
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FEDERATED DYNAMICAL LOW-RANK TRAINING WITH
GLOBAL LOSS CONVERGENCE GUARANTEES

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a federated dynamical low-rank training (FeDLRT) scheme to reduce
client compute and communication costs - two significant performance bottlenecks
in horizontal federated learning. Our method builds upon dynamical low-rank
splitting schemes for manifold-constrained optimization to create a global low-rank
basis of network weights, which enables client training on a small coefficient
matrix. This global low-rank basis that allows us to incorporate a variance correc-
tion scheme and prove global loss descent and convergence to a stationary point.
FeDLRT features dynamic augmentation and truncation of the low-rank bases to
optimize computing and communication resource utilization. Notably FeDLRT
only trains a small coefficient matrix per client. We demonstrate the efficiency of
FeDLRT in an array of computer vision benchmarks with both i.i.d. and non-i.i.d.
data distributions and show a reduction of client compute and communication costs
by up to an order of magnitude with minimal impacts on global accuracy. FeDLRT
performs as well as classical methods such as FedAvg and FedLin, with a fraction
of the memory and compute requirements.

1 INTRODUCTION

Federated learning (FL) Li et al. (2020); Shamir et al. (2014); McMahan et al. (2016) builds a
global model on a central server from data distributed on multiple devices, i.e., clients, by iteratively
aggregating local models trained with the computation resource on the clients. In horizontal FL, where
all clients share identical model architecture and data features, computation is often limited by (i) the
communication bandwidth between clients and the server and (ii) the restricted compute and memory
resources at each client. The former could be addressed by deploying various compression techniques,
such as sparse randomized sketching Haddadpour et al. (2020b), subsampling Konečný et al. (2017),
or by allowing for partial McMahan et al. (2016); Nishio & Yonetani (2019) or asynchronous Sprague
et al. (2018); Chen et al. (2020b) communications. The latter could be addressed by sparse training
Qiu et al. (2022); Yang et al. (2020) and transfer learning Chen et al. (2020a).

Since FedAvg McMahan et al. (2016), low-rank, sparsity and matrix sketching-based methods have
been proposed to increase communication and compute efficiency for FL in Qiao et al. (2021); Yi
et al. (2024); Liu et al. (2023); Yao et al. (2022); Xue & Lau (2023); Hyeon-Woo et al. (2022);
Konečný et al. (2017); Reisizadeh et al. (2020b). These methods can be categorized into 1) methods
that perform full-rank training on the clients and reduce communication cost by communicating only
a) low-rank factors Qiao et al. (2021); Vogels et al. (2020); Xue & Lau (2023) or b) sketched matrices
Rabbani et al. (2023); Rothchild et al. (2020); Ivkin et al. (2019); Condat et al. (2023) and 2) methods
that reduce both communication and client compute costs by training on a) low-rank factors Liu et al.
(2023); Yi et al. (2024); Yao et al. (2022); Hyeon-Woo et al. (2022); Konečný et al. (2017); Coquelin
et al. (2024) or b) sparsity patterns Horváth et al. (2021) on the clients. The methods in the first class
compress only the communication and do not reduce the compute and memory cost, while the ones
in the second class reduces the client compute and memory cost but often require reconstructing the
full weight matrix on the server.

Further, application of multiple optimization steps (local iterations) on clients often leads to the client
drift phenomenon, where convergence to local minimizers stalls the global convergence. Several
methods Shamir et al. (2014); Li et al. (2020); Pathak & Wainwright; Karimireddy et al. (2020);
Wang et al. (2020); Mitra et al. (2021b) have been proposed to mitigate this issue for non-compressed

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Table 1: Comparison of the computational footprint of FeDLRT with FedAvg McMahan et al.
(2016), FedLin Mitra et al. (2021a), FeDLR Qiao et al. (2021), Riemannian FL Xue & Lau (2023),
FjORD Horváth et al. (2021), FetchSGD Rothchild et al. (2020), FedHM Yao et al. (2022) and
FedPara Hyeon-Woo et al. (2022). We denote the number of local iterations by s∗, the local batch
size as b, the matrix dimension by n × n and the matrix rank by r. The sparsity rate of FjORD
and FetchSGD is denoted by δ. We mark the low-rank method with lowest compute, memory and
communication cost blue assuming fixed r ≪ n. The FeDLRT variants are the only low-rank schemes
with linearly scaling (in n) memory, compute, and communication costs with automatic compression
and the ability to handle client drift .

Method Client
compute

Client
memory

Server
compute

Server
memory

Comm.
cost

Comm.
rounds

Handles
client drift

Rank
adaptive

FedAVG O(s∗bn2) O(2n2) O(n2) O(2n2) O(2n2) 1 ✗ ✗
FedLin O(s∗bn2) O(2n2) O(n2) O(2n2) O(4n2) 2 ✓ ✗

FeDLR O(s∗bn2 + n3) O(2n2) O(n3 + n2) O(n2) O(4nr) 1 ✗ ✓
Riemannian FL O(s∗bn2r) O(2n2) O(n2r) O(4nr) O(4nr) 1 ✗ ✓
FedHM O(s∗b2nr) O(2nr) O(n2 + n3) O(n2) O(4nr) 1 ✗ ✓
FedPara O(s∗b4nr) O(4nr) O(n2 + n3) O(2n2) O(8nr) 1 ✗ ✗

FjORD O(s∗bδ) O(δ) O(n2) O(n2) O(4δ) 1 ✗ adapts δ
FetchSGD (s∗ = 1) O(s∗bn2) O(δ) O(n2) O(n2) O(4δ) 1 for s∗ = 1 adapts δ

FeDLRT w/o var/cor O(s∗b4nr) O(4nr) O(4nr2) O(2nr) O(6nr + 6r2) 2 ✗ ✓
FeDLRT simpl. var/cor O(s∗b4nr) O(4nr) O(4nr2) O(2nr) O(6nr + 8r2) 2 ✓ ✓
FeDLRT full var/cor O(s∗b4nr) O(4nr) O(4nr2) O(2nr) O(6nr + 10r2) 3 ✓ ✓

models, often by introducing correction terms to the client gradient. However, applying these client
drift mitigation techniques to methods in the second class is nontrivial, since the correction term is
often not compatible with the compressed (low rank or sparse) representations in local training.

Contribution: This work focuses on the horizontal FL setting and addresses the challenges of
communication bandwidth and client compute resources simultaneously by leveraging low-rank
approximations of weight matrices that follow the dynamics of the gradient flow. The proposed
method features 1) Efficient communication — only transmitting low-rank factors; 2) Low client
compute and memory footprint — clients optimizing only a small coefficient matrix and all floating
point operations of FeDLRT scale linearly in the matrix dimension n; 3) Automatic server-side
compression — minimizing memory and communication requirements during training via server-side
dynamical rank adjustment; 4) Global loss convergence guarantees — converging to a stationary
point by incorporating a variance correction scheme Mitra et al. (2021a). Each of these features is
demonstrated on benchmark problems. To the best of the authors’ knowledge, this is the first low-rank
method possessing all these features.

2 BACKGROUND AND PROBLEM STATEMENT

Federated optimization typically considers distributed setups and with limited communication and
limited client compute and memory resources McMahan et al. (2016). In this work, we consider a
general federated optimization problem, i.e.,

minw L(w) := 1
C

∑C
c=1 Lc(w), (1)

where w is a trainable weight, L is the global loss function associated to a global dataset X , and Lc

is the local loss function of client c with local dataset Xc in a federated setup with C clients. For
notational simplicity, we consider that X = ∪Cc=1Xc and each Xc is of the same size. Therefore, L
is an average of Lc with uniform weights.

The extension to handle a (non-uniform) weighted average case is straightforward. As the first
baseline for federated optimization, we consider FedAvg McMahan et al. (2016), see Algorithm 3.
Here, each client optimizes its local loss function Lc for s∗ local iterations using gradient descent,

ws+1
c = ws

c − λ∇wL(ws
c), (2)

with learning rate λ, for s = 0, . . . , s∗ − 1. The initial value for the local iter-
ation is the last global weight, i.e., w0

c = wt. After local iterations, the weights
are communicated to and aggregated at the server to update the global weight following

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

10
0

10
1

10
2

Aggregation round

10
4

10
2

10
0

||W
W

* |
| F

FeDLRT w/o var/cor
FeDLRT w/ var/cor
FedAvg
FedLin

Figure 1: Federated, heterogeneous least squares re-
gression problem, see Section 4.1, for C = 4 clients,
s∗ = 100 iterations, learning rate λ = 1e − 3 and C
rank-1 local target functions. FL methods without vari-
ance correction plateau quickly, whereas FedLin and
FeDLRT with variance correction converge to 1e − 5.
FeDLRT converges faster than FedLin and has lower
communication costs.

wt+1 = 1
C

∑C
c=1 w

s∗
c . (3)

Client-drift effect is a common challenge
in FL, where the iterative client updates
(2) of FedAvg converge to local minima
and jeopardize global training performance
since the average of the local minimizers
may be far away from the global mini-
mizer. These effects are particularly pro-
nounced for a large number of local iter-
ations s∗, or high discrepancies between
local loss functions Lc, as illustrated by
Figure 1. Multiple methods Shamir et al.
(2014); Li et al. (2020); Pathak & Wain-
wright; Karimireddy et al. (2020); Wang
et al. (2020) have been proposed to mitigate
this issue. However, these methods often
exhibit a speed-accuracy conflict, where
learning rates need to be heavily reduced; thus, convergence is slow.

Variance correction1 introduced in the FedLin method Mitra et al. (2021a) constructs a variance
correction term Vc = ∇wLc(w

t)− 1
C

∑C
c=1∇wLc(w

t) and modifies the client update iteration to

ws+1
c = ws

c − λ (∇wL(ws
c)− Vc) , s = 0, . . . , s∗ − 1. (4)

This technique leads to global convergence to the minimizer of (1) with constant learning rates for
convex L and else to convergence to a stationary point, at the cost of an additional communication
round for computing the variance correction. Similar methods, sometimes dubbed "error feedback"
are proposed in Liang et al. (2019); Ivkin et al. (2020)

Federated neural network training considers problem (1) with the trainable weight w being the set
of weight matrices {Wi}Li of an L layer neural network. In each iteration, the weight updates in (2)
and (4) are applied to all layers simultaneously. Therefore, w.l.o.g., we express the local loss function
as Lc(W), where W ∈ Rn×n denotes the weight matrix of an arbitrary layer.

Low-rank neural network training: An array of recent work has provided theoretical and experi-
mental evidence that layer weights of over-parameterized networks tend to be low rank Arora et al.
(2019); Bah et al. (2022); Galanti et al. (2022); Martin & Mahoney (2018) and that removing small
singular values may even lead to increased model performance while dramatically reducing model
size Sharma et al. (2024); Schotthöfer et al. (2022) in non-federated scenarios. This beneficial feature
has spawned a rich landscape of methods to compress neural networks to a low-rank factorization
after training with subsequent fine-tuning Sainath et al. (2013); Denton et al. (2014); Tjandra et al.
(2017); Lebedev et al. (2015), train the factorized network with fixed rank Jaderberg et al. (2014);
Wang et al. (2021); Khodak et al. (2021), dynamically adjust the rank during training Schotthöfer
et al. (2022); Zangrando et al. (2023), or use low-rank adapters for fine-tuning foundation models Hu
et al. (2021); Dettmers et al. (2023); Zhao et al. (2024); Schotthöfer et al. (2024).

Dynamical Low-rank Approximation of the gradient flow of neural network training. The core
contribution of this paper builds on the dynamical low-rank approximation (DLRA) method, which
was initially proposed for solving matrix equations Koch & Lubich (2007) and recently extended
to neural network training Schotthöfer et al. (2022); Zangrando et al. (2023); Hnatiuk et al. (2024);
Schotthöfer et al. (2024). Let Ẇ (t) = −∇WL(W (t)) denote the gradient flow for minimizing L.

The DLRA method restricts the trajectory of W toMr, the manifold of n × n, rank-r matrices,
by projecting Ẇ onto a local tangent plane ofMr via an orthogonal projection. This guarantees
a low-rank solution when following the projected dynamics from a low-rank initial guess. Let the
low-rank matrix take the form Wr = USV ⊤ ∈ Mr with U, V ∈ Rn×r the orthonormal bases of

1Variance correction is commonly referred to as “variance reduction” Konečný et al. (2016); Mitra et al.
(2021a).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Mr and S ∈ Rr×r the coefficient matrix. The dynamics for each low-rank factor in DRLA are then
derived in (Koch & Lubich, 2007, Proposition 2.1) as

Ṡ(t) = −U⊤(t)∇WL(U(t)S(t)V (t)⊤)V (t),

U̇(t) = −
(
I − PU(t)

)
∇WL(U(t)S(t)V (t)⊤)V (t)S(t)−1,

V̇ (t) = −
(
I − PV (t)

)
∇WL(U(t)S(t)V (t)⊤)U(t)S(t)−⊤,

(5)

where PU = UU⊤ and PV = V V ⊤ are the projections onto the column spaces of U and V ,
respectively.

In Schotthöfer et al. (2022), the authors develop an memory and compute efficient scheme to solve
(5) numerically for (non-federated) neural network training. The idea is to split the system into a
basis update step for U and V and a coefficient update step for S, allowing rank adaptation via a basis
augmentation before the coefficient update step and a basis truncation after the coefficient update,
which enables dynamic compression of the neural network during training.

Direct extension of DLRA to FL is not straightforward: In a FL setup, applying the above scheme
to the local training problem on each client c leads to low-rank weights Wc = UcScV

⊤
c with different

bases Uc and Vc and potentially different ranks for each client. While these factors can still be
efficiently communicated, aggregating these low-rank weights on the server requires reconstructing
the full weight matrix W ∗ = 1

C

∑C
c=1 UcScV

⊤
c . In this process, the low rank structure is lost and

needs to be costly recovered by a full n× n SVD on the server. Low-rank schemes using this type
of aggregation step and direct gradient descent on low-rank factors are presented in, e.g. Yao et al.
(2022), Qiao et al. (2021), Hyeon-Woo et al. (2022).

Furthermore, the inconsistency of the low-rank bases on each client complicates the implementation
of standard client drift mitigation methods, e.g., the variance correction method in FedLin Mitra et al.
(2021b), since these methods require averaged gradient information of all clients, which is nontrivial
to compute without a global low-rank basis shared between clients.

3 FEDLRT: FEDERATED DYNAMICAL LOW-RANK TRAINING WITH VARIANCE
CORRECTION

1 2

3 4

optimizeoptimize

Figure 2: Communication of
FeDLRT without variance correc-
tion. 1) Broadcast global basis
U, V (blue). 2) Aggregate basis
gradients Gc,U , Gc,V (orange). 3)
Broadcast global augmented basis
Ū, V̄ (green). 4) Aggregate client
coefficient update S̃s∗

c (purple).

In this section, we present the core contribution of this paper,
federated dynamical low-rank training (FeDLRT). FeDLRT cre-
ates a global low-rank manifold on which all clients of the FL
setup share the same basis U, V , referred to as the global basis.
This core idea enables FeDLRT to reduce the compute, commu-
nication, and memory costs simultaneously while incorporating
client drift mitigation techniques to guarantee convergence.

The procedure of FeDLRT is illustrated in Figure 2 and de-
tailed in Algorithm 1. As shown in Figure 2, FeDLRT first
broadcasts an initial low-rank factorization of a weight matrix
Wr = USV ⊤ to the clients (panel 1), and the basis gradients2

U, V are aggregated on the server (panel 2). Next, the basis is
augmented on the server (panel 3) and broadcast. On the clients,
only the augmented coefficient matrix S is updated repeatedly
(panel 4) before aggregation to the server. After aggregation of
the local augmented coefficient matrices, redundant bases are
eliminated to optimize the accuracy-to-compression ratio of the
model on the server, which gives the low-rank factorization of
the global weight for the broadcasting step in panel 1 for the
next aggregation round.

The strategy yields the following benefits compared to “full-rank”
FL schemes, such as FedLin Mitra et al. (2021a):
Low client compute cost: Server-based basis augmentation and

2and later on the coefficient gradients for variance correction

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

compression enables an automatic compression without a-priori knowledge of the layer rank r and at
no cost for the resource-constrained clients. The clients only evaluate gradients of low-rank factors
and optimize the small matrix S ∈ Rr×r.

Efficient communication: Similar to FedLin, FeDLRT requires in practice two communication
rounds – one for aggregating and distributing global gradients for basis augmentation and variance
correction and one for aggregating locally updated coefficients. However, communication cost for
each round is significantly reduced since only low-rank factors are communicated. We refer to
Section 3.3 on communication and compute cost.

In comparison to low-rank schemes with local compression Yao et al. (2022); Yi et al. (2024); Qiao
et al. (2021); Hyeon-Woo et al. (2022) the scheme has the following benefits:
Global manifold basis: Splitting the low-rank update and sharing bases among clients provides a
globally consistent manifold basis. The global basis unlocks the favorable features of dynamical
low-rank training Schotthöfer et al. (2022) for federated learning: 1) Convergence behavior that
mimics that of FedLin, 2) compute and memory efficiency by never computing or assembling full
weight matrices, 3) automatic compression through rank adaptivity instead of manual tuning of the
rank r.

3.1 DESCRIPTION OF ALGORITHM 1 - FEDLRT

In this section, we elaborate on the details in Algorithm 13. The orthonormal factors U t, V t and the
coefficient matrix St are initialized with rank r and then broadcast to the clients. Note that FeDLRT
ensures that, for all t > 1, U t and V t are orthonormal, and St is diagonal and full rank.

Basis augmentation of the bases U t and V t is performed using concatenation with the corresponding
global basis gradients GU = 1

C

∑C
c=1∇ULc(U

tStV t,⊤) and GV = 1
C

∑C
c=1∇V Lc(U

tStV t,⊤),
obtained by aggregating the local basis gradients. GU and GV encapsulate the gradient flow dynamics
(5) projected onto the original bases, thus yielding an intuitive choice for basis augmentation. Further,
this choice is consistent with the basis update step of the augmented BUG splitting scheme, see
Appendix F, which ensures the robustness of the client optimizer. Subsequent orthonormalization,
e.g., by a QR decomposition, yields the augmented basis, i.e.,

[U t | Ū]R = qr([U t | GU]) ∈ Rn×2r, and [V t | V̄]R = qr([V t | GV]) ∈ Rn×2r. (6)

We denote the augmented bases by Ũ = [U t | Ū] and Ṽ = [V t | V̄]. The orthonormalization is
performed on the server, providing compute cost reduction for the client.

Basis broadcasting of Ũ and Ṽ only requires to broadcast the new bases Ū and V̄ , since U t and V t

are readily available on the clients. Formally, the coefficients St are projected onto the augmented
basis, i.e., S̃ = Ũ⊤U tStV t,⊤Ṽ ∈ R2r×2r, before broadcasting them to the clients. Exploiting the
orthonormality of the basis results in further reduction of the communication and compute cost:

Lemma 1. Let Ũ = [U t | Ū] and Ṽ = [V t | V̄], then S̃ := Ũ⊤U tStV t,⊤Ṽ =

[
St 0
0 0

]
.

The proof (see Appendix G) is based on the orthogonality imposed in (6). With Lemma 1, only
Ū and V̄ have to be broadcast, and the augmented bases and coefficients Ũ , Ṽ , and S̃ can be
assembled on each client as needed. Furthermore, only S ∈ Rr×r, instead of S̃ ∈ R2r×2r, needs to
be communicated.

Below, we discuss three options for the client coefficient update step.

Client coefficient update without variance correction is implemented similarly to FedAvg (3). On
each client c, the augmented coefficient matrix S̃c is trained for s∗ iterations4 with learning rate λ,

S̃s+1
c = S̃s

c − λ∇S̃Lc(Ũ S̃s
c Ṽ

⊤), s = 0, . . . , s∗ − 1, with S̃s=0
c = S̃. (7)

Client coefficient update with variance correction is required in certain federated scenarios, e.g.,
the case considered in Figure 1. Based on FedLin Mitra et al. (2021a), we introduce a correction

3The auxiliary functions for Algorithm 1 can be found in Algorithm 2.
4Our analysis focuses on the case where all clients share the same number of local iterations s∗. The analysis

can be extended to the case where s∗ is client dependent, following a similar strategy as in Mitra et al. (2021a).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1: FeDLRT (See Algorithm 2 for auxiliary function definitions)

Input :Initial orthonormal bases U1, V 1 ∈ Rn×r and full rank S1 ∈ Rr×r;
Client-server setup with clients c = 1, . . . , C;
var_cor: Boolean flag to activate variance correction;
τ : singular value threshold for rank truncation.

1 for t = 1, . . . , T do
2 broadcast({U t, V t, St})
3 GU,c ← ∇ULc(U

tStV t,⊤); GV,c ← ∇V Lc(U
tStV t,⊤) /* On client */

4 GU , GV ← aggregate({GU,c, GV,c})
5 Ū ←basis_augmentation(U t, GU); V̄ ←basis_augmentation(V t, GV)
6 broadcast({Ū, V̄ })
7 Ũ ← [U t | Ū]; Ṽ ← [V t | V̄] /* Basis assembly on client */

8 S̃s=0 ←
[
St 0
0 0

]
/* Coefficient matrix assembly on client */

9 if var_cor then
10 GS̃,c ← ∇S̃Lc(Ũ S̃Ṽ ⊤) /* Augmented gradient on client */

11 GS̃ ← aggregate({GS̃,c})
12 broadcast({GS̃})
13 coefficient_update_var_cor(c, GS̃ −GS̃,c) /* On client */

14 else
15 coefficient_update(c) /* On client */

16 S̃∗ ← aggregate({S̃s∗
c })

17 Pr1 ,Σr1 , Qr1 ← svd(S̃∗) with threshold ϑ /* Compression step */

18 U t+1 ← ŨPr1 ; V t+1 ← Ṽ Qr1 ; St+1 ← Σr1 /* Basis and coefficient
update */

step for the local coefficient update of FeDLRT. It extends the above local iteration by another
communication round, where the gradient of the augmented coefficients GS̃,c = ∇S̃Lc(Ũ S̃Ṽ ⊤) is

computed, aggregated to GS̃ = 1
C

∑C
c=1 GS̃,c and subsequently broadcast. This yields a correction

term Vc = GS̃ −GS̃,c for each client c and thus the client iterations read

S̃s+1
c = S̃s

c − λ
(
∇S̃Lc(Ũ S̃s

c Ṽ
⊤) + Vc

)
, s = 0, . . . , s∗ − 1, with S̃s=0

c = S̃. (8)

The correction term results in a bound on the coefficient drift and leads to convergence guarantees for
FeDLRT, as detailed in Section 3.2.

Client coefficient update with simplified variance correction: Empirically, we observe that a
simplified variance correction, which only considers the correction term of the non-augmented
coefficients St, is sufficient, see Figure 8. The simplified variance correction term takes the form

Vc = GS̃ −GS̃,c ≈ V̌c := ǦS̃ − ǦS̃,c =

[
∇SL(U tStV t,⊤)−∇SLc(U

tStV t,⊤) 0
0 0

]
, (9)

which makes lines 10 and 12 in Algorithm 1 redundant, since ǦS̃ can be aggregated in one step with
the basis gradients GU ,GV in line 4 and broadcast with Ū, V̄ in line 6, reducing the communication
rounds to two - the same as FedLin. See Algorithm 5 for details.

Coefficient averaging is performed after (any of the above variants of) the client iterations. The server
computes the updated global coefficients by averaging the local updates, i.e., S̃∗ = 1

C

∑C
c=1 S̃

s∗
c .

With the shared augmented bases Ũ and Ṽ , this is equivalent to the FedAvg aggregation

W̃ ∗
r = 1

C

∑C
c=1 W̃

s∗
r = 1

C

∑C
c=1

(
Ũ S̃s∗

c Ṽ ⊤
)
= Ũ(1

C

∑C
c=1 S̃

s∗
c)Ṽ ⊤ = Ũ S̃∗Ṽ ⊤. (10)

Since the basis is fixed, the rank 2r is preserved in the aggregation, which is in contrast to other
federated low-rank schemes where the aggregated weights could be full rank and, in turn, require a
full matrix SVD to determine the new rank Qiao et al. (2021); Xue & Lau (2023).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Automatic compression via rank truncation is necessary 1) to identify the optimal rank of the
weight matrix and 2) to ensure that S is full rank5. To this end, a truncated SVD of S̃∗ ∈ R2r×2r is
performed, i.e. Pr1 ,Σr1 , Q

⊤
r1 = svd(S̃∗), where Pr1 , Qr1 ∈ R2r×r1 and Σr1 = diag(σ1, . . . , σr1)

contains the r1 largest singular values of S̃∗. The new rank r1 can be chosen by a variety of criteria,
e.g., a singular value threshold ∥[σr1 , . . . , σ2r]∥2 < ϑ. Once a suitable rank is determined, the
factorization is updated by the projection of the bases U t+1 = ŨPr1 ∈ Rn×r1 , V t+1 = Ṽ Qr1 ∈
Rn×r1 and update of the coefficient St+1 = Σr1 . Remarkably, Algorithm 1 is a federated low-rank
learning scheme whose solution is close to a full-rank solution, see Theorem 5.

FeDLRT can readily be extended to tensor-valued, e.g., convolutional, layers by applying Algorithm 1
to each basis and the core tensor in a Tucker Tensor factorization. We refer to Appendix B for details.

3.2 ANALYSIS OF FEDLRT WITH VARIANCE CORRECTION

In this section, we analyze the FeDLRT algorithm under the general assumption that Lc and L are
L-smooth with constant L. Theorems 2 and 3 give the convergence results for FeDLRT with full
variance correction (8) in Algorithm 1. Theorem 4 and Corollary 1 provide the convergence for
FeDLRT with simplified variance correction in (9), as detailed in Algorithm 5, under additional
assumptions given therein. We note that the analysis does not require convexity of Lc or L.

FeDLRT convergence with full variance correction. The variance-corrected client iteration (8)
leads to the following bound the client coefficient drift.

Theorem 1. Given augmented basis and coefficient matrices Ũ , Ṽ , and S̃. If the local learning rate
0 < λ ≤ 1

Ls∗
with s∗ ≥ 1 the number of local steps, for all clients c,

∥S̃s
c − S̃c∥ ≤ exp(1)s∗λ∥∇S̃L(Ũ S̃Ṽ ⊤)∥, for s = 1, . . . , s∗ − 1, (11)

where S̃s
c is the variance corrected coefficient as given in (8).

The critical ingredient for the proof, provided in Appendix H.1, is the globally shared augmented
bases. Theorem 1 bounds the drift of the low-rank representations of the local weight, which gives
rise to the following global loss descent guarantee.

Theorem 2. Let U tStV t,⊤ and U t+1St+1V t+1,⊤ be the factorization before and after iteration t
of Algorithm 1 with variance correction and singular value truncation threshold ϑ. Let the local
learning rate be 0 < λ ≤ 1

12Ls∗
, then the global loss descent is bounded by

L(U t+1St+1V t+1,⊤)− L(U tStV t,⊤) ≤ −s∗λ(1− 12s∗λL)∥∇S̃L(Ũ S̃Ṽ ⊤)∥2 + Lϑ. (12)

The proof is provided in Appendix H.2. The theorem shows that Algorithm 1 guarantees global loss
descent, up to the error term Lϑ from low rank truncation. Further, Theorem 2 paves the way for the
following result on convergence to a global stationary point.

Theorem 3. Algorithm 1 guarantees that, for learning rate λ ≤ 1
12Ls∗

and final iteration T ,

min
t=1,...,T

∥∥∇S̃L(U
tStV t,⊤)

∥∥2 ≤ 48L

T

(
L(U1S1V 1,⊤)− L(UT+1ST+1V T+1,⊤)

)
+ 48L2ϑ. (13)

The proof is given in Appendix H.3. In particular, this theorem implies convergence of Algorithm 1
for T → ∞ up to a ϑ-distance to a global stationary point. This is consistent with the numerical
results in Figure 1, where FedLin converges to the global minimizer (the only stationary point) while
FeDLRT with variance correction stops at a point with slightly higher loss value due to a nonzero ϑ.
In the case that the FL problem has a low-rank solution, the truncation error bounded by ϑ vanishes,
and convergence to a stationary point is guaranteed, see, e.g., Figure 3.

5Full rank S is required to show consistency of the basis update step (6) with the robust operator splitting of
Ceruti et al. (2022); Schotthöfer et al. (2022), see Appendix F.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

10
0

10
1

10
2

Aggregation round

4

8

12 FeDLRT - ranks
C=1
C=2
C=4
C=8
C=16
C=32

10
0

10
1

10
2

Aggregation round

10
5

10
3

10
1

FeDLRT - ||Wt W * ||F

10
0

10
1

10
2

Aggregation round

10
5

10
3

10
1

FeDLRT - global loss

10
0

10
1

10
2

Aggregation round

10
5

10
3

10
1

FedLin - global loss

Figure 3: Comparison between FeDLRT with simplified variance correction and FedLin in the
homogeneous linear least squares regression test. Each line represents the median result of 20 random
initialization with C clients. The plots from left to right show the rank evolution, the distance to
the global optimizer, the global loss values by FeDLRT, and the global loss values by FedLin. The
results show that FeDLRT converges faster in this low-rank test case by identifying (and never
underestimating) the target rank r = 4 early in the training.

FeDLRT convergence with simplified variance correction. FeDLRT with simplified variance
correction is detailed in Algorithm 5 with the variance correction term given in (9), which makes
variance correction more communication and computation efficient but comes at a cost of the
following additional assumption for convergence analysis.
Assumption 1. There exists δ ≪ 1 such that, at each client coefficient update,

∥∇S̃G(Ũ S̃s
c Ṽ

⊤)∥ − ∥∇SG(Ũ S̃s
c Ṽ

⊤)∥ < δ∥∇S̃L(Ũ S̃Ṽ ⊤)∥, (14)
for functions G = L and G = Lc, c = 1, . . . , C.

The left-hand side of (14) is the difference in the gradient dynamics induced by the basis augmentation.
If FeDLRT has identified a suitable global basis U, V , then the small coefficient S captures most of
the relevant gradient information, i.e. the difference between ∇S̃G and ∇SG is expected to be small.
The result in Appendix D suggests that this assumption is reasonable. This scenario occurs when
FeDLRT identifies the optimal rank, which could happen early for simpler problems as shown in
Figure 3, or when FeDLRT approaches a stationary point.
Theorem 4. Under Assumption 1, let C := s∗λ(1− δ2 − 12s∗λL+ δ2 s∗λ). If the local learning
rate 0 < λ ≤ 1

12Ls∗
, Algorithm 5 leads to the global loss descent

L(U t+1St+1V t+1,⊤)− L(U tStV t,⊤) ≤ −C∥∇S̃L(W̃r)∥2 + Lϑ.

The proof is provided in Appendix I.1. When δ is small, this bound is slightly weaker than the one in
Theorem 2, which leads to the following corollary.
Corollary 1. Assume that Assumption 1 holds. Algorithm 5 guarantees that, for the local learning
rate 0 < λ ≤ 1

s∗(12L+δ2) ,

min
t=1,...,T

∥∥∇S̃L(U
tStV t,⊤)

∥∥2 ≤ 96L

T
(L(U1S1V 1,⊤)− L(UT+1ST+1V T+1,⊤)) + 96L2ϑ.

The proof is analogous to the one for Theorem 3, see Appendix I.2.

3.3 COMPUTE AND COMMUNICATION COST

The proposed FeDLRT methods significantly reduce server and client memory footprint, the required
communication bandwidth, as well as the client compute cost compared to various baselines, see
Table 1. We remark that the complete federated learning process is performed on the low-rank factors,
and the full matrix Wr is never required, as, e.g., in Qiao et al. (2021); Xue & Lau (2023) and
FeDLRT is the only low-rank method with adaptive compression incorporating variance correction,
whose server compute cost scales linearly with the layer dimension since the SVD for rank truncation
only needs to be computed on the augmented coefficient matrix of size 2r × 2r.

4 NUMERICAL EVALUATION

4.1 DISTRIBUTED LINEAR LEAST SQUARES REGRESSION

Homogeneous test. We first consider a (convex) FL problem (1) for linear least squares regression
with local loss Lc(W) = 1

2|Xc|
∑

(x,y)∈Xc

∥∥p(x)⊤Wp(y)− f(x, y)
∥∥2
2
, where W ∈ Rn×n and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

50 100 150 200
Aggregation Round

70

75

80

85

90

95 Val. Acc. FedAvg

Client Count
2
4
8
12
16

50 100 150 200
Aggregation Round

70

75

80

85

90

95 Val. Acc. FedLin

50 100 150 200
Aggregation Round

70

75

80

85

90

95 Val. Acc. FeDLRT - w/o var/cor

50 100 150 200
Aggregation Round

70

75

80

85

90

95 Val. Acc. FeDLRT - simpl. var/cor

Figure 4: ResNet18 CIFAR10. In each plot, the results are reported for C = 1, . . . , 16 or 32 clients
with 240/C local iterations. We compare the convergence behavior of the median result of 10
initializations displaying the best validation accuracy until the current epoch for (from left to right)
FedAvg, FedLin, FeDLRT w/o var/cor and FeDLRT w/ simplified var/cor. We observe 1) the low-rank
methods closely follows the convergence dynamics of their full rank counterpart, and 2) variance
correction starts to improve the convergence behavior during later stages of the training, where the
non-corrected methods level off.

0 5000 10000 15000 20000
Aggregation Round

60

70

80

90 Val. Acc. 200 clients, 10 active

Method
FedAvg
FeDLRT

Figure 5: ResNet18 CIFAR10-i.i.d., partial participation. We
compare FeDLRT w/o var. cor. to FedAvg for C = 200 clients,
where 10 randomly sampled clients participate in each aggregation
round with s∗ = 10 local iterations. We present the median
of 5 random weight initializations. The models converge to a
86.18±1.5% accuracy. FeDLRT achieves a 63.32% compression
rate with a comparable accuracy to FedAvg.

p : [−1, 1] → Rn is the Legendre polynomial basis of degree n − 1. The target function f is
manufactured as f(x, y) = p(x)⊤Wrp(y), where rank(Wr) = r. We consider problems with
n = 20, r = 4, and randomly generated Wr, with 10, 000 data points uniformly sampled on [−1, 1]2
and uniformly distributed among clients. We compare FeDLRT with variance correction and FedLin
with s∗ = 20 local iterations and λ = 1e − 3 learning rate on C = 1, 2, 4, 8, 16, 32 clients. This
setting satisfies the step-size restriction given in Theorem 2. In FeDLRT, the singular value truncation
threshold ϑ = τ ||S̃∗|| with τ = 0.1 was used.

Figure 3 reports the dynamically updated ranks, errors, and loss values with respect to the aggregation
rounds. The reported data are the medians over 20 randomly generated initial weights6 The results
indicate that FeDLRT is able to identify the correct rank within a few aggregation rounds and,
furthermore, never underestimates it – which would have increased the loss value significantly.
FeDLRT converges to the minimizer W ∗ = Wr up to a 1e− 5 error and converges faster with more
clients. On this problem, FeDLRT shows up to 10x faster convergence than FedLin. We attribute this
behavior to the fact that, by identifying a suitable low-rank manifold early in the training, FeDLRT
significantly reduces the degrees of freedom in the FL problem.

Heterogeneous client objective functions. Inspired by Mitra et al. (2021a), we consider a variation
of the linear least squares regression with Lc(W) = 1

2|X|
∑

(x,y)∈X

∥∥p(x)⊤Wp(y)− fc(x, y)
∥∥2,

where the target function fc is different for each client, and the 10, 000 training data points are
available to all clients. The local target functions fc cause each client to optimize a different local
problem. We choose problem size n = 10 with C = 4 clients and use learning rate λ = 1e− 3 with
s∗ = 100 local epochs. As seen in Figure 1, FeDLRT with variance correction converges (to single
precision accuracy) to the minimizer W ∗ of (1) much faster than FedLin, whereas FeDLRT without
correction quickly plateaus, similar to FedAvg.

4.2 RESNET18 ON CIFAR10
We demonstrate the performance of FeDLRT for training the exemplary ResNet18 model on CIFAR10,
where we apply FeDLRT to train its fully connected head. The truncation tolerance is set to
ϑ = τ ||S̃∗|| with τ = 0.01. The test case setup is summarized in Table 2. The training data is equally

6We chose to display the median trajectory to point out its convergence and monotonicity. The test case also
converges in the mean.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 500 1000 1500 2000
Aggregation Round

30

40

50

60

70

80

A
cc

ur
ac

y

FeDLRT w/ simpl. var. cor.

10
5
2
1

0 500 1000 1500 2000
Aggregation Round

FedLin
Figure 6: ResNet18 CIFAR10-
Dirichlet distriubted with param-
eter α for FeDLRT w/ simpl. var.
cor. and FedLin for C = 16
clients with s∗ = 10 local iter-
ations. We present the median of
5 random weight initializations.
FeDLRT performance matches or
surpasses the FedLin baseline.

partitioned across clients; see Appendix C.2 for the data-preprocessing details. A local iteration of
Algorithm 1 at client c describes one mini-batch update on the client training data set Xc for a given
batch size, s∗ is the maximum number of local iterations, and T denotes the number of aggregation
rounds. We see that FeDLRT ties or outperforms FedAvg in terms of final validation accuracy. Using
variance correction increases the validation accuracy of FeDLRT by up to 12% in this test case,
matching the accuracy of FedLin and enabling FL with 93% accuracy for 32 clients. For C = 8
clients, the communication cost saving of the compressed layers is up to 90%

Similar results are obtained for AlexNet, VGG16 on CIFAR10, and ViT on CIFAR100, see Ap-
pendix C, where we observe that FeDLRT closely matches the full-rank accuracy of FedLin. Lastly,
we remark that variance correction ins beneficial for convergence behavior in neural network training,
as shown in Figure 4.

In Figure 8 we compare the performance of full variance correction with the computationally more
efficient simplified variance correction, using Algorithm 5 and observe that the latter yields similar
validation accuracy, notably at higher compression ratio and communication cost reduction.

Partial Participation: We set the total number of clients C = 200, but in each aggregation round
only 10 clients are randomly sampled to participate in the Algorithm 1 without variance correction
for s∗ = 10 local iterations. We show in Figure 5 that FeDLRT still mirrors the performance of
FedAvg at 63.32% compression rate.

Non-i.i.d data distribution: In the setting of Section 4.2 we explore the effect of non-i.i.d training
data distributed across C = 16 clients on FeDLRT, where we adopt the Dirichlet distribution Hsu
et al. (2019) with parameter α ∈ {1, 2, 5, 10}. We compare the validation accuracy of FeDLRT w/
simpl. var. cor. to FedLin in Figure 6 and observe that FeDLRT matches the performance of FedLin
for α = 5, 10 and surpasses FedLin for α = 1, 2 at compression rates between 59.8% and 62.2%.

Figure 7: MNIST communication
cost, C = 100 clients with 2
classes each. Comparison values
are taken from (Haddadpour et al.,
2020a, Figure 4).

Method

Global
Trai-
ning
Loss

Comm.
Bits
(up-
link)

FeDLRT 0.06 0.23e9

SCAFFOLD 0.05 1.21e9
FedGATE 0.13 0.61e9
FedCOMGATE 0.05 0.18e9
FedAvg 0.15 0.62e9
FedPAQ 0.15 0.18e9

Communication cost: We compare the effective communication
cost and global training loss after 100 aggregation rounds using
an MLP trained on heterogeneous MNIST data in Figure 7, see
Appendix C.5 for details. FeDLRT has comparable communi-
cation cost and global training loss compared to FedCOMGATE
Haddadpour et al. (2020a), the best performing reference method.
We remark that FeDLRT is the only compared method with with
client compute cost reduction.

In conclusion, we have presented FeDLRT, an efficient low-
rank FL scheme with convergence guarantees and automatic
compression, and demonstrated its capabilities in several test
cases.

Limitations and future work: We remark that the underly-
ing assumption for this work is that the target model can be
expressed sufficiently well via a low-rank representation. Al-

though the communication cost in terms of transferred parameters is significantly reduced compared
to existing method, FeDLRT still requires two communication handshakes for one aggregation round,
just like its full-rank counterpart FedLin. Therefore, the method needs to be refined for scenarios
where the clients have different communication latencies or for completely asynchronous scenarios.
Potential future research directions include performing large-scale tests with thousands of clients,
extending the algorithm to incorporate other client drift mitigation techniques, e.g. Liang et al. (2019);
Ivkin et al. (2020), and analyzing the convergence properties in these scenarios.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix
factorization. Advances in Neural Information Processing Systems, 32, 2019.

Bubacarr Bah, Holger Rauhut, Ulrich Terstiege, and Michael Westdickenberg. Learning deep linear
neural networks: Riemannian gradient flows and convergence to global minimizers. Inf. Inference,
11(1):307–353, 2022. doi: 10.1093/imaiai/iaaa039.

Gianluca Ceruti, Jonas Kusch, and Christian Lubich. A rank-adaptive robust integrator for dynamical
low-rank approximation. BIT Numerical Mathematics, 2022. URL https://doi.org/10.
1007/s10543-021-00907-7.

Yiqiang Chen, Xin Qin, Jindong Wang, Chaohui Yu, and Wen Gao. Fedhealth: A federated transfer
learning framework for wearable healthcare. IEEE Intelligent Systems, 35(4):83–93, 2020a.

Yujing Chen, Yue Ning, Martin Slawski, and Huzefa Rangwala. Asynchronous online federated
learning for edge devices with non-iid data. In 2020 IEEE International Conference on Big Data
(Big Data), pp. 15–24. IEEE, 2020b.

Laurent Condat, Ivan Agarský, Grigory Malinovsky, and Peter Richtárik. TAMUNA: Doubly
accelerated federated learning with local training, compression, and partial participation. In
International Workshop on Federated Learning in the Age of Foundation Models in Conjunction
with NeurIPS 2023, 2023. URL https://openreview.net/forum?id=SvJx4a75QZ.

Daniel Coquelin, Katherina Flügel, Marie Weiel, Nicholas Kiefer, Muhammed Öz, Charlotte Debus,
Achim Streit, and Markus Goetz. Ab-training: A communication-efficient approach for distributed
low-rank learning. ArXiv, abs/2405.01067, 2024. URL https://api.semanticscholar.
org/CorpusID:269502080.

Emily L Denton, Wojciech Zaremba, Joan Bruna, Yann LeCun, and Rob Fergus. Exploiting linear
structure within convolutional networks for efficient evaluation. Advances in neural information
processing systems, 27, 2014.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

Tomer Galanti, Zachary S Siegel, Aparna Gupte, and Tomaso Poggio. Sgd and weight decay provably
induce a low-rank bias in neural networks. 2022.

Farzin Haddadpour, Mohammad Mahdi Kamani, Aryan Mokhtari, and Mehrdad Mahdavi. Federated
learning with compression: Unified analysis and sharp guarantees, 2020a. URL https://
arxiv.org/abs/2007.01154.

Farzin Haddadpour, Belhal Karimi, Ping Li, and Xiaoyun Li. Fedsketch: Communication-efficient
and private federated learning via sketching, 2020b.

Arsen Hnatiuk, Jonas Kusch, Lisa Kusch, Nicolas R. Gauger, and Andrea Walther. Stochas-
tic aspects of dynamical low-rank approximation in the context of machine learning. Op-
timization Online, 2024. doi: https://optimization-online.org/?p=25971. URL https://
optimization-online.org/?p=25971.

Samuel Horváth, Stefanos Laskaridis, Mario Almeida, Ilias Leontiadis, Stylianos Venieris, and
Nicholas Lane. Fjord: Fair and accurate federated learning under heterogeneous targets with
ordered dropout. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 12876–12889. Cur-
ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/
paper/2021/file/6aed000af86a084f9cb0264161e29dd3-Paper.pdf.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification, 2019. URL https://arxiv.org/abs/1909.
06335.

11

https://doi.org/10.1007/s10543-021-00907-7
https://doi.org/10.1007/s10543-021-00907-7
https://openreview.net/forum?id=SvJx4a75QZ
https://api.semanticscholar.org/CorpusID:269502080
https://api.semanticscholar.org/CorpusID:269502080
https://arxiv.org/abs/2007.01154
https://arxiv.org/abs/2007.01154
https://optimization-online.org/?p=25971
https://optimization-online.org/?p=25971
https://proceedings.neurips.cc/paper_files/paper/2021/file/6aed000af86a084f9cb0264161e29dd3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/6aed000af86a084f9cb0264161e29dd3-Paper.pdf
https://arxiv.org/abs/1909.06335
https://arxiv.org/abs/1909.06335

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021.

Nam Hyeon-Woo, Moon Ye-Bin, and Tae-Hyun Oh. Fedpara: Low-rank hadamard product for
communication-efficient federated learning. In International Conference on Learning Representa-
tions, 2022. URL https://openreview.net/forum?id=d71n4ftoCBy.

Nikita Ivkin, Daniel Rothchild, Enayat Ullah, Ion Stoica, Raman Arora, et al. Communication-
efficient distributed sgd with sketching. Advances in Neural Information Processing Systems, 32,
2019.

Nikita Ivkin, Daniel Rothchild, Enayat Ullah, Vladimir Braverman, Ion Stoica, and Raman Arora.
Communication-efficient distributed sgd with sketching, 2020. URL https://arxiv.org/
abs/1903.04488.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural networks
with low rank expansions. In Proceedings of the British Machine Vision Conference. BMVA Press,
2014.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pp. 5132–5143. PMLR, 2020.

Mikhail Khodak, Neil Tenenholtz, Lester Mackey, and Nicolo Fusi. Initialization and regularization
of factorized neural layers. In International Conference on Learning Representations, 2021.

O. Koch and C. Lubich. Dynamical low-rank approximation. SIAM Journal on Matrix Analysis
and Applications, 29(2):434–454, 2007. ISSN 0895-4798. doi: 10.1137/050639703. URL
https://doi.org/10.1137/050639703.

Jakub Konečný, H. Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated optimization:
Distributed machine learning for on-device intelligence, 2016.

Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency, 2017.

V Lebedev, Y Ganin, M Rakhuba, I Oseledets, and V Lempitsky. Speeding-up convolutional
neural networks using fine-tuned CP-decomposition. In International Conference on Learning
Representations, 2015.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE Signal Processing Magazine, 37(3):50–60, 2020.

Xianfeng Liang, Shuheng Shen, Jingchang Liu, Zhen Pan, Enhong Chen, and Yifei Cheng. Variance
reduced local sgd with lower communication complexity, 2019. URL https://arxiv.org/
abs/1912.12844.

Xiao-Yang Liu, Rongyi Zhu, Daochen Zha, Jiechao Gao, Shan Zhong, and Meikang Qiu. Differen-
tially private low-rank adaptation of large language model using federated learning, 2023.

Christopher H Martin and Michael W Mahoney. Implicit self-regularization in deep neural net-
works: Evidence from random matrix theory and implications for learning. arXiv preprint
arXiv:1810.01075, 2018.

H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data, 2016.

Aritra Mitra, Rayana Jaafar, George J. Pappas, and Hamed Hassani. Linear convergence
in federated learning: Tackling client heterogeneity and sparse gradients. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neu-
ral Information Processing Systems, volume 34, pp. 14606–14619. Curran Associates, Inc.,
2021a. URL https://proceedings.neurips.cc/paper_files/paper/2021/
file/7a6bda9ad6ffdac035c752743b7e9d0e-Paper.pdf.

12

https://openreview.net/forum?id=d71n4ftoCBy
https://arxiv.org/abs/1903.04488
https://arxiv.org/abs/1903.04488
https://doi.org/10.1137/050639703
https://arxiv.org/abs/1912.12844
https://arxiv.org/abs/1912.12844
https://proceedings.neurips.cc/paper_files/paper/2021/file/7a6bda9ad6ffdac035c752743b7e9d0e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/7a6bda9ad6ffdac035c752743b7e9d0e-Paper.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Aritra Mitra, Rayana Jaafar, George J. Pappas, and Hamed Hassani. Linear convergence in federated
learning: Tackling client heterogeneity and sparse gradients, 2021b.

Takayuki Nishio and Ryo Yonetani. Client selection for federated learning with heterogeneous
resources in mobile edge. In ICC 2019-2019 IEEE international conference on communications
(ICC), pp. 1–7. IEEE, 2019.

Reese Pathak and Martin J Wainwright. Fedsplit: An algorithmic framework for fast federated
optimization. arXiv.

Zhefeng Qiao, Xianghao Yu, Jun Zhang, and Khaled B. Letaief. Communication-efficient federated
learning with dual-side low-rank compression, 2021.

Xinchi Qiu, Javier Fernandez-Marques, Pedro PB Gusmao, Yan Gao, Titouan Parcollet, and
Nicholas Donald Lane. Zerofl: Efficient on-device training for federated learning with local
sparsity. arXiv preprint arXiv:2208.02507, 2022.

Tahseen Rabbani, Brandon Feng, Marco Bornstein, Kyle Rui Sang, Yifan Yang, Arjun Rajkumar,
Amitabh Varshney, and Furong Huang. Comfetch: Federated learning of large networks on
constrained clients via sketching, 2023. URL https://arxiv.org/abs/2109.08346.

Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani.
Fedpaq: A communication-efficient federated learning method with periodic averaging and
quantization. In Silvia Chiappa and Roberto Calandra (eds.), Proceedings of the Twenty
Third International Conference on Artificial Intelligence and Statistics, volume 108 of Pro-
ceedings of Machine Learning Research, pp. 2021–2031. PMLR, 26–28 Aug 2020a. URL
https://proceedings.mlr.press/v108/reisizadeh20a.html.

Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani.
Fedpaq: A communication-efficient federated learning method with periodic averaging and quanti-
zation, 2020b.

Daniel Rothchild, Ashwinee Panda, Enayat Ullah, Nikita Ivkin, Ion Stoica, Vladimir Braverman,
Joseph Gonzalez, and Raman Arora. FetchSGD: Communication-efficient federated learning
with sketching. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International
Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp.
8253–8265. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/
rothchild20a.html.

Tara N. Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana Ramabhadran. Low-
rank matrix factorization for deep neural network training with high-dimensional output targets. In
2013 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6655–6659,
2013. doi: 10.1109/ICASSP.2013.6638949.

Steffen Schotthöfer, Emanuele Zangrando, Jonas Kusch, Gianluca Ceruti, and Francesco
Tudisco. Low-rank lottery tickets: finding efficient low-rank neural networks via ma-
trix differential equations. In Advances in Neural Information Processing Systems,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/7e98b00eeafcdaeb0c5661fb9355be3a-Paper-Conference.pdf.

Steffen Schotthöfer, Emanuele Zangrando, Gianluca Ceruti, Francesco Tudisco, and Jonas Kusch.
Geolora: Geometric integration for parameter efficient fine-tuning, 2024. URL https://arxiv.
org/abs/2410.18720.

Ohad Shamir, Nati Srebro, and Tong Zhang. Communication-efficient distributed optimization
using an approximate newton-type method. In International conference on machine learning, pp.
1000–1008. PMLR, 2014.

Pratyusha Sharma, Jordan T. Ash, and Dipendra Misra. The truth is in there: Improving reasoning in
language models with layer-selective rank reduction. In International Conference on Learning
Representations (ICLR), 2024.

13

https://arxiv.org/abs/2109.08346
https://proceedings.mlr.press/v108/reisizadeh20a.html
https://proceedings.mlr.press/v119/rothchild20a.html
https://proceedings.mlr.press/v119/rothchild20a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/7e98b00eeafcdaeb0c5661fb9355be3a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/7e98b00eeafcdaeb0c5661fb9355be3a-Paper-Conference.pdf
https://arxiv.org/abs/2410.18720
https://arxiv.org/abs/2410.18720

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Michael R Sprague, Amir Jalalirad, Marco Scavuzzo, Catalin Capota, Moritz Neun, Lyman Do, and
Michael Kopp. Asynchronous federated learning for geospatial applications. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, pp. 21–28. Springer,
2018.

Andros Tjandra, Sakriani Sakti, and Satoshi Nakamura. Compressing recurrent neural network with
tensor train. In 2017 International Joint Conference on Neural Networks (IJCNN), pp. 4451–4458.
IEEE, 2017.

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. Powersgd: Practical low-rank gradient
compression for distributed optimization, 2020.

Hongyi Wang, Saurabh Agarwal, and Dimitris Papailiopoulos. Pufferfish: Communication-efficient
models at no extra cost. Proceedings of Machine Learning and Systems, 3:365–386, 2021.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor. Tackling the objective
inconsistency problem in heterogeneous federated optimization. Advances in Neural Information
Processing Systems, 33, 2020.

Ye Xue and Vincent Lau. Riemannian low-rank model compression for federated learning with
over-the-air aggregation. IEEE Transactions on Signal Processing, 71:2172–2187, 2023. doi:
10.1109/TSP.2023.3284381.

Kai Yang, Tao Jiang, Yuanming Shi, and Zhi Ding. Federated learning via over-the-air computation.
IEEE transactions on wireless communications, 19(3):2022–2035, 2020.

Dezhong Yao, Wanning Pan, Michael J O’Neill, Yutong Dai, Yao Wan, Hai Jin, and Lichao Sun.
Fedhm: Efficient federated learning for heterogeneous models via low-rank factorization, 2022.

Liping Yi, Han Yu, Gang Wang, Xiaoguang Liu, and Xiaoxiao Li. pfedlora: Model-heterogeneous
personalized federated learning with lora tuning, 2024.

Emanuele Zangrando, Steffen Schotthöfer, Gianluca Ceruti, Jonas Kusch, and Francesco Tudisco.
Rank-adaptive spectral pruning of convolutional layers during training, 2023.

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection, 2024.

Haoran Zhu, Boyuan Chen, and Carter Yang. Understanding why vit trains badly on small datasets:
An intuitive perspective, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A ADDITIONAL ALGORITHMS

In the following, we list a set of algorithms that are used in the paper as a contribution or as a
baseline method. In particular, Algorithm 2 contains auxiliary function definitions for Algorithm 1
and Algorithm 5. Algorithm 3 is the standard FedAvg method as presented in McMahan et al. (2016).
Algorithm 4 is the FedLin Algorithm Mitra et al. (2021a), i.e. the extension of Algorithm 4 with
variance correction. Algorithm 5 represents the FeDLRT method with simplified variance correction,
as analyzed in Theorem 4 and Corollary 1 with the additional Assumption 1.

Algorithm 2: Auxiliary functions

1 def broadcast({Mi}i: list of matrices):
2 Send Mi from server to all clients ∀i
3 def aggregate({Mc,i}i: list of matrices):
4 Send Mc,i from client to server ∀c, i
5 Mi ← 1

C

∑C
c=1 Mc ∀i

6 return {Mi}i;
7 def coefficient_update_var_cor(c: client, Vc: correction term):
8 for s = 0, . . . , s∗ − 1 do /* On client */

9 S̃s+1
c ← S̃s

c − λ
(
∇S̃Lc(ŨcS̃

s
c Ṽ

⊤
c) + Vc

)
10 def coefficient_update(c: client):
11 for s = 0, . . . , s∗ − 1 do /* On client */
12 S̃s+1

c ← S̃s
c − λ∇S̃Lc(ŨcS̃

s
c Ṽ

⊤
c)

13 def basis_augmentation(B: old basis, GB: basis dynamics):
14 [B | B̄]← qr([B | GB]) /* On server */
15 return B̄

Algorithm 3: FedAvg McMahan et al. (2016). (See Algorithm 2 for auxiliary function definitions)
Input :Initial values for weight matrix W
Client-server setup with clients c = 1, . . . , C.

1 for t = 1, . . . , T do
2 broadcast({W t})
3 W s=0

c ←W t

4 for s = 0, . . . , s∗ − 1 do
5 W s+1

c ←W s
c − λ∇WLc(W

s
c) /* Gradient descent on client */

6 W t+1 ← aggregate({W s∗
c }) /* Aggregation on server */

Algorithm 4: FedLin Mitra et al. (2021a). (See Algorithm 2 for auxiliary function definitions)
Input :Initial values for weight matrix W
Client-server setup with clients c = 1, . . . , C.

1 for t = 1, . . . , T do
2 broadcast({W t})
3 GW,c ← ∇WLc(W

t) /* Gradient computation on client */
4 GW ← aggregate({GW,c}) /* Aggregation on server */
5 broadcast({GW })
6 W s=0

c ←W t

7 Vc ← GW −GW,c /* Correction term computation on client */
8 for s = 0, . . . , s∗ − 1 do
9 W s+1

c ←W s
c − λ∇WLc(W

s
c) + Vc /* Corrected iteration on client

*/
10 W t+1 ← aggregate({W s∗

c }) /* Aggregation on server */

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Algorithm 5: FeDLRT with simplified variance correction. (See Algorithm 2 for auxiliary
function definitions)
Input :Initial orthonormal bases U1, V 1 ∈ Rn×r and full rank S1 ∈ Rr×r;
Client-server setup with clients c = 1, . . . , C;
τ : singular value threshold for rank truncation.

1 for t = 1, . . . , T do
2 broadcast({U t, V t, St})
3 GU,c ← ∇ULc(U

tStV t,⊤) /* On client */
4 GV,c ← ∇V Lc(U

tStV t,⊤) /* On client */
5 GS,c ← ∇SLc(U

tStV t,⊤) /* On client */
6 GU , GV , GS ← aggregate({GU,c, GV,c, GS,c})
7 Ū ←basis_augmentation(U t, GU), V̄ ←basis_augmentation(V t, GV)
8 broadcast

({
Ū, V̄, GS

})
9 Ũ ← [U t | Ū], Ṽ ← [V t | V̄] /* Basis assembly on client */

10 S̃s=0 ←
[
St 0
0 0

]
/* Coefficient matrix assembly on client */

11 ǦS̃,c ←
[
GS,c 0
0 0

]
/* Client coeff. gradient approximation on

client */

12 ǦS̃ ←
[
GS 0
0 0

]
/* Global coeff. gradient approximation on

client */

13 coefficient_update_var_cor
(
c, ǦS̃ − ǦS̃,c

)
/* On client */

14 S̃∗ ← aggregate
({

S̃s∗
c

})
15 Pr1 ,Σr1 , Qr1 ← svd(S̃∗) with threshold ϑ /* Compression step */

16 U t+1 ← ŨPr1 , and V t+1 ← Ṽ Qr1 /* Basis projection */
17 St+1 ← Σr1

B EXTENSION TO CONVOLUTIONS AND TENSOR-VALUED WEIGHTS

FeDLRT can readily be extended to tensor-valued neural network layers, e.g. convolutional layers,
following Zangrando et al. (2023), where, e.g., a 2D convolution kernel is interpreted as an order-4
tensor and factorized by using the Tucker decomposition. To this end, the Tucker bases Ui ∈ Rni×ri

for i = 1, 2, 3, 4 replace the U and V bases in the matrix case, and the Tucker core tensor C ∈
Rr1×r2×r3×r4 replaces the coefficient matrix S, to which the variance correction is applied. The
analysis holds for the Tucker Tensor case, since Tucker Tensors have a manifold structure. In the
analysis, one needs to consider the gradient projected upon all bases Ui instead of U and V . The
compression step is performed with an truncated Tucker decomposition of the core tensor C, instead
of an SVD of S. For intuition, one can also refer to the matrix case as the order-2 Tucker Tensor case.
Remark that the bases Ui are all updated simultaneously, thus the adaption to the tensor case does not
require more communication rounds.

C ADDITIONAL NUMERICAL EVALUATION

C.1 COMPUTE RESOURCES

The convex test cases are computed on a single Nvidia RTX 4090 GPU. The computer vision bench-
marks use a set of Nvidia Tesla V100-SXM2-16GB and Tesla P100-PCIE-16GB. For prototyping, a
Nvidia GTX1080ti is used.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 6: Naive implementation of FeDLRT. (See Algorithm 2 for auxiliary function defini-
tions)
Input :Initial orthonormal bases U1, V 1 ∈ Rn×r and full rank S1 ∈ Rr×r;
Client-server setup with clients c = 1, . . . , C;
τ : singular value threshold for rank truncation.

1 for t = 1, . . . , T do
2 broadcast({U t, V t, St})
3 Us=0

c , V s=0
c , Ss=0

c ← U t, V t, St

4 for s = 0, . . . , s∗ − 1 do /* On client */
5 GU,c ← ∇ULc(U

s
cS

s
cV

s,⊤
c)

6 GV,c ← ∇V Lc(U
s
cS

s
cV

s,⊤
c)

7 Ũc, _← qr([Us
c | GU,c])

8 Ṽc, _← qr([V s
c | GV,c])

9 S̃c = Ũ⊤
c Us

cS
s
cV

s,⊤
c Ṽc

10 S̃∗
c ← S̃c − λ∇S̃Lc(ŨcS̃cṼ

⊤
c)

11 S̃∗ ← aggregate
({

S̃∗
c

})
12 Pr1 ,Σr1 , Qr1 ← svd(S̃∗) with threshold ϑ /* Compression step */

13 U t+1 ← ŨPr1 , and V t+1 ← Ṽ Qr1 /* Basis projection */
14 St+1 ← Σr1

C.2 DATA AUGMENTATION

We use standard data augmentation techniques for the proposed test cases. That is, for CIFAR10,
we augment the training data set by a random horizontal flip of the image, followed by a normal-
ization using mean [0.4914, 0.4822, 0.4465] and std. dev. [0.2470, 0.2435, 0.2616]. The test data
set is only normalized. The same augmentation is performed for CIFAR100, where with mean
[0.5071, 0.4867, 0.4408] and std. dev. [0.2673, 0.2564, 0.2762].

C.3 ADDITIONAL COMPUTER VISION RESULTS

ResNet18 on CIFAR10: We provide a comparison of the full variance correction and simplified
variance correction-based FeDLRT method with ResNet18 on Cifar10. We display the statistics for
10 random initializations; each warm-started with 5 central learning iterations. We set s∗ = 240/C
so that in each training run, the global network iterates through the same amount of data. This setup
favors low client counts, and, as expected, the validation accuracy drops as C grows for FedAvg and
FeDLRT without variance correction, see Figure 4. Figure 8 shows that both variants perform equally
well.

AlexNet on CIFAR10: We train AlexNet on CIFAR10, where the fully connected head of the
network is replaced by a low-rank counterpart. A federated neural network setup with C clients
trains on CTs∗ random batches of the dataset, that is the number of seen training data batches scales
with the client count. Figure 9 displays the validation accuracy of FeDLRT with variance correction
compared to FedLin, where one can see that the performance of FeDLRT mirrors the performance of
FedLin with more degrees of freedom. The measured validation accuracy peaks at C = 4 clients in
both cases, where the higher number of seen training data-points offsets the negative effects of more
clients on the validation performance. All reported runs are within close distance of the non-federated,
full-rank baseline accuracy of 85.6%. Communication cost savings of the fully connected layers
amount between 96% and 97% 7 We observe that, similarly to the results in Section 4.1, the maximum
achieved communication cost savings, which depend on the layer ranks scales with the number of
clients C = 4, indicating that the decay rate of the singular values of the averaged coefficient matrix
S̃∗ depends on C.

7For clarity of exposition we consider only the fully connected layers. Taking into account the non low-rank
convolution layers, the communication cost savings reduces to 87.5% to 87.3%.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

1 2 4 8 12 16
Clients

50

55

60

Comp. Ratio [%] - w/o var/cor

1 2 4 8 12 16
Clients

55.0

57.5

60.0

62.5

65.0

67.5
Comm. Cost red. [%] - w/o var/cor

1 2 4 8 12 16
Clients

82.5

85.0

87.5

90.0

92.5

95.0
Val. Acc. [%] - FeDLRT, w/o var/cor

1 2 4 8 12 16
Clients

82.5

85.0

87.5

90.0

92.5

95.0
Val. Acc. [%] - FedAvg

1 2 4 8 12 16 32
Clients

50

60

70

80

Comp. Ratio [%] - full var/cor

1 2 4 8 12 16 32
Clients

60

70

80

Comm. Cost red. [%] full var/cor

1 2 4 8 12 16 32
Clients

92

93

94

95

96 Val. Acc. [%] - FeDLRT, full var/cor

1 2 4 8 12 16 32
Clients

92

93

94

95

96 Val. Acc. [%] - FedLin

1 2 4 8 12 16 32
Clients

50

60

70

80

90
Comp. Ratio [%] - simpl. var/cor

1 2 4 8 12 16 32
Clients

60

70

80

90

Comm. Cost red. [%] simpl. var/cor

1 2 4 8 12 16 32
Clients

92

93

94

95

96 Val. Acc. [%] - FeDLRT, simpl. var/cor

1 2 4 8 12 16 32
Clients

92

93

94

95

96 Val. Acc. [%] - FedLin

Figure 8: Comparisons for training ResNet18 on CIFAR10 benchmark. Top row compares FeDLRT
without variance correction to FedAvg, middle and bottom rows compare FeDLRT with full and
simplified variance correction to FedLin, respectively. In each row, the left two panels show the
model compression ratio and the communication cost reduction from FeDLRT, and the right two
panels show the validation accuracy for FeDLRT and the full-rank counterparts. In each plot, the
results are reported for C = 1, . . . , 16 or 32 clients with 240/C local iterations. FeDLRT matches
the accuracy of FedAvg and FedLin well, while substantially reducing the server and client memory
and communication costs. Variance correction leads to an up to 12% increase in validation accuracy
for large C, mitigating the client drift problem. The simplified variance correction (bottom row) gives
comparable results to full version (middle row) at a lower communication and computation cost.

2 4 6 8 12
Clients

96.6

96.8

97.0

97.2

Comm. Cost Savings [%] - FeDLRT simpl. var/cor

2 4 6 8 12
Clients

80

82

84

86

88

90 Val. Accuracy [%] - FeDLRT simpl. var/cor

2 4 6 8 12
Clients

80

82

84

86

88

90 Val. Accuracy [%] - FedLin

Figure 9: AlexNet CIFAR10 benchmark with fixed number of local iterations. (Left Panel) shows the
savings in communication cost of simplified variance corrected FeDLRT vs FedLin. (Mid and right
panel) compares the validation accuracy of FeDLRT and FedLin, where we see that FeDLRT behaves
similarly to FedLin and achieves accuracy levels near the non-federated baseline value of 85.6%.

VGG16 on CIFAR10: We train AlexNet on CIFAR10, where the fully connected head of the
network is replaced by a low-rank counterpart. A federated neural network setup with 240/C
local iterations for C clients. Figure 10 displays the validation accuracy of FeDLRT with variance
correction compared to FedLin, where one can see that the performance of FeDLRT mirrors the
performance of FedLin with more degrees of freedom. All reported runs are within close distance of
the non-federated, full-rank baseline accuracy of 85.6%. Communication cost savings of the fully

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

2 4 8 12 16
Clients

89

90

Comm. Cost red. [%] - FeDLRT w/o var/cor

2 4 8 12 16
Clients

82

84

86

88

90 Val. Acc. [%] - FeDLRT w/o var/cor

2 4 8 12 16
Clients

82

84

86

88

90 Val. Acc. [%] - FedAvg

2 4 8 12 16
Clients

92

93

94

95

Comm. Cost red. [%] FeDLRT simpl. var/cor

2 4 8 12 16
Clients

88

90

92

94

Val. Acc. [%] - FeDLRT simpl. var/cor

2 4 8 12 16
Clients

88

90

92

94

Val. Acc. [%] - FedLin

Figure 10: VGG16 CIFAR10 benchmark with 240/C local iterations for C clients with simplified
(lower row) and without (upper row) variance correction. (Left panel) show the savings in commu-
nication cost corresponding to FedLin at final time. (Mid and right panel top row) compares the
validation accuracy of FeDLRT and FedAvg, where we see that FeDLRT behaves similarly to FedAvg,
where higher C correlates with a drop in accuracy. FeDLRT with variance correction mitigates this
issue and achieves similar performance as FedLin, close to the non-federated baseline accuracy is
93.15%.

connected layers amount between 96% and 97% 8 We observe, similarly results as in the ResNet18
test case.

VGG16 on CIFAR10 with low-rank convolutions: Mirroring the compute setup of the VGG16
test-case above, we now rewrite all convolutional layers of VGG16 as order 4 tensors in low-rank
Tucker format, as described in appendix B. The full-connected head of the network is treated with the
matrix low-rank method. The corresponding training results can be seen in Figure 11, and correspond
well with the previous results for VGG16. The reduction of communication cost is slightly higher,
due to the compression of the convolutions.

2 4 6 8 12 16
Clients

92.0

92.5

93.0

93.5

94.0

94.5

95.0

95.5

96.0
Com. Cost. Red [%] - FeDLRT simpl. var/cor

2 4 6 8 12 16
Clients

88

89

90

91

92

93

94
Val. Acc. [%] - FeDLRT simpl. var/cor

2 4 6 8 12 16
Clients

88

89

90

91

92

93

94
Val. Acc. [%] - FedLin

Figure 11: VGG16 CIFAR10, low-rank convolutional layers and low-rank fully connected layers. We
report the communication cost savings and the validation accuracy of VGG16 with FeDLRT applied
to training convolution and classifier layers. 2D convolutions are interpreted as an order-4 tensor and
factorized in the Tucker format. The statistics over five random network initializations are reported
using the training hyperparemeters of Table 2 of the main manuscript. The results are similar to Fig.
7 in the main manuscript, where only the classifier is compressed. Remark that here the classifier
contains most of the network parameters.

Vision Transformer on CIFAR100: We consider a small vision transformer for CIFAR100, with
6 attention layers with 2 heads each followed by a ResNet block and a drop-out layer, all with
weight matrices of dimension 512 × 512. The tokenizer takes patches of size 8 with embedding
dimension 512. Training hyperparameters are given in Table 2. Remark that we do not aim for SOTA
performance, since transformer architectures are notoriously difficult to compress with low-rank

8For clarity of exposition we consider only the fully connected layers. Taking into account the non low-rank
convolution layers, the communication cost savings reduces to 87.5% to 87.3%.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

2 4 8 12 16
Clients

50

52

54

56

58 Comm. Cost red. [%] FeDLRT simpl. var/cor

2 4 8 12 16
Clients

46

48

50

52

54

Val. Acc. [%] - FeDLRT simpl. var/cor

2 4 8 12 16
Clients

46

48

50

52

54

Val. Acc. [%] - FedLin

Figure 12: ViT CIFAR100 benchmark. (Left Panel) shows the savings in communication cost of
variance corrected FeDLRT vs FedLin. (Mid and right panel) compares the validation accuracy of
FeDLRT and FedLin, where we see that FeDLRT behaves similarly to FedLin and achieves accuracy
levels near the non-federated baseline value of 50%, which is similar to literature results Zhu et al.
(2023).

Table 2: Experimental setup object detection benchmarks. All test cases use a cosine annealing
learning rate scheduler.

Alexnet/Cifar10 ResNet18/Cifar10 VGG16/Cifar10 ViT/Cifar100

Batch size 128 128 128 256
Start Learningrate 1e−2 1e−3 1e−2 3e−4
End Learningrate 1e−5 5e−4 5e−4 1e−5
Aggregation Rounds 200 200 200 200
Local Iterations 100 240/C 240/C 240/C
Truncation tolerance τ 0.01 0.01 0.01 0.01
Momentum 0.0 0.9 0.1 n.a.
Weight Decay 1e−4 1e−3 1e−4 1e−2
Optimizer SGD SGD SGD Adam w/ std pytorch parameters

approaches, but rather compare the performance of FedLin to FeDLRT for a given compute budget.
We use s∗ = 240/C local iterations for C clients. Observe in Figure 12 that FeDLRT achieves
similar performance as ViT with over 55% communication cost savings on average.

C.4 COMPUTE COST ILLUSTRATION

We illustrate the compute and communication cost for FeDLRT in comparison to other low-rank
methods in Figure 13.

50 100 150 200
layer rank

10
4

10
5

10
6

Communication Cost [Floats]

FeDLRT full. var/cor
FeDLRT simpl. var/cor
FeDLRT w/o var/cor
FedLin

50 100 150 200
layer rank

10
4

10
5

10
6

Client Cost [FLOPS]

50 100 150 200
layer rank

10
4

10
5

10
6

Client Memory [Floats]

Figure 13: Scaling of communication cost (left) compute cost at a single client (middle), and client
memory footprint (right) for s∗ = 1 client iteration and a single data-point for W ∈ Rn×n with
n = 512. In practice we have r ≪ n, see Section 4.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0 50 100 150 200 250 300 350 400
Optimizer step

10
3

10
2

10
1 (|| S || || S ||)/|| S ||

Figure 14: Evaluation of the gradients in Assumption 1 for ResNet18 on Cifar10 with i.i.d data and
C = 10 clients with the settings of Table 2.

C.5 COMMUNICATION COST COMPARISON

We compare the communication cost of FeDLRT w/ simpl. var. cor. to SCAFFOLD Karimireddy
et al. (2020), FedGate, FedCOMGATE Haddadpour et al. (2020a), FedAvg, and FedPAQ Reisizadeh
et al. (2020a) in the MNIST benchmark with heterogeneous data such that each of the C = 100
clients have two classes available. We use the MLP of (Haddadpour et al., 2020a, Section 6) with
200 neurons and 2 hidden layers as defined in https://github.com/MLOPTPSU/FedTorch
where we replace the hidden and input layer with low-rank layers. We train for 100 iterations with
hyper-parameters obtained by a random search: learning rate λ = 0.009, 20 local iterations, τ = 0.11,
batch size 128 and display the results in Figure 7. FeDLRT has competitive communication costs.
We remark that FedCOMGATE, SCAFFOLD and FedPAQ train on the full weight matrix on the
client thus have higher client compute cost.

D EMPIRICAL EVALUATION OF ASSUMPTION 1

We consider ResNet18 on Cifar10 with i.i.d data and C = 10 clients with the settings of Table 2. We
consider client c = 1 and plot the term

∥∇S̃G(Ũ S̃s
c Ṽ

⊤)∥ − ∥∇SG(Ũ S̃s
c Ṽ

⊤)∥
∥∇S̃L(Ũ S̃Ṽ ⊤)∥

which should be smaller than δ by Assumption 1 for 400 optimization steps of Algorithm 1 in fig. 14.
As seen, δ < 0.01 for the last 200 iterations and we always have δ < 0.1, thus the assumption is
fulfilled.

E NOTATION OVERVIEW FOR THE NUMERICAL ANALYSIS

We establish a set of notations to simplify the notation in the proofs

• Lc(W) denotes the local loss function based on dataset Xc at client c.
• L(W) = 1

C

∑C
c=1 Lc(W) is the global loss function.

• Fc(W) = −∇WLc(W) is the negate of local loss gradient.
• F (W) = 1

C

∑C
c=1 Fc(W) is the negate of global loss gradient.

• Mr = {W ∈ Rn×n : rank(W) = r} is a manifold of rank r matrices.
• Wr = USV ⊤ ∈Mr is a rank-r approximation of a matrix W .
• TWr

Mr is the tangent space ofMr at Wr.
• P (Wr) is the orthogonal projection onto TWr

Mr.
• PU = UU⊤ is the orthogonal projection onto the range of orthonormal U ∈ Rn×r.
• PV = V V ⊤ is the orthogonal projection onto the range of orthonormal V ∈ Rn×r.

21

https://github.com/MLOPTPSU/FedTorch

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

• When applied to vectors, ∥·∥ denotes the Euclidean norm (ℓ2-norm). When applied to matrices, ∥·∥
denotes the Frobenius norm.

L- smoothness in this paper is defined as L-continuity of a function and its gradient, where both L
constants are identical. That is for a function f(x) with gradient G(x), we have ||f(x1)− f(x2)|| ≤
L||x1 − x2|| and ||G(x1)−G(x2)|| ≤ L||x1 − x2|| for some L > 0.

F EFFICIENT BASIS GRADIENT DYNAMICS FOR BASIS AUGMENTATION

We first consider the basis update & Galerkin splitting scheme of (5). The splitting performs a
reparametrization of the form K(t) = U(t)S(t) and L(t) = V (t)S(t)⊤. The basis update then reads

K̇ = −∇KL(K(t)V ⊤
0) ∈ Rn×r, K(0) = U0S0,

L̇ = −∇LL(U0L(t)
⊤) ∈ Rn×r, L(0) = V0S

⊤
0 .

(15)

Given the solution K(t1) and L(t1) at time t1, the bases U0 and V0 are augmented by the orthonor-
malization of the new directions K(t1) and L(t1), i.e.

ŨR = qr([U0 | K(t1)]) ∈ Rn×2r,

and Ṽ R = qr([V0 | L(t1)]) ∈ Rn×2r,
(16)

where R is the right factor of the respective QR decomposition and can be discarded. The initial
condition of the coefficient update is S(t0) projected onto the new bases, i.e.,

˙̃
S = −∇SL(Ũ S̃(t)Ṽ ⊤), S̃(0) = Ũ⊤U0S̃(0)V

⊤
0 Ṽ . (17)

After the integration of the coefficient dynamics above, the redundant basis functions are typically
truncated via an SVD of S ensuring that S is always full rank. In its continuous form above, the
splitting yields a robust integrator for the projected gradient flow, without manifold dependent
step-size restrictions:
Theorem 5. (Schotthöfer et al. (2022)) Assume L is L-smooth with constant L, and locally bounded
by B. Let Wr(t) be the low-rank continuous time solution of (15) and (17) and let W (t) be the full
rank solution at t = 0. Assume the K,L, and S equations are integrated exactly from time t = 0 to
∆t. Assume that for any Y ∈ Mr sufficiently close to Wr(t) the gradient F (Y) is ϵ close toMr.
Then

∥W (∆t)−Wr(∆t)∥ ≤ d1ϵ+ d2∆t+ d3
ϑ

∆t
,

where d1, d2, d3 depend only on L and B.

The theorem guarantees that the low-rank representation does not imply any step-size restrictions on
the optimization scheme. This is in stark contrast to a naive alternating descent optimization of the
low-rank factors U, S, V .

To build an discretized numerical optimizer in a resource constrained federated scenario from the
above continuous splitting equations, we avoid the reparametrization, which implies a 200% memory
cost increase on the client side, since three versions of the low-rank layer need to be tracked.
Lemma 2. Let USV ∈Mr be a low rank factorization that follows the projected gradient (5) flow
using the splitting scheme (15) with K = US and V = V S⊤. Further, assume that equations for the
K and L factors are solved by an explicit Euler time integration with learning rate λ, i.e.

K(t1) = K(0)− λ∇KL(K(0)V ⊤
0), K(0) = U0S0,

L(t1) = L(0)− λ∇LL(U0L(0)
⊤), L(0) = V0S

⊤
0 .

(18)

Then, the basis augmentation (16) can be expressed as

ŨR = qr([U0 | −∇UL
(
U0S0V

⊤
0)]) ∈ Rn×2r,

and Ṽ R = qr([V0 | −∇V L
(
U0S0V

⊤
0)]) ∈ Rn×2r.

(19)

and maintains the structure of the basis update and Galerkin operator split.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Proof. We consider the proof for the K equation and the U basis; the proof for L and V follows
analogously.

Considering (16), we obtain with the explicit Euler discretization (18),

span ([U0 | K(t1)]) = span
(
[U0 | U0 − λ∇KL(K(0)V ⊤

0)]
)

= span
(
[U0 | −λ∇KL(K(0)V ⊤

0)]
)

= span
(
[U0 | −∇KL(K(0)V ⊤

0)]
)
.

(20)

Next, consider the continuous time dynamics of K̇, where we omit explicit time dependence on
U, S, V and K for the sake of brevity, i.e.,

K̇ = ˙(US)

= U̇S + UṠ

(5)
= −(I − UU⊤)∇WL(USV ⊤)V S−1S − UU⊤∇WL(USV ⊤)V

= −(I − PU)∇WL(USV ⊤)V − PU∇WL(USV ⊤)V

= (PU − I)∇WL(USV ⊤)V − PU∇WL(USV ⊤)V

= −∇WL(USV ⊤)V

(21)

Further, using the chain rule, we observe

∇UL(USV ⊤) = ∇WL(USV ⊤)∇U (USV ⊤) = ∇WL(USV ⊤)V S⊤

Thus, −∇UL(USV ⊤)S−⊤ = −∇WL(USV ⊤)V = K̇. Full rankness of S and (21) yield that
span(−∇UL(USV ⊤)) = span(K̇). Together with (20) this yields the proof.

Lemma 2 adopts a more general result for Tucker tensors in an unpublished manuscript and simplifies
the analysis for the matrix case considered here.

G EFFICIENT BASIS AND COEFFICIENT COMMUNICATION

Note that we have by orthogonality of the bases Ũ = [U, Ū] with Ū ∈ Rn×r and Ū⊤U = 0 and
Ṽ = [V, V̄] with V̄ ∈ Rn×r and V̄ ⊤V = 0.

Proof. (Lemma 1) The basis augmented basis [U,GU] before orthonormalization already contains
the orthonormal vectors given by the columns of U . A QR decomposition therefor only rearranges
the columns of GU such that Ũ = [U, Ū] with Ū ∈ Rn×r and Ū⊤U = 0. The analogous result holds
for Ṽ = [V, V̄]. The projection onto the augmented basis therefore reads

Ũ⊤U =

[
U⊤U

U
⊤
U

]
=

[
I
0

]
and Ṽ ⊤V =

[
V ⊤V

V
⊤
V

]
=

[
I
0

]
. (22)

Consequently, the augmented coefficient matrix takes the form

S̃ = Ũ⊤USV ⊤Ṽ =

[
S 0
0 0

]
. (23)

H ANALYSIS FOR FEDLRT WITH FULL VARIANCE CORRECTION

In this section we establish bounds on the coefficient drift of the FeDLRT method with full variance
correction. We use the established coefficient drift bound to derive a loss-descent guarantee. The
strategy of our analysis follows the one of FedLin Mitra et al. (2021a). We first state an auxiliary
lemma.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Lemma 3. Let U ∈ Rn×r and V ∈ Rn×r be orthonormal matrices. Let F be an L-continuous
function. Then, for S1, S2 ∈ Rr×r,∥∥PU

(
F (US1V

⊤)− F (US2V
⊤)
)
PV

∥∥ ≤ L ∥S1 − S2∥ (24)

and ∥∥U (F (US1V
⊤)− F (US2V

⊤)
)
V ⊤∥∥ ≤ L ∥S1 − S2∥ , (25)

where PU and PV are orthogonal projections defined in Appendix E.

Proof. For the first statement, consider∥∥PU

(
F (US1V

⊤)− F (US2V
⊤)
)
PV

∥∥
=
∥∥UU⊤ (F (US1V

⊤)− F (US2V
⊤)
)
V V ⊤∥∥

(I)
≤∥U∥

∥∥U⊤∥∥∥∥F (US1V
⊤)− F (US2V

⊤)
∥∥ ∥V ∥ ∥∥V ⊤∥∥

(II)
=
∥∥F (US1V

⊤)− F (US2V
⊤)
∥∥

(III)
≤L

∥∥US1V
⊤ − US2V

⊤∥∥ = L
∥∥U(S1 − S2)V

⊤∥∥
(I)
≤L ∥U∥ ∥S1 − S2∥

∥∥V ⊤∥∥
(II)
=L ∥S1 − S2∥ ,

where we have used in (I) the operator norm inequality of the Frobenius norm, in (II) orthonormality
of U , V , and in (III) L-continuity of F . The second statement is proven analogously.

H.1 COEFFICIENT DRIFT BOUND FOR FEDLRT WITH FULL VARIANCE CORRECTION

We consider the FeDLRT method with variance correction, see Algorithm 1. Key difference to the
FeDLRT method without variance correction is the modified coefficient update, incorporating global
gradient information of the augmented coefficient matrix S̃ and local, stale gradient information
of the augmented coefficient matrix S̃c. The variance corrected local coefficient update (8) can be
expressed in terms of the projected Riemannian gradient as

S̃s+1
c = S̃s

c + λŨ⊤
(
Fc(W̃

s
r,c)− Fc(W̃r) + F (W̃r)

)
Ṽ , (26)

where Ũ⊤Fc(W̃
s
r,c)Ṽ = ∇S̃c

Lc(Ũ S̃s
c Ṽ), Ũ⊤Fc(W̃r,c)Ṽ = ∇S̃c

Lc(Ũ S̃s=0
c Ṽ) and

Ũ⊤Fc(W̃
s
r,c)Ṽ = ∇S̃c

L(Ũ S̃s
c Ṽ). Recall that S̃ = S̃c for s = 0.

We provide proof for Theorem 1 to bound the drift term
∥∥∥S̃s

c − S̃c

∥∥∥. We restate this theorem to the
Riemannian notation and restate it below.

Theorem 6. (Restatement of Theorem 1) Given augmented basis and coefficient matrices Ũ , Ṽ , and
S̃, and W̃r = Ũ S̃Ṽ ⊤. If the local learning rate 0 < λ ≤ 1

Ls∗
with s∗ ≥ 1 the number of local steps,

for all clients c,

∥S̃s
c − S̃c∥ ≤ exp(1)s∗λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥ , for s = 1, . . . , s∗ − 1, (27)

where S̃s
c is the variance corrected coefficient as given in (8).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Proof. From the adjusted coefficient update in (26), we get∥∥∥S̃s+1
c − S̃c

∥∥∥ =
∥∥∥S̃s

c − S̃c + λŨ⊤
(
Fc(W̃

s
r,c)− Fc(W̃r) + F (W̃r)

)
Ṽ
∥∥∥

≤
∥∥∥S̃s

c − S̃c

∥∥∥+ λ
∥∥∥Ũ⊤

(
Fc(W̃

s
r,c)− Fc(W̃r)

)
Ṽ
∥∥∥+ λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥

(I)
≤
∥∥∥S̃s

c − S̃c

∥∥∥+ λL
∥∥∥S̃s

c − S̃
∥∥∥+ λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥

≤ (1 + λL)
∥∥∥S̃s

c − S̃
∥∥∥+ λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥

≤
(
1 +

1

s∗

)∥∥∥S̃s
c − S̃

∥∥∥+ λ
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥ .
We use in (I) Lemma 3 Recursively plugging in the above inequality yields for a = (1 + 1

s∗
)

∥∥∥S̃s+1
c − S̃c

∥∥∥ ≤ as+1
∥∥∥S̃s=0

c − S̃
∥∥∥+

 s∑
j=0

aj

λ
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥
=

 s∑
j=0

aj

λ
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥
=

as+1 − 1

a− 1
λ
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥
≤
(
1 +

1

s∗

)s+1

s∗λ
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥
≤
(
1 +

1

s∗

)s∗

s∗λ
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥
≤ exp(1)s∗λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥ .

H.2 GLOBAL LOSS DESCEND FOR FEDLRT WITH FULL VARIANCE CORRECTION

We first state a few auxiliary lemmas, which provide common inequalities that will be used in the
following analysis.

Lemma 4. ((Hnatiuk et al., 2024, Lemma 5.2)) For any two matrices Y1, Y2 ∈ Rn×n and an
L-smooth L with constant L it holds

L(Y1)− L(Y2) ≤ −⟨Y1 − Y2, F (Y2)⟩+
L

2
∥Y1 − Y2∥2 , (28)

where F (Y) = −∇Y L(Y).

Lemma 5. ((Mitra et al., 2021b, Lemma 5)) For two vectors x1, x2 ∈ Rd it holds for γ > 0

∥x1 + x2∥2 ≤ (1 + γ) ∥x1∥2 +
(
1 +

1

γ

)
∥x2∥2 . (29)

Lemma 6. ((Mitra et al., 2021b, Lemma 6)) For C vectors x1, . . . , xC ∈ Rd the application of
Jensen’s inequality yields ∥∥∥∥∥

C∑
c=1

xc

∥∥∥∥∥
2

≤ C

C∑
c=1

∥xc∥2 . (30)

First, we consider the loss function value at the augmentation step.

Lemma 7. We have L(W̃r) = L(W t
r) for the loss before and after basis augmentation.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Proof. Due to Lemma 1, S̃ =

[
St 0
0 0

]
, thus W̃r = Ũ S̃Ṽ ⊤ = USV ⊤ = W t.

We next bound the loss descent between the augmentation step and the truncation step - having
performed the aggregation of the client updates.

Theorem 7. Let W̃r = Ũ S̃Ṽ ⊤ be the augmented factorization at global iteration t and let W̃ ∗
r =

Ũ S̃∗Ṽ ⊤ be the aggregated solution after client iterations, i.e., S̃∗ = 1
C

∑C
c=1 S̃

s∗
c . Then the variance

corrected coefficient update (26) yields the guarantee

L(W̃ ∗
r)− L(W̃r) ≤ −(s∗λ)(1− (s∗λ)L)

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2

+

(
Lλ

C

C∑
c=1

s∗−1∑
s=0

∥∥∥S̃s
c − S̃

∥∥∥)∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥

+
L3λ2s∗

C

C∑
c=1

s∗−1∑
s=0

∥∥∥S̃s
c − S̃c

∥∥∥2 .
(31)

Proof. From (8), PŨ = Ũ Ũ⊤, PṼ = Ṽ Ṽ ⊤, and the fact that W̃ s=0
r,c = W̃r for all c = 1, . . . , C,

W̃ s∗
r,c = Ũ S̃s∗

c Ṽ ⊤ = Ũ S̃s=0
c Ṽ ⊤ + Ũ Ũ⊤

s∗−1∑
s=0

λ
(
Fc(W̃

s
r,c)− Fc(W̃r) + F (W̃r)

)
Ṽ Ṽ ⊤

= W̃r − λ

s∗−1∑
s=0

PŨFc(W̃
s
r,c)PṼ − λPŨ

(
F (W̃r)− Fc(W̃r)

)
PṼ .

Averaging across clients leads to

W̃ ∗
r =

1

C

C∑
c=1

W̃ s∗
r,c = W̃r −

λ

C

C∑
c=1

s∗−1∑
s=0

PŨFc(W̃
s
r,c)PṼ −

λ

C

C∑
c=1

PŨ

(
F (W̃r)− Fc(W̃r)

)
PṼ

=W̃r −
λ

C

C∑
c=1

s∗−1∑
s=0

PŨFc(W̃
s
r,c)PṼ , (32)

where we have used the definition of the global and local gradient at W̃r, i.e., 1
C

∑C
c=1 Fc(W̃r) =

F (W̃r). Based on L-continuity of F and Fc, (32), and Lemma 4, we obtain further

L(W̃ ∗
r)− L(W̃r) ≤

〈
W̃ ∗

r − W̃r, F (W̃r)
〉
+

L

2

∥∥∥W̃ ∗
r − W̃r

∥∥∥2 (33)

= −

〈
λ

C

C∑
c=1

s∗−1∑
s=0

PŨFc(W̃
s
r,c)PṼ , F (W̃r)

〉
+

L

2

∥∥∥∥∥ λC
C∑

c=1

s∗−1∑
s=0

PŨFc(W̃
s
r,c)PṼ

∥∥∥∥∥
2

.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Next, we bound each of the two right-hand-side terms separately. We first express the first term as

−

〈
λ

C

C∑
c=1

s∗−1∑
s=0

PŨFc(W̃
s
r,c)PṼ , F (W̃r)

〉

=−

〈
λ

C

C∑
c=1

s∗−1∑
s=0

PŨ

(
Fc(W̃

s
r,c)− Fc(W̃r)

)
PṼ + PŨ

(
λ

C

C∑
c=1

s∗−1∑
s=0

Fc(W̃r)

)
PṼ , F (W̃r)

〉

=−

〈
λ

C

C∑
c=1

s∗−1∑
s=0

PŨ

(
Fc(W̃

s
r,c)− Fc(W̃r)

)
PṼ + PŨ

s∗λ

C

C∑
c=1

Fc(W̃r)PṼ , F (W̃r)

〉

=−

〈
PŨ

(
λ

C

C∑
c=1

s∗−1∑
s=0

Fc(W̃
s
r,c)− Fc(W̃r)

)
PṼ + PŨs∗λF (W̃r)PṼ , F (W̃r)

〉

=−

〈
Ũ⊤

(
λ

C

C∑
c=1

s∗−1∑
s=0

Fc(W̃
s
r,c)− Fc(W̃r)

)
Ṽ , Ũ⊤F (W̃r)Ṽ

⊤

〉
− s∗λ

〈
Ũ⊤F (W̃r)Ṽ , Ũ⊤F (W̃r)Ṽ

〉
=−

〈
λ

C

C∑
c=1

s∗−1∑
s=0

Ũ⊤
(
Fc(W̃

s
r,c)− Fc(W̃r)

)
Ṽ , Ũ⊤F (W̃r)Ṽ

〉
− s∗λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2 ,

where the definitions of PŨ and PṼ are used. Following this, the first term then can be bounded by

−

〈
λ

C

C∑
c=1

s∗−1∑
s=0

PŨFc(W̃
s
r,c)PṼ , F (W̃r)

〉

≤ λ

C

C∑
c=1

s∗−1∑
s=0

∥∥∥Ũ⊤
(
Fc(W̃

s
r,c)− Fc(W̃r)

)
Ṽ
∥∥∥∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥− s∗λ
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2
≤Lλ

C

C∑
c=1

s∗−1∑
s=0

∥∥∥S̃s
c − S̃

∥∥∥∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥− s∗λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2 ,

where Lemma 3 is invoked in the last inequality. Following a similar approach, we express the second
term as

L

2

∥∥∥∥∥ λC
C∑

c=1

s∗−1∑
s=0

PŨFc(W̃
s
r,c)PṼ

∥∥∥∥∥
2

=
L

2

∥∥∥∥∥ λC
C∑

c=1

s∗−1∑
s=0

PŨ

(
Fc(W̃

s
r,c)− Fc(W̃r)

)
PṼ + s∗λPŨF (W̃r)PṼ

∥∥∥∥∥
2

,

which can be bounded by

L

2

∥∥∥∥∥ λC
C∑

c=1

s∗−1∑
s=0

PŨFc(W̃
s
r,c)PṼ

∥∥∥∥∥
2

(I)
≤L

∥∥∥∥∥ λC
C∑

c=1

s∗−1∑
s=0

PŨ

(
Fc(W̃

s
r,c)− Fc(W̃r)

)
PṼ

∥∥∥∥∥
2

+ (s∗λ)
2L
∥∥∥PŨF (W̃r)PṼ

∥∥∥2
(II)
≤ L

C

C∑
c=1

λ2s∗

s∗−1∑
s=0

∥∥∥PŨ

(
Fc(W̃

s
r,c)− Fc(W̃r)

)
PṼ

∥∥∥2 + (s∗λ)
2L
∥∥∥PŨF (W̃r)PṼ

∥∥∥2
(III)
≤ L3λ2s∗

C

C∑
c=1

s∗−1∑
s=0

∥∥∥S̃s
c − S̃c

∥∥∥2 + (s∗λ)
2L
∥∥∥PŨF (W̃r)PṼ

∥∥∥2
(IV)
≤ L3λ2s∗

C

C∑
c=1

s∗−1∑
s=0

∥∥∥S̃s
c − S̃c

∥∥∥2 + (s∗λ)
2L
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2 ,
where Lemma 5 with γ = 1 is used in in (I), Jensen’s inequality is used in (II), Lemma 3 is used in
in (III), and (IV) follows from the Operator norm inequality of the Frobenius norm in combination
with orthonormality of U and V ⊤.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Plugging these two bounds into (33) gives

L(W̃ ∗
r)− L(W̃r) ≤−

〈
λ

C

C∑
c=1

s∗−1∑
s=0

PŨFc(W̃
s
r,c)PṼ , F (W̃r)

〉
+

L

2

∥∥∥∥∥ λC
C∑

c=1

s∗−1∑
s=0

PŨFc(W̃
s
r,c)PṼ

∥∥∥∥∥
2

≤Lλ

C

C∑
c=1

s∗−1∑
s=0

∥∥∥S̃s
c − S̃

∥∥∥ ∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥− s∗λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2

+
L3λ2s∗

C

C∑
c=1

s∗−1∑
s=0

∥∥∥S̃s
c − S̃c

∥∥∥2 + (s∗λ)
2L
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2
=− (s∗λ)(1− (s∗λ)L)

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2

+

(
Lλ

C

C∑
c=1

s∗−1∑
s=0

∥∥∥S̃s
c − S̃

∥∥∥)∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥

+
L3λ2s∗

C

C∑
c=1

s∗−1∑
s=0

∥∥∥S̃s
c − S̃c

∥∥∥2 ,
which concludes the proof.

With this result, we next bound the loss descent between the augmentation and coefficient aggregation
step in the following theorem.

Theorem 8. Under the same assumptions as in Theorem 7. Let the local learning rate be 0 < λ ≤
1

12Ls∗
with number of local iterations s∗ ≥ 1. Then,

L(W̃ ∗
r)− L(W̃r) ≤ −s∗λ(1− 12s∗λL)

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2 . (34)

Proof. Applying the drift bound given in Theorem 1 to the loss descent bound given by Theorem 7
in (31) leads to

− (s∗λ)(1− (s∗λ)L)
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2
+

(
Lλ

C

C∑
c=1

s∗−1∑
s=0

(
exp(1)s∗λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥))∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥
+

L3λ2s∗
C

C∑
c=1

s∗−1∑
s=0

(
exp(1)s∗λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥)2

=− (s∗λ)(1− (s∗λ)L)
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2 + Lλ2s2∗ exp(1)
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2
+ L3λ4s4∗ exp(2)

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2

=− (s∗λ)(1− (s∗λ)L− (s∗λ)L exp(1)− (s∗λ)
3L2 exp(2))

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2

≤− (s∗λ)(1− (s∗λ)L(1 + exp(1) + exp(2)))
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2
≤− (s∗λ)(1− 12(s∗λ)L)

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2 ,

where we have used that (s∗λ)L ≤ 1 and that 1 + exp(1) + exp(2) ≈ 11.107 ≤ 12.

We are now prepared to prove Theorem 2, which we restate in terms of Riemannian gradients as
below.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Theorem 9. (Restatement of Theorem 2) Let U tStV t,⊤ and U t+1St+1V t+1,⊤ be the factorization
before and after iteration t of Algorithm 1 with variance correction and singular value truncation
threshold ϑ. Let Lc and L be L-smooth with constant L, and let the local learning rate be 0 ≤ λ ≤

1
12Ls∗

. Then the global loss descent is bounded by

L(U t+1St+1V t+1,⊤)− L(U tStV t,⊤) ≤ −(s∗λ)(1− 12(s∗λ)L)
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2 + Lϑ. (35)

Proof. Consider L(W t+1
r) and L(W̃ ∗

r), i.e., the loss values before and after the truncation step. By
the mean value theorem, we obtain for some h ∈ [0, 1]

L(W t+1
r) = L(W̃ ∗

r) +
〈
−F (hW t+1

r + (1− h)W̃ ∗
r),W

t+1
r − W̃ ∗

r

〉
≤L(W̃ ∗

r) +
∥∥∥F (hW t+1

r + (1− h)W̃ ∗
r)
∥∥∥∥∥∥W t+1

r − W̃ ∗
r

∥∥∥
≤L(W̃ ∗

r) + Lϑ

(36)

where L-smoothness and the fact that ϑ ≥
∥∥∥W t+1

r − W̃ ∗
r

∥∥∥ are used in (II), where the latter follows
from the singular value truncation threshold. Combining the above arguments with Lemma 7 and
Theorem 8 yields

L(W t+1
r)− L(W t

r) = (L(W t+1
r)− L(W̃ ∗

r)) + (L(W̃ ∗
r)− L(W̃r)) + (L(W̃r)− L(W t

r))

≤ Lϑ− (s∗λ)(1− 12(s∗λ)L)
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2 ,
which concludes the proof.

H.3 GLOBAL CONVERGENCE OF FEDLRT WITH FULL VARIANCE CORRECTION

Theorem 10. (Restatement of Theorem 3) Assume that L is L-smooth with constant L for all
c = 1, . . . , C. Let Ũ tS̃tṼ t,⊤ be the augmented representation at iteration t. Then Algorithm 1
guarantees for the learning rate λ ≤ 1

12Ls∗
and final iteration T

min
t=1,...,T

∥∥∇S̃L(U
tStV t,⊤)

∥∥2 ≤ 48L

T

(
L(Wr

t=1)− L(Wr
t=T+1)

)
+ 48L2ϑ. (37)

Proof. Consider Theorem 2,

L(W t+1
r)− L(W t

r) ≤ Lϑ− (s∗λ)(1− 12(s∗λ)L)
∥∥∇S̃L(U

tStV t,⊤)
∥∥2 , (38)

and assume that λs∗ = 1
24L , i.e. λ = 1

24Ls∗
≤ 1

Ls∗
, which obeys the learning rate requirement of

Theorem 2. Plugging this learning rate into (38) gives∥∥∇S̃L(U
tStV t,⊤)

∥∥2 ≤ 48L
(
L(Wr

t)− L(Wr
t+1) + Lϑ

)
.

Averaging from t = 1 to t = T yields

min
t=1,...,T

∥∥∇S̃L(U
tStV t,⊤)

∥∥2 ≤ 1

T

T∑
t=1

∥∥∇S̃L(U
tStV t,⊤)

∥∥2
≤ 48L

T

(
L(Wr

t=1)− L(Wr
t=T+1)

)
+ 48L2ϑ,

which concludes the proof.

We remark that for a general loss function, it is possible that a point with small gradient magnitude
can be far from the stationary points. However, assuming that the loss function is locally strongly
convex in a neighborhood of a stationary point, then the gradient magnitude can be used to bound the
distance to this stationary point in the neighborhood. For further reference, we point to (?, Eq. (4.12))
for the estimate.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

I ANALYSIS FOR FEDLRT WITH SIMPLIFIED VARIANCE CORRECTION

We consider the FeDLRT method with simplified variance correction, see Algorithm 5. Key difference
to the standard FeDLRT with full variance correction, see Algorithm 1 is the modified coefficient
update, incorporating global gradient information of the non-augmented coefficient matrix S for the
variance correction term, that is

V̌c = ǦS̃ − ǦS̃,c =

[
∇SL(U tStV t,⊤)−∇SLc(U

tStV t,⊤) 0
0 0

]
. (39)

Using the Riemmanian gradient, we can equivalently write

V̌c =
[
U⊤| 0

]
(F (W̃r)− Fc(W̃r))

[
V
0

]
= Ũ⊤

[
I 0
0 0

]
(Fc(W̃r)− F (W̃r))

[
I 0
0 0

]
Ṽ .

Remember the simplified variance corrected local coefficient update, given by

S̃s+1
c = S̃s

c + λŨ⊤
(
Fc(W̃

s
r,c) +

[
I 0
0 0

]
(FC(W̃r)− F (W̃r))

[
I 0
0 0

])
Ṽ

= S̃s
c + λŨ⊤

(
Fc(W̃

s
r,c)
)
Ṽ + V̌c.

(40)

I.1 GLOBAL LOSS DESCENT FOR FEDLRT WITH SIMPLIFIED VARIANCE CORRECTION

In the following we provide proof for a global loss descent for Algorithm 5, i.e. using the local
coefficient update with variance correction (40).
Theorem 11. (Restatement of Theorem 4) Under Assumption 1, if the local learning rate 0 < λ ≤

1
12Ls∗

, then Algorithm 5 leads to the global loss descent

L(Wr
t+1)− L(Wr

t) ≤ −s∗λ(1− δ2 − 12s∗λL+ δ2s∗λ)
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2 + Lϑ, (41)

with Wr
t = U tStV t,⊤ and Wr

t+1 = U t+1St+1V t+1,⊤.

Proof. We split the adjusted coefficient update in (40) into the non-augmented r × r matrix S and
the tree off-diagonal blocks given by the augmentation Ŝ:

Ŝ = S̃ −
[
S 0
0 0

]
. (42)

Analogously to the proof of Theorem 2, we consider

L(W̃ ∗
r)− L(W̃r) ≤

〈
W̃ ∗

r − W̃r, F (W̃r)
〉
+

L

2

∥∥∥W̃ ∗
r − W̃r

∥∥∥2
=
〈
Ũ S̃∗Ṽ ⊤ − Ũ S̃Ṽ ⊤, F (W̃r)

〉
+

L

2

∥∥∥Ũ S̃∗Ṽ ⊤ − Ũ S̃Ṽ ⊤
∥∥∥2

=
〈
S̃∗ − S̃, Ũ⊤F (W̃r)Ṽ

〉
+

L

2

∥∥∥S̃∗ − S̃
∥∥∥2

=
〈
S̃∗ − S̃,−∇S̃L(W̃r)

〉
+

L

2

∥∥∥S̃∗ − S̃
∥∥∥2 ,

where the transformation uses orthonormality of Ũ and Ṽ and definition of the projected gradient.
We split the right hand side in terms corresponding to augmented terms Ŝ and non-augmented terms
S according to (42), i.e., 〈

S∗ − S,−∇SL(W̃r)
〉
+

L

2
∥S∗ − S∥2 , (43)

which is treated exactly as in the proof of Theorem 2, and the augmented terms〈
Ŝ∗ − Ŝ,−∇ŜL(W̃r)

〉
+

L

2

∥∥∥Ŝ∗ − Ŝ
∥∥∥2 . (44)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

First we bound the term (43). Remember that Ŝ = 0 at the start of the local iterations due to
orthonormality of Ũ , Ṽ . The coefficient update (40) for S reads

Ss+1
c = Ss

c + λU⊤
(
Fc(W̃

s
r,c)− Fc(W̃r) + F (W̃r)

)
V. (45)

Then we can readily apply Theorem 2 to obtain the bound〈
S∗ − S,−∇SL(W̃r)

〉
+

L

2
∥S∗ − S∥2 ≤ −(s∗λ)(1− 12(s∗λ)L)

∥∥∥U⊤F (W̃r)V
∥∥∥2 . (46)

Next, we bound (44), starting with the first term:〈
Ŝ∗ − Ŝ,−∇ŜL(W̃r)

〉
(I)
=
〈
Ŝ∗ − 0,−∇ŜL(W̃r)

〉
=

〈
− λ

C

C∑
c=1

s∗−1∑
s=0

∇ŜLc(W̃
s
r,c),−∇ŜL(W̃r)

〉

=
λ

C

C∑
c=1

s∗−1∑
s=0

〈
∇ŜLc(W̃

s
r,c),∇ŜL(W̃r)

〉
≤ λ

C

C∑
c=1

s∗−1∑
s=0

∥∥∥∇ŜLc(W̃
s
r,c)
∥∥∥∥∥∥∇ŜL(W̃r)

∥∥∥
(II)
≤ λ

C

C∑
c=1

s∗−1∑
s=0

δ2
∥∥∥∇S̃L(W̃r)

∥∥∥∥∥∥∇S̃L(W̃r)
∥∥∥

= δ2s∗λ
∥∥∥∇S̃L(W̃r)

∥∥∥2 = δ2s∗λ
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2 ,
where we use Ŝ = 0 in (I), and Assumption 1 in (II). Next, we bound the second term

L

2

∥∥∥Ŝ∗ − Ŝ
∥∥∥2 =

L

2

∥∥∥∥∥− λ

C

C∑
c=1

s∗−1∑
s=0

∇ŜL(W̃
S
r,c)

∥∥∥∥∥
2

(I)
≤L

2
λ2 1

C

C∑
c=1

∥∥∥∥∥
s∗−1∑
s=0

∇ŜL(W̃
S
r,c)

∥∥∥∥∥
2

(I)
≤L

2
s∗λ

2 1

C

C∑
c=1

s∗−1∑
s=0

∥∥∥∇ŜL(W̃
S
r,c)
∥∥∥2

≤s∗
L

2
δ2λ2 1

C

C∑
c=1

s∗−1∑
s=0

∥∥∥∇S̃L(W̃r)
∥∥∥2

≤L

2
δ2(s∗λ)

2
∥∥∥∇S̃L(W̃r)

∥∥∥2 =
L

2
δ2(s∗λ)

2
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2 ,
where we used Jensen’s inequality in (I) again Assumption 1. We combine the bound on the
non-augmented terms (46) and the two bounds above for the augmented terms to

L(W̃ ∗
r)− L(W̃r) ≤

〈
W̃ ∗

r − W̃r, F (W̃r)
〉
+

L

2

∥∥∥W̃ ∗
r − W̃r

∥∥∥2
≤− (s∗λ)(1− 12(s∗λ)L)

∥∥∥U⊤F (W̃r)V
∥∥∥2 + δs∗λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2 + δ(s∗λ)

2
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2
(I)
≤− (s∗λ)(1− 12(s∗λ)L)

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2 + δs∗λ

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2 + δ(s∗λ)

2
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2
=− (s∗λ)(1− δ2 − 12(s∗λ)L+ δ2(s∗λ))

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2 ,

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

where we use in (I)
∥∥∥U⊤F (W̃r)V

∥∥∥ ≤ ∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥. Using Equation (36), we can conclude the

proof:

L(U t+1St+1V t+1,⊤)− L(U tStV t,⊤)

≤− (s∗λ)(1− δ2 − 12(s∗λ)L+ δ2(s∗λ))
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2 + Lϑ.

I.2 GLOBAL CONVERGENCE OF FEDLRT WITH SIMPLIFIED VARIANCE CORRECTION

Corollary 2. (Restatement of Corollary 1) Under Assumption 1, Algorithm 5 guarantees for the
learning rate λ ≤ 1

s∗(12L+δ2)

min
t=1,...,T

∥∥∇S̃L(Wr
t)
∥∥2 ≤ 96L

T

(
L(Wr

1)− L(Wr
T+1)

)
+ 96L2ϑ, (47)

with Wr
t = U tStV t,⊤, Wr

1 = U1S1V 1,⊤. and Wr
T+1 = UT+1ST+1V T+1,⊤.

Proof. Consider Theorem 4,

L(Wr
t+1)− L(Wr

t) ≤ −(s∗λ)(1− δ2 − 12(s∗λ)L+ δ2(s∗λ))
∥∥∥Ũ⊤F (W̃r)Ṽ

∥∥∥2 + Lϑ

and assume that λs∗ = 1
(12L+δ2) , i.e. λ = 1

s∗(12L+δ2) ≤
1

Ls∗
, which obeys the learning rate

requirement of Theorem 2. Plugging this learning rate into (38) gives∥∥∇S̃L(Wr
t)
∥∥2 ≤ 96L

(
L(Wr

t)− L(Wr
t+1) + Lϑ

)
,

where we use (14 − δ2) ≤ 1
4 and 1

(12L+δ2) ≤
1

12L Averaging from t = 1 to t = T yields

min
t=1,...,T

∥∥∇S̃L(Wr
t)
∥∥2 ≤ 1

T

T∑
t=1

∥∥∥Ũ⊤F (W̃r)Ṽ
∥∥∥2

≤96L

T

(
L(Wr

t=1)− L(Wr
t=T+1)

)
+ 96L2ϑ,

which concludes the proof.

32

	Introduction
	Background and problem statement
	FeDLRT: Federated dynamical low-rank training with variance correction
	Description of alg:FeDLRTvariancereduction - FeDLRT
	Analysis of FeDLRT with variance correction
	Compute and communication cost

	Numerical evaluation
	Distributed linear least squares regression
	ResNet18 on CIFAR10

	Additional algorithms
	Extension to convolutions and tensor-valued weights
	Additional numerical evaluation
	Compute resources
	Data augmentation
	Additional computer vision results
	Compute Cost Illustration
	Communication cost comparison

	Empirical evaluation of assump:deltabound
	Notation overview for the numerical analysis
	Efficient basis gradient dynamics for basis augmentation
	Efficient basis and coefficient communication
	Analysis for FeDLRT with full variance correction
	Coefficient drift bound for FeDLRT with full variance correction
	Global loss descend for FeDLRT with full variance correction
	Global convergence of FeDLRT with full variance correction

	Analysis for FeDLRT with simplified variance correction
	Global loss descent for FeDLRT with simplified variance correction
	Global convergence of FeDLRT with simplified variance correction

