
Under review as a conference paper at ICLR 2024

SEMANTIC MEMORY GUIDED DIFFUSION NETWORKS
FOR IMAGE-TO-LONG TEXT GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Automatic describing image with comprehensive textual content is often de-
manded by different real-world applications, which motivates image-to-text gen-
eration tasks such as image captioning. However, conventional tasks mainly focus
on generating short text, which often fail to deal with challenging scenarios that
long text is inevitable required to describe enriched and diversified visual con-
tents. Therefore, a more generic solution, which should be able to generate text
with arbitrary length (long text in most cases), is expected to overcome limitations
from existing approaches such as inability to generate sufficiently comprehensive
and complete textual content and ensure semantic coherence in it. To address such
limitations, we propose a dedicated solution, semantic memory guided diffusion
networks (SeMDiff), for image-to-long text generation (I2LTG), which explicitly
captures salient semantics from the visual contents, and further process and en-
hance them by memory networks to facilitate the text generation process. Specifi-
cally, we employ semantic concepts as the vehicle to deliver and process semantics
embedded in images, where they are predicted from each image and matched with
memory vectors and serve as the condition to guide diffusion networks for itera-
tive generation. Experimental results on three public datasets and a new proposed
one with more than 54K instances demonstrate the superiority of our approach
compared to previous state-of-the-art solutions. Further analyses illustrate that
our approach offers an effective diffusion-based solution with external guidance
for long text generation under different cross-modal settings. 1

1 INTRODUCTION

Generating image descriptions is one of the most widely applied techniques in artificial intelligence,
especially when visual contents are enriched and diversified so that one needs an effective process
to produce and organize descriptive texts that cover all semantics in the scenery. To emulate the pro-
cess, some task such as image captioning (IC) has been developed to do so and achieves promising
results (Mao et al., 2015; Rennie et al., 2017; Anderson et al., 2018; Pantazopoulos et al., 2022).
However, IC mainly deals with short texts, which often fail to satisfy the demands of challenging
scenarios, especially in particular domains where an entire report is expected to be generated with
given image, i.e., radiology report generation (RRG) (Jing et al., 2018; Li et al., 2018; Johnson et al.,
2019; Liu et al., 2021b; Huang et al., 2023). Therefore, the ability of generating comprehensive long
text for images is expected to upgrade existing image-to-text generation approaches.

In performing current image description tasks, existing approaches adopt either AR (Herdade et al.,
2019; Huang et al., 2019; Cornia et al., 2020; Hu et al., 2022; Li et al., 2023; Zhu et al., 2023; Liu
et al., 2023) (e.g., Transformer (Vaswani et al., 2017)) or non-AR models (Lee et al., 2018; Gao et al.,
2019a; Guo et al., 2020; Zhou et al., 2021) as their foundation architecture, by predicting words in
a sequence or producing all words in parallel, respectively. In forcing these approaches to generate
long texts, they all have difficulties in producing semantically coherent texts with both AR and non-
AR manner. Particularly, AR solutions are susceptible to error propagation if incorrect contents are
half-way generated, so that contextually irrelevant contents are always observed accordingly, thus
exacerbate the coherent problem. Although some RRG studies (Chen et al., 2020; 2021; Qin & Song,
2022; Tanida et al., 2023; Omkar Thawkar & Khan, 2023; Tu et al., 2023) extend AR solutions with
task- and domain-specific heuristics, they cannot guarantee comprehensive and coherent content

1Code, models, and the proposed dataset will be open-sourced in the final version of this paper.
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Figure 1: The overview architecture of our approach for I2LTG, which consists of four components,
namely, the visual encoder, the semantic concept predictor, the semantic conditional memory, and
the diffusion decoder, which are represented in grey, yellow, green, and red background, respectively.
An example input image with its output text is provided for better demonstration.

generation. Therefore, in terms of generation mechanism, non-AR approaches are relatively optimal
than AR ones to avoid sequential error propagation. However, they are verified only on short text
generation task in most cases, e.g., IC, and it is unclear if being applied to long text generation
especially they also have their own limitations such as word repetition issue (Luo et al., 2022). As a
result, to explore effective long text generation with non-AR approaches, it is valuable to carefully
design guidance and enhancement that adapt to this task.

In this paper, we propose semantic memory guided diffusion networks (SeMDiff) for image-to-long
text generation (I2LTG) with three main components, namely, semantic concept predictor (SCP),
semantic conditional memory (SCM), and diffusion decoder (DD). In our approach, we adopt se-
mantic concepts as intermediate media to transport essential semantic information in image to text
generation process, where they are captured from image by SCP and enhanced in SCM, then serve
as the guidance for DD to iteratively generate final texts. Specifically, SCM is the distinctive design
in this work that enhances the representation of semantic concepts with specific image-text corre-
lation information stored in its most related memory vectors so as to provide precise control that
piloting diffusion networks in generating comprehensive and coherent long texts. We evaluate our
approach on three public datasets, i.e., MIMIC-CXR, CC-SBU and Localized Narratives (LN) and a
new proposed one designed for I2LTG in this work, namely, COCO-Long Text (COCO-LT). Experi-
mental results on them illustrate the superiority of our approach against state-of-the-art counterparts
under different image description generation settings. Further analysis on different components of
our approach illustrates that the SCP provides strong guidance for iterative refinement of DD, which
allows the model to perform a more organized generation process, with SCM further ensuring the
preciseness of the guidance for each iteration, guaranteeing the resulted semantic coherent texts.

2 THE APPROACH

Given an input image I, our approach attempts to generate its description Ŷ in long text. Figure 1
illustrates the overall pipeline of our approach, which consists of four components, i.e., the visual
encoder, the semantic concept predictor (SCP), the semantic conditional memory (SCM), and the
diffusion decoder (DD). Specifically, the visual encoder fve processes the input image I into visual
representations hv , and SCP fscp predicts semantic concepts Ŝ from a semantic matrix S that stores
the vectors of all possible concepts according to hv . The SCM fscm further enhances the represen-
tations hs of Ŝ by matching top-K memory vectors, resulting in a subset ĥs of hs. Finally, the DD
fdd generates Ŷ along with ĥs and hs, where the overall process is formulated by

Ŷ = fdd(fve(I), fscm(fscp(fve(I),S),K)) (1)

In training, the model is optimized based on the cross-entropy loss LSCP . The final loss L for the
entire approach is then combined with LSCP and the loss function LDD of the DD through

L = β1LSCP + β2LDD (2)
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where β1 and β2 are hyper-parameters balancing contributions of LSCP and LDD, respectively.
Following texts present aforementioned components in details according to our pipeline sequence.

2.1 THE VISUAL ENCODER

The visual encoder consists of two components, a visual feature extractor fve and a Transformer-
based encoder fte, where fve is a pre-trained vision backbone model (i.e., ResNet-101 (He et al.,
2016)). For feature extraction from I, we firstly decompose I into a series of patches {I1 . . . INv

}
with Nv denoting the number of patches, and then adopt the output matrices [X1 . . .XNv ] from
the last convolutional layer of fve to feed into fte. Finally, fte encodes [X1 . . .XNv ] into visual
representations hv , with the overall process formulated by

hv = fte(fve(I1 . . . INv
)) (3)

2.2 THE SEMANTIC CONCEPT PREDICTOR

When generating long texts directly with the latent representations extracted from an image, there is
potential deficiency that such representations have ambiguities in conveying all essential semantics,
so that incoherent or even incomplete image descriptions are generated. To address such ambiguity
issue, we propose SCP to explicitly predict semantic concepts, so as to provide accurate supplemen-
tary guidance for image representations. Starting from the randomly initialized matrix S containing
a series of semantic vectors {s1 . . . sNs

} that cover all the possible concepts, we use fscp, a trans-
former based ranker, to predict Ŝ = {ŝ1 . . . ŝNc} with Nc concepts (i.e., words in some cases)
according to hv from the visual encoder, with the process formulated by

Ŝ = fscp(h
v, s1 . . . sNs

) (4)
where the representation hs

n of the n-th concept ŝn is extracted from the last layer of fscp by
hs
n = fscp(h

v, s1 . . . sNs ; ŝ1 . . . ŝn) (5)

Later we compute the mean pooling of all hs
n and use the resulting vector hs to represent Ŝ. In

training, we compute the cross-entropy loss LSCP between Ŝ and the annotated semantic concepts
S∗ in the gold standard image description Y∗. In doing so, we map hs

n to a distribution over Vs with
psn,i for the probability of the i-th concept vi, and choose the concept ŝn with the highest probability
as output. Then, we compare ŝn with the gold standard y∗n to compute the cross-entropy loss by

LS,n = −
∑

vi∈Vs

p∗vi log p
s
n,i (6)

where p∗vi is the probability distribution of the gold standard over Vs with p∗vi = 1 if vi = y∗ and
p∗vi = 0 otherwise. Finally, we sum Ln

S,n over all concepts in Ŝ and obtain LSCP =
∑Nc

n=1 Ln
S,n.

2.3 THE SEMANTIC CONDITIONAL MEMORY

In our approach, we utilize the SCM to enhance the representations of the produced concepts from
the SCP with the memory that stores the information in aligning images and texts, so as to provide
more precise guidance for the next text generation process. In doing so, SCM is built upon a memory
matrix M, which stores a series of d-dimension memory vectors {m1 . . .mNm

} that interact with
hs, with Nm denoting the number of these vectors. Two main steps are involved in SCM, namely,
memory querying (MQ) and memory responding (MR), respectively.

Memory Querying In this process, we project hs and mi ∈ {m1 . . .mNm} into qs and ki to the
same semantic space through two linear transformation matrices Wq and Wk, respectively, through

qs = hs ·Wq, ki = mi ·Wk (7)

where we use two one-layer perceptrons to model Wq and Wk, respectively. Then, we compute the
latent distance Di between qs and ki by

Di =
qs · kT

i√
d

(8)

Subsequently with Di, we retrieve the top-K memory vectors {k1 . . .kK} from M and calculate the
corresponding importance weight ωi for each ki by normalization over Di:

ωi =
exp (Di)∑K
j=1 exp (Dj)

(9)
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Memory Responding MR obtains a responded vector r based on {k1 . . .kK} and their weights
{ω1 . . . ωK}, and enhance hs with the resulted r. In doing so, we project ki to the same semantic
space of hs through a linear transformation matrix Wv , resulting vi through

vi = ki ·Wv (10)

where Wv is performed by a one-layer perceptron. Then, we obtain the responded vector r by

r =

K∑
i=1

ωi · vi (11)

Finally, we add r to hs and normalizing (Norm) it as ĥs = Norm(hs + r), and send ĥs to DD to
guide the generation process.

2.4 THE DIFFUSION DECODER

The DD (fdd) aims to generate Ŷ based on hv and ĥs. In doing so, DD performs diffusion forward-
ing and decoding processes, where forwarding allows DD to learn the ability of reconstructing noisy
representation and insert them into final result, so that DD is able to generate Ŷ through iteratively
denoising during the decoding process. Details of these processes are illustrated in following texts.

Diffusion Forwarding Given the step t ∼ U(0, T ) with T denoting the total number of steps,
diffusion forwarding firstly adds Gaussian noise n into the representation h0 of Y∗, resulting in
the noisy representations ht at t-step. We follow Bit Diffusion (BD) (Chen et al., 2023) to convert
tokens in Y∗ into their bit representation (h0) and compute the representation ht at the t-th step by

ht =
√
ᾱt · h0 +

√
1− ᾱt · n (12)

Herein, ᾱt is a blending scalar correlated to the noise scheduling strategy of denoising diffusion
probabilistic model (DDPM) (Ho et al., 2020), and we use the cosine noising schedule of DDPM.
Then, fdd reconstructs ht to h0 based on hv and ĥs, where we compute the diffusion loss Ldiff of
DD through

Ldiff = Et∼U(0,T )∥fdd(ht,h
v, ĥs, t)− h0∥22 (13)

Upon the reconstructed representation, we use a linear projection layer to predict the probability
distribution over all tokens. Afterwards, we compute cross-entropy loss LCE by comparing Ŷ and
Y∗, where the final loss of DD LDD is formulated by

LDD = LCE + Ldiff (14)

Diffusion Decoding Diffusion decoding generates Ŷ following the standard process of BD.
Specifically, we randomly sample a Gaussian noise n and denoise it into the final representation
ĥ0 for Ŷ . In doing so, we initialize ĥT with n and iteratively denoise it into ĥ0 according to

ĥ0 =

T∏
t=1

p(ĥt−1|ĥt,h
v, ĥs) (15)

where

p(ĥt−1|ĥt,h
v, ĥs) =

√
ᾱt−1 ·

ĥt −
√
1− ᾱt · fdd(ĥt,h

v, ĥs, t)√
ᾱt

+
√

1− ᾱt−1 · fdd(ĥt,h
v, ĥs, t) (16)

Finally, we decode ĥ0 and obtain the final text results Ŷ for the input image I.

3 EXPERIMENT SETTINGS

3.1 DATASETS

We evaluate our approach on a series of datasets from different tasks, including MIMIC-CXR (John-
son et al., 2019) for RRG, CC-SBU (Zhu et al., 2023) for cross-modal alignment, Localized Nar-
ratives (LN) (Pont-Tuset et al., 2020) for IC. Details of the aforementioned datasets are reported in
Table 1 and illustrated in the following text.
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DATASET
MIMIC-CXR CC-SBU LN COCO-LT

TRAIN VAL TEST TRAIN VAL TEST TRAIN VAL TEST TRAIN VAL TEST

IMAGE 369.0K 3.0K 5.2K 3.0K 0.1K 0.3K 1743K 41.7K 126.0K 82.8K 40.5K 40.8K
DESCRIPTION 222.8K 1.8K 3.3K 3.0K 0.1K 0.3K 507.4K 41.7K 126.0K 48.8K 3.0K 3.0K
AVG. LEN. 53.0 53.1 66.4 70.8 70.8 71.5 35.5 29.9 30.6 75.6 75.8 76.4

Table 1: Statistics of our experiment datasets w.r.t. their training, validation, and test sets, including
the numbers of images, descriptions, and the average length of descriptions (i.e., (AVG. LEN.)).

DATA MODEL
NLG METRICS CE METRICS

BL-1 BL-2 BL-3 BL-4 MTR RG-L AVG. ∆ P R F1

MIMIC
-CXR

TRANS 0.357 0.216 0.141 0.091 0.129 0.271 - 0.348 0.314 0.330
DIFF 0.380 0.221 0.143 0.100 0.137 0.277 4.5% 0.385 0.401 0.393
+SCP 0.409 0.243 0.167 0.113 0.149 0.284 12.8% 0.437 0.445 0.441
+SCM 0.385 0.227 0.149 0.106 0.142 0.279 6.3% 0.405 0.417 0.411
+SCP+SCM (SEMDIFF) 0.412∗ 0.259∗ 0.180∗ 0.129∗ 0.178∗ 0.287∗ 19.0% 0.471∗ 0.479∗ 0.478∗

CC
-SBU

TRANS 0.343 0.197 0.115 0.054 0.066 0.214 - - - -
DIFF 0.370 0.223 0.131 0.081 0.173 0.253 23.6% - - -
+SCP 0.404 0.251 0.155 0.099 0.181 0.284 32.7% - - -
+SCM 0.388 0.239 0.140 0.084 0.174 0.267 27.4% - - -
+SCP+SCM (SEMDIFF) 0.417∗ 0.265∗ 0.167∗ 0.109∗ 0.201∗ 0.323∗ 37.7% - - -

LN

TRANS 0.197 0.117 0.063 0.040 0.095 0.151 - - - -
DIFF 0.220 0.139 0.087 0.053 0.117 0.175 18.5% - - -
+SCP 0.305 0.175 0.102 0.067 0.130 0.220 34.2% - - -
+SCM 0.291 0.164 0.138 0.061 0.125 0.206 33.4% - - -
+SCP+SCM (SEMDIFF) 0.376∗ 0.229∗ 0.148∗ 0.092∗ 0.153∗ 0.281∗ 49.1% - - -

COCO
-LT

TRANS 0.257 0.129 0.058 0.030 0.093 0.178 - - - -
DIFF 0.283 0.144 0.076 0.041 0.119 0.210 17.9% - - -
+SCP 0.328 0.178 0.102 0.071 0.133 0.239 34.3% - - -
+SCM 0.314 0.152 0.088 0.056 0.129 0.202 25.6% - - -
+SCP+SCM (SEMDIFF) 0.365∗ 0.210∗ 0.144∗ 0.093∗ 0.155∗ 0.265∗ 44.7% - - -

Table 2: Comparison of different baselines with the full model (SEMDIFF) on four datasets under
NLG and CE metrics (CE only applies to MIMIC-CXR). “BL” denotes the abbreviation of BLEU;
“MTR” and “RG-L” denote METEOR and ROUGE-L, respectively. The average improvement over
all NLG metrics compared to “Trans” is also presented in the “AVG. ∆” column. ∗ marks the results
where the improvements are statistically significant over all baselines at p ≤ 0.05 level.

MIMIC-CXR is the largest public dataset for RRG with 473,057 chest X-Ray images and 206,563
reports. We follow its official split and utilize the medical text indexer (MTI)2 to preprocess all
radiology reports in obtaining medical concepts. CC-SBU is a dataset proposed by MiniGPT-4
(Zhu et al., 2023), which contains 3,439 high-quality image-description pairs. In this dataset, we
use key words in image description as semantic concepts by filtering them according to their part-of-
speech (POS) tags and frequencies. In doing so, we employ the NLTK POS tagger to annotate POS
labels for each word in image descriptions3 and set a threshold to filter out infrequent words. Based
on the aforementioned process, we finally obtain 1,622 semantic concepts (words) for CC-SBU. For
Localized Narratives (LN), we choose its Open Images 4 subset containing 671k image-description
pairs for our experiments and obtain the semantic concepts following the similar pipeline as that
applied to CC-SBU, resulted in 4,888 semantic concepts (words) in total.

Particularly, we propose a new dataset COCO-LT dedicated to I2LTG based on COCO (Lin et al.,
2014) for further evaluating our approach. In detail, we randomly choose around 40% of original
COCO instances to form this dataset with each image in it having five corresponding short descrip-
tion sentences from different perspectives. Then we employ ChatGPT (GPT-3.5-Turbo) to produce
a long description (generally a paragraph) based on these sentences through a special prompt and
finally result in 54,785 image-description pairs. For this dataset, we utilize the similar process as
that for CC-SBU and COCO-LT, and obtain 1,894 semantic concepts (words).5

2https://lhncbc.nlm.nih.gov/ii/tools/MTI.html
3Preserved POS labels only consist JJ, JJR, JJS, NN, NNS, RB, RBR, RBS, VB, VBD, VBG, VBZ.
4https://github.com/cvdfoundation/open-images-dataset
5We illustrate more details of the proposed COCO-LT dataset in Appendix A.
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DATA MODEL
NLG METRICS CE METRICS

BL-1 BL-2 BL-3 BL-4 MTR RG-L P R F1

MIMIC
-CXR

ST (Vinyals et al., 2015) 0.299 0.184 0.121 0.084 0.124 0.263 0.249 0.203 0.204
ATT2IN (Rennie et al., 2017) 0.325 0.203 0.136 0.096 0.134 0.276 0.322 0.239 0.249
ADAATT (Lu et al., 2017) 0.299 0.185 0.124 0.088 0.118 0.266 0.268 0.186 0.181
TOPDOWN (Anderson et al., 2018) 0.317 0.195 0.130 0.092 0.128 0.267 0.320 0.231 0.238
R2GEN (Chen et al., 2020) 0.353 0.218 0.145 0.103 0.142 0.277 0.333 0.273 0.276
CA (Liu et al., 2021c) 0.350 0.219 0.152 0.109 0.151 0.283 - - -
CMCL (Liu et al., 2021a) 0.344 0.217 0.140 0.097 0.133 0.281 - - -
PPKED (Liu et al., 2021b) 0.360 0.224 0.149 0.106 0.149 0.284 - - -
R2GENCMN (Chen et al., 2021) 0.353 0.218 0.148 0.106 0.142 0.278 0.334 0.275 0.278
R2GENRL (Qin & Song, 2022) 0.381 0.232 0.155 0.109 0.151 0.287 0.342 0.294 0.292
ITA (Wang et al., 2022) 0.395 0.253 0.170 0.121 0.147 0.284 - - -
WARMSTART (Nicolson et al., 2023) 0.392 0.245 0.169 0.124 0.153 0.285 0.359 0.412 0.384
RGRG (Tanida et al., 2023) 0.373 0.249 0.175 0.126 0.168 0.264 0.461 0.475 0.447
ORGAN (Hou et al., 2023) 0.407 0.256 0.172 0.123 0.162 0.293 0.416 0.418 0.385
KIUT (Huang et al., 2023) 0.393 0.243 0.159 0.113 0.160 0.285 0.371 0.318 0.321
XRAYGPT (7B) (Omkar Thawkar & Khan, 2023) 0.128 0.045 0.014 0.004 0.079 0.111 - - -
MED-PALM (562B) (Tu et al., 2023) 0.317 - - 0.115 - 0.275 - - 0.378

SEMDIFF 0.412∗ 0.259∗ 0.180∗ 0.129∗ 0.178∗ 0.287∗ 0.471∗ 0.479∗ 0.478∗

Table 3: Comparisons of SEMDIFF with previous studies on the test set of MIMIC-CXR under
NLG and CE metrics. The best and second results are in boldface and underlined. For LLM-based
methods (i.e., XRAYGPT, MED-PALM), we also illustrate their parameter numbers in parentheses.
∗ marks the results the improvements are statistically significant over all baselines at p ≤ 0.05 level.
3.2 BASELINES AND EVALUATION METRICS

To verify our proposed model, we use four baselines for comparison in our experiments. “Trans”
represents the autoregressive model with ResNet-101 (He et al., 2016) and a 3-layer Transformer
as the visual encoder, and another 3-layer Transformer with an additional 8-head cross-attention
layer as the decoder, and “Diff” denotes our baseline diffusion model which directly generates the
image description from the visual representations. “+SCP” stand for the model that SCP is applied
to “Diff”, serving as our third baseline. “+SCM” represents our fourth baseline model that “Diff” is
equipped with only SCM, where SCM directly interacts with visual representations. “+SCP+SCM”
is our full model with all proposed components.

For evaluation on MIMIC-CXR, we follow previous studies (Chen et al., 2020; 2021; Qin & Song,
2022; Huang et al., 2023) and evaluate the different models with natural language generation (NLG)
and clinical efficacy (CE) metrics. For NLG metrics, we use BLEU (Papineni et al., 2002), ME-
TEOR (Michael & Alon, 2011), and ROUGE-L (Lin, 2004). For CE metrics, we employ CheXpert
(Gao et al., 2019b) to classify words in the generated reports into 14 different categories related to
thoracic diseases and support devices, and compare the resulted labels with the ones in gold stan-
dard reports. We use precision, recall, and F1 to evaluate model performance for CE metrics. For
evaluation on CC-SBU, LN, COCO-LT, we only use NLG metrics following conventional studies
(Vinyals et al., 2015; Rennie et al., 2017; Anderson et al., 2018; Cornia et al., 2020; Fang et al.,
2022; Li et al., 2022b) and also measure the lengths of the generated texts.

3.3 IMPLEMENTATION DETAILS

In our experiments, we try different hyper-parameter settings and select the one with best perfor-
mance on the validation set. 6 For model architecture, we implement fve, fscp, and fdd with 3
layers of Transformer, where number of the attention head and dimension of the hidden vectors are
set to 8 and 512, respectively. In SCP and DD, we implement an additional 8-head cross-attention
layer to incorporate the visual representations. For SCM, the memory dimension d is set to 512. For
DD, the total step T for diffusion forwarding and decoding processes is set to 100. For optimization,
we use Adam (Kingma & Ba, 2015) optimizer updating all model parameters with a learning rate
of 5e-4. We follow the learning rate scheduling strategy in Vaswani et al. (2017) with 20,000 steps
for warm-up, where the total training steps vary from 1.5M to 6.7M according to different datasets.
The weights to balance SCP and DD loss in Eq. 2 are set to β1 = 1 and β2 = 1, respectively.

4 RESULTS AND ANALYSIS

4.1 OVERALL RESULTS

Experimental results of different models on the test sets of four datasets are reported in Table 2,
with several observations. First, in all four test sets, it is observed that the basic non-AR model

6We report the details of hyper-parameter settings in Appendix B.
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MODEL
CC-SBU LN COCO-LT

BL-4 MTR RG-L BL-4 MTR RG-L BL-4 MTR RG-L

ATT2IN (Rennie et al., 2017) 0.0001 0.0114 0.0573 0.0002 0.0138 0.0628 0.0001 0.0079 0.0518
RFNET (Jiang et al., 2018) 0.0001 0.0126 0.0557 0.0002 0.0144 0.0731 0.0001 0.0066 0.0489
TOPDOWN (Anderson et al., 2018) 0.0002 0.0238 0.0694 0.0002 0.0177 0.0749 0.0001 0.0224 0.0545
MIR (Lee et al., 2018) 0.0002 0.0238 0.0694 0.0002 0.0162 0.0713 0.0002 0.0365 0.0894
ORT (Herdade et al., 2019) 0.0003 0.0519 0.1031 0.0003 0.0257 0.0861 0.0002 0.0438 0.1268
AOANET (Huang et al., 2019) 0.0002 0.0486 0.0933 0.0003 0.0286 0.0875 0.0002 0.0457 0.1381
M2 TRANSFORMER (Cornia et al., 2020) 0.0002 0.0466 0.0859 0.0004 0.0347 0.0914 0.0002 0.0432 0.1219
SATIC (Zhou et al., 2021) 0.0003 0.0530 0.1182 0.0007 0.0704 0.1462 0.0003 0.0469 0.1227
SCD-NET (Luo et al., 2022) 0.0003 0.0451 0.1238 0.0006 0.0549 0.1201 0.0001 0.0429 0.1374
BLIP-2 (1.1B) (Li et al., 2023) 0.0017 0.0557 0.1552 0.0013 0.0430 0.1050 0.0004 0.0476 0.1257
MINIGPT-4 (13B) (Zhu et al., 2023) 0.0875 0.1561 0.2256 0.0153 0.1120 0.1478 0.0211 0.1008 0.1441
LLAVA (7B) (Liu et al., 2023) 0.0603 0.1626 0.2467 0.0155 0.1333 0.1856 0.0386 0.1441 0.2010

SEMDIFF 0.1088∗ 0.2007∗ 0.3229∗ 0.0920∗ 0.1533∗ 0.2814∗ 0.0934∗ 0.1547∗ 0.2649∗

Table 4: Comparisons of our approach with previous studies on the test sets of CC-SBU, LN,
and COCO-LT under NLG metrics (BL, MTR and RG refer to BLEU, METEOR and ROUGE,
respectively). The best and second results are in boldface and underlined. LLM-based methods (i.e.,
BLIP-2, MINIGPT-4, and LLAVA) are illustrated with their parameter numbers in parentheses. ∗

marks the results where improvements are statistically significant at p ≤ 0.05 level over all baselines.

(“Diff”) consistently outperforms the AR one (“Trans”) on all datasets, owing to that the error
propagation problem is alleviated. Second, by comparing whether using semantic information,
“Diff+SCP” (i.e., latent representations and explicit semantic concepts) leads to significantly better
performance over “Diff” (i.e., latent representations), which confirms the effectiveness of semantic
guidance for I2LTG.7 Third, comparing approaches with and without using memory, we find that
“Diff+SCM” achieves better performance than “Diff”, which indicates that SCM helps the model to
establish a better cross-modal alignment. Fourth, when SCP and SCM are combined, our approach
“Diff+SCP+SCM” is able to further enhance the performance of “Diff+SCP” and “Diff+SCM”, and
achieves the best result, which indicates the necessity to optimize semantic concepts in SCM.
To further illustrate the effectiveness of our approach, we compare it with existing state-of-the-art
solutions8 on all four datasets, with results presented in Table 3 and 4.9 Overall, our approach
significantly outperforms other approaches on all metrics, which illustrates the superiority of our
approach for I2LTG with its specific model design. Notably, our approach even achieves better
performance than those studies based on large language models (LLMs) (i.e., XRAYGPT, MED-
PALM10, BLIP-2, MINIGPT-4, and LLAVA), indicating that appropriate semantic guidance is
more efficient than using a massive amount of parameters in LLMs. Compared to prevailing non-AR
solutions (i.e., MIR, SATIC, and SCD-NET), our approach obtains significant improvements, sug-
gesting the power of semantic concepts in helping non-AR models with overcoming their limitations
such as word repetition issue, which are further illustrated in the next subsection. Particularly, in
noticing that SCD-NET also leverages semantic guidance, our approach presents its superior capa-
bility in generating better results by utilizing predicted semantic concepts while SCD-NET obtains
such semantic information by retrieving and encoding sentences, resulting in a coarser guidance.

4.2 ANALYSIS

We perform a series of analysis to investigate the effect of different components of our approach
following its pipeline sequence. Specifically, we firstly explore how semantic matrix size affects
the concept prediction process in SCP. Then, we investigate SCM performance against different
memory sizes and the number of queried memory vectors. Finally, we qualitatively illustrate the
effect of different components of our approach through a case study.

Effect of the Semantic Matrix Size We conduct our approach with different semantic matrix sizes
(i.e., Ns) to analyze their effects to SCP. Figure 2 (a) presents the curves of BLEU-4 score against

7To comprehensively evaluate the quality of the semantic guidance, we compare the generated concepts
with the ones in gold standard descriptions, and present the results (precision, recall, and F1) in Appendix C.

8The guideline for choosing these studies is based on that they have open-sourced code, which allows us to
run their models on our experiment datasets, especially the COCO-LT dataset proposed in this paper.

9We report full evaluation with all metrics on our approach and existing state-of-the-art solutions on CC-
SBU, LN, and COCO-LT datasets in Appendix D.

10MED-PALM does not release the model weights and its RRG test set. Therefore, for fair comparisons, we
approximate their settings to randomly curated 10 groups of test instances with the same size (i.e., 246 cases)
as that used in MED-PALM. Under this setting, SEMDIFF performs similarly to the results reported in Table 3.
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Figure 2: The curves of BLEU-4 score on test sets of different datasets with respect to (a) semantic
matrix size, (b) memory size, and (c) number of queried memory vectors.

Ns, showing that the semantic matrix size should be seperately set for different datasets. In general,
when this size is smaller than the optimal value, the model gradually obtains better performance as
Ns increases, which indicates that semantic matrix is able to cover more related concepts so that
SCP stores more essential semantic information. However, once the optimal value is reached, model
performance starts to degrade when the size keeps enlarging, thus overfitting is observed accordingly
and larger matrix size does not help in storing useful semantic information.

Effect of the Memory Size To explore the effect of memory size on SCM (i.e., Nm), we conduct
our approach with different Nm. Figure 2 (b) presents the curves of BLEU-4 score with respect to
Nm ranging from 32 to 4,096. It is observed that, in general, enlarging the memory matrix helps
improving model performance on all datasets, indicating that better generation results are expected
when a larger matrix is applied and stores more image-text correlation information. Moreover, we
also notice performance convergence when Nm reaches 2048 (512 on CC-SBU), so that there exists
a limit for the bonus on enlarging matrix size for preserving essential information.

Effect of the Number of Queried Memory Vectors In analyzing how the number of queried
memory vectors (i.e., K) affects the SCM, we try our approach under different K settings. Figure
2 (c) presents the curves of BLEU-4 score with respect to K ranging from 1 to 512. Similar to that
found in semantic matrix size analysis, it is shown that K has an optimal value on each dataset, where
retrieving either too few or too many memory vectors leads to inferior performance, corresponding
to the situations of information insufficiency and overloading, respectively. Particularly, when too
many vectors are retrieved, the impact of noise is highly significant in affecting model performance
as the BLEU-4 scores rapidly drop, suggesting that K should be carefully chosen.

Case Study In addition to quantitative analyses, we also present a case study on the generated texts
from different models with the same image input from CC-SBU. Figure 3 demonstrates the results
with comparison of iterative generations from “Diff” and “Diff+SCP+SCM”, where semantic words
shared by model outputs and the gold standard texts are highlighted in the same color, as well as the
time step t in iteration and the average number of repetitive words in different results illustrated in
parentheses.11 There are several observations from different perspectives. “Diff” gradually refines
the initialized repetitive words into a series of descriptive sentences, which produces few related
semantic words in its results, suggesting the ambiguity of visual representation that leads to insuf-
ficient semantic information for the text generation process. On the contrary, with the assistance of
semantic concepts, our full model (“Diff+SCP+SCM”) is able to generate more reasonable results
that contain enough related contents, indicating that SCP and SCM provide a strong guidance for
the generation process to produce semantic coherent long texts. Notably, “Diff+SCP+SCM” also
performs a more organized generation process, where the number of repetitive words is significantly
decreased during the iterative generation process, which confirms the validity of our model design
and the potential of semantic concepts to alleviate existing limitations of non-AR solutions.12

5 RELATED WORK

Conventionally, describing images is primarily carried out through image captioning (IC), where
normally short sentences are generated for input source images based on autoregressive models
(i.e., LSTM (Hochreiter & Schmidhuber, 1997; Vaswani et al., 2017)) or non-autoregressive ones
(Lee et al., 2018; Gao et al., 2019a; Guo et al., 2020; Zhou et al., 2021), with pre-training tech-
niques (Hu et al., 2022; Chen et al., 2022; Nukrai et al., 2022; Romain & Rufin, 2023; Ramos et al.,
2023), semantic condition (Fang et al., 2022; Li et al., 2022b), and enhanced multi-modal features
(Shi et al., 2021; Ng et al., 2021; Nguyen et al., 2022; Liu et al., 2022; Wu et al., 2022; Zhang
et al., 2022; Wu et al., 2023) applied to facilitate the generation process. However, IC normally fails

11We further report word repetition results from different models on all datasets in Appendix E.
12For comprehensive comparisons, we present more case studies in Appendix F.
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Image

The image shows a 
view from the top of 
mountains, looking 
down into the valley 
below. The valley is 
lined with trees and 
there are mountains 
in the distance. The 
sky is clear with 
some clouds in the 
distance, and the 
sun is shining down 
on the scene.

Gold Standard

Diff

(t=75, 19.0) The image shows a view view of 
objective ... objective mountains in a of the ... 
the in in behind ... behind

(t=50, 6.4) The image shows a view of a 6 
well ... of a mountains with leather 52 ... there 
is a white objective sky with objectivery ... the 
water in the of a mountains is crew and frame

(t=25, 1.6) The image shows a view of rocky 
valley mountains mountains There is a white 
blue sky mountains with clouds mountains and 
the water moutains behind the mountains is 
clear and blue and mountains in the distance

(t=0, 1.5) The image shows a small view of a 
rocky valley and mountains. There is a blue 
sky with clouds on top of the moutains. The 
water behind the mountains is clear and blue. 
The mountains and valley are in the distance.

(t=75, 6.9) The image shows a view on top top mountains 
mountains mountains with valley valley and green green trees 
trees. The sky sky is clear clear and blue blue with objective and 
clouds clouds of … of sun is shining shining shining 500 scene

(t=50, 3.1) The image shows a view on top of  mountains of a3 
the ... with valley and green green trees in the of a ... The sky is 
clear and blue b60*lue with clouds objective 7 website ...and 
clouds clouds. The sun is shining shining on objective of a scene.

(t=25, 1.4) The image shows a view on top of rocky mountains, 
with a valley hill and the green trees on a large amount of  
mountains in the distance. The sky is clear and blue with clouds. 
The sun is shining on the side of the valley scene. 

(t=0, 1.3) The image shows a view on top of rocky mountains, 
with the valley surrounded by green trees. There is large amount 
of mountains in the distance. The sky is clear and blue with 
clouds. The sun is shining on the valley scene.

Diff+SCP+SCM

(t=100, 52.0) The image image objective 
objective ... objective

(t=100, 14.3) The image shows shows top top mountains ... 
mountains objective ... objective valley valley green green green 
green trees trees ..trees sky sky sky clear clear … clear blue blue 
objective clouds … clouds sun … sun shining shining shining

Figure 3: An illustration of the text generation processes (through texts generated at different steps)
by different models with an example input image from CC-SBU, where the gold standard is also
presented for reference. Semantic words (i.e., semantic concepts) shared by model outputs and the
gold standard texts are highlighted in the same color. t refers to the step of the diffusion decoding
process, where t decreases from 100 to 0 (following the convention setting of diffusion models, step
decreasing represents the iterative process starting from Gaussian noises to final de-noised results).

to meet the requirements of some challenging scenarios, especially the ones in particular domain
with long descriptions, e.g., report for radiology. Although some approaches directly use IC models
(Vinyals et al., 2015; Lu et al., 2017; Rennie et al., 2017; Anderson et al., 2018) for radiology report
generation (RRG), some studies improve conventional AR solutions with co-attentions (Jing et al.,
2018), memory networks (Chen et al., 2020; 2021), reinforcement learning (Qin & Song, 2022),
and useful features in different modalities (Li et al., 2018; Wang et al., 2022; Tanida et al., 2023;
Hou et al., 2023; Huang et al., 2023), which are still limited to guarantee comprehensive and coher-
ent texts in the generated result. With recent advances in large language models (LLMs) (Touvron
et al., 2023a;b) and diffusion model (Ho et al., 2020) that both illustrate outstanding generation abil-
ity, these techniques have been employed to enhance the cross-modal content generation process
(Li et al., 2023; Zhu et al., 2023; Liu et al., 2023) as well as report generation in the medical do-
main (Omkar Thawkar & Khan, 2023; Tu et al., 2023). Particularly, owing to the discrete nature
of texts, it is hard to directly applying standard diffusion model for text generation, some studies
are thus proposed to do so through continuous representations, e.g., embedding (Li et al., 2022a;
Gong et al., 2023) and bit representations (Chen et al., 2023; Luo et al., 2022). Compared with all
aforementioned work, our approach offers a generic solution for I2LTG, with an effective design of
using diffusion networks for non-AR text generation, and proves the validity of employing semantic
guidance to enhance the coherence of texts when generating long descriptions for an image.

6 CONCLUSION

In this paper, we propose a diffusion-based model, SEMDIFF, with memory networks for I2LTG,
which firstly captures salient semantic concepts in image, then utilizes memory networks to enhance
such concepts, and finally employs diffusion networks to incorporate them to facilitate the long-text
generation process. SEMDIFF offers a solution to incorporating external guidance into diffusion
networks, effectively addresses a series of issues such as incoherence problem in non-AR text gen-
eration, especially for long texts. Experiments on three public datasets and COCO-LT illustrate the
superiority of our approach compared to state-of-the-art solutions. We also propose a new dataset
COCO-LT dataset with over 54K image-long text pairs to further evaluate our approach on I2LTG,
which further confirms its long-text generation ability as that proved on the three public datasets.
Further analyses investigate the effect of our approach in accommodating semantic concepts into
diffusion networks, indicating that our SEMDIFF design of incorporating external guidance has its
potential of being utilized as a benchmark framework for similar tasks in future studies.
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Prompt:
<sentence-1> <split> <sentence-2> <split> <sentence-3> <split> <sentence-4> <split>
<sentence-5>
Conclude the above sentences into one paragraph.

Figure 4: The prompt we used for ChatGPT to generate long text description. “<sentence-i>”
represents the placeholder of the i-th (i ∈ {1 . . . 5}) COCO caption given the same image and
“<split>” denotes the special token to mark the boundaries between every two sentences.

In the garden, there is a bowl filled with sliced grapefruit and oranges, specifically placed to
provide fruit for the animals. One of the oranges in the bowl has a butterfly resting on it
adding a touch of beauty to the arrangement. Additionally, on a nearby table, there is a
plate filled with sliced oranges, accompanied by plants. A butterfly can be seen exploring
the dish of fruits, adding a sense of wonder to the scene.

1. A bowl in the garden filled with fruit for the animals.
2. Sliced grape fruit and oranges are placed in a bowl with a butterfly on one of the oranges.
3. A plate with sliced fruit has attached a butterfly.
4. A plate fool of sliced oranges on a table, next to plants.
5. A butterfly exploring a dish of fruits in the shade.

（a）Image

（b）COCO Captions

（c）COCO-LT Description

Figure 5: An illustration of (a) the image, (b) the original captions in COCO, and (c) the description
generated by ChatGPT from COCO captions for COCO-LT.

APPENDIX A: MORE DETAILS OF THE COCO-LT DATASET

When creating the COCO-LT dataset, we prompt ChatGPT to generate long text descriptions us-
ing the five captions from the instances in original COCO dataset. We show the prompt used by
ChatGPT in Figure 4 and present an example in the COCO-LT dataset with the image, the original
COCO captions, and the produced descriptions in Figure 5 (a), (b), and (c), respectively.

APPENDIX B: HYPER-PARAMETER SETTINGS

We report the detailed hyper-parameter settings for different datasets in Table 5. For the bit dimen-
sion, we follow the standard process of Bit Diffusion (BD) (Chen et al., 2023) and set the value
according to the vocabulary size of each dataset. Herein, we choose a frequency threshold accord-
ing to the vocabulary size of each dataset, where the dataset with a smaller vocabulary has a higher
threshold. For example, since MIMIC-CXR has the smallest vocabulary, we set its threshold to 80
in order to obtain accurate medical concepts in its radiology reports. We also report numbers of
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MIMIC-CXR CC-SBU LN COCO-LT
Bit Dimension 13 14 14 14
Frequency Threshold 80 10 30 30
Memory Size Nm 2,048 512 2,048 2,048
Number of Queried Vectors K 128 64 128 128
Training Epochs 30 2,000 10 30

Concept Size 931 1,622 4,888 1,894

Table 5: Details of hyper-parameter settings for MIMIC-CXR, CC-SBU, LN, and COCO-LT. The
number of concepts obtained by applying the frequency threshold to each dataset is also reported.

DATA P R F1
MIMIC-CXR 0.764 0.649 0.695
CC-SBU 0.528 0.571 0.549
LN 0.469 0.513 0.490
COCO-LT 0.395 0.459 0.425

Table 6: Evaluation of the semantic concepts generated by SCP on the test sets of MIMIC-CXR,
CC-SBU, LN, and COCO-LT with respect to precision (P), recall (R), and F1 scores.

concept based on the frequency threshold setting in Table 5. For the memory size Nm, the number
of queried vectors K, and the training epochs of each dataset, we try different settings and select
their combination with the best performance on the validation set. We choose Nm and K according
to the analyses in Section 4.2, and set the training epochs based on the scale of each dataset.

APPENDIX C: EVALUATION OF THE QUALITY OF PREDICTED SEMANTIC
CONCEPTS

To evaluate the quality of the semantic guidance in our approach, we compare the semantic concepts
generated by the SCP with gold standards, where the precision, recall, and F1 scores are reported in
Table 6. The high F1 scores indicate a promising quality of the generated concepts.

APPENDIX D: COMPREHENSIVE RESULTS ON CC-SBU, LN, AND COCO-LT

In Table 4, we only report BLEU-4, METEOR, ROUGE-L of different models on CC-SBU, LN,
and COCO-LT datasets. For the performance on other metrics (i.e., BLEU-1, BLEU-2, and BLEU-
3), we report them in Table 7, also with results on BLEU-4, METEOR, ROUGE-L presented for a
comprehensive evaluation. From Table 7, we observe a similar trend as the one in Table 4, which
further confirms the effectiveness of our approach. In addition, we present the average token-based
length (i.e., “LEN”) of the descriptions generated by different approaches to show their long text
generation ability. We find that our approach is able to generate longer descriptions than conven-
tional AR (e.g., ORT, M2 TRANSFORMER) and non-AR approaches (e.g., “MIR”, “SATIC”, and
“SCD-NET”) with more coherent content (as that compared in NLG metrics). Moreover, compared
with LLM-based methods (i.e., BLIP-2, MINIGPT-4, and LLAVA), although they are able to pro-
duce longer descriptions, our approach consistently outperforms them under all evaluation metrics,
indicating a stronger generation ability with our model design than using massive parameters.

APPENDIX E: WORD REPETITION RESULTS

We count the number of repeated tokens in the texts generated by different models and report their
average numbers for each dataset in Table 8. We observe that, models with SCP (i.e., “Diff+SCP”
and “Diff+SCP+SCM”) are able to generate texts with less repetition than “SCD-NET” and “DIFF”,
which confirms the effectiveness of SCP in addressing the conventional non-AR generation issue.
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DATA MODEL
NLG METRICS

BL-1 BL-2 BL-3 BL-4 MTR RG-L LEN

CC-SBU

ATT2IN (Rennie et al., 2017) 0.0005 0.0003 0.0001 0.0001 0.0114 0.0573 6.9
RFNET (Jiang et al., 2018) 0.0006 0.0002 0.0001 0.0001 0.0126 0.0557 7.2
TOPDOWN (Anderson et al., 2018) 0.0010 0.0006 0.0003 0.0002 0.0238 0.0694 8.5
MIR (Lee et al., 2018) 0.0014 0.0008 0.0004 0.0002 0.0283 0.0771 10.9
ORT (Herdade et al., 2019) 0.0019 0.0011 0.0006 0.0003 0.0519 0.1031 11.5
AOANET (Huang et al., 2019) 0.0022 0.0010 0.0006 0.0002 0.0486 0.0933 11.4
M2 TRANSFORMER (Cornia et al., 2020) 0.0016 0.0008 0.0005 0.0002 0.0466 0.0859 10.4
SATIC (Zhou et al., 2021) 0.0018 0.0009 0.0006 0.0003 0.0530 0.1182 11.8
SCD-NET (Luo et al., 2022) 0.0017 0.0007 0.0005 0.0002 0.0451 0.1238 13.4
BLIP-2 (1.1B) (Li et al., 2023) 0.0044 0.0031 0.0022 0.0017 0.0557 0.1552 11.2
MINIGPT-4 (13B) (Zhu et al., 2023) 0.3379 0.2024 0.1293 0.0875 0.1561 0.2256 60.5
LLAVA (7B) (Liu et al., 2023) 0.3428 0.1857 0.1019 0.0603 0.1626 0.2467 72.8

SEMDIFF 0.4172 0.2649 0.1674 0.1088 0.2007 0.3229 53.7

LN

ATT2IN (Rennie et al., 2017) 0.0022 0.0012 0.0003 0.0002 0.0138 0.0628 7.1
RFNET (Jiang et al., 2018) 0.0025 0.0013 0.0004 0.0002 0.0144 0.0731 8.2
TOPDOWN (Anderson et al., 2018) 0.0031 0.0012 0.0003 0.0002 0.0177 0.0749 6.6
MIR (Lee et al., 2018) 0.0034 0.0011 0.0005 0.0002 0.0162 0.0713 10.2
ORT (Herdade et al., 2019) 0.0039 0.0015 0.0005 0.0003 0.0257 0.0861 10.9
AOANET (Huang et al., 2019) 0.0038 0.0016 0.0006 0.0003 0.0286 0.0875 10.3
M2 TRANSFORMER (Cornia et al., 2020) 0.0042 0.0018 0.0008 0.0004 0.0347 0.0914 11.4
SATIC (Zhou et al., 2021) 0.0067 0.0038 0.0019 0.0007 0.0704 0.1462 12.1
SCD-NET (Luo et al., 2022) 0.0057 0.0023 0.0012 0.0006 0.0549 0.1201 12.6
BLIP-2 (1.1B) (Li et al., 2023) 0.0131 0.0058 0.0027 0.0013 0.0430 0.1050 10.6
MINIGPT-4 (13B) (Zhu et al., 2023) 0.2045 0.0885 0.0359 0.0153 0.1120 0.1478 63.8
LLAVA (7B) (Liu et al., 2023) 0.2083 0.0866 0.0348 0.0155 0.1333 0.1856 75.4

SEMDIFF 0.3758 0.2290 0.1477 0.0920 0.1533 0.2814 55.8

COCO-LT

ATT2IN (Rennie et al., 2017) 0.0004 0.0002 0.0001 0.0001 0.0079 0.0518 6.5
RFNET (Jiang et al., 2018) 0.0003 0.0002 0.0001 0.0001 0.0066 0.0489 6.4
TOPDOWN (Anderson et al., 2018) 0.0008 0.0003 0.0002 0.0001 0.0224 0.0545 8.2
MIR (Lee et al., 2018) 0.0010 0.0004 0.0002 0.0002 0.0365 0.0894 11.2
ORT (Herdade et al., 2019) 0.0013 0.0006 0.0004 0.0002 0.0438 0.1268 10.5
AOANET (Huang et al., 2019) 0.0015 0.0008 0.0004 0.0002 0.0457 0.1381 10.4
M2 TRANSFORMER (Cornia et al., 2020) 0.0013 0.0007 0.0003 0.0002 0.0432 0.1219 9.9
SATIC (Zhou et al., 2021) 0.0017 0.0010 0.0006 0.0003 0.0469 0.1227 11.6
SCD-NET (Luo et al., 2022) 0.0009 0.0007 0.0003 0.0001 0.0429 0.1374 13.7
BLIP-2 (1.1B) (Li et al., 2023) 0.0016 0.0010 0.0006 0.0004 0.0476 0.1257 10.7
MINIGPT-4 (13B) (Zhu et al., 2023) 0.2160 0.0968 0.0437 0.0211 0.1008 0.1441 60.4
LLAVA (7B) (Liu et al., 2023) 0.3287 0.1579 0.0760 0.0386 0.1441 0.2010 73.9

SEMDIFF 0.3654 0.2103 0.1435 0.0934 0.1547 0.2649 54.9

Table 7: Comparisons of our approach and existing state-of-the-art studies on CC-SBU, LN, and
COCO-LT datasets w.r.t. all NLG metrics and averaged length (i.e., “LEN”) of generated texts.

MODEL MIMIC-CXR CC-SBU LN COCO-LT

SCD-NET (Luo et al., 2022) - 2.4 2.5 2.8
DIFF 3.5 3.8 3.1 4.9
DIFF+SCP 1.5 1.5 1.8 1.7
DIFF+SCP+SCM (SEMDIFF) 1.3 1.2 1.5 1.3

Table 8: The average number of repeated tokens in the descriptions produced by different models
on MIMIC-CXR, CC-SBU, LN, and COCO-LT datasets.

APPENDIX F: MORE CASE STUDIES

To further illustrate the effectiveness of our approach with qualitative comparison, we present more
case studies on MIMIC-CXR, LN, and COCO-LT in Figure 6, 7, and 8, respectively, where the
texts generated by all baselines and our full model, i.e., “Trans”, “Diff”, “Diff+SCP”, “Diff+SCM”,
and “Diff+SCP+SCM”. Similar to the observations in Figure 3, our full model is able to effectively
leverage the semantic concepts generated and enhanced by SCP and SCM, respectively, so as to
produce more comprehensive and coherent descriptions compared with other baseline models.
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Diff

(t=75, 21.1) There are are low lungs high-resolution. Post-chest 
osseous ... osseous positions ... positions orphaned orphaned ...
orphaned

(t=50, 8.5) There are are low lung volumes. The heart size is is 
normal limits. nincreased 66 about bronchiectases whole 
buckshot anteriorly 400 66 0 … Cardiac and mediastinal
approximately high-resolution.

(t=25, 1.5) There are low lung volumes. The heart size is within 
normal limits. No typical configurational abnormality is 
identified. The thoracic is widened but elongated. No local 
abnormality abnormality is is. Local local contour are identified. 
Cardiac mediastinal mediastinal silhouettes are unremarkable.

(t=0, 1.8) There are low lung volumes. The heart size is within 
normal limits. No typical configurational abnormality is 
identified. The thoracic aorata is widened but elongated. No local 
abnormality is identified. No local contour are identified. Cardiac 
and mediastinal silhouettes are unremarkable.

Diff+SCP+SCM

(t=100, 32.4) The confluent outlining viral post-bullectomy 
orphaned the osseous … osseous.

Trans

The lung volumes are low. The heart size is normal. There is a 
tiny right pleural effusion. Prosthetic valve is again noted with a 
right to moderate hiatal hernia. No signs of pneumonia edema.
Bony structures are intact.

(t=75, 9.8) low lung volumes . the the ... mediastinal contours heart 
heart heart exame moderate-to-serve … junctionupper atelectasis at 
port-a-cath… right right-sided pleural pneumothorax ... bony bony 
bony bony.

(t=50, 6.4) Lungs volumes is the low volumes. Mediastinal contours
junctionupper ... is thorax. Mildextending to the right thoraciclumbar 
theoracic. Atelectasis at bases c2 455... No pleural effusion or 
pneumothorax. Bony structure structure is is Positioningno.

(t=25, 1.4) There are low lung volumes. Heart size is within normal 
limits. Mediastinal contours are unremarkable. There is left 
retrocardiac retrocardiac retrocardiac  opacity opacity junctionupper. 
Areas of the atelectasis at lung bases. No pleural effusion or 
pneumothorax. Bony structure structure is is intact.

(t=0, 1.1) There are low lung volumes. Mediastinal contours are 
unremarkable. Heart size is within normal limits. There is a left 
retrocardiac opacity . Areas of atelectasis are seen at the lung bases. 
No pleural effusion or pneumothorax. Bony structure is intact.

Diff+SCP

(t=100, 11.7) lung lung lung mediastinal mediastinal heart heart 
pm … pm cardiomediastinal cardiomediastinal cardiomediastinal  
silhouette silhouette orphaned … orphaned atelectasis atelectasis
pleural pleural pleural pneumothorax pneumothorax bony bony.

(t=75, 9.7) Pa and lateral chest orphaned positioningno 
positioningno anteriorly patient positioningno  position. The 
heart size orientation positions positions 408 ... pleural effusion
bony bony bony structure anetriorly orientation positions

(t=50, 6.9) Pa and lateral chest views were obtained with in In 
positioningno position. The heart size is 408 enlarged size. jp ...
positioned a 408 bronchiectases. No pleural effusion is seen. 
Bony structure juxta nincreased pseudoarthrosis intact.

(t=25, 1.3) Pa and lateral chest views were obtained with in in 
upright position. The heart size is normal in size. No local contour 
are are identified. No pleural effusion is seen. Bony structure 
structure is intact.

(t=0, 1.5) Pa and lateral chest views were obtained with in the 
upright position. The heart size is normal within limits. No local 
contour are identified . No pleural effusion is seen. Bony 
structure is intact.

Diff+SCM

(t=100, 25.5) Oropharyngeal and lateral chest views  osseous 
osseous ... orphaned

(t=100, 16.3) Orphaned … orphaned lung lung lung heart heart heart 
heart orphaned … orphaned mediastinal mediastinal orphaned …
orphaned … atelectasis atelectasis orphaned … orphaned pleural
pleural pleural pneumothorax pneumothorax.

(t=75, 5.0) Juxta bronchi appearanceblunting low lung volumes. The
heart size is wirse normal kyphoplasty. Mediastinal contours
orphaned … orphaned junctionupper orphaned atelectasis at lung 
positioningno … positioningno.

(t=50, 1.2) There are low lungs volumes. Heart size is 408 enlarged 
size. Mediastinal contours bronchiectases whole buckshot.
Thoraciclumbar theoracic mild pulmonary vascular congestion 408 
c2. Atelectasis at lung bases c2 455. No pleural effusion or 
pneumothorax. Oropharynx juxta no acute osseous abnormalities.

(t=25, 1.3) There are low lung volumes. Heart size is within normal 
limits. Mediastinal contours are unremarkable. There is pulmonary 
vascular congestion without mild interstitial edema. Areas of 
atelectasis at the lung bases. No pleural effusion or pneumothorax. 
There are no acute osseous abnormalities.

(t=0, 1.3) There are low lung volumes. Heart size is mildly enlarged. 
Mediastinal contours are unremarkable. There is mild pulmonary 
vascular congestion without overt interstitial edema. Patchy 
atelectasis are seen at the lung bases. No pleural effusion or 
pneumothorax is present. There are no acute osseous abnormalities.

Lung volumes are low.  Mediastinal and hilar contours are 
unremarkable. The heart is mildly enlarged. Streaky opacities in the 
lung bases likely reflect areas of atelectasis. No pleural effusion or 
pneumothorax is present. There are no acute osseous abnormalities.

Gold Standard

Figure 6: Descriptions generated by baseline models and our full model with an example input
image from MIMIC-CXR, where the gold standard is also presented for reference.
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At the top of the image there is sky with clouds. At the 
bottom of the image there is a road. In the background 
there are many trees and plants with leaves, stems and 
branches. There is a hill. There is a ground with grass on it. 
In the middle of the image, a car is moving on the road. 
There is a man in the car.

Gold Standard

Diff

(t=75, 11.6) At the top of the the are are of … of there 
are objective objective … objective at the. 

(t=50, 8.5) At the top of the image are objective 
objective objective in in the sky sky. In the objective 
objective are the … the mountains there are objective 
objective … objective at the road objective on the …
the on the the.  

(t=25, 2.0) At the top of the image are objective birds 
in the sky. In the background ,we can see objective. In 
the middle middle are are the objective on the road. 
On the right objective, we can see grass on the the 
objective objective.

(t=0, 1.6) At the top of the image are flying birds in 
the sky. In the background, we can see mountains. In 
the middle, there are vehicles moving on the road. On 
the right side, we can see grass on the ground.

Diff+SCP+SCM

(t=100, 35.0) At at at the … the.

Trans

In this image I can see a car driving down a road. In 
the background I can see trees on the mountains. On 
the right side I can see water flowing through the 
road. There are people standing nearby the water.

(t=75, 5.7) In the image I I can can can the the car on on 
the the the road. The sky sky clouds clouds clouds the …
the man. Car car on the … the grass and and hill in the 
the. At the the the the trees trees trees trees.

(t=50, 6.4) In the image I I can see see the the the car on 
on the the the road. We can can see sky and clouds clouds 
clouds on top top of the the. We we can see man man car 
car on the of … of grass and and hill in the the. At the 
bottom we can can the ... the trees trees.

(t=25, 2.5) In the image I can see the car on on the the 
road. We can see sky and clouds on top of the image. We 
can see man is is the the car. We can see grass and hill in 
the the. At the bottom we can see the the, the the the, the 
the the the trees.

(t=0, 1.5) In this image I can see a car is running on the 
road. We can see the sky and clouds on the top of the 
image. We can see a man is driving the car. We can see 
grass and a hill in the background. At the bottom we can 
see dried leaves, branches, and trees.

Diff+SCP

(t=100, 9.4) In the image the the the car car car car on the 
the the the road. The … the sky sky clouds clouds clouds 
the … the man man car car grass ... grass and and hill 
the … the trees trees trees trees.

(t=75, 9.7) There is is is a at ... at the the. There is the 
on the the … the there is and the … the.
(t=50, 6.9) There is is sky sky sky at ... at the the. 
There is the car on the the … the in the. There is a a in 
the the and the. We can see the … the. In the the the, 
there is is the and the the the the sky sky.

(t=25, 2.3) There is a sky at the top. There is a car on 
the the road. There is a hill in the the background 
and. We can see trees on top of the the hill in the the. 
In the background, there is stars and moon the the 
the sky.

(t=0, 1.5) A picture shows the scenery of city street. 
There are two cars parked nearby a bench. A car is 
parked next to the sidewalk. A group of people are 
standing in the sight of view.

Diff+SCM

(t=100, 25.5) There at ... at the the … the.

(t=100, 6.8) At the … the sky sky sky clouds clouds clouds 
the the the the of … of the the man man car car car car car 
road road road the … the trees trees grass grass grass 
grass grass hill hill.

(t=75, 4.7) At the the the top top of of  the the sky sky and 
clouds clouds. At at the the the the of … of the the man 
man car car car on the the road road road. The … the trees 
trees and grass grass on the the the the the hill hill.

(t=50, 3.3) At the top of the image image, we can can see 
sky and clouds clouds. At the ... the of the image, we can 
can a man man a car on the the road. In the the the, we 
can see see see trees and grass on the the hill.
(t=25, 1.8) At the top of the image, we can see sky and 
clouds. At the bottom of the image, we can see a man 
man a car on the road. In the the, we can see trees and 
grass on a hill.

(t=0, 1.5) At the top of the image, we can see sky and 
clouds. At the bottom of the image, we can see a man is 
driving a car on the road. In the background, we can see 
trees and grass on a hill.

Figure 7: Descriptions generated by baseline models and our full model with an example input
image from LN, where the gold standard is also presented for reference.
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A bustling city street. There is a car that appears to be 
parked illegally beside a bench, and another car is parked 
legally. Two cars are parked on the sidewalk, further 
obstructing pedestrian pathways. 

Gold Standard

Diff

(t=75, 15.8) This image is is filled with an unusual 
objective ... objective the red of black … ex ofs

(t=50, 9.6) This image shows a street street sight of 
street cars and the front of a large besides a 
objective. A objective of people in the elements, who 
objective in the objectiveur. This 
objectiveur ...objectiveur and objectiveur

(t=25, 1.6) This image shows a large street street 
landscape. Two cars parking on the front of a large
besides a bench. A objective of people in the sight of 
view. This picture reveals a a sight of objectiveur.

(t=0, 1.5) The image shows a large street landscape.
Two cars are parking on the street beside a bench. A 
large group of people are standing on the landscape. 
The picture reveals a natural sight of happiness.

Diff+SCP+SCM

(t=100, 46.8) a series scene a on ... the the the 

Trans

This image shows a busy street view. Two cars parked
on a street. A car is parked next to a bench on the side 
of the road. People are walking down the street 
beside the cars.

(t=75, 7.0) The image a objective of the of the city street 
street. Car car car parked next … next to of a bench. A 
group of a objective sidewalk the the the trees trees trees
pedestrian pedestrian pathways pathways.

(t=50, 5.2) The image shows a scene scene scene of the of 
the city street. There are the a car parked next next next 
to a bench. A group of a objective ... objective on the a
sidewalk the the the trees trees trees pedestrian 
pedestrian pathways pathways.

(t=25, 1.4) The image shows a scene of the city street. 
There are two cars parked next to a bench. A group of a 
objective is standing on the a sidewalk. There are trees 
down down pedestrian pathways.

(t=0, 1.3) The image shows a scene of the city street. There 
are two cars parked next to a bench. A group of people is 
standing on the sidewalk. There are trees down the 
pedestrian pathways.

Diff+SCP

(t=100, 15.4) The objective the … the city street street car 
car car parked objectiveling … objectiveling bench bench 
sidewalk the … the trees trees trees pedestrian pedestrian 
pathways pathways pathways

(t=75, 17.9) A picture nearby on nearby … nearby next 
next next next the ... the 

(t=50, 11.3)  A picture shows the scenery of the on 
the. Cars are are cars parked nearby … nearby next
next the ... the standing in in … in.

(t=25, 1.7) A picture shows the scenery of the the 
street. There are cars parked nearby a a bench car 
car parked nearby next sidewalk sidewalk a ground 
of objective objective are are standing in the of view.

(t=0, 1.5) A picture shows the scenery of city street. 
There are two cars parked nearby a bench. A car is 
parked next to the sidewalk. A group of people are 
standing in the sight of view.

Diff+SCM

(t=100, 39.5) a objective seen scene a on the ... the 

(t=100, 14.5) Objectiveling objective objective ... city city 
city street street car car car parked objectiveur …
objectiveur  bench bench sidewalk objective … objective 
pedestrian pedestrian pathways pathways pathways

(t=75, 9.7) The a objective seen seen ... seen city city city 
street car car parked next ... next bench of … of sidewalk 
of the the of down ... down of of on pedestrian pedestrian 
pathways pathways pathways.

(t=50, 4.5) The picture shows  a objective of city city city 
street. Car car car parked next ... next to one the bench of 
on the a sidewalk of the. Cars are are parked on at the on 
the the of pedestrian pathways.

(t=25, 1.6) The picture shows a landscape of city street. A
car is parked next To the bench, and a the car parked on 
the a sidewalk. Cars cars are parked on at the location of 
the of pedestrian pathways.

(t=0, 1.4) The picture shows a landscape of city street. A 
car is parked next to the bench, and another car is parked 
on the sidewalk. Two cars are parked at the location of 
the pedestrian pathways. 

Figure 8: Descriptions generated by baseline models and our full model with an example input
image from COCO-LT, where the gold standard is also presented for reference.
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