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ABSTRACT

We propose a federated dynamical low-rank training (FeDLRT) scheme to reduce
client compute and communication costs - two significant performance bottlenecks
in horizontal federated learning. Our method builds upon dynamical low-rank
splitting schemes for manifold-constrained optimization to create a global low-rank
basis of network weights, which enables client training on a small coefficient
matrix. This global low-rank basis that allows us to incorporate a variance correc-
tion scheme and prove global loss descent and convergence to a stationary point.
FeDLRT features dynamic augmentation and truncation of the low-rank bases to
optimize computing and communication resource utilization. Notably FeDLRT
only trains a small coefficient matrix per client. We demonstrate the efficiency of
FeDLRT in an array of computer vision benchmarks with both i.i.d. and non-i.i.d.
data distributions and show a reduction of client compute and communication costs
by up to an order of magnitude with minimal impacts on global accuracy. FeDLRT
performs as well as classical methods such as FedAvg and FedLin, with a fraction
of the memory and compute requirements.

1 INTRODUCTION

Federated learning (FL) Li et al. (2020); Shamir et al. (2014); McMahan et al. (2016) builds a
global model on a central server from data distributed on multiple devices, i.e., clients, by iteratively
aggregating local models trained with the computation resource on the clients. In horizontal FL, where
all clients share identical model architecture and data features, computation is often limited by (i) the
communication bandwidth between clients and the server and (ii) the restricted compute and memory
resources at each client. The former could be addressed by deploying various compression techniques,
such as sparse randomized sketching Haddadpour et al. (2020b), subsampling Konečný et al. (2017),
or by allowing for partial McMahan et al. (2016); Nishio & Yonetani (2019) or asynchronous Sprague
et al. (2018); Chen et al. (2020b) communications. The latter could be addressed by sparse training
Qiu et al. (2022); Yang et al. (2020) and transfer learning Chen et al. (2020a).

Since FedAvg McMahan et al. (2016), low-rank, sparsity and matrix sketching-based methods have
been proposed to increase communication and compute efficiency for FL in Qiao et al. (2021); Yi
et al. (2024); Liu et al. (2023); Yao et al. (2022); Xue & Lau (2023); Hyeon-Woo et al. (2022);
Konečný et al. (2017); Reisizadeh et al. (2020b). These methods can be categorized into 1) methods
that perform full-rank training on the clients and reduce communication cost by communicating only
a) low-rank factors Qiao et al. (2021); Vogels et al. (2020); Xue & Lau (2023) or b) sketched matrices
Rabbani et al. (2023); Rothchild et al. (2020); Ivkin et al. (2019); Condat et al. (2023) and 2) methods
that reduce both communication and client compute costs by training on a) low-rank factors Liu et al.
(2023); Yi et al. (2024); Yao et al. (2022); Hyeon-Woo et al. (2022); Konečný et al. (2017); Coquelin
et al. (2024) or b) sparsity patterns Horváth et al. (2021) on the clients. The methods in the first class
compress only the communication and do not reduce the compute and memory cost, while the ones
in the second class reduces the client compute and memory cost but often require reconstructing the
full weight matrix on the server.

Further, application of multiple optimization steps (local iterations) on clients often leads to the client
drift phenomenon, where convergence to local minimizers stalls the global convergence. Several
methods Shamir et al. (2014); Li et al. (2020); Pathak & Wainwright; Karimireddy et al. (2020);
Wang et al. (2020); Mitra et al. (2021b) have been proposed to mitigate this issue for non-compressed
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Table 1: Comparison of the computational footprint of FeDLRT with FedAvg McMahan et al.
(2016), FedLin Mitra et al. (2021a), FeDLR Qiao et al. (2021), Riemannian FL Xue & Lau (2023),
FjORD Horváth et al. (2021), FetchSGD Rothchild et al. (2020), FedHM Yao et al. (2022) and
FedPara Hyeon-Woo et al. (2022). We denote the number of local iterations by s∗, the local batch
size as b, the matrix dimension by n × n and the matrix rank by r. The sparsity rate of FjORD
and FetchSGD is denoted by δ. We mark the low-rank method with lowest compute, memory and
communication cost blue assuming fixed r ≪ n. The FeDLRT variants are the only low-rank schemes
with linearly scaling (in n) memory, compute, and communication costs with automatic compression
and the ability to handle client drift .

Method Client
compute

Client
memory

Server
compute

Server
memory

Comm.
cost

Comm.
rounds

Handles
client drift

Rank
adaptive

FedAVG O(s∗bn2) O(2n2) O(n2) O(2n2) O(2n2) 1 ✗ ✗
FedLin O(s∗bn2) O(2n2) O(n2) O(2n2) O(4n2) 2 ✓ ✗

FeDLR O(s∗bn2 + n3) O(2n2) O(n3 + n2) O(n2) O(4nr) 1 ✗ ✓
Riemannian FL O(s∗bn2r) O(2n2) O(n2r) O(4nr) O(4nr) 1 ✗ ✓
FedHM O(s∗b2nr) O(2nr) O(n2 + n3) O(n2) O(4nr) 1 ✗ ✓
FedPara O(s∗b4nr) O(4nr) O(n2 + n3) O(2n2) O(8nr) 1 ✗ ✗

FjORD O(s∗bδ) O(δ) O(n2) O(n2) O(4δ) 1 ✗ adapts δ
FetchSGD (s∗ = 1) O(s∗bn2) O(δ) O(n2) O(n2) O(4δ) 1 for s∗ = 1 adapts δ

FeDLRT w/o var/cor O(s∗b4nr) O(4nr) O(4nr2) O(2nr) O(6nr + 6r2) 2 ✗ ✓
FeDLRT simpl. var/cor O(s∗b4nr) O(4nr) O(4nr2) O(2nr) O(6nr + 8r2) 2 ✓ ✓
FeDLRT full var/cor O(s∗b4nr) O(4nr) O(4nr2) O(2nr) O(6nr + 10r2) 3 ✓ ✓

models, often by introducing correction terms to the client gradient. However, applying these client
drift mitigation techniques to methods in the second class is nontrivial, since the correction term is
often not compatible with the compressed (low rank or sparse) representations in local training.

Contribution: This work focuses on the horizontal FL setting and addresses the challenges of
communication bandwidth and client compute resources simultaneously by leveraging low-rank
approximations of weight matrices that follow the dynamics of the gradient flow. The proposed
method features 1) Efficient communication — only transmitting low-rank factors; 2) Low client
compute and memory footprint — clients optimizing only a small coefficient matrix and all floating
point operations of FeDLRT scale linearly in the matrix dimension n; 3) Automatic server-side
compression — minimizing memory and communication requirements during training via server-side
dynamical rank adjustment; 4) Global loss convergence guarantees — converging to a stationary
point by incorporating a variance correction scheme Mitra et al. (2021a). Each of these features is
demonstrated on benchmark problems. To the best of the authors’ knowledge, this is the first low-rank
method possessing all these features.

2 BACKGROUND AND PROBLEM STATEMENT

Federated optimization typically considers distributed setups and with limited communication and
limited client compute and memory resources McMahan et al. (2016). In this work, we consider a
general federated optimization problem, i.e.,

minw L(w) := 1
C

∑C
c=1 Lc(w), (1)

where w is a trainable weight, L is the global loss function associated to a global dataset X , and Lc

is the local loss function of client c with local dataset Xc in a federated setup with C clients. For
notational simplicity, we consider that X = ∪Cc=1Xc and each Xc is of the same size. Therefore, L
is an average of Lc with uniform weights.

The extension to handle a (non-uniform) weighted average case is straightforward. As the first
baseline for federated optimization, we consider FedAvg McMahan et al. (2016), see Algorithm 3.
Here, each client optimizes its local loss function Lc for s∗ local iterations using gradient descent,

ws+1
c = ws

c − λ∇wL(ws
c), (2)

with learning rate λ, for s = 0, . . . , s∗ − 1. The initial value for the local iter-
ation is the last global weight, i.e., w0

c = wt. After local iterations, the weights
are communicated to and aggregated at the server to update the global weight following
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Figure 1: Federated, heterogeneous least squares re-
gression problem, see Section 4.1, for C = 4 clients,
s∗ = 100 iterations, learning rate λ = 1e − 3 and C
rank-1 local target functions. FL methods without vari-
ance correction plateau quickly, whereas FedLin and
FeDLRT with variance correction converge to 1e − 5.
FeDLRT converges faster than FedLin and has lower
communication costs.

wt+1 = 1
C

∑C
c=1 w

s∗
c . (3)

Client-drift effect is a common challenge
in FL, where the iterative client updates
(2) of FedAvg converge to local minima
and jeopardize global training performance
since the average of the local minimizers
may be far away from the global mini-
mizer. These effects are particularly pro-
nounced for a large number of local iter-
ations s∗, or high discrepancies between
local loss functions Lc, as illustrated by
Figure 1. Multiple methods Shamir et al.
(2014); Li et al. (2020); Pathak & Wain-
wright; Karimireddy et al. (2020); Wang
et al. (2020) have been proposed to mitigate
this issue. However, these methods often
exhibit a speed-accuracy conflict, where
learning rates need to be heavily reduced; thus, convergence is slow.

Variance correction1 introduced in the FedLin method Mitra et al. (2021a) constructs a variance
correction term Vc = ∇wLc(w

t)− 1
C

∑C
c=1∇wLc(w

t) and modifies the client update iteration to

ws+1
c = ws

c − λ (∇wL(ws
c)− Vc) , s = 0, . . . , s∗ − 1. (4)

This technique leads to global convergence to the minimizer of (1) with constant learning rates for
convex L and else to convergence to a stationary point, at the cost of an additional communication
round for computing the variance correction. Similar methods, sometimes dubbed "error feedback"
are proposed in Liang et al. (2019); Ivkin et al. (2020)

Federated neural network training considers problem (1) with the trainable weight w being the set
of weight matrices {Wi}Li of an L layer neural network. In each iteration, the weight updates in (2)
and (4) are applied to all layers simultaneously. Therefore, w.l.o.g., we express the local loss function
as Lc(W ), where W ∈ Rn×n denotes the weight matrix of an arbitrary layer.

Low-rank neural network training: An array of recent work has provided theoretical and experi-
mental evidence that layer weights of over-parameterized networks tend to be low rank Arora et al.
(2019); Bah et al. (2022); Galanti et al. (2022); Martin & Mahoney (2018) and that removing small
singular values may even lead to increased model performance while dramatically reducing model
size Sharma et al. (2024); Schotthöfer et al. (2022) in non-federated scenarios. This beneficial feature
has spawned a rich landscape of methods to compress neural networks to a low-rank factorization
after training with subsequent fine-tuning Sainath et al. (2013); Denton et al. (2014); Tjandra et al.
(2017); Lebedev et al. (2015), train the factorized network with fixed rank Jaderberg et al. (2014);
Wang et al. (2021); Khodak et al. (2021), dynamically adjust the rank during training Schotthöfer
et al. (2022); Zangrando et al. (2023), or use low-rank adapters for fine-tuning foundation models Hu
et al. (2021); Dettmers et al. (2023); Zhao et al. (2024); Schotthöfer et al. (2024).

Dynamical Low-rank Approximation of the gradient flow of neural network training. The core
contribution of this paper builds on the dynamical low-rank approximation (DLRA) method, which
was initially proposed for solving matrix equations Koch & Lubich (2007) and recently extended
to neural network training Schotthöfer et al. (2022); Zangrando et al. (2023); Hnatiuk et al. (2024);
Schotthöfer et al. (2024). Let Ẇ (t) = −∇WL(W (t)) denote the gradient flow for minimizing L.

The DLRA method restricts the trajectory of W toMr, the manifold of n × n, rank-r matrices,
by projecting Ẇ onto a local tangent plane ofMr via an orthogonal projection. This guarantees
a low-rank solution when following the projected dynamics from a low-rank initial guess. Let the
low-rank matrix take the form Wr = USV ⊤ ∈ Mr with U, V ∈ Rn×r the orthonormal bases of

1Variance correction is commonly referred to as “variance reduction” Konečný et al. (2016); Mitra et al.
(2021a).
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Mr and S ∈ Rr×r the coefficient matrix. The dynamics for each low-rank factor in DRLA are then
derived in (Koch & Lubich, 2007, Proposition 2.1) as

Ṡ(t) = −U⊤(t)∇WL(U(t)S(t)V (t)⊤)V (t),

U̇(t) = −
(
I − PU(t)

)
∇WL(U(t)S(t)V (t)⊤)V (t)S(t)−1,

V̇ (t) = −
(
I − PV (t)

)
∇WL(U(t)S(t)V (t)⊤)U(t)S(t)−⊤,

(5)

where PU = UU⊤ and PV = V V ⊤ are the projections onto the column spaces of U and V ,
respectively.

In Schotthöfer et al. (2022), the authors develop an memory and compute efficient scheme to solve
(5) numerically for (non-federated) neural network training. The idea is to split the system into a
basis update step for U and V and a coefficient update step for S, allowing rank adaptation via a basis
augmentation before the coefficient update step and a basis truncation after the coefficient update,
which enables dynamic compression of the neural network during training.

Direct extension of DLRA to FL is not straightforward: In a FL setup, applying the above scheme
to the local training problem on each client c leads to low-rank weights Wc = UcScV

⊤
c with different

bases Uc and Vc and potentially different ranks for each client. While these factors can still be
efficiently communicated, aggregating these low-rank weights on the server requires reconstructing
the full weight matrix W ∗ = 1

C

∑C
c=1 UcScV

⊤
c . In this process, the low rank structure is lost and

needs to be costly recovered by a full n× n SVD on the server. Low-rank schemes using this type
of aggregation step and direct gradient descent on low-rank factors are presented in, e.g. Yao et al.
(2022), Qiao et al. (2021), Hyeon-Woo et al. (2022).

Furthermore, the inconsistency of the low-rank bases on each client complicates the implementation
of standard client drift mitigation methods, e.g., the variance correction method in FedLin Mitra et al.
(2021b), since these methods require averaged gradient information of all clients, which is nontrivial
to compute without a global low-rank basis shared between clients.

3 FEDLRT: FEDERATED DYNAMICAL LOW-RANK TRAINING WITH VARIANCE
CORRECTION

1 2

3 4

optimizeoptimize

Figure 2: Communication of
FeDLRT without variance correc-
tion. 1) Broadcast global basis
U, V (blue). 2) Aggregate basis
gradients Gc,U , Gc,V (orange). 3)
Broadcast global augmented basis
Ū, V̄ (green). 4) Aggregate client
coefficient update S̃s∗

c (purple).

In this section, we present the core contribution of this paper,
federated dynamical low-rank training (FeDLRT). FeDLRT cre-
ates a global low-rank manifold on which all clients of the FL
setup share the same basis U, V , referred to as the global basis.
This core idea enables FeDLRT to reduce the compute, commu-
nication, and memory costs simultaneously while incorporating
client drift mitigation techniques to guarantee convergence.

The procedure of FeDLRT is illustrated in Figure 2 and de-
tailed in Algorithm 1. As shown in Figure 2, FeDLRT first
broadcasts an initial low-rank factorization of a weight matrix
Wr = USV ⊤ to the clients (panel 1), and the basis gradients2

U, V are aggregated on the server (panel 2). Next, the basis is
augmented on the server (panel 3) and broadcast. On the clients,
only the augmented coefficient matrix S is updated repeatedly
(panel 4) before aggregation to the server. After aggregation of
the local augmented coefficient matrices, redundant bases are
eliminated to optimize the accuracy-to-compression ratio of the
model on the server, which gives the low-rank factorization of
the global weight for the broadcasting step in panel 1 for the
next aggregation round.

The strategy yields the following benefits compared to “full-rank”
FL schemes, such as FedLin Mitra et al. (2021a):
Low client compute cost: Server-based basis augmentation and

2and later on the coefficient gradients for variance correction
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compression enables an automatic compression without a-priori knowledge of the layer rank r and at
no cost for the resource-constrained clients. The clients only evaluate gradients of low-rank factors
and optimize the small matrix S ∈ Rr×r.

Efficient communication: Similar to FedLin, FeDLRT requires in practice two communication
rounds – one for aggregating and distributing global gradients for basis augmentation and variance
correction and one for aggregating locally updated coefficients. However, communication cost for
each round is significantly reduced since only low-rank factors are communicated. We refer to
Section 3.3 on communication and compute cost.

In comparison to low-rank schemes with local compression Yao et al. (2022); Yi et al. (2024); Qiao
et al. (2021); Hyeon-Woo et al. (2022) the scheme has the following benefits:
Global manifold basis: Splitting the low-rank update and sharing bases among clients provides a
globally consistent manifold basis. The global basis unlocks the favorable features of dynamical
low-rank training Schotthöfer et al. (2022) for federated learning: 1) Convergence behavior that
mimics that of FedLin, 2) compute and memory efficiency by never computing or assembling full
weight matrices, 3) automatic compression through rank adaptivity instead of manual tuning of the
rank r.

3.1 DESCRIPTION OF ALGORITHM 1 - FEDLRT

In this section, we elaborate on the details in Algorithm 13. The orthonormal factors U t, V t and the
coefficient matrix St are initialized with rank r and then broadcast to the clients. Note that FeDLRT
ensures that, for all t > 1, U t and V t are orthonormal, and St is diagonal and full rank.

Basis augmentation of the bases U t and V t is performed using concatenation with the corresponding
global basis gradients GU = 1

C

∑C
c=1∇ULc(U

tStV t,⊤) and GV = 1
C

∑C
c=1∇V Lc(U

tStV t,⊤),
obtained by aggregating the local basis gradients. GU and GV encapsulate the gradient flow dynamics
(5) projected onto the original bases, thus yielding an intuitive choice for basis augmentation. Further,
this choice is consistent with the basis update step of the augmented BUG splitting scheme, see
Appendix F, which ensures the robustness of the client optimizer. Subsequent orthonormalization,
e.g., by a QR decomposition, yields the augmented basis, i.e.,

[U t | Ū ]R = qr([U t | GU ]) ∈ Rn×2r, and [V t | V̄ ]R = qr([V t | GV ]) ∈ Rn×2r. (6)

We denote the augmented bases by Ũ = [U t | Ū ] and Ṽ = [V t | V̄ ]. The orthonormalization is
performed on the server, providing compute cost reduction for the client.

Basis broadcasting of Ũ and Ṽ only requires to broadcast the new bases Ū and V̄ , since U t and V t

are readily available on the clients. Formally, the coefficients St are projected onto the augmented
basis, i.e., S̃ = Ũ⊤U tStV t,⊤Ṽ ∈ R2r×2r, before broadcasting them to the clients. Exploiting the
orthonormality of the basis results in further reduction of the communication and compute cost:

Lemma 1. Let Ũ = [U t | Ū ] and Ṽ = [V t | V̄ ], then S̃ := Ũ⊤U tStV t,⊤Ṽ =

[
St 0
0 0

]
.

The proof (see Appendix G) is based on the orthogonality imposed in (6). With Lemma 1, only
Ū and V̄ have to be broadcast, and the augmented bases and coefficients Ũ , Ṽ , and S̃ can be
assembled on each client as needed. Furthermore, only S ∈ Rr×r, instead of S̃ ∈ R2r×2r, needs to
be communicated.

Below, we discuss three options for the client coefficient update step.

Client coefficient update without variance correction is implemented similarly to FedAvg (3). On
each client c, the augmented coefficient matrix S̃c is trained for s∗ iterations4 with learning rate λ,

S̃s+1
c = S̃s

c − λ∇S̃Lc(Ũ S̃s
c Ṽ

⊤), s = 0, . . . , s∗ − 1, with S̃s=0
c = S̃. (7)

Client coefficient update with variance correction is required in certain federated scenarios, e.g.,
the case considered in Figure 1. Based on FedLin Mitra et al. (2021a), we introduce a correction

3The auxiliary functions for Algorithm 1 can be found in Algorithm 2.
4Our analysis focuses on the case where all clients share the same number of local iterations s∗. The analysis

can be extended to the case where s∗ is client dependent, following a similar strategy as in Mitra et al. (2021a).
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Algorithm 1: FeDLRT (See Algorithm 2 for auxiliary function definitions)

Input :Initial orthonormal bases U1, V 1 ∈ Rn×r and full rank S1 ∈ Rr×r;
Client-server setup with clients c = 1, . . . , C;
var_cor: Boolean flag to activate variance correction;
τ : singular value threshold for rank truncation.

1 for t = 1, . . . , T do
2 broadcast({U t, V t, St})
3 GU,c ← ∇ULc(U

tStV t,⊤); GV,c ← ∇V Lc(U
tStV t,⊤) /* On client */

4 GU , GV ← aggregate({GU,c, GV,c})
5 Ū ←basis_augmentation(U t, GU ); V̄ ←basis_augmentation(V t, GV )
6 broadcast({Ū, V̄ })
7 Ũ ← [U t | Ū ]; Ṽ ← [V t | V̄ ] /* Basis assembly on client */

8 S̃s=0 ←
[
St 0
0 0

]
/* Coefficient matrix assembly on client */

9 if var_cor then
10 GS̃,c ← ∇S̃Lc(Ũ S̃Ṽ ⊤) /* Augmented gradient on client */

11 GS̃ ← aggregate({GS̃,c})
12 broadcast({GS̃})
13 coefficient_update_var_cor(c, GS̃ −GS̃,c) /* On client */

14 else
15 coefficient_update(c) /* On client */

16 S̃∗ ← aggregate({S̃s∗
c })

17 Pr1 ,Σr1 , Qr1 ← svd(S̃∗) with threshold ϑ /* Compression step */

18 U t+1 ← ŨPr1 ; V t+1 ← Ṽ Qr1 ; St+1 ← Σr1 /* Basis and coefficient
update */

step for the local coefficient update of FeDLRT. It extends the above local iteration by another
communication round, where the gradient of the augmented coefficients GS̃,c = ∇S̃Lc(Ũ S̃Ṽ ⊤) is

computed, aggregated to GS̃ = 1
C

∑C
c=1 GS̃,c and subsequently broadcast. This yields a correction

term Vc = GS̃ −GS̃,c for each client c and thus the client iterations read

S̃s+1
c = S̃s

c − λ
(
∇S̃Lc(Ũ S̃s

c Ṽ
⊤) + Vc

)
, s = 0, . . . , s∗ − 1, with S̃s=0

c = S̃. (8)

The correction term results in a bound on the coefficient drift and leads to convergence guarantees for
FeDLRT, as detailed in Section 3.2.

Client coefficient update with simplified variance correction: Empirically, we observe that a
simplified variance correction, which only considers the correction term of the non-augmented
coefficients St, is sufficient, see Figure 8. The simplified variance correction term takes the form

Vc = GS̃ −GS̃,c ≈ V̌c := ǦS̃ − ǦS̃,c =

[
∇SL(U tStV t,⊤)−∇SLc(U

tStV t,⊤) 0
0 0

]
, (9)

which makes lines 10 and 12 in Algorithm 1 redundant, since ǦS̃ can be aggregated in one step with
the basis gradients GU ,GV in line 4 and broadcast with Ū, V̄ in line 6, reducing the communication
rounds to two - the same as FedLin. See Algorithm 5 for details.

Coefficient averaging is performed after (any of the above variants of) the client iterations. The server
computes the updated global coefficients by averaging the local updates, i.e., S̃∗ = 1

C

∑C
c=1 S̃

s∗
c .

With the shared augmented bases Ũ and Ṽ , this is equivalent to the FedAvg aggregation

W̃ ∗
r = 1

C

∑C
c=1 W̃

s∗
r = 1

C

∑C
c=1

(
Ũ S̃s∗

c Ṽ ⊤
)
= Ũ( 1

C

∑C
c=1 S̃

s∗
c )Ṽ ⊤ = Ũ S̃∗Ṽ ⊤. (10)

Since the basis is fixed, the rank 2r is preserved in the aggregation, which is in contrast to other
federated low-rank schemes where the aggregated weights could be full rank and, in turn, require a
full matrix SVD to determine the new rank Qiao et al. (2021); Xue & Lau (2023).
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Automatic compression via rank truncation is necessary 1) to identify the optimal rank of the
weight matrix and 2) to ensure that S is full rank5. To this end, a truncated SVD of S̃∗ ∈ R2r×2r is
performed, i.e. Pr1 ,Σr1 , Q

⊤
r1 = svd(S̃∗), where Pr1 , Qr1 ∈ R2r×r1 and Σr1 = diag(σ1, . . . , σr1)

contains the r1 largest singular values of S̃∗. The new rank r1 can be chosen by a variety of criteria,
e.g., a singular value threshold ∥[σr1 , . . . , σ2r]∥2 < ϑ. Once a suitable rank is determined, the
factorization is updated by the projection of the bases U t+1 = ŨPr1 ∈ Rn×r1 , V t+1 = Ṽ Qr1 ∈
Rn×r1 and update of the coefficient St+1 = Σr1 . Remarkably, Algorithm 1 is a federated low-rank
learning scheme whose solution is close to a full-rank solution, see Theorem 5.

FeDLRT can readily be extended to tensor-valued, e.g., convolutional, layers by applying Algorithm 1
to each basis and the core tensor in a Tucker Tensor factorization. We refer to Appendix B for details.

3.2 ANALYSIS OF FEDLRT WITH VARIANCE CORRECTION

In this section, we analyze the FeDLRT algorithm under the general assumption that Lc and L are
L-smooth with constant L. Theorems 2 and 3 give the convergence results for FeDLRT with full
variance correction (8) in Algorithm 1. Theorem 4 and Corollary 1 provide the convergence for
FeDLRT with simplified variance correction in (9), as detailed in Algorithm 5, under additional
assumptions given therein. We note that the analysis does not require convexity of Lc or L.

FeDLRT convergence with full variance correction. The variance-corrected client iteration (8)
leads to the following bound the client coefficient drift.

Theorem 1. Given augmented basis and coefficient matrices Ũ , Ṽ , and S̃. If the local learning rate
0 < λ ≤ 1

Ls∗
with s∗ ≥ 1 the number of local steps, for all clients c,

∥S̃s
c − S̃c∥ ≤ exp(1)s∗λ∥∇S̃L(Ũ S̃Ṽ ⊤)∥, for s = 1, . . . , s∗ − 1, (11)

where S̃s
c is the variance corrected coefficient as given in (8).

The critical ingredient for the proof, provided in Appendix H.1, is the globally shared augmented
bases. Theorem 1 bounds the drift of the low-rank representations of the local weight, which gives
rise to the following global loss descent guarantee.

Theorem 2. Let U tStV t,⊤ and U t+1St+1V t+1,⊤ be the factorization before and after iteration t
of Algorithm 1 with variance correction and singular value truncation threshold ϑ. Let the local
learning rate be 0 < λ ≤ 1

12Ls∗
, then the global loss descent is bounded by

L(U t+1St+1V t+1,⊤)− L(U tStV t,⊤) ≤ −s∗λ(1− 12s∗λL)∥∇S̃L(Ũ S̃Ṽ ⊤)∥2 + Lϑ. (12)

The proof is provided in Appendix H.2. The theorem shows that Algorithm 1 guarantees global loss
descent, up to the error term Lϑ from low rank truncation. Further, Theorem 2 paves the way for the
following result on convergence to a global stationary point.

Theorem 3. Algorithm 1 guarantees that, for learning rate λ ≤ 1
12Ls∗

and final iteration T ,

min
t=1,...,T

∥∥∇S̃L(U
tStV t,⊤)

∥∥2 ≤ 48L

T

(
L(U1S1V 1,⊤)− L(UT+1ST+1V T+1,⊤)

)
+ 48L2ϑ. (13)

The proof is given in Appendix H.3. In particular, this theorem implies convergence of Algorithm 1
for T → ∞ up to a ϑ-distance to a global stationary point. This is consistent with the numerical
results in Figure 1, where FedLin converges to the global minimizer (the only stationary point) while
FeDLRT with variance correction stops at a point with slightly higher loss value due to a nonzero ϑ.
In the case that the FL problem has a low-rank solution, the truncation error bounded by ϑ vanishes,
and convergence to a stationary point is guaranteed, see, e.g., Figure 3.

5Full rank S is required to show consistency of the basis update step (6) with the robust operator splitting of
Ceruti et al. (2022); Schotthöfer et al. (2022), see Appendix F.
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Figure 3: Comparison between FeDLRT with simplified variance correction and FedLin in the
homogeneous linear least squares regression test. Each line represents the median result of 20 random
initialization with C clients. The plots from left to right show the rank evolution, the distance to
the global optimizer, the global loss values by FeDLRT, and the global loss values by FedLin. The
results show that FeDLRT converges faster in this low-rank test case by identifying (and never
underestimating) the target rank r = 4 early in the training.

FeDLRT convergence with simplified variance correction. FeDLRT with simplified variance
correction is detailed in Algorithm 5 with the variance correction term given in (9), which makes
variance correction more communication and computation efficient but comes at a cost of the
following additional assumption for convergence analysis.
Assumption 1. There exists δ ≪ 1 such that, at each client coefficient update,

∥∇S̃G(Ũ S̃s
c Ṽ

⊤)∥ − ∥∇SG(Ũ S̃s
c Ṽ

⊤)∥ < δ∥∇S̃L(Ũ S̃Ṽ ⊤)∥, (14)
for functions G = L and G = Lc, c = 1, . . . , C.

The left-hand side of (14) is the difference in the gradient dynamics induced by the basis augmentation.
If FeDLRT has identified a suitable global basis U, V , then the small coefficient S captures most of
the relevant gradient information, i.e. the difference between ∇S̃G and ∇SG is expected to be small.
The result in Appendix D suggests that this assumption is reasonable. This scenario occurs when
FeDLRT identifies the optimal rank, which could happen early for simpler problems as shown in
Figure 3, or when FeDLRT approaches a stationary point.
Theorem 4. Under Assumption 1, let C := s∗λ(1− δ2 − 12s∗λL+ δ2 s∗λ). If the local learning
rate 0 < λ ≤ 1

12Ls∗
, Algorithm 5 leads to the global loss descent

L(U t+1St+1V t+1,⊤)− L(U tStV t,⊤) ≤ −C∥∇S̃L(W̃r)∥2 + Lϑ.

The proof is provided in Appendix I.1. When δ is small, this bound is slightly weaker than the one in
Theorem 2, which leads to the following corollary.
Corollary 1. Assume that Assumption 1 holds. Algorithm 5 guarantees that, for the local learning
rate 0 < λ ≤ 1

s∗(12L+δ2) ,

min
t=1,...,T

∥∥∇S̃L(U
tStV t,⊤)

∥∥2 ≤ 96L

T
(L(U1S1V 1,⊤)− L(UT+1ST+1V T+1,⊤)) + 96L2ϑ.

The proof is analogous to the one for Theorem 3, see Appendix I.2.

3.3 COMPUTE AND COMMUNICATION COST

The proposed FeDLRT methods significantly reduce server and client memory footprint, the required
communication bandwidth, as well as the client compute cost compared to various baselines, see
Table 1. We remark that the complete federated learning process is performed on the low-rank factors,
and the full matrix Wr is never required, as, e.g., in Qiao et al. (2021); Xue & Lau (2023) and
FeDLRT is the only low-rank method with adaptive compression incorporating variance correction,
whose server compute cost scales linearly with the layer dimension since the SVD for rank truncation
only needs to be computed on the augmented coefficient matrix of size 2r × 2r.

4 NUMERICAL EVALUATION

4.1 DISTRIBUTED LINEAR LEAST SQUARES REGRESSION

Homogeneous test. We first consider a (convex) FL problem (1) for linear least squares regression
with local loss Lc(W ) = 1

2|Xc|
∑

(x,y)∈Xc

∥∥p(x)⊤Wp(y)− f(x, y)
∥∥2
2
, where W ∈ Rn×n and
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Figure 4: ResNet18 CIFAR10. In each plot, the results are reported for C = 1, . . . , 16 or 32 clients
with 240/C local iterations. We compare the convergence behavior of the median result of 10
initializations displaying the best validation accuracy until the current epoch for (from left to right)
FedAvg, FedLin, FeDLRT w/o var/cor and FeDLRT w/ simplified var/cor. We observe 1) the low-rank
methods closely follows the convergence dynamics of their full rank counterpart, and 2) variance
correction starts to improve the convergence behavior during later stages of the training, where the
non-corrected methods level off.
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Figure 5: ResNet18 CIFAR10-i.i.d., partial participation. We
compare FeDLRT w/o var. cor. to FedAvg for C = 200 clients,
where 10 randomly sampled clients participate in each aggregation
round with s∗ = 10 local iterations. We present the median
of 5 random weight initializations. The models converge to a
86.18±1.5% accuracy. FeDLRT achieves a 63.32% compression
rate with a comparable accuracy to FedAvg.

p : [−1, 1] → Rn is the Legendre polynomial basis of degree n − 1. The target function f is
manufactured as f(x, y) = p(x)⊤Wrp(y), where rank(Wr) = r. We consider problems with
n = 20, r = 4, and randomly generated Wr, with 10, 000 data points uniformly sampled on [−1, 1]2
and uniformly distributed among clients. We compare FeDLRT with variance correction and FedLin
with s∗ = 20 local iterations and λ = 1e − 3 learning rate on C = 1, 2, 4, 8, 16, 32 clients. This
setting satisfies the step-size restriction given in Theorem 2. In FeDLRT, the singular value truncation
threshold ϑ = τ ||S̃∗|| with τ = 0.1 was used.

Figure 3 reports the dynamically updated ranks, errors, and loss values with respect to the aggregation
rounds. The reported data are the medians over 20 randomly generated initial weights6 The results
indicate that FeDLRT is able to identify the correct rank within a few aggregation rounds and,
furthermore, never underestimates it – which would have increased the loss value significantly.
FeDLRT converges to the minimizer W ∗ = Wr up to a 1e− 5 error and converges faster with more
clients. On this problem, FeDLRT shows up to 10x faster convergence than FedLin. We attribute this
behavior to the fact that, by identifying a suitable low-rank manifold early in the training, FeDLRT
significantly reduces the degrees of freedom in the FL problem.

Heterogeneous client objective functions. Inspired by Mitra et al. (2021a), we consider a variation
of the linear least squares regression with Lc(W ) = 1

2|X|
∑

(x,y)∈X

∥∥p(x)⊤Wp(y)− fc(x, y)
∥∥2,

where the target function fc is different for each client, and the 10, 000 training data points are
available to all clients. The local target functions fc cause each client to optimize a different local
problem. We choose problem size n = 10 with C = 4 clients and use learning rate λ = 1e− 3 with
s∗ = 100 local epochs. As seen in Figure 1, FeDLRT with variance correction converges (to single
precision accuracy) to the minimizer W ∗ of (1) much faster than FedLin, whereas FeDLRT without
correction quickly plateaus, similar to FedAvg.

4.2 RESNET18 ON CIFAR10
We demonstrate the performance of FeDLRT for training the exemplary ResNet18 model on CIFAR10,
where we apply FeDLRT to train its fully connected head. The truncation tolerance is set to
ϑ = τ ||S̃∗|| with τ = 0.01. The test case setup is summarized in Table 2. The training data is equally

6We chose to display the median trajectory to point out its convergence and monotonicity. The test case also
converges in the mean.
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Figure 6: ResNet18 CIFAR10-
Dirichlet distriubted with param-
eter α for FeDLRT w/ simpl. var.
cor. and FedLin for C = 16
clients with s∗ = 10 local iter-
ations. We present the median of
5 random weight initializations.
FeDLRT performance matches or
surpasses the FedLin baseline.

partitioned across clients; see Appendix C.2 for the data-preprocessing details. A local iteration of
Algorithm 1 at client c describes one mini-batch update on the client training data set Xc for a given
batch size, s∗ is the maximum number of local iterations, and T denotes the number of aggregation
rounds. We see that FeDLRT ties or outperforms FedAvg in terms of final validation accuracy. Using
variance correction increases the validation accuracy of FeDLRT by up to 12% in this test case,
matching the accuracy of FedLin and enabling FL with 93% accuracy for 32 clients. For C = 8
clients, the communication cost saving of the compressed layers is up to 90%

Similar results are obtained for AlexNet, VGG16 on CIFAR10, and ViT on CIFAR100, see Ap-
pendix C, where we observe that FeDLRT closely matches the full-rank accuracy of FedLin. Lastly,
we remark that variance correction ins beneficial for convergence behavior in neural network training,
as shown in Figure 4.

In Figure 8 we compare the performance of full variance correction with the computationally more
efficient simplified variance correction, using Algorithm 5 and observe that the latter yields similar
validation accuracy, notably at higher compression ratio and communication cost reduction.

Partial Participation: We set the total number of clients C = 200, but in each aggregation round
only 10 clients are randomly sampled to participate in the Algorithm 1 without variance correction
for s∗ = 10 local iterations. We show in Figure 5 that FeDLRT still mirrors the performance of
FedAvg at 63.32% compression rate.

Non-i.i.d data distribution: In the setting of Section 4.2 we explore the effect of non-i.i.d training
data distributed across C = 16 clients on FeDLRT, where we adopt the Dirichlet distribution Hsu
et al. (2019) with parameter α ∈ {1, 2, 5, 10}. We compare the validation accuracy of FeDLRT w/
simpl. var. cor. to FedLin in Figure 6 and observe that FeDLRT matches the performance of FedLin
for α = 5, 10 and surpasses FedLin for α = 1, 2 at compression rates between 59.8% and 62.2%.

Figure 7: MNIST communication
cost, C = 100 clients with 2
classes each. Comparison values
are taken from (Haddadpour et al.,
2020a, Figure 4).

Method

Global
Trai-
ning
Loss

Comm.
Bits
(up-
link)

FeDLRT 0.06 0.23e9

SCAFFOLD 0.05 1.21e9
FedGATE 0.13 0.61e9
FedCOMGATE 0.05 0.18e9
FedAvg 0.15 0.62e9
FedPAQ 0.15 0.18e9

Communication cost: We compare the effective communication
cost and global training loss after 100 aggregation rounds using
an MLP trained on heterogeneous MNIST data in Figure 7, see
Appendix C.5 for details. FeDLRT has comparable communi-
cation cost and global training loss compared to FedCOMGATE
Haddadpour et al. (2020a), the best performing reference method.
We remark that FeDLRT is the only compared method with with
client compute cost reduction.

In conclusion, we have presented FeDLRT, an efficient low-
rank FL scheme with convergence guarantees and automatic
compression, and demonstrated its capabilities in several test
cases.

Limitations and future work: We remark that the underly-
ing assumption for this work is that the target model can be
expressed sufficiently well via a low-rank representation. Al-

though the communication cost in terms of transferred parameters is significantly reduced compared
to existing method, FeDLRT still requires two communication handshakes for one aggregation round,
just like its full-rank counterpart FedLin. Therefore, the method needs to be refined for scenarios
where the clients have different communication latencies or for completely asynchronous scenarios.
Potential future research directions include performing large-scale tests with thousands of clients,
extending the algorithm to incorporate other client drift mitigation techniques, e.g. Liang et al. (2019);
Ivkin et al. (2020), and analyzing the convergence properties in these scenarios.
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A ADDITIONAL ALGORITHMS

In the following, we list a set of algorithms that are used in the paper as a contribution or as a
baseline method. In particular, Algorithm 2 contains auxiliary function definitions for Algorithm 1
and Algorithm 5. Algorithm 3 is the standard FedAvg method as presented in McMahan et al. (2016).
Algorithm 4 is the FedLin Algorithm Mitra et al. (2021a), i.e. the extension of Algorithm 4 with
variance correction. Algorithm 5 represents the FeDLRT method with simplified variance correction,
as analyzed in Theorem 4 and Corollary 1 with the additional Assumption 1.

Algorithm 2: Auxiliary functions

1 def broadcast({Mi}i: list of matrices):
2 Send Mi from server to all clients ∀i
3 def aggregate({Mc,i}i: list of matrices):
4 Send Mc,i from client to server ∀c, i
5 Mi ← 1

C

∑C
c=1 Mc ∀i

6 return {Mi}i;
7 def coefficient_update_var_cor(c: client, Vc: correction term):
8 for s = 0, . . . , s∗ − 1 do /* On client */

9 S̃s+1
c ← S̃s

c − λ
(
∇S̃Lc(ŨcS̃

s
c Ṽ

⊤
c ) + Vc

)
10 def coefficient_update(c: client):
11 for s = 0, . . . , s∗ − 1 do /* On client */
12 S̃s+1

c ← S̃s
c − λ∇S̃Lc(ŨcS̃

s
c Ṽ

⊤
c )

13 def basis_augmentation(B: old basis, GB: basis dynamics):
14 [B | B̄]← qr([B | GB ]) /* On server */
15 return B̄

Algorithm 3: FedAvg McMahan et al. (2016). (See Algorithm 2 for auxiliary function definitions)
Input :Initial values for weight matrix W
Client-server setup with clients c = 1, . . . , C.

1 for t = 1, . . . , T do
2 broadcast({W t})
3 W s=0

c ←W t

4 for s = 0, . . . , s∗ − 1 do
5 W s+1

c ←W s
c − λ∇WLc(W

s
c ) /* Gradient descent on client */

6 W t+1 ← aggregate({W s∗
c }) /* Aggregation on server */

Algorithm 4: FedLin Mitra et al. (2021a). (See Algorithm 2 for auxiliary function definitions)
Input :Initial values for weight matrix W
Client-server setup with clients c = 1, . . . , C.

1 for t = 1, . . . , T do
2 broadcast({W t})
3 GW,c ← ∇WLc(W

t) /* Gradient computation on client */
4 GW ← aggregate({GW,c}) /* Aggregation on server */
5 broadcast({GW })
6 W s=0

c ←W t

7 Vc ← GW −GW,c /* Correction term computation on client */
8 for s = 0, . . . , s∗ − 1 do
9 W s+1

c ←W s
c − λ∇WLc(W

s
c ) + Vc /* Corrected iteration on client

*/
10 W t+1 ← aggregate({W s∗

c }) /* Aggregation on server */
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Algorithm 5: FeDLRT with simplified variance correction. (See Algorithm 2 for auxiliary
function definitions)
Input :Initial orthonormal bases U1, V 1 ∈ Rn×r and full rank S1 ∈ Rr×r;
Client-server setup with clients c = 1, . . . , C;
τ : singular value threshold for rank truncation.

1 for t = 1, . . . , T do
2 broadcast({U t, V t, St})
3 GU,c ← ∇ULc(U

tStV t,⊤) /* On client */
4 GV,c ← ∇V Lc(U

tStV t,⊤) /* On client */
5 GS,c ← ∇SLc(U

tStV t,⊤) /* On client */
6 GU , GV , GS ← aggregate({GU,c, GV,c, GS,c})
7 Ū ←basis_augmentation(U t, GU ), V̄ ←basis_augmentation(V t, GV )
8 broadcast

({
Ū, V̄, GS

})
9 Ũ ← [U t | Ū ], Ṽ ← [V t | V̄ ] /* Basis assembly on client */

10 S̃s=0 ←
[
St 0
0 0

]
/* Coefficient matrix assembly on client */

11 ǦS̃,c ←
[
GS,c 0
0 0

]
/* Client coeff. gradient approximation on

client */

12 ǦS̃ ←
[
GS 0
0 0

]
/* Global coeff. gradient approximation on

client */

13 coefficient_update_var_cor
(
c, ǦS̃ − ǦS̃,c

)
/* On client */

14 S̃∗ ← aggregate
({

S̃s∗
c

})
15 Pr1 ,Σr1 , Qr1 ← svd(S̃∗) with threshold ϑ /* Compression step */

16 U t+1 ← ŨPr1 , and V t+1 ← Ṽ Qr1 /* Basis projection */
17 St+1 ← Σr1

B EXTENSION TO CONVOLUTIONS AND TENSOR-VALUED WEIGHTS

FeDLRT can readily be extended to tensor-valued neural network layers, e.g. convolutional layers,
following Zangrando et al. (2023), where, e.g., a 2D convolution kernel is interpreted as an order-4
tensor and factorized by using the Tucker decomposition. To this end, the Tucker bases Ui ∈ Rni×ri

for i = 1, 2, 3, 4 replace the U and V bases in the matrix case, and the Tucker core tensor C ∈
Rr1×r2×r3×r4 replaces the coefficient matrix S, to which the variance correction is applied. The
analysis holds for the Tucker Tensor case, since Tucker Tensors have a manifold structure. In the
analysis, one needs to consider the gradient projected upon all bases Ui instead of U and V . The
compression step is performed with an truncated Tucker decomposition of the core tensor C, instead
of an SVD of S. For intuition, one can also refer to the matrix case as the order-2 Tucker Tensor case.
Remark that the bases Ui are all updated simultaneously, thus the adaption to the tensor case does not
require more communication rounds.

C ADDITIONAL NUMERICAL EVALUATION

C.1 COMPUTE RESOURCES

The convex test cases are computed on a single Nvidia RTX 4090 GPU. The computer vision bench-
marks use a set of Nvidia Tesla V100-SXM2-16GB and Tesla P100-PCIE-16GB. For prototyping, a
Nvidia GTX1080ti is used.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 6: Naive implementation of FeDLRT. (See Algorithm 2 for auxiliary function defini-
tions)
Input :Initial orthonormal bases U1, V 1 ∈ Rn×r and full rank S1 ∈ Rr×r;
Client-server setup with clients c = 1, . . . , C;
τ : singular value threshold for rank truncation.

1 for t = 1, . . . , T do
2 broadcast({U t, V t, St})
3 Us=0

c , V s=0
c , Ss=0

c ← U t, V t, St

4 for s = 0, . . . , s∗ − 1 do /* On client */
5 GU,c ← ∇ULc(U

s
cS

s
cV

s,⊤
c )

6 GV,c ← ∇V Lc(U
s
cS

s
cV

s,⊤
c )

7 Ũc, _← qr([Us
c | GU,c])

8 Ṽc, _← qr([V s
c | GV,c])

9 S̃c = Ũ⊤
c Us

cS
s
cV

s,⊤
c Ṽc

10 S̃∗
c ← S̃c − λ∇S̃Lc(ŨcS̃cṼ

⊤
c )

11 S̃∗ ← aggregate
({

S̃∗
c

})
12 Pr1 ,Σr1 , Qr1 ← svd(S̃∗) with threshold ϑ /* Compression step */

13 U t+1 ← ŨPr1 , and V t+1 ← Ṽ Qr1 /* Basis projection */
14 St+1 ← Σr1

C.2 DATA AUGMENTATION

We use standard data augmentation techniques for the proposed test cases. That is, for CIFAR10,
we augment the training data set by a random horizontal flip of the image, followed by a normal-
ization using mean [0.4914, 0.4822, 0.4465] and std. dev. [0.2470, 0.2435, 0.2616]. The test data
set is only normalized. The same augmentation is performed for CIFAR100, where with mean
[0.5071, 0.4867, 0.4408] and std. dev. [0.2673, 0.2564, 0.2762].

C.3 ADDITIONAL COMPUTER VISION RESULTS

ResNet18 on CIFAR10: We provide a comparison of the full variance correction and simplified
variance correction-based FeDLRT method with ResNet18 on Cifar10. We display the statistics for
10 random initializations; each warm-started with 5 central learning iterations. We set s∗ = 240/C
so that in each training run, the global network iterates through the same amount of data. This setup
favors low client counts, and, as expected, the validation accuracy drops as C grows for FedAvg and
FeDLRT without variance correction, see Figure 4. Figure 8 shows that both variants perform equally
well.

AlexNet on CIFAR10: We train AlexNet on CIFAR10, where the fully connected head of the
network is replaced by a low-rank counterpart. A federated neural network setup with C clients
trains on CTs∗ random batches of the dataset, that is the number of seen training data batches scales
with the client count. Figure 9 displays the validation accuracy of FeDLRT with variance correction
compared to FedLin, where one can see that the performance of FeDLRT mirrors the performance of
FedLin with more degrees of freedom. The measured validation accuracy peaks at C = 4 clients in
both cases, where the higher number of seen training data-points offsets the negative effects of more
clients on the validation performance. All reported runs are within close distance of the non-federated,
full-rank baseline accuracy of 85.6%. Communication cost savings of the fully connected layers
amount between 96% and 97% 7 We observe that, similarly to the results in Section 4.1, the maximum
achieved communication cost savings, which depend on the layer ranks scales with the number of
clients C = 4, indicating that the decay rate of the singular values of the averaged coefficient matrix
S̃∗ depends on C.

7For clarity of exposition we consider only the fully connected layers. Taking into account the non low-rank
convolution layers, the communication cost savings reduces to 87.5% to 87.3%.
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Figure 8: Comparisons for training ResNet18 on CIFAR10 benchmark. Top row compares FeDLRT
without variance correction to FedAvg, middle and bottom rows compare FeDLRT with full and
simplified variance correction to FedLin, respectively. In each row, the left two panels show the
model compression ratio and the communication cost reduction from FeDLRT, and the right two
panels show the validation accuracy for FeDLRT and the full-rank counterparts. In each plot, the
results are reported for C = 1, . . . , 16 or 32 clients with 240/C local iterations. FeDLRT matches
the accuracy of FedAvg and FedLin well, while substantially reducing the server and client memory
and communication costs. Variance correction leads to an up to 12% increase in validation accuracy
for large C, mitigating the client drift problem. The simplified variance correction (bottom row) gives
comparable results to full version (middle row) at a lower communication and computation cost.
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Figure 9: AlexNet CIFAR10 benchmark with fixed number of local iterations. (Left Panel) shows the
savings in communication cost of simplified variance corrected FeDLRT vs FedLin. (Mid and right
panel) compares the validation accuracy of FeDLRT and FedLin, where we see that FeDLRT behaves
similarly to FedLin and achieves accuracy levels near the non-federated baseline value of 85.6%.

VGG16 on CIFAR10: We train AlexNet on CIFAR10, where the fully connected head of the
network is replaced by a low-rank counterpart. A federated neural network setup with 240/C
local iterations for C clients. Figure 10 displays the validation accuracy of FeDLRT with variance
correction compared to FedLin, where one can see that the performance of FeDLRT mirrors the
performance of FedLin with more degrees of freedom. All reported runs are within close distance of
the non-federated, full-rank baseline accuracy of 85.6%. Communication cost savings of the fully
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Figure 10: VGG16 CIFAR10 benchmark with 240/C local iterations for C clients with simplified
(lower row) and without (upper row) variance correction. (Left panel) show the savings in commu-
nication cost corresponding to FedLin at final time. (Mid and right panel top row) compares the
validation accuracy of FeDLRT and FedAvg, where we see that FeDLRT behaves similarly to FedAvg,
where higher C correlates with a drop in accuracy. FeDLRT with variance correction mitigates this
issue and achieves similar performance as FedLin, close to the non-federated baseline accuracy is
93.15%.

connected layers amount between 96% and 97% 8 We observe, similarly results as in the ResNet18
test case.

VGG16 on CIFAR10 with low-rank convolutions: Mirroring the compute setup of the VGG16
test-case above, we now rewrite all convolutional layers of VGG16 as order 4 tensors in low-rank
Tucker format, as described in appendix B. The full-connected head of the network is treated with the
matrix low-rank method. The corresponding training results can be seen in Figure 11, and correspond
well with the previous results for VGG16. The reduction of communication cost is slightly higher,
due to the compression of the convolutions.
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Figure 11: VGG16 CIFAR10, low-rank convolutional layers and low-rank fully connected layers. We
report the communication cost savings and the validation accuracy of VGG16 with FeDLRT applied
to training convolution and classifier layers. 2D convolutions are interpreted as an order-4 tensor and
factorized in the Tucker format. The statistics over five random network initializations are reported
using the training hyperparemeters of Table 2 of the main manuscript. The results are similar to Fig.
7 in the main manuscript, where only the classifier is compressed. Remark that here the classifier
contains most of the network parameters.

Vision Transformer on CIFAR100: We consider a small vision transformer for CIFAR100, with
6 attention layers with 2 heads each followed by a ResNet block and a drop-out layer, all with
weight matrices of dimension 512 × 512. The tokenizer takes patches of size 8 with embedding
dimension 512. Training hyperparameters are given in Table 2. Remark that we do not aim for SOTA
performance, since transformer architectures are notoriously difficult to compress with low-rank

8For clarity of exposition we consider only the fully connected layers. Taking into account the non low-rank
convolution layers, the communication cost savings reduces to 87.5% to 87.3%.
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Figure 12: ViT CIFAR100 benchmark. (Left Panel) shows the savings in communication cost of
variance corrected FeDLRT vs FedLin. (Mid and right panel) compares the validation accuracy of
FeDLRT and FedLin, where we see that FeDLRT behaves similarly to FedLin and achieves accuracy
levels near the non-federated baseline value of 50%, which is similar to literature results Zhu et al.
(2023).

Table 2: Experimental setup object detection benchmarks. All test cases use a cosine annealing
learning rate scheduler.

Alexnet/Cifar10 ResNet18/Cifar10 VGG16/Cifar10 ViT/Cifar100

Batch size 128 128 128 256
Start Learningrate 1e−2 1e−3 1e−2 3e−4
End Learningrate 1e−5 5e−4 5e−4 1e−5
Aggregation Rounds 200 200 200 200
Local Iterations 100 240/C 240/C 240/C
Truncation tolerance τ 0.01 0.01 0.01 0.01
Momentum 0.0 0.9 0.1 n.a.
Weight Decay 1e−4 1e−3 1e−4 1e−2
Optimizer SGD SGD SGD Adam w/ std pytorch parameters

approaches, but rather compare the performance of FedLin to FeDLRT for a given compute budget.
We use s∗ = 240/C local iterations for C clients. Observe in Figure 12 that FeDLRT achieves
similar performance as ViT with over 55% communication cost savings on average.

C.4 COMPUTE COST ILLUSTRATION

We illustrate the compute and communication cost for FeDLRT in comparison to other low-rank
methods in Figure 13.

50 100 150 200
layer rank

10
4

10
5

10
6

Communication Cost [Floats]

FeDLRT full. var/cor
FeDLRT simpl. var/cor
FeDLRT w/o var/cor
FedLin

50 100 150 200
layer rank

10
4

10
5

10
6

Client Cost [FLOPS]

50 100 150 200
layer rank
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10
5

10
6

Client Memory [Floats]

Figure 13: Scaling of communication cost (left) compute cost at a single client (middle), and client
memory footprint (right) for s∗ = 1 client iteration and a single data-point for W ∈ Rn×n with
n = 512. In practice we have r ≪ n, see Section 4.
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Figure 14: Evaluation of the gradients in Assumption 1 for ResNet18 on Cifar10 with i.i.d data and
C = 10 clients with the settings of Table 2.

C.5 COMMUNICATION COST COMPARISON

We compare the communication cost of FeDLRT w/ simpl. var. cor. to SCAFFOLD Karimireddy
et al. (2020), FedGate, FedCOMGATE Haddadpour et al. (2020a), FedAvg, and FedPAQ Reisizadeh
et al. (2020a) in the MNIST benchmark with heterogeneous data such that each of the C = 100
clients have two classes available. We use the MLP of (Haddadpour et al., 2020a, Section 6) with
200 neurons and 2 hidden layers as defined in https://github.com/MLOPTPSU/FedTorch
where we replace the hidden and input layer with low-rank layers. We train for 100 iterations with
hyper-parameters obtained by a random search: learning rate λ = 0.009, 20 local iterations, τ = 0.11,
batch size 128 and display the results in Figure 7. FeDLRT has competitive communication costs.
We remark that FedCOMGATE, SCAFFOLD and FedPAQ train on the full weight matrix on the
client thus have higher client compute cost.

D EMPIRICAL EVALUATION OF ASSUMPTION 1

We consider ResNet18 on Cifar10 with i.i.d data and C = 10 clients with the settings of Table 2. We
consider client c = 1 and plot the term

∥∇S̃G(Ũ S̃s
c Ṽ

⊤)∥ − ∥∇SG(Ũ S̃s
c Ṽ

⊤)∥
∥∇S̃L(Ũ S̃Ṽ ⊤)∥

which should be smaller than δ by Assumption 1 for 400 optimization steps of Algorithm 1 in fig. 14.
As seen, δ < 0.01 for the last 200 iterations and we always have δ < 0.1, thus the assumption is
fulfilled.

E NOTATION OVERVIEW FOR THE NUMERICAL ANALYSIS

We establish a set of notations to simplify the notation in the proofs

• Lc(W ) denotes the local loss function based on dataset Xc at client c.
• L(W ) = 1

C

∑C
c=1 Lc(W ) is the global loss function.

• Fc(W ) = −∇WLc(W ) is the negate of local loss gradient.
• F (W ) = 1

C

∑C
c=1 Fc(W ) is the negate of global loss gradient.

• Mr = {W ∈ Rn×n : rank(W ) = r} is a manifold of rank r matrices.
• Wr = USV ⊤ ∈Mr is a rank-r approximation of a matrix W .
• TWr

Mr is the tangent space ofMr at Wr.
• P (Wr) is the orthogonal projection onto TWr

Mr.
• PU = UU⊤ is the orthogonal projection onto the range of orthonormal U ∈ Rn×r.
• PV = V V ⊤ is the orthogonal projection onto the range of orthonormal V ∈ Rn×r.
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• When applied to vectors, ∥·∥ denotes the Euclidean norm (ℓ2-norm). When applied to matrices, ∥·∥
denotes the Frobenius norm.

L- smoothness in this paper is defined as L-continuity of a function and its gradient, where both L
constants are identical. That is for a function f(x) with gradient G(x), we have ||f(x1)− f(x2)|| ≤
L||x1 − x2|| and ||G(x1)−G(x2)|| ≤ L||x1 − x2|| for some L > 0.

F EFFICIENT BASIS GRADIENT DYNAMICS FOR BASIS AUGMENTATION

We first consider the basis update & Galerkin splitting scheme of (5). The splitting performs a
reparametrization of the form K(t) = U(t)S(t) and L(t) = V (t)S(t)⊤. The basis update then reads

K̇ = −∇KL(K(t)V ⊤
0 ) ∈ Rn×r, K(0) = U0S0,

L̇ = −∇LL(U0L(t)
⊤) ∈ Rn×r, L(0) = V0S

⊤
0 .

(15)

Given the solution K(t1) and L(t1) at time t1, the bases U0 and V0 are augmented by the orthonor-
malization of the new directions K(t1) and L(t1), i.e.

ŨR = qr([U0 | K(t1)]) ∈ Rn×2r,

and Ṽ R = qr([V0 | L(t1)]) ∈ Rn×2r,
(16)

where R is the right factor of the respective QR decomposition and can be discarded. The initial
condition of the coefficient update is S(t0) projected onto the new bases, i.e.,

˙̃
S = −∇SL(Ũ S̃(t)Ṽ ⊤), S̃(0) = Ũ⊤U0S̃(0)V

⊤
0 Ṽ . (17)

After the integration of the coefficient dynamics above, the redundant basis functions are typically
truncated via an SVD of S ensuring that S is always full rank. In its continuous form above, the
splitting yields a robust integrator for the projected gradient flow, without manifold dependent
step-size restrictions:
Theorem 5. (Schotthöfer et al. (2022)) Assume L is L-smooth with constant L, and locally bounded
by B. Let Wr(t) be the low-rank continuous time solution of (15) and (17) and let W (t) be the full
rank solution at t = 0. Assume the K,L, and S equations are integrated exactly from time t = 0 to
∆t. Assume that for any Y ∈ Mr sufficiently close to Wr(t) the gradient F (Y ) is ϵ close toMr.
Then

∥W (∆t)−Wr(∆t)∥ ≤ d1ϵ+ d2∆t+ d3
ϑ

∆t
,

where d1, d2, d3 depend only on L and B.

The theorem guarantees that the low-rank representation does not imply any step-size restrictions on
the optimization scheme. This is in stark contrast to a naive alternating descent optimization of the
low-rank factors U, S, V .

To build an discretized numerical optimizer in a resource constrained federated scenario from the
above continuous splitting equations, we avoid the reparametrization, which implies a 200% memory
cost increase on the client side, since three versions of the low-rank layer need to be tracked.
Lemma 2. Let USV ∈Mr be a low rank factorization that follows the projected gradient (5) flow
using the splitting scheme (15) with K = US and V = V S⊤. Further, assume that equations for the
K and L factors are solved by an explicit Euler time integration with learning rate λ, i.e.

K(t1) = K(0)− λ∇KL(K(0)V ⊤
0 ), K(0) = U0S0,

L(t1) = L(0)− λ∇LL(U0L(0)
⊤), L(0) = V0S

⊤
0 .

(18)

Then, the basis augmentation (16) can be expressed as

ŨR = qr([U0 | −∇UL
(
U0S0V

⊤
0 )]) ∈ Rn×2r,

and Ṽ R = qr([V0 | −∇V L
(
U0S0V

⊤
0 )]) ∈ Rn×2r.

(19)

and maintains the structure of the basis update and Galerkin operator split.
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Proof. We consider the proof for the K equation and the U basis; the proof for L and V follows
analogously.

Considering (16), we obtain with the explicit Euler discretization (18),

span ([U0 | K(t1)]) = span
(
[U0 | U0 − λ∇KL(K(0)V ⊤

0 )]
)

= span
(
[U0 | −λ∇KL(K(0)V ⊤

0 )]
)

= span
(
[U0 | −∇KL(K(0)V ⊤

0 )]
)
.

(20)

Next, consider the continuous time dynamics of K̇, where we omit explicit time dependence on
U, S, V and K for the sake of brevity, i.e.,

K̇ = ˙(US)

= U̇S + UṠ

(5)
= −(I − UU⊤)∇WL(USV ⊤)V S−1S − UU⊤∇WL(USV ⊤)V

= −(I − PU )∇WL(USV ⊤)V − PU∇WL(USV ⊤)V

= (PU − I)∇WL(USV ⊤)V − PU∇WL(USV ⊤)V

= −∇WL(USV ⊤)V

(21)

Further, using the chain rule, we observe

∇UL(USV ⊤) = ∇WL(USV ⊤)∇U (USV ⊤) = ∇WL(USV ⊤)V S⊤

Thus, −∇UL(USV ⊤)S−⊤ = −∇WL(USV ⊤)V = K̇. Full rankness of S and (21) yield that
span(−∇UL(USV ⊤)) = span(K̇). Together with (20) this yields the proof.

Lemma 2 adopts a more general result for Tucker tensors in an unpublished manuscript and simplifies
the analysis for the matrix case considered here.

G EFFICIENT BASIS AND COEFFICIENT COMMUNICATION

Note that we have by orthogonality of the bases Ũ = [U, Ū ] with Ū ∈ Rn×r and Ū⊤U = 0 and
Ṽ = [V, V̄ ] with V̄ ∈ Rn×r and V̄ ⊤V = 0.

Proof. (Lemma 1) The basis augmented basis [U,GU ] before orthonormalization already contains
the orthonormal vectors given by the columns of U . A QR decomposition therefor only rearranges
the columns of GU such that Ũ = [U, Ū ] with Ū ∈ Rn×r and Ū⊤U = 0. The analogous result holds
for Ṽ = [V, V̄ ]. The projection onto the augmented basis therefore reads

Ũ⊤U =

[
U⊤U

U
⊤
U

]
=

[
I
0

]
and Ṽ ⊤V =

[
V ⊤V

V
⊤
V

]
=

[
I
0

]
. (22)

Consequently, the augmented coefficient matrix takes the form

S̃ = Ũ⊤USV ⊤Ṽ =

[
S 0
0 0

]
. (23)

H ANALYSIS FOR FEDLRT WITH FULL VARIANCE CORRECTION

In this section we establish bounds on the coefficient drift of the FeDLRT method with full variance
correction. We use the established coefficient drift bound to derive a loss-descent guarantee. The
strategy of our analysis follows the one of FedLin Mitra et al. (2021a). We first state an auxiliary
lemma.
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Lemma 3. Let U ∈ Rn×r and V ∈ Rn×r be orthonormal matrices. Let F be an L-continuous
function. Then, for S1, S2 ∈ Rr×r,∥∥PU

(
F (US1V

⊤)− F (US2V
⊤)
)
PV

∥∥ ≤ L ∥S1 − S2∥ (24)

and ∥∥U (F (US1V
⊤)− F (US2V

⊤)
)
V ⊤∥∥ ≤ L ∥S1 − S2∥ , (25)

where PU and PV are orthogonal projections defined in Appendix E.

Proof. For the first statement, consider∥∥PU

(
F (US1V

⊤)− F (US2V
⊤)
)
PV

∥∥
=
∥∥UU⊤ (F (US1V

⊤)− F (US2V
⊤)
)
V V ⊤∥∥

(I)
≤∥U∥

∥∥U⊤∥∥∥∥F (US1V
⊤)− F (US2V

⊤)
∥∥ ∥V ∥ ∥∥V ⊤∥∥

(II)
=
∥∥F (US1V

⊤)− F (US2V
⊤)
∥∥

(III)
≤L

∥∥US1V
⊤ − US2V

⊤∥∥ = L
∥∥U(S1 − S2)V

⊤∥∥
(I)
≤L ∥U∥ ∥S1 − S2∥

∥∥V ⊤∥∥
(II)
=L ∥S1 − S2∥ ,

where we have used in (I) the operator norm inequality of the Frobenius norm, in (II) orthonormality
of U , V , and in (III) L-continuity of F . The second statement is proven analogously.

H.1 COEFFICIENT DRIFT BOUND FOR FEDLRT WITH FULL VARIANCE CORRECTION

We consider the FeDLRT method with variance correction, see Algorithm 1. Key difference to the
FeDLRT method without variance correction is the modified coefficient update, incorporating global
gradient information of the augmented coefficient matrix S̃ and local, stale gradient information
of the augmented coefficient matrix S̃c. The variance corrected local coefficient update (8) can be
expressed in terms of the projected Riemannian gradient as

S̃s+1
c = S̃s

c + λŨ⊤
(
Fc(W̃

s
r,c)− Fc(W̃r) + F (W̃r)

)
Ṽ , (26)

where Ũ⊤Fc(W̃
s
r,c)Ṽ = ∇S̃c

Lc(Ũ S̃s
c Ṽ ), Ũ⊤Fc(W̃r,c)Ṽ = ∇S̃c

Lc(Ũ S̃s=0
c Ṽ ) and

Ũ⊤Fc(W̃
s
r,c)Ṽ = ∇S̃c

L(Ũ S̃s
c Ṽ ). Recall that S̃ = S̃c for s = 0.

We provide proof for Theorem 1 to bound the drift term
∥∥∥S̃s

c − S̃c

∥∥∥. We restate this theorem to the
Riemannian notation and restate it below.

Theorem 6. (Restatement of Theorem 1) Given augmented basis and coefficient matrices Ũ , Ṽ , and
S̃, and W̃r = Ũ S̃Ṽ ⊤. If the local learning rate 0 < λ ≤ 1

Ls∗
with s∗ ≥ 1 the number of local steps,

for all clients c,

∥S̃s
c − S̃c∥ ≤ exp(1)s∗λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥ , for s = 1, . . . , s∗ − 1, (27)

where S̃s
c is the variance corrected coefficient as given in (8).

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Proof. From the adjusted coefficient update in (26), we get∥∥∥S̃s+1
c − S̃c

∥∥∥ =
∥∥∥S̃s

c − S̃c + λŨ⊤
(
Fc(W̃

s
r,c)− Fc(W̃r) + F (W̃r)

)
Ṽ
∥∥∥

≤
∥∥∥S̃s

c − S̃c

∥∥∥+ λ
∥∥∥Ũ⊤

(
Fc(W̃

s
r,c)− Fc(W̃r)

)
Ṽ
∥∥∥+ λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥

(I)
≤
∥∥∥S̃s

c − S̃c

∥∥∥+ λL
∥∥∥S̃s

c − S̃
∥∥∥+ λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥

≤ (1 + λL)
∥∥∥S̃s

c − S̃
∥∥∥+ λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥

≤
(
1 +

1

s∗

)∥∥∥S̃s
c − S̃

∥∥∥+ λ
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥ .
We use in (I) Lemma 3 Recursively plugging in the above inequality yields for a = (1 + 1

s∗
)

∥∥∥S̃s+1
c − S̃c

∥∥∥ ≤ as+1
∥∥∥S̃s=0

c − S̃
∥∥∥+

 s∑
j=0

aj

λ
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥
=

 s∑
j=0

aj

λ
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥
=

as+1 − 1

a− 1
λ
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥
≤
(
1 +

1

s∗

)s+1

s∗λ
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥
≤
(
1 +

1

s∗

)s∗

s∗λ
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥
≤ exp(1)s∗λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥ .

H.2 GLOBAL LOSS DESCEND FOR FEDLRT WITH FULL VARIANCE CORRECTION

We first state a few auxiliary lemmas, which provide common inequalities that will be used in the
following analysis.

Lemma 4. ((Hnatiuk et al., 2024, Lemma 5.2)) For any two matrices Y1, Y2 ∈ Rn×n and an
L-smooth L with constant L it holds

L(Y1)− L(Y2) ≤ −⟨Y1 − Y2, F (Y2)⟩+
L

2
∥Y1 − Y2∥2 , (28)

where F (Y ) = −∇Y L(Y ).

Lemma 5. ((Mitra et al., 2021b, Lemma 5)) For two vectors x1, x2 ∈ Rd it holds for γ > 0

∥x1 + x2∥2 ≤ (1 + γ) ∥x1∥2 +
(
1 +

1

γ

)
∥x2∥2 . (29)

Lemma 6. ((Mitra et al., 2021b, Lemma 6)) For C vectors x1, . . . , xC ∈ Rd the application of
Jensen’s inequality yields ∥∥∥∥∥

C∑
c=1

xc

∥∥∥∥∥
2

≤ C

C∑
c=1

∥xc∥2 . (30)

First, we consider the loss function value at the augmentation step.

Lemma 7. We have L(W̃r) = L(W t
r ) for the loss before and after basis augmentation.
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Proof. Due to Lemma 1, S̃ =

[
St 0
0 0

]
, thus W̃r = Ũ S̃Ṽ ⊤ = USV ⊤ = W t.

We next bound the loss descent between the augmentation step and the truncation step - having
performed the aggregation of the client updates.

Theorem 7. Let W̃r = Ũ S̃Ṽ ⊤ be the augmented factorization at global iteration t and let W̃ ∗
r =

Ũ S̃∗Ṽ ⊤ be the aggregated solution after client iterations, i.e., S̃∗ = 1
C

∑C
c=1 S̃

s∗
c . Then the variance

corrected coefficient update (26) yields the guarantee

L(W̃ ∗
r )− L(W̃r) ≤ −(s∗λ)(1− (s∗λ)L)

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2

+

(
Lλ

C

C∑
c=1

s∗−1∑
s=0

∥∥∥S̃s
c − S̃

∥∥∥)∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥

+
L3λ2s∗

C

C∑
c=1

s∗−1∑
s=0

∥∥∥S̃s
c − S̃c

∥∥∥2 .
(31)

Proof. From (8), PŨ = Ũ Ũ⊤, PṼ = Ṽ Ṽ ⊤, and the fact that W̃ s=0
r,c = W̃r for all c = 1, . . . , C,

W̃ s∗
r,c = Ũ S̃s∗

c Ṽ ⊤ = Ũ S̃s=0
c Ṽ ⊤ + Ũ Ũ⊤

s∗−1∑
s=0

λ
(
Fc(W̃

s
r,c)− Fc(W̃r) + F (W̃r)

)
Ṽ Ṽ ⊤

= W̃r − λ

s∗−1∑
s=0

PŨFc(W̃
s
r,c)PṼ − λPŨ

(
F (W̃r)− Fc(W̃r)

)
PṼ .

Averaging across clients leads to

W̃ ∗
r =

1

C

C∑
c=1

W̃ s∗
r,c = W̃r −

λ

C

C∑
c=1

s∗−1∑
s=0

PŨFc(W̃
s
r,c)PṼ −

λ

C

C∑
c=1

PŨ

(
F (W̃r)− Fc(W̃r)

)
PṼ

=W̃r −
λ

C

C∑
c=1

s∗−1∑
s=0

PŨFc(W̃
s
r,c)PṼ , (32)

where we have used the definition of the global and local gradient at W̃r, i.e., 1
C

∑C
c=1 Fc(W̃r) =

F (W̃r). Based on L-continuity of F and Fc, (32), and Lemma 4, we obtain further

L(W̃ ∗
r )− L(W̃r) ≤

〈
W̃ ∗

r − W̃r, F (W̃r)
〉
+

L

2

∥∥∥W̃ ∗
r − W̃r

∥∥∥2 (33)

= −

〈
λ

C

C∑
c=1

s∗−1∑
s=0

PŨFc(W̃
s
r,c)PṼ , F (W̃r)

〉
+

L

2

∥∥∥∥∥ λC
C∑

c=1

s∗−1∑
s=0

PŨFc(W̃
s
r,c)PṼ

∥∥∥∥∥
2

.
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Next, we bound each of the two right-hand-side terms separately. We first express the first term as

−

〈
λ

C

C∑
c=1

s∗−1∑
s=0

PŨFc(W̃
s
r,c)PṼ , F (W̃r)

〉

=−

〈
λ

C

C∑
c=1

s∗−1∑
s=0

PŨ

(
Fc(W̃

s
r,c)− Fc(W̃r)

)
PṼ + PŨ

(
λ

C

C∑
c=1

s∗−1∑
s=0

Fc(W̃r)

)
PṼ , F (W̃r)

〉

=−

〈
λ

C

C∑
c=1

s∗−1∑
s=0

PŨ

(
Fc(W̃

s
r,c)− Fc(W̃r)

)
PṼ + PŨ

s∗λ

C

C∑
c=1

Fc(W̃r)PṼ , F (W̃r)

〉

=−

〈
PŨ

(
λ

C

C∑
c=1

s∗−1∑
s=0

Fc(W̃
s
r,c)− Fc(W̃r)

)
PṼ + PŨs∗λF (W̃r)PṼ , F (W̃r)

〉

=−

〈
Ũ⊤

(
λ

C

C∑
c=1

s∗−1∑
s=0

Fc(W̃
s
r,c)− Fc(W̃r)

)
Ṽ , Ũ⊤F (W̃r)Ṽ

⊤

〉
− s∗λ

〈
Ũ⊤F (W̃r)Ṽ , Ũ⊤F (W̃r)Ṽ

〉
=−

〈
λ

C

C∑
c=1

s∗−1∑
s=0

Ũ⊤
(
Fc(W̃

s
r,c)− Fc(W̃r)

)
Ṽ , Ũ⊤F (W̃r)Ṽ

〉
− s∗λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2 ,

where the definitions of PŨ and PṼ are used. Following this, the first term then can be bounded by

−

〈
λ

C

C∑
c=1

s∗−1∑
s=0

PŨFc(W̃
s
r,c)PṼ , F (W̃r)

〉

≤ λ

C

C∑
c=1

s∗−1∑
s=0

∥∥∥Ũ⊤
(
Fc(W̃

s
r,c)− Fc(W̃r)

)
Ṽ
∥∥∥∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥− s∗λ
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2
≤Lλ

C

C∑
c=1

s∗−1∑
s=0

∥∥∥S̃s
c − S̃

∥∥∥∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥− s∗λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2 ,

where Lemma 3 is invoked in the last inequality. Following a similar approach, we express the second
term as

L

2

∥∥∥∥∥ λC
C∑

c=1

s∗−1∑
s=0

PŨFc(W̃
s
r,c)PṼ

∥∥∥∥∥
2

=
L

2

∥∥∥∥∥ λC
C∑

c=1

s∗−1∑
s=0

PŨ

(
Fc(W̃

s
r,c)− Fc(W̃r)

)
PṼ + s∗λPŨF (W̃r)PṼ

∥∥∥∥∥
2

,

which can be bounded by

L

2

∥∥∥∥∥ λC
C∑

c=1

s∗−1∑
s=0

PŨFc(W̃
s
r,c)PṼ

∥∥∥∥∥
2

(I)
≤L

∥∥∥∥∥ λC
C∑

c=1

s∗−1∑
s=0

PŨ

(
Fc(W̃

s
r,c)− Fc(W̃r)

)
PṼ

∥∥∥∥∥
2

+ (s∗λ)
2L
∥∥∥PŨF (W̃r)PṼ

∥∥∥2
(II)
≤ L

C

C∑
c=1

λ2s∗

s∗−1∑
s=0

∥∥∥PŨ

(
Fc(W̃

s
r,c)− Fc(W̃r)

)
PṼ

∥∥∥2 + (s∗λ)
2L
∥∥∥PŨF (W̃r)PṼ

∥∥∥2
(III)
≤ L3λ2s∗

C

C∑
c=1

s∗−1∑
s=0

∥∥∥S̃s
c − S̃c

∥∥∥2 + (s∗λ)
2L
∥∥∥PŨF (W̃r)PṼ

∥∥∥2
(IV)
≤ L3λ2s∗

C

C∑
c=1

s∗−1∑
s=0

∥∥∥S̃s
c − S̃c

∥∥∥2 + (s∗λ)
2L
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2 ,
where Lemma 5 with γ = 1 is used in in (I), Jensen’s inequality is used in (II), Lemma 3 is used in
in (III), and (IV) follows from the Operator norm inequality of the Frobenius norm in combination
with orthonormality of U and V ⊤.
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Plugging these two bounds into (33) gives

L(W̃ ∗
r )− L(W̃r) ≤−

〈
λ

C

C∑
c=1

s∗−1∑
s=0

PŨFc(W̃
s
r,c)PṼ , F (W̃r)

〉
+

L

2

∥∥∥∥∥ λC
C∑

c=1

s∗−1∑
s=0

PŨFc(W̃
s
r,c)PṼ

∥∥∥∥∥
2

≤Lλ

C

C∑
c=1

s∗−1∑
s=0

∥∥∥S̃s
c − S̃

∥∥∥ ∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥− s∗λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2

+
L3λ2s∗

C

C∑
c=1

s∗−1∑
s=0

∥∥∥S̃s
c − S̃c

∥∥∥2 + (s∗λ)
2L
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2
=− (s∗λ)(1− (s∗λ)L)

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2

+

(
Lλ

C

C∑
c=1

s∗−1∑
s=0

∥∥∥S̃s
c − S̃

∥∥∥)∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥

+
L3λ2s∗

C

C∑
c=1

s∗−1∑
s=0

∥∥∥S̃s
c − S̃c

∥∥∥2 ,
which concludes the proof.

With this result, we next bound the loss descent between the augmentation and coefficient aggregation
step in the following theorem.

Theorem 8. Under the same assumptions as in Theorem 7. Let the local learning rate be 0 < λ ≤
1

12Ls∗
with number of local iterations s∗ ≥ 1. Then,

L(W̃ ∗
r )− L(W̃r) ≤ −s∗λ(1− 12s∗λL)

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2 . (34)

Proof. Applying the drift bound given in Theorem 1 to the loss descent bound given by Theorem 7
in (31) leads to

− (s∗λ)(1− (s∗λ)L)
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2
+

(
Lλ

C

C∑
c=1

s∗−1∑
s=0

(
exp(1)s∗λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥))∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥
+

L3λ2s∗
C

C∑
c=1

s∗−1∑
s=0

(
exp(1)s∗λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥)2

=− (s∗λ)(1− (s∗λ)L)
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2 + Lλ2s2∗ exp(1)
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2
+ L3λ4s4∗ exp(2)

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2

=− (s∗λ)(1− (s∗λ)L− (s∗λ)L exp(1)− (s∗λ)
3L2 exp(2))

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2

≤− (s∗λ)(1− (s∗λ)L(1 + exp(1) + exp(2)))
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2
≤− (s∗λ)(1− 12(s∗λ)L)

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2 ,

where we have used that (s∗λ)L ≤ 1 and that 1 + exp(1) + exp(2) ≈ 11.107 ≤ 12.

We are now prepared to prove Theorem 2, which we restate in terms of Riemannian gradients as
below.
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Theorem 9. (Restatement of Theorem 2) Let U tStV t,⊤ and U t+1St+1V t+1,⊤ be the factorization
before and after iteration t of Algorithm 1 with variance correction and singular value truncation
threshold ϑ. Let Lc and L be L-smooth with constant L, and let the local learning rate be 0 ≤ λ ≤

1
12Ls∗

. Then the global loss descent is bounded by

L(U t+1St+1V t+1,⊤)− L(U tStV t,⊤) ≤ −(s∗λ)(1− 12(s∗λ)L)
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2 + Lϑ. (35)

Proof. Consider L(W t+1
r ) and L(W̃ ∗

r ), i.e., the loss values before and after the truncation step. By
the mean value theorem, we obtain for some h ∈ [0, 1]

L(W t+1
r ) = L(W̃ ∗

r ) +
〈
−F (hW t+1

r + (1− h)W̃ ∗
r ),W

t+1
r − W̃ ∗

r

〉
≤L(W̃ ∗

r ) +
∥∥∥F (hW t+1

r + (1− h)W̃ ∗
r )
∥∥∥∥∥∥W t+1

r − W̃ ∗
r

∥∥∥
≤L(W̃ ∗

r ) + Lϑ

(36)

where L-smoothness and the fact that ϑ ≥
∥∥∥W t+1

r − W̃ ∗
r

∥∥∥ are used in (II), where the latter follows
from the singular value truncation threshold. Combining the above arguments with Lemma 7 and
Theorem 8 yields

L(W t+1
r )− L(W t

r ) = (L(W t+1
r )− L(W̃ ∗

r )) + (L(W̃ ∗
r )− L(W̃r)) + (L(W̃r)− L(W t

r ))

≤ Lϑ− (s∗λ)(1− 12(s∗λ)L)
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2 ,
which concludes the proof.

H.3 GLOBAL CONVERGENCE OF FEDLRT WITH FULL VARIANCE CORRECTION

Theorem 10. (Restatement of Theorem 3) Assume that L is L-smooth with constant L for all
c = 1, . . . , C. Let Ũ tS̃tṼ t,⊤ be the augmented representation at iteration t. Then Algorithm 1
guarantees for the learning rate λ ≤ 1

12Ls∗
and final iteration T

min
t=1,...,T

∥∥∇S̃L(U
tStV t,⊤)

∥∥2 ≤ 48L

T

(
L(Wr

t=1)− L(Wr
t=T+1)

)
+ 48L2ϑ. (37)

Proof. Consider Theorem 2,

L(W t+1
r )− L(W t

r ) ≤ Lϑ− (s∗λ)(1− 12(s∗λ)L)
∥∥∇S̃L(U

tStV t,⊤)
∥∥2 , (38)

and assume that λs∗ = 1
24L , i.e. λ = 1

24Ls∗
≤ 1

Ls∗
, which obeys the learning rate requirement of

Theorem 2. Plugging this learning rate into (38) gives∥∥∇S̃L(U
tStV t,⊤)

∥∥2 ≤ 48L
(
L(Wr

t)− L(Wr
t+1) + Lϑ

)
.

Averaging from t = 1 to t = T yields

min
t=1,...,T

∥∥∇S̃L(U
tStV t,⊤)

∥∥2 ≤ 1

T

T∑
t=1

∥∥∇S̃L(U
tStV t,⊤)

∥∥2
≤ 48L

T

(
L(Wr

t=1)− L(Wr
t=T+1)

)
+ 48L2ϑ,

which concludes the proof.

We remark that for a general loss function, it is possible that a point with small gradient magnitude
can be far from the stationary points. However, assuming that the loss function is locally strongly
convex in a neighborhood of a stationary point, then the gradient magnitude can be used to bound the
distance to this stationary point in the neighborhood. For further reference, we point to (?, Eq. (4.12))
for the estimate.
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I ANALYSIS FOR FEDLRT WITH SIMPLIFIED VARIANCE CORRECTION

We consider the FeDLRT method with simplified variance correction, see Algorithm 5. Key difference
to the standard FeDLRT with full variance correction, see Algorithm 1 is the modified coefficient
update, incorporating global gradient information of the non-augmented coefficient matrix S for the
variance correction term, that is

V̌c = ǦS̃ − ǦS̃,c =

[
∇SL(U tStV t,⊤)−∇SLc(U

tStV t,⊤) 0
0 0

]
. (39)

Using the Riemmanian gradient, we can equivalently write

V̌c =
[
U⊤| 0

]
(F (W̃r)− Fc(W̃r))

[
V
0

]
= Ũ⊤

[
I 0
0 0

]
(Fc(W̃r)− F (W̃r))

[
I 0
0 0

]
Ṽ .

Remember the simplified variance corrected local coefficient update, given by

S̃s+1
c = S̃s

c + λŨ⊤
(
Fc(W̃

s
r,c) +

[
I 0
0 0

]
(FC(W̃r)− F (W̃r))

[
I 0
0 0

])
Ṽ

= S̃s
c + λŨ⊤

(
Fc(W̃

s
r,c)
)
Ṽ + V̌c.

(40)

I.1 GLOBAL LOSS DESCENT FOR FEDLRT WITH SIMPLIFIED VARIANCE CORRECTION

In the following we provide proof for a global loss descent for Algorithm 5, i.e. using the local
coefficient update with variance correction (40).
Theorem 11. (Restatement of Theorem 4) Under Assumption 1, if the local learning rate 0 < λ ≤

1
12Ls∗

, then Algorithm 5 leads to the global loss descent

L(Wr
t+1)− L(Wr

t) ≤ −s∗λ(1− δ2 − 12s∗λL+ δ2s∗λ)
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2 + Lϑ, (41)

with Wr
t = U tStV t,⊤ and Wr

t+1 = U t+1St+1V t+1,⊤.

Proof. We split the adjusted coefficient update in (40) into the non-augmented r × r matrix S and
the tree off-diagonal blocks given by the augmentation Ŝ:

Ŝ = S̃ −
[
S 0
0 0

]
. (42)

Analogously to the proof of Theorem 2, we consider

L(W̃ ∗
r )− L(W̃r) ≤

〈
W̃ ∗

r − W̃r, F (W̃r)
〉
+

L

2

∥∥∥W̃ ∗
r − W̃r

∥∥∥2
=
〈
Ũ S̃∗Ṽ ⊤ − Ũ S̃Ṽ ⊤, F (W̃r)

〉
+

L

2

∥∥∥Ũ S̃∗Ṽ ⊤ − Ũ S̃Ṽ ⊤
∥∥∥2

=
〈
S̃∗ − S̃, Ũ⊤F (W̃r)Ṽ

〉
+

L

2

∥∥∥S̃∗ − S̃
∥∥∥2

=
〈
S̃∗ − S̃,−∇S̃L(W̃r)

〉
+

L

2

∥∥∥S̃∗ − S̃
∥∥∥2 ,

where the transformation uses orthonormality of Ũ and Ṽ and definition of the projected gradient.
We split the right hand side in terms corresponding to augmented terms Ŝ and non-augmented terms
S according to (42), i.e., 〈

S∗ − S,−∇SL(W̃r)
〉
+

L

2
∥S∗ − S∥2 , (43)

which is treated exactly as in the proof of Theorem 2, and the augmented terms〈
Ŝ∗ − Ŝ,−∇ŜL(W̃r)

〉
+

L

2

∥∥∥Ŝ∗ − Ŝ
∥∥∥2 . (44)
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First we bound the term (43). Remember that Ŝ = 0 at the start of the local iterations due to
orthonormality of Ũ , Ṽ . The coefficient update (40) for S reads

Ss+1
c = Ss

c + λU⊤
(
Fc(W̃

s
r,c)− Fc(W̃r) + F (W̃r)

)
V. (45)

Then we can readily apply Theorem 2 to obtain the bound〈
S∗ − S,−∇SL(W̃r)

〉
+

L

2
∥S∗ − S∥2 ≤ −(s∗λ)(1− 12(s∗λ)L)

∥∥∥U⊤F (W̃r)V
∥∥∥2 . (46)

Next, we bound (44), starting with the first term:〈
Ŝ∗ − Ŝ,−∇ŜL(W̃r)

〉
(I)
=
〈
Ŝ∗ − 0,−∇ŜL(W̃r)

〉
=

〈
− λ

C

C∑
c=1

s∗−1∑
s=0

∇ŜLc(W̃
s
r,c),−∇ŜL(W̃r)

〉

=
λ

C

C∑
c=1

s∗−1∑
s=0

〈
∇ŜLc(W̃

s
r,c),∇ŜL(W̃r)

〉
≤ λ

C

C∑
c=1

s∗−1∑
s=0

∥∥∥∇ŜLc(W̃
s
r,c)
∥∥∥∥∥∥∇ŜL(W̃r)

∥∥∥
(II)
≤ λ

C

C∑
c=1

s∗−1∑
s=0

δ2
∥∥∥∇S̃L(W̃r)

∥∥∥∥∥∥∇S̃L(W̃r)
∥∥∥

= δ2s∗λ
∥∥∥∇S̃L(W̃r)

∥∥∥2 = δ2s∗λ
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2 ,
where we use Ŝ = 0 in (I), and Assumption 1 in (II). Next, we bound the second term

L

2

∥∥∥Ŝ∗ − Ŝ
∥∥∥2 =

L

2

∥∥∥∥∥− λ

C

C∑
c=1

s∗−1∑
s=0

∇ŜL(W̃
S
r,c)

∥∥∥∥∥
2

(I)
≤L

2
λ2 1

C

C∑
c=1

∥∥∥∥∥
s∗−1∑
s=0

∇ŜL(W̃
S
r,c)

∥∥∥∥∥
2

(I)
≤L

2
s∗λ

2 1

C

C∑
c=1

s∗−1∑
s=0

∥∥∥∇ŜL(W̃
S
r,c)
∥∥∥2

≤s∗
L

2
δ2λ2 1

C

C∑
c=1

s∗−1∑
s=0

∥∥∥∇S̃L(W̃r)
∥∥∥2

≤L

2
δ2(s∗λ)

2
∥∥∥∇S̃L(W̃r)

∥∥∥2 =
L

2
δ2(s∗λ)

2
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2 ,
where we used Jensen’s inequality in (I) again Assumption 1. We combine the bound on the
non-augmented terms (46) and the two bounds above for the augmented terms to

L(W̃ ∗
r )− L(W̃r) ≤

〈
W̃ ∗

r − W̃r, F (W̃r)
〉
+

L

2

∥∥∥W̃ ∗
r − W̃r

∥∥∥2
≤− (s∗λ)(1− 12(s∗λ)L)

∥∥∥U⊤F (W̃r)V
∥∥∥2 + δs∗λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2 + δ(s∗λ)

2
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2
(I)
≤− (s∗λ)(1− 12(s∗λ)L)

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2 + δs∗λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2 + δ(s∗λ)

2
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2
=− (s∗λ)(1− δ2 − 12(s∗λ)L+ δ2(s∗λ))

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2 ,
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where we use in (I)
∥∥∥U⊤F (W̃r)V

∥∥∥ ≤ ∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥. Using Equation (36), we can conclude the

proof:

L(U t+1St+1V t+1,⊤)− L(U tStV t,⊤)

≤− (s∗λ)(1− δ2 − 12(s∗λ)L+ δ2(s∗λ))
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2 + Lϑ.

I.2 GLOBAL CONVERGENCE OF FEDLRT WITH SIMPLIFIED VARIANCE CORRECTION

Corollary 2. (Restatement of Corollary 1) Under Assumption 1, Algorithm 5 guarantees for the
learning rate λ ≤ 1

s∗(12L+δ2)

min
t=1,...,T

∥∥∇S̃L(Wr
t)
∥∥2 ≤ 96L

T

(
L(Wr

1)− L(Wr
T+1)

)
+ 96L2ϑ, (47)

with Wr
t = U tStV t,⊤, Wr

1 = U1S1V 1,⊤. and Wr
T+1 = UT+1ST+1V T+1,⊤.

Proof. Consider Theorem 4,

L(Wr
t+1)− L(Wr

t) ≤ −(s∗λ)(1− δ2 − 12(s∗λ)L+ δ2(s∗λ))
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2 + Lϑ

and assume that λs∗ = 1
(12L+δ2) , i.e. λ = 1

s∗(12L+δ2) ≤
1

Ls∗
, which obeys the learning rate

requirement of Theorem 2. Plugging this learning rate into (38) gives∥∥∇S̃L(Wr
t)
∥∥2 ≤ 96L

(
L(Wr

t)− L(Wr
t+1) + Lϑ

)
,

where we use ( 14 − δ2) ≤ 1
4 and 1

(12L+δ2) ≤
1

12L Averaging from t = 1 to t = T yields

min
t=1,...,T

∥∥∇S̃L(Wr
t)
∥∥2 ≤ 1

T

T∑
t=1

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2

≤96L

T

(
L(Wr

t=1)− L(Wr
t=T+1)

)
+ 96L2ϑ,

which concludes the proof.
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