
datasets [35, 29, 26, 38, 8, 46] with highly accurate
mask labels, covering over 1,000 diverse semantic
classes. Thanks to the smaller-scale dataset and our
minimal integrated architecture, HQ-SAM can be
trained in only 4 hours on 8 RTX 3090 GPUs.

To validate the effectiveness of HQ-SAM, we perform extensive quantitative and qualitative experi-
mental analysis. We provide a comprehensive performance-speed-model size comparison on SAM
variants [21, 52] in Figure 2. We compare HQ-SAM with SAM on a suite of 10 diverse segmentation
datasets across different downstream tasks, where 8 out of them are under a zero-shot transfer protocol,
including COCO [31], UVO [42], SGinW [58], LVIS [14], HQ-YTVIS [20], BIG [6], COIFT [29]
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and HR-SOD [51]. This rigorous evaluation demonstrates that the proposed HQ-SAM can produce
higher-quality masks while maintaining the zero-shot capability compared with SAM.

2 Related Work

High-quality Segmentation Existing works for high-quality segmentation are mostly trained for a
specific segmentation task, like image and video instance segmentation [22, 19, 20, 40, 44], semantic
segmentation [30, 54, 39, 50] or panoptic segmentation [9], in a close-world paradigm. Some of
them focus on post-segmentation refinement using with graphical models such as CRF [23] or region
growing [10]. However, the CRF-based refinement is adhere to low-level color boundaries without
fully utilizing high-level semantic context and cannot fix large segmentation errors. While some
refinement-based works adopt separate deep networks for cascade iterative refinement [6, 37], they are
prone to overfitting as shown by our experiment. Compared to these high-quality segmentation [19,
22, 33] or segmentation refinement methods, we focus on accurately segmenting diverse objects
on new data with flexible prompting, and build a high-quality zero-shot segmentation model that
generalizes to various segmentation tasks and domains. Unlike the post segmentation refinement
works [6, 37], to preserve the zero-shot segmentation capability of SAM, HQ-SAM predicts the new
high-quality mask directly by reusing the image encoder and mask decoder of SAM, instead of taking
the coarse mask and images as the input and feeding it into a separate refinement network. The model
architecture of HQ-SAM builds upon SAM with negligible overhead, where we propose efficient
token learning for accurate mask predictions. This is completely different from previous high-quality
segmentation works, and we show its effectiveness across a wide range of zero-shot experiments.

Fine-tuning and Prompt Tuning for Foundation Models Foundation models [2, 1] first appear
in the NLP community, where large language models such as GPT series [2] show strong zero-shot
generalization to unseen tasks and data. Then, some prompt-based learning works [16, 27, 17] are
proposed to help these pre-trained models generalize to the downstream tasks instead of fine-tuning the
internal model parameters [15] for better transfer learning. For vision-based foundation models [21,
43, 59], prompt engineering [56, 45, 49, 57] that freezes the pre-trained model is first explored in
vision-language models, such as CLIP [36]. These prompts with learnable parameters are designed
to help downstream tasks with better context optimization. Different from the existing prompt-based
or finetuning works, we focus on the minimal adaptation of SAM toward high-quality segmentation.
We directly use the proposed HQ-Output Token output for accurate mask prediction, instead of only
leveraging some learnable parameters [56] to help context learning and better generalization.

3 Method

We propose HQ-SAM to upgrade SAM for high-quality zero-shot segmentation. HQ-SAM is
lightweight and only introduces two important adaptations to the SAM model. In Sec 3.1, we first
briefly review the architecture of SAM on which HQ-SAM is built. Then, in Sec 3.2, we introduce
our HQ-SAM with High-Quality Token (HQ-Output Token) and Global-local Feature Fusion, which
are the key components to achieve better segmentation quality for SAM while preserving its zero-shot
capability. Finally, in Sec 3.3, we describe the training and inference process of HQ-SAM, which is
both data and computationally efficient.

3.1 Preliminaries: SAM

SAM [21] is composed of three modules: (a) Image encoder: a heavy ViT-based backbone for
image feature extraction, resulting in image embedding in spatial size 64×64. (b) Prompt encoder:
encoding the interactive positional information from the input points/boxes/masks to provide for the
mask decoder. (c) Mask decoder: a two-layer transformer-based decoder takes both the extracted
image embedding with the concatenated output and prompt tokens for final mask prediction. The
released SAM model is trained on the large-scale SA-1B dataset, which contains over 1 billion
automatically generated masks (400× more masks than any existing segmentation datasets [14, 24])
and 11 million images. Thus, SAM shows valuable strong zero-shot generalization to new data
without the necessity for additional training. However, we also note that SAM training is very
expensive, where distributively training ViT-H-based SAM for 2 epochs on SA-1B requires 256
GPUs with a large batch size of 256 images. For more SAM method details, we refer readers to [21].
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Figure 3: HQ-SAM introduces HQ-Output Token and Global-local Feature Fusion to SAM for
high-quality mask prediction. To keep the zero-shot capability of SAM, the lightweight HQ-Output
Token reuses SAM’s mask decoder, and generates new MLP layers for performing point-wise product
with fused HQ-Features. During training, only a few learnable parameters in HQ-SAM are trainable
while we fix the model parameters of the pre-trained SAM. The prompt encoder is omitted here for
clarity. Error correction is simply used as a direct element-wise sum between the predicted logits of
the SAM’s Output Token and the HQ-Output Token during inference.

3.2 Ours: HQ-SAM

In this section, we describe the architecture of the HQ-SAM network. To preserve the zero-shot
transfer capability of SAM, while preventing model overfitting or catastrophic forgetting, instead
of directly finetuning SAM or adding a new heavy decoder network, we take a minimal adaptation
approach as much as possible. To this end, HQ-SAM reuses the pre-trained model weights of SAM
as much as possible with only two new key components, namely, High-Quality Output Token and
Global-local Feature Fusion, as illustrated in Figure 3. HQ-SAM can thus be regarded as a high-
quality zero-shot segmentation model evolved from SAM with negligible extra model parameters and
computation cost.

3.2.1 High-Quality Output Token

We propose efficient token learning for improving the mask quality of SAM. As shown in Figure 3,
in SAM’s original mask decoder design, the output token (similar to object query in DETR [3]) is
adopted for mask prediction, which predicts dynamic MLP weights and then performs point-wise
product with the mask features. To promote SAM’s mask quality in HQ-SAM, instead of directly
taking SAM’s coarse masks as input, we introduce the HQ-Output token and a new mask prediction
layer for high-quality mask prediction.

In Figure 3, by reusing and fixing SAM’s mask decoder, a new learnable HQ-Output Token (size
of 1×256) is concatenated with SAM’s output tokens (size of 4×256) and prompt tokens (size of
Nprompt×256) as the input to the SAM’s mask decoder. Similar to the original output token, in each
attention layer, HQ-Output Token first performs self-attention with other tokens and then conducts
both token-to-image and the reverse image-to-token attention for its feature updating. Note that
HQ-Output Token uses the point-wise MLP shared by the other tokens in each decoder layer. After
passing through two decoder layers, the updated HQ-Output Token has access to the global image
context, the critical geometric/type information of prompt tokens as well as hidden mask information
of the other output tokens. Finally, we add a new three-layer MLP to generate dynamic convolutional
kernels from the updated HQ-Output Token, which then performs spatially point-wise product with
the fused HQ-feature for high-quality mask generation.

Instead of directly finetuning SAM or further adding a heavy post-refinement network, we only allow
the HQ-Output Token and its associated three-layer MLPs to be trained for correcting the mask
errors of SAM’s output token. This is completely different from existing high-quality segmentation
models [19, 6, 20, 22]. We identify two main advantages of our efficient token learning through
extensive experiments: 1) This strategy significantly improves SAM’s mask quality while only
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introducing negligible parameters compared to original SAM, making HQ-SAM training extremely
time and data-efficient; 2) The learned token and MLP layers do not overfit to mask the annotation
bias of a specific dataset, thus keeping SAM’s strong zero-shot segmentation capability on new
images without catastrophic knowledge forgetting.

3.2.2 Global-local Fusion for High-quality Features

Very accurate segmentation also requires input image feature with both rich global semantic context
and local boundary details. To further promote mask quality, we enrich both the high-level object
context and low-level boundary/edge information in the mask decoder features of SAM. Instead
of directly using SAM’s mask decoder feature, we compose the new high-quality features (HQ-
Features) by extracting and fusing features from different stages of the SAM model: 1) The early
layer local feature of SAM’s ViT encoder with spatial shape 64×64, which captures more general
image edge/boundary details [12]. Concretely, we extract the feature after the first global attention
block of the ViT encoder, and for ViT-Large based SAM, this is the 6th block output for the 24 blocks
in total; 2) The final layer global feature of SAM’s ViT encoder with shape 64×64, which has more
global image context information; 3) The mask feature in SAM’s mask decoder with size 256×256,
which is also shared by the output tokens, contains strong mask shape information.

As shown in Figure 3, to obtain the input HQ-Features, we first upsample the early-layer and final-
layer encoder features to the spatial size 256×256 by transposed convolution. Then, we sum up these
three types of features in an element-wise manner after simple convolutional processing. We show
that this global-local feature fusion is simple while effective, yielding detail-preserving segmentation
results with a small memory footprint and computation burden. We also perform detailed ablation on
the effect of each feature source in the experimental section (Table 3).

3.3 Training and Inference of HQ-SAM

Training Data Construction To train HQ-SAM in a data-efficient manner, instead of further training
on SA-1B [21], we compose a new training dataset HQSeg-44K which contains 44,320 extremely
accurate image mask annotations. We note that the released SA-1B dataset only contains automatically
generated mask labels, missing very accurate manual annotation on objects with complex structures.
Due to the annotation difficulty, HQSeg-44K leverages a collection of six existing image datasets
including DIS [35] (train set), ThinObject-5K [29] (train set), FSS-1000 [26], ECSSD [38], MSRA-
10K [8], DUT-OMRON [46] with extremely fine-grained mask labeling, where each of them contains
7.4K mask labels on average. To make HQ-SAM robust and generalizable to new data, HQSeg-44K
contains diverse semantic classes of more than 1,000. We show the advantage of using HQSeg-44K
by comparing HQ-SAM training with 44K randomly sampled images and masks from SA-1B [21] in
our supplemental analysis.

HQ-SAM Training During training, we fix the model parameters of the pre-trained SAM model
while only making the proposed HQ-SAM learnable. The learnable parameters thus only include the
HQ-Output Token, its associated three-layer MLP and three simple convolutions for HQ-Features
fusion. Since SAM is designed for flexible segmentation prompts, we train HQ-SAM by sampling
mixed types of prompts including bounding boxes, randomly sampled points, and coarse masks input.
We generate these degraded masks by adding random Gaussian noise in the boundary regions of the
GT masks. For generalizability to different object scales, we use large-scale jittering [13]. We use a
learning rate of 0.001 and train our HQ-SAM for 12 epochs, with a learning rate drop after 10 epochs.
We train on 8 Nvidia GeForce RTX 3090 GPUs with a total batch size of 32, which takes 4 hours to
train for 16.6K iterations. Please refer to our supplemental file for more details.

HQ-SAM Inference We follow the same inference pipeline of SAM but use the mask prediction
from HQ-Output token as high-quality mask prediction. During inference, we sum the predicted
logits of the SAM mask (by Output Token) and our predicted mask (by HQ-Output Token) for mask
correction on spatial resolution 256×256. Then we up-sample the corrected mask to the original
resolution 1024×1024 as our output.

SAM vs. HQ-SAM on Training and Inference In Table 1, we report detailed training and
inference comparisons between our HQ-SAM and SAM. While HQ-SAM produces substantially
better segmentation quality, its training is very quick and affordable, which only takes 4 hours with
8 RTX3090 GPUs. HQ-SAM is also lightweight and efficient, introducing negligible increases in
model parameters, GPU memory usage, and inference time per image.
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Table 1: Training and inference comparison between ViT-L [11] based SAM and HQ-SAM. HQ-SAM
brings negligible extra computation burden to SAM, with less than 0.5% increase in model parameters
and reaching 96% of its original speed. SAM-L is trained on 128 A100 GPUs for 180k iterations.
Based on SAM-L, we only need to train our HQ-SAM on 8 RTX3090 GPUs for 4 hours.

Method Training Inference
Learnable Params (M) # GPU Batch Size Time (h) FPS Mem.

SAM [21] 1191 128 128 N/A 5.0 7.6G
HQ-SAM 5.1 8 32 4 4.8 7.6G

4 Experiments

4.1 Experimental Setup

Datasets For training we use the compiled HQSeg-44K, described in Section 3.3. For a comprehen-
sive evaluation of the segmentation performance of HQ-SAM, we perform experiments on a wide
range of datasets, including four extremely fine-grained segmentation datasets: DIS [35] (validation
set), ThinObject-5K [29] (test set), COIFT [29] and HR-SOD [51]. Besides, we experiment on popu-
lar and challenging benchmarks across various image/video-based segmentation tasks in zero-shot
settings, such as COCO [31], SGinW [58], UVO [42], LVIS [14], HQ-YTVIS [20] and BIG [6].

Evaluation Metrics To accurately quantify improvements in mask quality, instead of only employing
the standard mask AP or mask mIoU, we also adopt boundary metrics mBIoU and boundary APB [5].
We also evaluate on stricter APstrict

B by adjusting the default dilation ratio from 0.02 to 0.01 on
UVO [42] and LVIS [14]. For evaluation on the four fine-grained segmentation datasets [35, 29, 51],
we also report the averaged boundary and mask IoU among them. For video instance segmentation
evaluation on HQ-YTVIS [20], we use both Tube Boundary APB and Tube Mask APM .

4.2 Ablation Experiments

We conduct detailed ablation studies on the proposed HQ-SAM using ViT-Large as the backbone,
analyzing the impact of the proposed HQ-Output Token and HQ-Features on segmentation quality
especially in zero-shot cases. For ablation experiments, we use the four aforementioned extremely
accurate segmentation datasets, namely, DIS (val) [35], ThinObject-5K (test) [29], COIFT [29] and
HR-SOD [51] as well as the COCO validation set.

Effect of the High-Quality Output Token . HQ-SAM employs HQ-Output Token for high-quality
mask prediction. Table 2 compares our HQ-Output Token to the baseline SAM and other existing
prompt/token learning strategies, such as adding an additional three context tokens [56] as learnable
vectors into the SAM’s mask decoder for better context learning. Compared to using context tokens,
the HQ-Output token consistently brings larger performance gains on four high-quality datasets, with
13.2 mBIoU on DIS and 2.7 mBIoU on COIFT datasets. We also perform other ablation experiment
variants, such as computing the scaled dot product [18] between the original SAM’s output token
and our HQ-Output token or restricting the mask loss to only inside the boundary regions, and find
they slightly decrease the averaged performance on the four evaluation datasets. Compared to SAM,
HQ-SAM significantly improves the mBIoU on DIS benchmark from 52.8 to 70.4 and also promotes
the mBIoU on the HRSOD dataset for 3.8 points.

Ablation on the Global-local Fusion for HQ-Features Table 3 tabulates the effect of global-local
fusion, where the importance of each feature component is analyzed in HQ-Features during the
fusion process. Compared to directly using the mask decoder feature of SAM, the entire HQ-Features
bring an obvious advantage of 2.6 mBIoU on four highly accurate segmentation datasets. The
final-layer ViT encoder feature with global context increases the mBIoU from 80.1 to 81.3. while
the early-layer feature with local details further promotes the mBIoU to 81.8. We also replace the
proposed global-local fusion with the conventional FPN to build a feature pyramid for fusion, and
found this brought an inferior performance, decreasing from 89.1 to 87.4 mIoU.

Comparison to SAM finetuning or post-refinement . In Table 4, we compare our efficient token
adaptation strategy to adding an extra post-refinement network [6] and model finetuning, including
directly finetuning SAM’s mask decoder or only finetuning its output token for mask prediction.
Adding an extra heavy post-refinement network brings limited averaged performance increase on
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Table 2: Ablation study of the HQ-Output Token on four extremely fine-grained segmentation datasets.
We adopt the boxes converted from their GT masks as the box prompt input. By default, we train the
predicted mask of HQ Output-Token by computing full GT mask loss.

Model DIS [35] COIFT [29] HRSOD [51] ThinObject [29] Average

mIoU mBIoU mIoU mBIoU mIoU mBIoU mIoU mBIoU mIoU mBIoU

SAM (baseline) 62.0 52.8 92.1 86.5 90.2 83.1 73.6 61.8 79.5 71.1

Using SAM’s mask decoder feature:
SAM + Context Token [56] 71.5 62.2 93.0 87.7 91.8 85.0 84.5 73.1 85.2 77.0
SAM + HQ-Output Token (× Output Token) 75.1 65.8 93.9 88.9 93.0 86.1 86.1 74.6 87.0 78.9
SAM + HQ-Output Token (Boundary Loss) 75.2 66.4 94.0 88.9 92.1 85.7 87.3 76.0 87.2 79.3
SAM + HQ-Output Token 75.3 66.0 94.2 89.2 93.0 86.1 86.8 75.4 87.3 79.2

Using Our HQ-Feature:
SAM + HQ-Output Token (+ Context Token) 78.5 70.4 94.6 89.6 93.6 87.0 88.9 79.3 88.9 81.6
SAM + HQ-Output Token 78.6 70.4 94.8 90.1 93.6 86.9 89.5 79.9 89.1 81.8

Table 3: Ablation study on the HQ-Features sources. Early-layer denotes the feature after the first
global attention block of the ViT encoder, while final-layer denotes the output of the last ViT block.
Four HQ datasets denote DIS (val) [35], ThinObject-5K (test) [29], COIFT [29] and HR-SOD [51].

Model Fusion Decoder ViT Encoder Four HQ datasets
conv Mask feature Final-layer Early-layer mIoU mBIoU

SAM [21] ✓ 79.5 71.1

✓ 87.3 79.2
✓ ✓ 87.8 80.1

HQ-SAM (Ours) ✓ ✓ 15.1 9.0
✓ ✓ ✓ 88.6 81.3

✓ ✓ ✓ 88.6 81.1
✓ ✓ ✓ ✓ 89.1 81.8

four HQ datasets but leads to very poor performance on COCO, indicating strong overfitting. We
also observe a similar phenomenon when directly finetuning SAM’s mask decoder. Only finetuning
SAM’s output token can address the catastrophic forgetting problem with improvement on the four
HQ datasets and COCO. However, the incremental improvement is still much smaller compared to
ours. HQ-SAM improves 1.1 APB on COCO while output token finetuning only gives an increase
of 0.4 APB . This shows the advantage of HQ-SAM in data-efficient learning while preserving the
zero-shot capability of SAM.
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Figure 4: Recall rate comparison between COIFT [29] and HRSOD [51] under the zero-shot protocol,
using BIoU thresholds ranging from loose to strict. The performance gap between SAM and our
HQ-SAM increases significantly when we vary from a loose BIoU threshold of 0.5 to a very strict
threshold of 0.9, showing the advantage of HQ-SAM in predicting very accurate segmentation masks.

Accuracy analysis at different BIoU thresholds Figure 4 compares SAM and HQ-SAM from
loose to strict BIoU thresholds. We plot the percentage of mask predictions that have a BIoU larger
than the threshold indicated on the x-axis. The large performance gap with strict IoU thresholds
on both COIFT [29] and HRSOD [51] clearly validates the advantage of HQ-SAM in predicting
very accurate masks. However, even at the loose threshold of 0.5, HQ-SAM reduces the number of
incorrect predictions by SAM by 81% for COIFT and 69% for HRSOD. This shows that HQ-SAM
predictions are not only substantially more accurate but also more robust in challenging cases.
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Table 4: Comparison with model finetuning or extra post-refinement [6]. For the COCO dataset, we
use a SOTA detector FocalNet-DINO [53] trained on the COCO dataset as our box prompt generator.

Model Four HQ datasets COCO
mIoU mBIoU APB AP APL APM APS

SAM (baseline) 79.5 71.1 33.3 48.5 63.9 53.1 34.1
Training the whole SAM 38.0 12.2 0.2 5.5 - - -
Add Context Token [56] 85.2 77.0 31.9 47.2 65.1 51.2 31.9
CascadePSP Post-refinement [6] 80.9 74.6 2.8 13.4 43.4 9.4 0.0
CRM Post-refinement [37] 81.4 75.4 15.9 28.7 - - -
Finetune SAM’s decoder 87.6 79.5 9.0 19.5 45.2 15.8 4.7
Finetune SAM’s output token 87.6 79.7 33.7 48.7 66.0 52.3 33.6

HQ-SAM (Ours) 89.1 81.8 34.4 49.5 66.2 53.8 33.9

Table 5: Zero-shot open-world instance segmentation results comparison on UVO [42]. We use
FocalNet-DINO [53] trained on the COCO dataset as our box prompt generator. ∗strict denotes the
boundary region with a tighter threshold.

Model APstrict
B APstrict

B75 APstrict
B50 APB APB75 APB50 AP

SAM 8.6 3.7 25.6 17.3 14.4 37.7 29.7
HQ-SAM 9.9 5.0 28.2 18.5 16.3 38.6 30.1

Table 6: Zero-shot segmentation result comparison on the test set of high-quality BIG [6] benchmark
using various types of input prompts. We employ PSPNet [55] to generate the coarse mask prompt.

Model GT Box Prompt Mask Prompt
mIoU mBIoU mIoU mBIoU

SAM 81.1 70.4 66.6 41.8
HQ-SAM 86.0 75.3 86.9 75.1

4.3 Zero-shot Comparison with SAM

We perform extensive zero-shot transfer comparisons between our HQ-SAM and SAM on 7 bench-
marks, including SGinW [58], COCO [31], UVO [42], LVIS [14], HQ-YTVIS [20], BIG [6],
COIFT [29] and HR-SOD [51], where HQ-SAM outperforms SAM without bells and whistles,
demonstrating its efficacy and kept generalization ability even trained with a small-scale dataset.

Results on the SGinW Benchmark Equipped with the same Grounding-DINO [32] as box prompts,
we also performed experiments by replacing SAM with HQ-SAM in Grounded-SAM, and obtained
the first place in the Segmentation in the Wild (SGinW) competition1 on the zero-shot track. Note
that SGinW contains 25 zero-shot in-the-wild segmentation datasets for evaluation, and Grounded-
HQ-SAM with 49.6 mean AP and outperforms Grounded-SAM obviously using the same detector.

Zero-Shot Open-world Segmentation To evaluate the zero-shot segmentation results in the open-
world environment, in Table 5, we compare SAM and our HQ-SAM on the challenging UVO [42]
benchmark with diverse and dense objects mask annotations. By taking the same pre-trained object
detector [53] as box prompt input, our HQ-SAM improves for 1.3 APstrict

B and 2.6 APstrict
B50 over SAM.

Zero-Shot Segmentation on High-resolution BIG Dataset In Table 6, we compare the zero-shot
segmentation quality between SAM and HQ-SAM on the high-resolution BIG benchmark [6] with
two types of prompts, including using GT object boxes or the provided coarse masks input. HQ-SAM
consistently surpasses SAM, with obvious advantages using different types of prompts, and is much
more robust to coarse masks prompts with partial boundary errors (provided by PSPNet [55]).

Zero-shot Instance Segmentation on COCO and LVIS In Table 7, we also evaluate HQ-SAM
on the popular COCO and LVIS benchmarks respectively by feeding box prompts generated by the
trained detectors of these two datasets. HQ-SAM consistently outperforms SAM by 1.1 APB on
COCO and 0.7 APstrict

B75 on LVIS, showing the improved mask quality and well-preserved zero-shot
segmentation ability during the HQ-SAM training process.

1 SGinW Benchmark Results: https://eval.ai/web/challenges/challenge-page/1931/leaderboard/4567
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Table 7: Zero-shot instance segmentation results comparison on COCO [31] and LVISv1 [14]. For
the COCO dataset, we use FocalNet-DINO [53] detector trained on COCO. For LVIS, we adopt
ViTDet-H [28] trained on the LVIS dataset as our box prompt generator. For SAM, we use the ViT-L
backbone and box prompt. We maintain the zero-shot segmentation capability of the original SAM
while improving the mask quality on the boundary region.

Model COCO LVIS
APB AP APstrict

B APstrict
B75 APB APB75 AP

SAM 33.3 48.5 32.1 32.8 38.5 40.9 43.6
HQ-SAM 34.4 49.5 32.5 33.5 38.8 41.2 43.9
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Figure 5: Interactive segmentation results comparison using a varying number of input points on the
COIFT [29] (zero-shot) and DIS [35] val set. HQ-SAM consistently outperforms SAM with various
point numbers, and the relative improvement is more obvious with less prompt ambiguity.
Table 8: Zero-shot Video Instance Segmentation comparison on the test set of the very accurately
labeled HQ-YTVIS [20] benchmark. We utilize pre-trained Swin-L-based Mask2Fromer [4] on
YTVIS [47] as our box prompt input while reusing its object association prediction.

Model APB APB
75 APB

50 APM APM
75 APM

50

SAM 30.2 19.1 72.9 60.7 68.1 90.5
HQ-SAM 34.0 24.3 79.5 63.6 70.5 91.1

Point-based Interactive Segmentation Comparison To investigate the segmentation performance
of HQ-SAM with interactive point prompts, in Figure 5, we compare HQ-SAM to SAM with varying
numbers of input points on COIFT [29] (zero-shot) and DIS [35] val set. HQ-SAM consistently
outperforms SAM with different point prompts on both two datasets. We note that the relative
performance increase is more significant when the prompt contains less object ambiguity with more
input points information (increasing from 1 positive point to 10 positive points + 5 negative points).

Zero-shot High-quality Video Instance Segmentation Besides conducting image-based segmenta-
tion evaluation, we also perform video instance segmentation results comparison on the accurately
annotated HQ-YTVIS benchmark [20]. We take the pre-trained Mask2Former [4] as our video box
prompts and feed it into SAM and our HQ-SAM for mask prediction. In Table 8, HQ-SAM achieves
remarkable gains of 3.8 points in Tube Boundary APB and 2.9 Tube Mask APM .

Visualization of HQ-Output Token In Figure 6, we provide visual comparison of our HQ-Output
Token vs. SAM’s common output token for their cross-attention maps in the last token-to-image
layer of the mask decoder. We observe that our HQ-Output Token attends to the boundary and thin
structure regions that are missed by the common token.

Zero-shot Visual Results Comparison In Figure 7, we compare HQ-SAM to SAM qualitatively in
a zero-shot transfer setting, where HQ-SAM significantly promotes the mask details of SAM and
also improves the masks of broken holes or large portion errors by the enriched semantic context.
Refer to the supplemental file for more visual comparisons.

Comparison with Adapter Tuning Strategy In Table 9, we also compare our efficient token
adaptation strategy to the recent Adapter Tuning [48] and LoRA [17]. We introduce lightweight
adapters to ViT layers of SAM’s encoder for encoder tuning and identify that this strategy leads to
overfitting and its zero-shot performance on COCO decreases from 33.3 to 29.6. This validates our
design choice to freeze SAM’s encoder, and mainly focus on SAM’s decoder.
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Figure 6: Cross-attention of SAM’s original token vs. HQ-Output Token in the last decoder layer.
HQ-Token attends to the boundary and thin structure regions that are missed by the original token.

Figure 7: Visual results comparison between SAM (top row) vs. HQ-SAM (bottom row) in a zero-shot
transfer setting, given the same red box or point prompt. HQ-SAM produces significantly more
detailed-preserving results and also addresses the mask errors with broken holes.

Table 9: Comparison to Adapter Tuning [48] or using LoRA [17] in SAM’s encoder using ViT-L
based SAM and the same HQSeg-44K. For the COCO dataset, we use the SOTA detector FocalNet-
DINO [53] trained on the COCO dataset as our box prompt generator.

Model COCO Model Params (MB)
APB AP APL APM APS Total Trainable

SAM 33.3 48.5 63.9 53.1 34.1 1191 -
SAM + LoRA [17] 28.6 43.7 - - - 1192.5 1.5
SAM + Encoder Adapter [48] 29.6 44.8 63.9 47.8 29.0 1203 12.0
HQ-SAM 34.4 49.5 66.2 53.8 33.9 1196.1 5.1

Mobile Efficiency Although HQ-SAM significantly boosts SAM’s mask quality with negligible
overhead, it shares the heavy ViT encoder of SAM, and thus cannot achieve a real-time speed in
video processing. For efficient mobile deployment, we propose Light HQ-SAM based on the tiny
ViT image encoder provided by MobileSAM [52]. In Figure 2, achieving running speed of 41.2 FPS,
Light HQ-SAM improves the zero-shot COCO AP of MobileSAM from 44.3 to 45.0 with negligible
additional cost, i.e., 1.7MB increase in model parameters.

5 Conclusion

We propose HQ-SAM, the first high-quality zero-shot segmentation model by introducing negligible
overhead to the original SAM. We propose a lightweight High-quality Output Token in HQ-SAM to
replace the original SAM’s output token for high-quality mask prediction. After training only on 44K
highly-accurate masks, HQ-SAM significantly boosts the mask prediction quality of SAM, which
was trained on 1.1 billion masks. The zero-shot transfer evaluation is performed on 8 segmentation
benchmarks across both image and video tasks, spanning diverse objects and scenes. Our research
offers timely insights into how to leverage and extend SAM-like foundational segmentation models
in a data-efficient and computation-affordable manner.
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Supplementary Material:
Segment Anything in High Quality

In this supplementary material, Section 6 first presents the additional experimental analysis of our HQ-
SAM, including more zero-shot transfer comparisons to SAM on both image and video benchmarks.
Then, in Section 7, we describe more details of our method implementation, including the training
and inference. In Section 8, we provide further details of our constructed HQSeg-44K dataset for
training HQ-SAM. In Section 9, we show extensive visual results comparison between our HQ-SAM
and SAM on COCO [31], DIS-test [35], HR-SOD [51], NDD20 [41], DAVIS [34], and YTVIS [47].

6 Supplementary experiments

SAM vs. HQ-SAM on Various Backbones In Table 10, we provide a comprehensive comparison
between HQ-SAM and SAM using various backbones, including ViT-B, ViT-L, ViT-H and TinyViT.
The comparison not only includes the numerical results on the four HQ datasets and COCO validation
set, but also contains the model sizes/speed/memory. HQ-SAM consistently outperforms SAM using
three different backbones, with over 10 points increase in mBIoU on the four HQ datasets. Notably,
the ViT-B based HQ-SAM significantly improves the APB on COCO from 28.2 to 31.3 and AP
from 44.4 to 46.7, with only a 1.1% increase in model parameters and negligible extra memory
consumption.

Table 10: SAM vs. HQ-SAM on various ViT backbones. For the COCO dataset, we use a SOTA
detector FocalNet-DINO [53] trained on the COCO dataset as our box prompt generator.

Model Four HQ datasets COCO Model Params (MB) FPS MemorymIoU mBIoU APB AP APL APM APS Total Learnable

SAM-B 70.6 62.3 28.2 44.4 57.7 48.7 32.1 358 358 10.1 5.1G
HQ-SAM-B 86.3 78.1 31.3 46.7 62.9 50.5 32.0 362.1 4.1 9.8 5.1G

SAM-L 79.5 71.1 33.3 48.5 63.9 53.1 34.1 1191 1191 5.0 7.6G
HQ-SAM-L 89.1 81.8 34.4 49.5 66.2 53.8 33.9 1196.1 5.1 4.8 7.6G

SAM-H 75.6 68.3 34.0 48.9 64.5 53.3 34.4 2446 2446 3.5 10.3G
HQ-SAM-H 89.3 81.5 34.9 49.9 66.5 54.0 34.2 2452.1 6.1 3.4 10.3G

MobileSAM 69.0 58.8 28.6 44.3 - - - 38.6 38.6 44.8 3.7G
Light HQ-SAM 81.4 71.6 29.6 45.0 - - - 40.3 1.7 41.2 3.7G

Table 11: Results on YouTubeVIS 2019 validation set and HQ-YTVIS test set using ViT-L based
SAM. We adopt the SOTA detector Mask2Former [4] trained on the YouTubeVIS 2019 dataset as our
video boxes prompt generator while reusing its object association prediction.

Model YTVIS 2019 HQ-YTVIS
AP AP50 AP75 APL APM APS APB APM

SAM 51.8 82.1 55.4 65.5 52.0 34.2 30.2 60.7
HQ-SAM 53.2 82.9 58.3 66.4 53.3 33.7 34.0 63.6

Zero-shot Video Instance Segmentation Comparison Extending from Table 8 of the paper
(evaluation on the HQ-YTVIS benchmark [20]), we further perform a comparative analysis of zero-
shot video instance segmentation results on the popular YTVIS 2019 [47] validation set. We take the
pre-trained Mask2Former [4] as our video box prompts and feed them into SAM and our HQ-SAM
for mask prediction. In Table 11, HQ-SAM achieves consistent gains of 1.4 points in Tube Mask AP,
increasing SAM’s performance from 51.8 to 53.2. Interestingly, we find the AP75 improvement with
a higher IoU threshold for HQ-SAM is much larger than AP50, further validating the advantages of
HQ-SAM in high-quality mask prediction.
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Zero-shot Video Object Segmentation Comparison Besides video instance segmentation, in
Table 12, we further report the comparison of video object segmentation results between HQ-SAM
and SAM on DAVIS validation set in a zero-shot transfer protocol. We take the pre-trained XMem
as our video box prompts and feed the same prompts into SAM and HQ-SAM. HQ-SAM improves
SAM the J&F from 82.0 to 83.2 and the F score from 84.9 to 86.1, where F is for measuring the
contour accuracy of the video objects.

Table 12: Results on DAVIS 2017 [34] validation set using ViT-L based SAM. We adopt the SOTA
model XMem [7] as our video boxes prompt generator while reusing its object association prediction.

Model J&F J F
SAM 82.0 79.0 84.9
HQ-SAM 83.2 80.3 86.1

Robustness to Input Box Prompts In Table 13, we compare HQ-SAM to SAM by adding various
scales of noises to the input ground truth box prompts. In practice, we cannot expect the input box
prompts provided by humans in interactive modes to be identical to the ground truth (GT) boxes or
extremely accurate. We follow the data augmentation code in DN-DETR [25] to add different noise
scales and identify that our HQ-SAM is much more robust compared to SAM, where the relative
mBIoU advantage improves from 10.7 to 20.5 when gradually increasing the noise scales. Note that
our method is not trained with noised boxes. We also visualize such noised input case in Figure 11,
where SAM is more sensitive to small box location shifts that easily happened during interactive
annotation.

Table 13: Comparison of segmentation accuracy on the four HQ datasets by adding various noise
levels to the GT box prompts input.

Model No Noise Noise scale 0.2 Noise scale 0.4
mIoU mBIoU mIoU mBIoU mIoU mBIoU

SAM 79.5 71.1 65.7 57.1 46.4 39.8
HQ-SAM 89.1 81.8↑10.7 82.8 73.4↑16.3 69.9 60.3↑20.5

7 Additional Implementation details

Training Details During training HQ-SAM on the composed HQSeg-44K, we fix the model
parameters of the pre-trained SAM model while only making the proposed HQ-SAM learnable,
including HQ-Output Token, its associated three-layer MLP and three convolutions for HQ-Features
fusion. Two of them are transposed convolutions (size 2×2, stride 2) used to upscale encoder
embedding size from 64×64 to 256×256. We treat the new HQ-Output Token as the fifth mask
token compared to the original four mask tokens in SAM’s mask decoder. During training, this new
HQ-Output token of size 1×256 is concatenated with SAM’s mask tokens (size of 4×256), iou token
(size of 1×256) and prompt tokens (size of Nprompt×256) as the input to the SAM’s mask decoder.
For example, if the input image contains N box prompts (size N×2×256), the final concatenated
input and output shape for the 2-layer mask decoder of SAM is N×(1+4+1+2)×256. For experiments
using ViT-B, ViT-L, and ViT-H-based models on training, we adopt the same training setting, with
a learning rate of 1e-3 and train our HQ-SAM for 12 epochs (learning rate drops to 1e-4 after 10
epochs). We supervise mask prediction of the new HQ-Output token with a combination of both BCE
Loss and Dice Loss.

Implementation Details We follow the same inference pipeline of SAM but use the mask prediction
from HQ-Output token as high-quality mask prediction. Table 10 reports the detailed inference speed
comparison using various backbones. For box-prompting-based evaluation, we feed SAM and our
HQ-SAM with the same image/video bounding boxes and adopt the single mask output mode of
SAM. For interactive segmentation comparison using a single point, we follow SAM and adopt the
“center” point of Ground Truth (GT) masks, which is at a maximal value location in a mask’s interior
distance transform. For multiple-point evaluation, we randomly sample the points from the GT masks
and report the averaged results with three trials.
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8 More Details of HQSeg-44K

Data compostion of HQSeg-44K In Table 14, we provide more details of our composed new training
dataset HQSeg-44K which contains 44,320 extremely accurate image mask annotations, where we
show their annotation quality in Figure 8. HQSeg-44K is a collection of six existing image datasets
including DIS [35] (train set), ThinObject-5K [29] (train set), FSS [26], ECSSD [38], MSRA-10K [8],
DUT-OMRON [46] with extremely fine-grained mask labeling, where each of them contains 7.4K
mask labels on average. This composed training set has no images/annotations overlapping with the
zero-shot evaluation datasets adopted in our paper.

Effect of HQSeg-44K In Table 15, we show the advantage of using HQSeg-44K by comparing
HQ-SAM training with 44K randomly sampled images and masks from SA-1B [21]. Using the
same efficient token learning strategy, training with SA-1B (44K) decreases the averaged mBIoU
on the four datasets from 71.1 to 70.1, while ours improves it from 71.1 to 81.8. This validates
the effectiveness of our constructed HQSeg-44K benchmark in improving mask quality. Note that
the ablation experiments in Table 2, Table 3, Table 4, and Table 9 of the paper are all based on the
constructed HQSeg-44K.

Table 14: Data composition of our constructed HQ-Seg-44K.

Dataset DIS [35] Thin-Object 5k [29] FSS [26] DUTS [46] ECSSD [38] MSRA-10K [8] Total

Image Num. 3000 4748 10000 15572 1000 10000 44320
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Figure 8: Visualization of annotated mask quality for randomly selected cases from the six dataset
components of the HQ-Seg-44K. Zoom in for better viewing the fine-grained mask details.

Zero-shot results on DIS and ThinObject-5K We also report zero-shot results in Table 16 on DIS
and ThinObject-5K by removing the training splits of either or both datasets from the training of
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Table 15: Comparison of the training dataset. For the COCO dataset using ViT-L-based SAM, we
use a SOTA detector FocalNet-DINO [53] trained on the COCO dataset as our box prompt generator.

Model Dataset DIS COIFT HRSOD ThinObject Average
mIoU mBIoU mIoU mBIoU mIoU mBIoU mIoU mBIoU mIoU mBIoU

SAM SA-1B 62.0 52.8 92.1 86.5 90.2 83.1 73.6 61.8 79.5 71.1
HQ-SAM + SA-1B-44K 60.4 51.7 91.1 86.1 88.4 80.9 73.1 61.8 78.3 70.1
HQ-SAM + HQ-Seg-44K (Ours) 78.6 70.4 94.8 90.1 93.6 86.9 89.5 79.9 89.1 81.8

Figure 9: Visual results comparison between SAM (top row) vs. HQ-SAM (bottom row) on DIS test
set, given the same red box prompt. HQ-SAM produces significantly more accurate boundaries.

HQ-SAM. The improvement of HQ-SAM over SAM is still substantial on DIS or ThinObject (over
10.0 points on DIS-mIoU and 9.0 points on ThinObject-mIoU), even when the corresponding training
splits are removed from training.

Table 16: Zero-shot results on DIS and ThinObject-5K by removing the training splits of either or
both datasets from the training of HQ-SAM. Results not obtained in a zero-shot manner (i.e. the
training split was used), are shown in parenthesis to easily compare zero-shot results.

Training Setting DIS-mIoU DIS-mBIoU ThinObject-mIoU ThinObject-mBIoU

SAM (baseline) 62.0 52.8 73.6 61.8

HQ-SAM (remove both DIS and ThinObject) 72.9 63.1 82.7 70.7
HQ-SAM (remove DIS) 74.7 66.2 (90.1) (80.4)
HQ-SAM (remove ThinObject) (78.4) (70.3) 83.3 72.1
HQ-SAM (default HQSeg-44K) (78.6) (70.4) (89.5) (79.9)

9 More Visual Results Comparison

We provide more extensive visual results comparison in Figure 9 (DIS [35] test set), Figure 10 (zero-
shot setting in COCO), Figure 11 (noised box input) and Figure 12 (zero-shot setting in HRSOD [51],
NDD20 [41] and web images which cover objects with various structure complexities in diverse
environments. In Figure 13 and Figure 14, we provide the zero-shot video segmentation results
comparison on DAVIS 2017 and YTVIS 2019 benchmarks respectively. Besides, we include the dark
underwater environment in NDD20 [41] and randomly selected web images in Figure 12, showing
that the zero-shot segmentation power in SAM is well preserved by HQ-SAM. In Figure 12, we
also include two failure cases in the rightmost two columns of the third row and bottom row, where
HQ-SAM improves over SAM, but still cannot achieve fully correct mask prediction.
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Figure 10: Visual results comparison between SAM (top row) vs. HQ-SAM (bottom row) on COCO
val set in zero-shot setting, using a SOTA detector FocalNet-DINO [53] trained on the COCO dataset
as our box prompt generator. HQ-SAM predicts masks with higher quality than SAM with less mask
artifacts.

SAM + GT Box SAM + Noised Box HQ-SAM + GT Box HQ-SAM + Noised Box

Figure 11: Visual results comparison between SAM (top row) vs. HQ-SAM (bottom row) with
both the GT and noised green box prompt. HQ-SAM produces much more consistent and robust
segmentation results regarding to the noises in the input boxes.
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Figure 12: Visual results comparison between SAM (top row and third row) vs. HQ-SAM (second
row and bottom row) in zero-shot setting, given the same yellow box or point prompt. HQ-SAM
produces significantly more detailed preserving masks while fixing mask errors with broken holes.
The rightmost two columns in the third row and bottom row show two failure cases of HQ-SAM in
extremely dark environments or very tiny metal rods.

19



SA
M

SA
M

SA
M

SA
M

H
Q
-S
AM

H
Q
-S
AM

H
Q
-S
AM

H
Q
-S
AM

Figure 13: Visual results comparison between SAM vs. HQ-SAM on video object segmentation
benchmark DAVIS 2017 in zero-shot setting, given the same video boxes prompts generated by the
pre-trained XMem [7].
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Figure 14: Visual results comparison between SAM vs. HQ-SAM on video instance segmentation
benchmark YTVIS 2019 in zero-shot setting, given the same video boxes prompts generated by the
pre-trained Mask2Former [4].
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