DPLORA: A DUAL-PRUNING FRAMEWORK BASED
ON ILP OPTIMIZATION AND PROGRESSIVE PRUNING
FOR PARAMETER-EFFICIENT LORA FINE-TUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose DPLoRA (Dual-Pruning Low-Rank Adaptation), an optimized
Low-Rank Adaptation (LoRA) method for parameter-efficient fine-tuning
of large language models. Our approach introduces a two-stage compression
framework: (1) an initial pruning stage, OPLoRA, that formulates a first
ILP problem to automatically discover the optimal layer-wise LoRA rank (r)
configuration before training; (2) a progressive pruning stage that formulates
a second ILP problem during training, incorporating Exponential Moving
Average (EMA) of layer-wise importance scores to further reduce rank (r)
adaptively. On the GLUE benchmark, our first stage, OPLoRA, achieves a
new state-of-the-art (SOTA) performance, surpassing all baselines. Further-
more, the full DPLoRA framework also demonstrates superior capabilities,
outperforming strong PEFTs like AdaLoRA and SoRA while achieving up
to an 80% reduction in trainable parameters and a 50% reduction in training
time. This study offers a new direction for efficiently deploying large-scale
language models in resource-constrained environments.

1 INTRODUCTION

Recent advances in large language models (LLMs) such as BERT([Devlin et al| (2019)),
RoBERTa(|[Liu et al.|(2019)), and GPT-4(|Achiam et al.| (2023)) have significantly enhanced
the performance of natural language processing (NLP) systems. However, the immense
scale of these models presents substantial challenges for task-specific fine-tuning, demanding
considerable computational and memory resources that limit their practical deployment.

Parameter-Efficient Fine-Tuning (PEFT) methods have aimed to mitigate this burden.
Among them, Low-Rank Adaptation (LoRA)([Hu et al.| (2022))) has emerged as a prominent
technique, which freezes the pre-trained model weights and injects a small number of trainable
low-rank matrices. Despite its effectiveness, vanilla LoRA applies a uniform, fixed rank
(r) across all layers. This one-size-fits-all approach fails to account for the heterogeneous
roles and varying importance of different layers within the model architecture, leading to
suboptimal parameter allocation.

To address this limitation, we propose DPLoRA (Dual-Pruning Low-Rank Adaptation),
a two-stage pruning framework that introduces a structured, adaptive approach to rank
allocation. Our methodology is designed to systematically identify and prune redundant
ranks both before and during training. First, we perform initial rank pruning by formulating
an Integer Linear Programming (ILP) problem that assigns non-zero ranks only to layers
deemed important based on gradient-based metrics. This stage discovers a tailored rank
configuration from the outset, achieving substantial parameter compression before training
begins. Second, we apply progressive pruning, which further refines the rank allocation during
training. This stage is guided by a separate ILP formulation that incorporates dynamically
estimated importance scores, smoothed with Exponential Moving Averages (EMA), to adapt
to the changing layer dynamics. Our use of ILP for structural configuration is inspired by
methods like LQ-LoRA(|Guo et al|(2024)), which applied it for quantization, whereas our
work pioneers its use for guiding layer-wise rank decisions under global budget constraints.

Extensive experiments on the GLUE benchmark (using RoBERTa-base) and the Alpaca
instruction-following task (using LLaMA3-8B) validate our two-stage framework. Our
first stage, OPLoRA, achieves new state-of-the-art (SOTA) performance, surpassing other
leading PEFTs including AdalLoRA and SoRA. Building on this, our second stage, DPLoRA,
introduces progressive pruning to achieve extreme efficiency; it not only outperforms strong
baselines such as SORA and AdaLLoRA but does so while reducing trainable parameters by
up to 80% and accelerating training by up to 50%. These results, consistent across both
encoder-only and decoder-only model architectures, underscore our framework’s potential for
the practical and efficient deployment of LLMs in real-world, resource-limited environments
such as mobile and edge devices.

Our contributions can be summarized as follows:

e We propose DPLoRA, a novel dual-stage pruning framework that systematically
allocates LoRA ranks by solving a sequence of Integer Linear Programming problems.

e We design an initial pruning stage based on gradient importance and a progressive
pruning stage that dynamically adapts ranks using EMA-smoothed importance
scores under a parameter budget.

o We demonstrate that DPLoRA substantially reduces parameter and computational
costs while achieving state-of-the-art performance across diverse models and tasks.

Optimal Rank Allocation
(Pruning Stage 1, Before Training)

Pretrained

Ll
W e Rdxd

Progressive Pruning
(Pruning Stage 2, During Training)

Layer Importance

& Pruning R

Optimal R(Present R)

r

!
,
[o ot [optoma
- oo

Figure 1: Overview of our proposed two-stage pruning based compression framework. Left:
Pruning Stage 1 - Optimal Rank Allocation before training. Right: Pruning Stage 2 -
Progressive Pruning during training.

r

L

2 RELATED WORK

2.1 PARAMETER-EFFICIENT FINE-TUNING (PEFT)

Parameter-Efficient Fine-Tuning (PEFT) methods have become essential for adapting large
language models (LLMs) with minimal computational cost. Early approaches such as Adapter
Tuning(Houlsby et al.| (2019)), which inserts small bottleneck layers, and Prefix-Tuning(
land Liang| (2021)) or Prompt Tuning([Lester et al|(2021))), which tune continuous prompt
embeddings, all freeze the pretrained weights while introducing a small set of trainable
parameters.

2.2 REFINEMENTS OF THE LORA UPDATE MECHANISM

Among various PEFT methods, Low-Rank Adaptation (LoRA)((2022))) is par-

ticularly prominent. It injects trainable low-rank matrices (AW = AB) into the model,
achieving performance comparable to full fine-tuning with a fraction of the parameters and
no inference latency.

Building on this foundation, one line of research focuses on improving the LoRA framework
by modifying the composition or training strategy of the core update matrices A and B.

For instance, DoRA((2024)) disentangles the LoRA update into magnitude and

direction components, stabilizing training and improving performance without additional
inference cost. VeRA (|Kopiczko et al|(2023))) proposes sharing a single pair of frozen, random
low-rank matrices across layers and learning small scaling vectors, drastically reducing
trainable parameters. In a different approach targeting memory efficiency, LoRA-FA(|Zhang
et al.| (2023a))) freezes the randomly initialized matrix A and only trains matrix B, which
significantly reduces optimizer state and activation memory requirements.

While these methods enhance the efficiency or effectiveness of the update mechanism itself,
they still operate under a manually specified, fixed-rank assumption, leaving the fundamental
question of optimal rank allocation unanswered.

2.3 AUTOMATED RANK ALLOCATION VIA IMPORTANCE-BASED STRATEGIES

A second line of research directly tackles the challenge of automating rank selection. These
methods typically rely on importance-based proxies to iteratively determine or adjust layer-
wise ranks.

Several approaches focus on finding a single, efficient static architecture through iterative
pruning. These methods typically start with a larger rank and progressively remove less
important components. For example, AdaLoRA(Zhang et al. (2023b))) dynamically allocates
ranks by parameterizing weight updates in a pseudo-SVD form and pruning singular values
based on gradient-based importance scores. It assigns parameter budgets to important
components across layers, enabling adaptive rank selection without relying on explicit SVD
or heuristic rules. SoRA(|Ding et al.| (2023))) dynamically prunes low-rank dimensions
during training using learnable gates and proximal gradient updates, enabling adaptive
rank selection without global architecture changes. LoRAPrune(|Zhang et al.| (2023c)) also
progressively removes less important LoRA modules using importance scores estimated via
first-order Taylor approximation.

In contrast to these pruning-based methods, another line of work explores more dynamic or
constructive strategies. DyLoRA(|Valipour et al. (2022))) enables dynamic inference across a
range of ranks by training a single adapter using truncated updates. Rather than relying on
rank selection or allocation, it samples ranks during training and uses a frozen-update strategy
to ensure information is progressively ordered across ranks. IncreLoRA(Zhang et al.| (2023d))
takes an alternative approach by incrementally increasing ranks throughout training, which
can mitigate the risk of prematurely pruning important components. ElaLoRA(|Chang et al.
(2025)) dynamically prunes and expands ranks during fine-tuning based on gradient-derived
importance scores, enabling adaptive rank allocation across layers for improved efficiency
and performance. Finally, AutoLoRA(|Zhang et al. (2024)) introduces a meta-learning
based framework that assigns selection variables to rank-1 components in LoRA updates
and optimizes them to automatically derive layer-wise optimal ranks, thereby eliminating
exhaustive manual tuning.

Although these methods successfully automate rank selection, their reliance on iterative
adjustments, proxy metrics, or costly search processes may not lead to a globally optimal
solution. In stark contrast, our work, DPLoRA, formulates the rank allocation challenge
as a principled optimization problem. By leveraging Integer Linear Programming (ILP),
our approach enables a globally coordinated and structured optimization of ranks across all
layers from the outset of training.

3 METHODS

3.1 OPLORA: OPTIMAL RANK ALLOCATION (PRUNING STAGE 1)

Layer Importance Estimation: The importance of each layer is measured by the absolute
value of its parameter gradients. This process quantifies how sensitive the model’s loss is
to changes in each layer’s parameters, providing a direct measure of its contribution to the
learning task. Mathematically, the importance I; of layer [is computed using Equation ((1),
where gradients (Vy,) are calculated with respect to the loss function £. To obtain a stable
estimate, we calculate the absolute mean of the gradients over a small subset of training

data (D, up to 500 samples) across a few initial batches (NN, default: 5). This gradient-based
score provides a reliable measure of each layer’s importance and forms the foundation for
our resource allocation.

N
I = =3 Een [V £()]] 1)

i=1

Performance Gain Estimation: The expected performance gain G, when assigning
rank r to layer [is modeled using Equation (, where I; is the importance of layer [
and M; = min(d}, d!) represents the maximum possible rank for layer I. The equation’s
exponential component explicitly captures the diminishing returns effect — as the rank r
increases, the additional performance gain gradually saturates. This formulation reflects
the intuition that assigning higher rank values to more important layers yields greater

performance gains, while ensuring the benefit of increasing rank decreases as the value grows.

Gir=1- (1 _e—l'ﬁz) 2)

Objective Function: We formulate an Integer Linear Programming (ILP) problem to
determine the best rank assignment per layer under a parameter budget. The decision
variables are defined as z;, € {0,1}, where ;,, = 1 means rank r is assigned to layer [. The
objective function is given by Equation ([3]):

maxz Z Gy -z r (3)

leLreR

Computational Cost Modeling: The computational cost C;, of assigning rank r to layer
[is defined in Equation (, where d! and d. , represent the input and output dimensions
of layer [, respectively. This cost function accounts for both the forward computation cost
and parameter storage of LoRA: each layer uses two low-rank matrices, A € R%»*" and
B € R™*dout leading to 7 - (di, + doy¢) parameters and similar computational operations.
Our implementation considers these dual aspects, effectively scaling the basic parameter
count. This cost is incorporated as a constraint in our ILP formulation, ensuring that the
total computational resource allocation across all layers remains within the specified global
budget.

Clﬂ‘ =2-r- (dfn + dﬁ)ut) (4)

3.2 PROGRESSIVE PRUNING (PRUNING STAGE 2)

Enhanced Layer Importance Estimation: In the progressive pruning stage, we employ
a more refined method of importance estimation. To track changes in layer importance
throughout training, we apply exponential moving average (EMA) as shown in Equation ([5)),
where [, l(t) represents the importance of layer [at time ¢, 5 is the EMA decay factor(default:
0.9), and IV is the newly computed importance. Importance is estimated using up to 5
batches from the dataloader. Gradients of both lora A and lora_ B are computed and
weighted by the square root of current rank according to Equation (@ This weighting
approach ensures that layers with higher ranks, which typically process more information,
are properly represented in the importance calculation.

IV =4-1"Y 4 1-p) P (5) e = IV - Vel - v (6)

Performance Loss Estimation: The expected loss when changing the rank of layer ! from
Teurrent t0 Tnew 18 defined in Equation ([7)).

Tcurrent — Tne .
Ly, =1 - === where reurrent > Tnew (COnstraints) (7)

Tcurrent

Algorithm 1 Rank Trimming Mechanism

Require: LoRA matrices A € R7ewrentXd B ¢ RFXTeurent target rank mpew < Teurrent
Ensure: Trimmed matrices Apey € R™mew*d B € RFXTnew
Step 1: Compute importance for each dimension:

I = || Agll2 for each row d

IB = ||By]|2 for each column d

Step 2: Combine importance:

I; = I(‘? . If for each dimension d

Step 3: Select top-ryew dimensions:

TopIndices = arg max|sj—r,.., >_qcg ld

Step 4: Trim matrices:

Apew = A[Toplndices, :] {Select rows by top indices}
Bpew = B[:, TopIndices] {Select columns by top indices}
return Aew, Bnew

—

[y

Objective Function: The decision variables for progressive pruning are defined as z;, €
{0,1}, where z;,, = 1 if rank r is assigned to layer I. The objective function is given by
Equation (7 where the momentum penalty term P, , is defined in Equation (E[) In this
equation, v represents the momentum penalty weight (default: 0.1), § is the stability reward
weight (default: 0.05), and l,qz,‘é .., 1s the indicator function that equals 1 if r = rl and 0

prev?
otherwise.

minz Z (Liy + Py) -2y (8)
leLreR

_ l

Plﬂ' =7 Il : ‘T - Tprev' -4~ Il : 17‘:T§ﬂ,ev (9)

Common Constraints of Rank Allocation and Progressive Pruning: The ILP

formulation incorporates several constraints to ensure practical and effective rank allocation.

First, we enforce that each layer must be assigned exactly one rank value. The total cost

must not exceed a given budget. Finally, to prevent assigning a rank of 0 to an entire layer
type, we require that the average rank for every layer type must be greater than zero.

Bezier-based Pruning Scheduler: To ensure a smooth and controlled parameter reduction
throughout the progressive pruning process, we employ a Bézier curve-based scheduling
mechanism. Let N denote the total number of pruning steps. At each step t, the parameter
budget is determined by Equation ([L0)), where the reduction ratio R(¢) is modeled using a
Bézier curve as shown in Equation ([L1)). By setting the control points to P=[0.0,0.2,0.8,1.0],
we generate an S-curve that prunes slowly in the initial and final stages, but more aggressively
in the middle phases, thereby facilitating stable convergence. The timing of each pruning
operation is determined by the trigger point function in Equation ([L2)), which ensures proper
spacing between pruning steps to allow for adequate model recovery and adaptation.

Bstep(t) = Binitial . (1 - R(t)) (10)
n n n % ¢ n—i
R(t) = Rtarget : Z (Z)Pl . (N)) (1 - N) (11)
=0
To al — T ela;
Ttriggcr (t) = Tdclay +t- % (12)

4 EXPERIMENTS

This section presents comprehensive experiments to evaluate the effectiveness of our proposed
dual-pruning compression framework. We assess performance on a variety of tasks using the

GLUE benchmark for natural language understanding and Alpaca for instruction following,
comparing our approach with strong baselines.

4.1 EXPERIMENTAL SETUP

Datasets and Evaluation Metrics: We evaluate our method on the GLUE bench-
mark(Wang et al.[(2018)), which includes tasks such as sentiment analysis, paraphrase detec-
tion, and natural language inference, with performance measured by accuracy and F1 scores.
Additionally, we assess instruction-following capabilities using the Alpaca dataset(|Taori et al.
(2023)), where performance is evaluated based on the model’s ability to generate relevant
and coherent responses to diverse instructions. All experiments follow standard evaluation
protocols.

Base Model and Baselines: We use RoBERTa-base (125M parameters) as our backbone
model for the GLUE benchmark and Llama 3 8B for the instruction-following task on Alpaca.
Our approach is compared against strong baselines specific to each task: for GLUE, these
include BitFit, Adapter, Vanilla LoRA, SoRA and AdaLoRA; for Alpaca, we use Vanilla
LoRA as the baseline. Our method is evaluated in two configurations: OPLoRA (Optimal
Pruning LoRA, applying only stage 1) and DPLoRA (Dual-Pruning LoRA, applying both
stages).

Hyperparameters and Training Setups: The results for all tasks are based on experi-
ments repeated with three different random seeds: 42, 777, and 2025, to ensure the robustness
of our findings. The detailed hyperparameters for each task were carefully tuned, and a
comprehensive list of these settings is provided in the Appendix. Throughout all experiments,
* indicates that a value was adopted directly from the original paper of the corresponding
baseline, while T indicates runs with key hyperparameters matched for fair comparison.

4.2 MAIN RESULTS

Task-wise Performance Comparison on GLUE: Table [I| presents a comprehensive
comparison of performance and parameter efficiency on the GLUE benchmark. Among
the baselines, Full Fine-tuning (FT) requires training all 125.0M parameters to achieve
an average score of 85.1. In contrast, parameter-efficient baselines offer a strong trade-off,
with Adapter* achieving the highest baseline score of 85.4 using only 0.9M parameters, and
BitFit* delivering a competitive 85.2 with just 0.1M parameters.

Our proposed OPLoRA framework sets a new state-of-the-art on the GLUE benchmark
by outperforming all baseline methods with an average score of 86.0. This improvement
is achieved with only 1.2M trainable parameters, demonstrating superior performance to
LoRA(r=16) (85.2 avg) while using less than half the number of parameters (2.7M). This
result strongly validates our importance-based rank allocation strategy.

Furthermore, the DPLoRA variants showcase an exceptional performance-efficiency trade-
off. For instance, DPLoRA (p=0.6) slightly outperforms LoRA (r=16) (85.3 vs 85.2) while
using only 0.5M parameters—a reduction of over 80%. Even with more aggressive pruning,
DPLoRA (p=0.8) maintains a strong average of 84.9 with a mere 0.2M parameters. These
results confirm that our progressive pruning approach can drastically reduce the parameter
budget while maintaining performance comparable to strong baselines, making it ideal for
resource-constrained environments.

Computation Efficiency: Table [2] demonstrates the computational advantages of our
proposed methods. Compared to the LoRA (r=16) baseline, OPLoRA reduces training time
by 31%, and DPLoRA (p=0.6) achieves an even greater 43% time reduction. Most remarkably,
DPLoRA (p=0.8) achieves a 50% reduction in training time, demonstrating that our approach
can effectively halve the computational cost. These gains result from our progressive pruning
mechanism that dynamically eliminates less important parameter dimensions during training,
providing enhanced computational efficiency for resource-constrained environments.

Table 1: Performance and the number of trainable parameters (in millions) on the GLUE
benchmark. We report accuracy for most tasks, Matthew’s correlation for CoLA, and Pearson
correlation for STS-B. Higher is better.

#Trainable
Method Params(M) | CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B Avg.
FT 125.0 60.7 87.5 88.6 92.7 91.7 75.8 93.8 90.3 85.1
LoRA(r=16) 2.7 60.0 87.7 88.6 92.6 91.2 77.6 94.1 89.9 85.2
LoRA(r=8) 1.3 58.3 87.6 88.2 92.6 90.8 76.4 94.2 89.9 84.7
SoRA 0.9 58.4 87.7 87.3 92.9 91.6 76.8 93.8 90.3 84.8
AdaLoRA 0.3 61.4 87.3 86.5 92.7 89.8 78.8 93.9 91.0 85.2
Adapter* 0.9 62.6 87.3 88.4 93.0 90.6 75.9 94.7 90.3 85.4
BitFit* 0.1 62.0 84.7 92.7 91.8 84.0 81.5 93.7 90.8 85.2
OPLoRA 1.2 62.6 87.4 88.8 92.8 91.0 79.7 94.7 90.8 86.0
DPLORA (p=0.6) 0.5 61.9 86.5 89.6 92.3 90.4 7.3 94.1 90.6 85.3
DPLORA (p=0.7) 0.4 60.5 86.4 89.9 92.1 90.0 76.2 93.5 90.4 84.9
DPLORA (p=0.8) 0.2 62.1 85.7 89.5 91.9 89.5 7.5 93.5 89.8 84.9

Table 2: Training runtime efficiency across GLUE tasks (1 Same hyperparameter matching).
These experiments were conducted under a specific setting to isolate training speed; detailed
hyperparameters are listed in Appendix B.

Method Training Time (min) Relative Time
LoRA (1—16)f 614 100%
LoRA (r=8)t 529 86%
OPLoRA (ours) 426 69%
DPLoRA (ours, p=0.6) 347 57%
DPLoRA (ours, p=0.7) 346 57%
DPLoRA (ours, p=0.8) 307 50%

4.3 RESULTS ON INSTRUCTION FOLLOWING

Performance on MT-BENCH: To evaluate the model’s instruction-following capabilities,
we use the MT-BENCH benchmark, with scores judged by GPT-4. As shown in Table[§]
our proposed framework demonstrates superior performance and efficiency.

The baseline LoRA (r=8) model achieves an MT-BENCH score of 5.56 using 21.0M trainable
parameters. In contrast, our OPLoRA method not only improves performance to a state-
of-the-art score of 5.65 but also does so with fewer parameters (20.0M), validating the
effectiveness of our optimal rank allocation.

Furthermore, DPLoRA (p=0.8) showcases an excellent performance-efficiency trade-off. It
achieves a highly competitive score of 5.54—mnearly matching the baseline—while using only
4.0M parameters. This represents an 80% reduction in trainable parameters compared to
OPLoRA with a minimal trade-off in performance. These results confirm that our framework
offers both a path to superior performance (OPLoRA) and a method for extreme compression
with graceful performance degradation (DPLoRA).

Table 3: Instruction-following performance on MT-BENCH, evaluated by GPT-4. Higher
scores indicate better performance.

Trainable
Method Params(M) | MT-BENCH
LoRA (r=8) 21.0 5.56
OPLoRA (ours) 20.0 5.65
DPLoRA (ours, p=0.8) 4.0 5.54

4.4 ANALYSIS AND DISCUSSION

Dual-Pruning Mechanism Analysis: Our dual-pruning mechanism is visualized across
two stages in Figure [2| and Figure [3] First, Figure [2] shows that our method assigns
heterogeneous, non-uniform ranks across layers, confirming that a fixed-rank approach is
suboptimal. Subsequently, Figure |3| demonstrates the effectiveness of progressive pruning:
even as parameters are reduced by nearly 80% (blue line), performance peaks immediately
and remains stable (red line). This illustrates that our two-stage approach achieves extreme
parameter efficiency without degrading final task performance.

Optimal rconfiguration

Progressive Pruning: Parameter Reduction vs Performance

Figure 3: Progressive pruning on SST-2

Figure 2: Initial heterogeneous rank alloca- (DPLoRA, p=0.8). Performance remains sta-
tion for RoBERTa-Base on SST-2. ble while parameter reduction reaches 80%.

ILP Computation Overhead: A potential concern with using Integer Linear Programming
(ILP) is its computational overhead. Our analysis in Table |4 however, confirms that the
overhead of our framework is negligible.

For a model like RoOBERTa-Base, the total ILP computation time for the entire training
process is less than half a second (0.46s). For the much larger Llama 3 8B, the total
cumulative overhead is also remarkably low at approximately 7 seconds (6.65s). Considering
that fine-tuning an 8B-parameter model typically takes several hours, this cost represents a
tiny fraction of the total runtime. This demonstrates that our ILP-based optimization is
highly efficient and does not introduce a practical bottleneck, even for large-scale models.

Table 4: ILP solver execution time (in seconds) for the SST-2 and Alpaca tasks. The results
are from a single run with random seed 42.

Initial

Model Task Rank

Progressive Pruning Steps Sum

\ /1 2 3 4 5 6 7T 8 9 10 |

0.02 | 0.04 0.03 0.06 006 0.03 0.10 0.04 0.02 0.01 0.05]| 0.46
0.06 | 0.17 036 0.07 032 040 0.30 4.57 0.18 0.11 0.11 | 6.65

RoBERTa-Base SST-2
Llama 3 8B Alpaca

4.5 ABLATION STUDY

Ablation Study on Pruning Schedulers: To analyze the impact of the pruning schedule,
we conducted an ablation study comparing three different schedulers, with results shown in
Table 5] The results indicate that the timing of the pruning is critical. Our default Bézier
scheduler, which follows an S-curve (slow-fast-slow), achieved the best average performance
of 84.9. This outperformed both a standard Linear scheduler (83.8) and a Early-Pruning
scheduler (84.7), which applies its most aggressive pruning in the initial stages of training.
These findings suggest that allowing the model a brief adaptation period before the most
aggressive pruning phase is the most effective strategy.

Effect of EMA and Momentum Penalty: We evaluated our stabilization mechanisms
for progressive pruning on the RTE task, as shown in Table[6} The results confirm that the
combined EMA + Momentum setting achieves the highest accuracy (77.50%). Using only

Table 5: Performance comparison of different pruning schedulers for DPLoRA (p=0.8) on
RoBERTa-base.

Scheduler | CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B | Avg.
Bézier (Default) 62.1 85.7 89.5 91.9 89.5 77.5 93.5 89.8 84.9
Linear 55.2 85.3 88.8 91.9 89.6 76.8 93.1 89.5 83.8

Early-Pruning 62.1 85.8 88.4 92.1 89.2 76.4 93.6 90.4 84.7

the momentum penalty leads to a minimal performance drop (77.38%), while relying on
EMA alone results in a more noticeable decrease (75.69%). Although not shown in the table,
we observed that disabling both mechanisms caused training instabilities on larger datasets
like QQP. Therefore, the combined approach is recommended as the default configuration to
ensure stable and effective pruning.

Table 6: Effect of EMA and momentum penalty using DPLoRA (p=0.8) model on RTE.

Setting ACC (%) Relative Ratio (%)
EMA + Momentum (default) 77.50 100.0
EMA only 75.69 97.7
Momentum only 77.38 99.8
Neither 76.41 98.6

5 CONCLUSION

This study introduces a dual-pruning compression framework that combines optimal LoRA
rank assignment with progressive pruning. Extensive experiments on the GLUE and Alpaca
(MT-BENCH) benchmarks demonstrate that our proposed methods, OPLoRA and DPLoRA,
not only surpass the performance of vanilla LoRA but also achieve highly superior results
against various state-of-the-art PEFTs. Furthermore, our framework provides significant
efficiency gains, reducing training time by up to 50% compared to vanilla LoRA. Our contri-
bution is a two-stage pruning approach that the number of trainable LoRA parameters while
simultaneously boosting performance, enabling efficient deployment in resource-constrained
environments and supporting green Al initiatives.

The proposed approach has some limitations. The rank configurations generated by our
method are task-specific, which currently limits their direct application to multi-task learning
scenarios that require a single, generalized configuration.

Future work will focus on extending our framework to multi-task learning and applying it to
diverse architectures such as GPT, T5, and Mixture-of-Experts (MoE) models. Other promis-
ing research directions include combining our method with other compression techniques like
quantization and creating more efficient, self-adaptive optimization mechanisms.

6 USE OF LARGE LANGUAGE MODELS

We utilized large language models to support the research process. Specifically, LLMs were
used for the following purposes:

e Writing Assistance: To improve the grammar, clarity, and overall readability of the
manuscript.

e Code Development: To assist with the implementation and debugging of the experi-
mental codebase.

The core scientific contributions, including the proposed methodology, experimental design,
and the analysis and interpretation of the results, are entirely the original work of the
authors.

REFERENCES

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of the 2019
conference of the North American chapter of the association for computational linguistics:
human language technologies, volume 1 (long and short papers), pages 4171-4186, 2019.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert
pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiw:2303.08774, 2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR,
1(2):3, 2022.

Han Guo, Philip Greengard, Eric Xing, and Yoon Kim. LQ-loRA: Low-rank plus quantized
matrix decomposition for efficient language model finetuning. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
1d=xw29VvOMmU.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning
for nlp. In International conference on machine learning, pages 2790-2799. PMLR, 2019.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
arXw preprint arXiw:2101.00190, 2021.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. arXiv preprint arXiv:2104.08691, 2021.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang,
Kwang-Ting Cheng, and Min-Hung Chen. Dora: Weight-decomposed low-rank adaptation.
In Forty-first International Conference on Machine Learning, 2024.

Dawid J Kopiczko, Tijmen Blankevoort, and Yuki M Asano. Vera: Vector-based random
matrix adaptation. arXiv preprint arXiv:2310.11454, 2023.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-
efficient low-rank adaptation for large language models fine-tuning. arXiv preprint
arXiv:2308.03303, 2023a.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng
He, Yu Cheng, Weizhu Chen, and Tuo Zhao. Adalora: Adaptive budget allocation for
parameter-efficient fine-tuning. arXiv preprint arXiv:2303.10512, 2023b.

Ning Ding, Xingtai Lv, Qiaosen Wang, Yulin Chen, Bowen Zhou, Zhiyuan Liu, and
Maosong Sun. Sparse low-rank adaptation of pre-trained language models. arXiv preprint
arXiw:2311.11696, 2023.

Mingyang Zhang, Hao Chen, Chunhua Shen, Zhen Yang, Linlin Ou, Xinyi Yu, and Bohan
Zhuang. Loraprune: Structured pruning meets low-rank parameter-efficient fine-tuning.
arXiv preprint arXiw:2305.18403, 2023c.

Mojtaba Valipour, Mehdi Rezagholizadeh, Ivan Kobyzev, and Ali Ghodsi. Dylora: Parameter
efficient tuning of pre-trained models using dynamic search-free low-rank adaptation. arXiv
preprint arXiw:2210.07558, 2022.

Feiyu Zhang, Liangzhi Li, Junhao Chen, Zhouqiang Jiang, Bowen Wang, and Yiming Qian.
Increlora: Incremental parameter allocation method for parameter-efficient fine-tuning.
arXw preprint arXiv:2308.12043, 2023d.

10

https://openreview.net/forum?id=xw29VvOMmU
https://openreview.net/forum?id=xw29VvOMmU

Huandong Chang, Zicheng Ma, Mingyuan Ma, Zhenting Qi, Andrew Sabot, Hong Jiang, and
HT Kung. Elalora: Elastic & learnable low-rank adaptation for efficient model fine-tuning.
arXiv preprint arXiv:2504.00254, 2025.

Ruiyi Zhang, Rushi Qiang, Sai Ashish Somayajula, and Pengtao Xie. Autolora: Automatically
tuning matrix ranks in low-rank adaptation based on meta learning. arXiv preprint
arXiv:2408.09113, 2024.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R, Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding.
arXiv preprint arXiw:1804.07461, 2018.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin,
Percy Liang, and Tatsunori B Hashimoto. Alpaca: A strong, replicable instruction-
following model. Stanford Center for Research on Foundation Models. hitps://crfm.
stanford. edu/2023/03/13/alpaca. hitml, 3(6):7, 2023.

11

A GLUE AND ALPACA RESULTS WITH STATISTICAL VARIABILITY

To evaluate the robustness and consistency of our methods, we report results on both the
GLUE and Alpaca benchmarks, each averaged over three independent runs with different
random seeds (42, 777, 2025). Every result is presented as the mean score accompanied
by the standard deviation (4), capturing the variability introduced by stochastic training
dynamics and initialization. This evaluation protocol ensures that all reported findings
are statistically grounded and not dependent on a single random seed. All models were
trained using consistent and task-appropriate hyperparameters: configurations for GLUE
are provided in Appendix B, and those for Alpaca are detailed in Appendix C.

Table 7: GLUE benchmark results (mean + standard deviation). All results are averaged
over three random seeds.

Model CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B

FT 60.68+0.20 87.524+0.11 88.644+0.75 92.71+£0.29 91.654+0.06 75.81+2.20 93.77+£0.24 90.3340.43
LoRA(r=16) 60.01£1.41 87.71£0.13 88.644+0.51 92.56+£0.09 91.16+0.06 77.62+2.20 94.07£0.69 89.9440.95
LoRA(r=8) 58.33+£0.98 87.594+0.06 88.15+£0.37 92.59+0.11 90.824+0.04 76.41+1.16 94.15+£0.61 89.8640.80
SoRA 58.354+6.76 87.65+£0.09 87.2542.34 92.85+0.01 91.55£0.08 76.77+3.41 93.81+0.80 90.32£0.30
AdaLoRA 61.36£1.50 87.29£0.18 86.524+0.49 92.73+£0.07 89.84+0.14 78.82+0.55 93.85£0.59 90.9740.19
OPLoRA 62.60+£0.66 87.42+0.11 88.814+0.79 92.75+0.42 91.02+£0.03 79.66+1.10 94.69+0.33 90.82£0.13

DPLORA(p=0.6) 61.91+1.10 86.46+0.30 89.62+1.74 92.32+0.33 90.39+0.18 77.26+£1.08 94.07+0.57 90.60+0.07
DPLORA(p=0.7) 60.47+1.25 86.41+0.19 89.91+1.24 92.10+£0.22 89.96+0.20 76.17+3.13 93.50+£0.07 90.42+0.53
DPLORA(p=0.8) 62.08+1.00 85.67+0.64 89.54+1.98 91.93+0.14 89.53+0.09 77.50£1.78 93.46+1.00 89.78+0.83

Table 8: Instruction-following performance on MT-BENCH (mean =+ std. dev.), evaluated
by GPT-4. Higher scores are better.

Trainable

Method Params(M) | MT-BENCH Score
LoRA (1—8) | 21.0 | 5.5620.03

OPLoRA (ours) 20.0 5.65+0.34
DPLoRA (ours, p=0.8) 4.0 5.54+0.02

B HYPERPARAMETER SETTINGS ON GLUE

This appendix details the hyperparameter configurations used for the GLUE benchmark
experiments. While certain settings were kept constant across all tasks—specifically, a
LoRA Budget of 2,500,000 and a Batch Size of 32—we individually tuned other crucial
hyperparameters to ensure optimal performance for every method. These task-specific
parameters include the learning rate, number of training epochs, and maximum sequence
length.

For published baselines, we adopted the configurations from their original papers where
possible; otherwise, we performed our own search to ensure a fair comparison.

For the experiments presented in the Computation Efficiency analysis and the Additional
Analysis subsection, we utilized a separate, computationally efficient configuration to manage
computational resources, as these experiments primarily serve to validate design choices
rather than establish optimal performance metrics. This adjustment, combined with the
use of a single random seed, allowed us to conduct a comprehensive exploration of the
design space while maintaining reasonable computational requirements. Additional details
on reproducibility measures are provided in Appendix E (Reproducibility Settings).

C HYPERPARAMETER SETTINGS ON ALPACA

This appendix details the hyperparameter configurations for the Alpaca instruction-following
task.

12

Table 9: DPLoRA (p = 0.6, 0.7, 0.8) hyperparameter configurations across GLUE tasks.

Setting CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B
LoRA Budget 2.5M

Batch Size 32

Pruning Steps 10

Learning Rate 9.3e-04 2e-4 2.3e-04 4.8e-04 3.3e-04 1.9e-04 4.8e-04 2.9e-04
Epochs 77 5 50 49 8 53 34 27
Weight Decay 0.378 0.15 0.015 0.283 0.023 0.006 0.378 0.015
Max Grad Norm 1.800 - 1.141 0.450 0.221 1.911 1.800 0.826
Max Sequence Length 256 320 320 128 320 256 256 256
Warmup Steps / Ratio 0.028 3000 0.036 0.022 0.082 0.022 0.060 0.044
Importance EMA Decay 0.054 0.06 0.814 0.976 0.879 0.596 0.054 0.501
Momentum Penalty Weight 0.329 0.09 0.609 0.915 0.473 0.057 0.329 0.660
Recovery Steps 100 500 100 100 100 100 100 100
Extended Recovery Steps 200 1000 200 200 200 200 200 200

Table 10: OPLoRA hyperparameter configurations across GLUE tasks.

Setting CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B
LoRA Budget 2.5M

Batch Size 32

Pruning Steps 10

Learning Rate 9.3e-04 2e-4 2.3e-04 4.8¢-04 3.3e-04 1.9e-04 4.8e-04 2.9e-04
Epochs 7 5 50 49 8 53 34 27
Weight Decay 0.378 0.15 0.015 0.283 0.023 0.006 0.378 0.015
Max Grad Norm 1.800 - 1.141 0.450 0.221 1.911 1.800 0.826
Max Sequence Length 256 320 320 128 320 256 256 256

Warmup Steps / Ratio 0.028 3000 0.036 0.022 0.082 0.022 0.060 0.044

Through preliminary experiments, we determined that training for 5 epochs provided the
best balance between model capability and training efficiency, as longer training did not
yield substantial improvements. Due to the significant memory requirements of the Llama 3
8B model, we used a physical batch size of 2 and employed 16 gradient accumulation steps
to achieve an effective batch size of 32, ensuring stable training.

The full progressive pruning schedule was applied over the course of training, featuring 10
pruning steps to gradually enhance parameter efficiency. The complete list of hyperparameters
used for this task is provided in Table [I5]

D COMPUTING INFRASTRUCTURE

All experiments were conducted on a unified computing environment provided by the
Backend.AI platform. Both model training and evaluation were performed under identical
hardware configurations to ensure fairness. The system utilized a CPU with 20 cores and
20GB of RAM, along with a 0.3 FGPU (24GB VRAM) core as the standard GPU resource.
Exceptions were made for the Llama 3 8B experiments, which required 0.5 FGPU (40GB
VRAM). We used the PyTorch NGC container (version 24.09) with the following software
stack: PyTorch 2.6.0, Python 3.10.12, CUDA 12.6 and PuLLP 3.0.2. This standardized
environment ensured consistency across runs and reproducibility of results. This constrained
computing environment served as a practical testbed to validate the resource-efficiency of our
optimization methods in real-world deployment scenarios. Despite the limited GPU memory,
our progressive pruning strategy consistently demonstrated stable operation and achieved
optimal parameter efficiency. These results confirm the robustness and practicality of our
approach under realistic hardware constraints.

E REPRODUCIBILITY SETTINGS

To ensure reproducibility, we applied a range of deterministic configurations. Specifically, we
set environment variables to fix the Python hash seed, configure the CUBLAS workspace,

13

Table 11: Full Fine-Tuning hyperparameter configurations across GLUE tasks.

Setting SST-2 QQP MNLI QNLI RTE MRPC CoLA STS-B
Batch Size 32 (shared across all tasks)

Learning Rate 2e-5 2e-5 2e-5 2e-5 le-5 le-5 le-5 le-5
Epochs 10 5 5 10 20 20 20 20
Weight Decay 0.1

Max Grad Norm -

Max Sequence Length 128

Warmup Steps 500 2800 3000 1000 100 100 100 100

Table 12: Hyperparameter configurations for DPLoRA Computation Efficiency and Addi-
tional Analysis. These settings were optimized for the rapid validation of design choices.

Setting SST-2 QQP MNLI QNLI RTE MRPC CoLA STS-B
Batch Size 32

Learning Rate 2e-4 2e-4 2e-4 2e-4 le-4 le-4 le-4 le-4
Pruning Steps 10 10 10 10 5 5 5 5
Budget 1250K 2250K 2500K 1750K 750K 750K 1200K 1000K
Epochs 10 5 5 10 20 20 20 20
Warmup Steps 500 2800 3000 1000 100 100 100 100
Recovery Steps 500 500 500 500 100 100 100 100
Extended Recovery Steps 1000 1000 1000 1000 200 200 200 200

and limit the number of threads used by numerical computation libraries. We also initialized
consistent random seeds for both PyTorch and NumPy, and enabled deterministic algorithms
in the CUDA backend.

For the ILP solver, we enforced deterministic behavior in the CBC solver by specifying the
random seed, setting a strict time limit, enforcing single-threaded execution, and constraining
the allowable optimality gap. All PyTorch DatalLoaders were instantiated with fixed random
generators, and we applied custom worker initialization functions to maintain consistency in
multi-processing settings.

All experimental results presented in this paper, including main results and most ablations,
were conducted using three different random seeds (42, 2025 and 777). This setup ensures that
our findings are statistically meaningful and not dependent on any single initialization. The
only exceptions were the ILP Computation Overhead and Additional Analysis experiments,
which were conducted with a single seed to manage computational requirements.

F PRACTICAL SOLVABILITY OF ILP-BASED OPTIMIZATION

The integer linear programming (ILP) problem formulated for optimal rank assignment is
NP-hard and theoretically exhibits exponential time complexity in the worst case. However,
in practice, our problem structure allows for efficient and reliable solving due to several
key factors. First, the decision space is restricted, as the number of candidate rank values
is typically limited. Second, the constraint matrix is mostly sparse except for the budget
constraint. Third, we leverage the PuLP/CBC solver, which implements an efficient branch-
and-bound algorithm tailored for structured combinatorial problems.

While we implemented conservative time limits (e.g., up to 600 seconds) as a safeguard, these
were not necessary in practice. Our empirical results in Table [f] demonstrate the practical
efficiency of this approach. The total ILP computation time for an entire training run was
shown to be negligible for both models tested: less than half a second for RoOBERTa-Base
and approximately 7 seconds for the much larger Llama 3 8B. Considering the multi-hour
fine-tuning process for these models, this overhead confirms that the theoretical complexity
does not translate to a practical bottleneck.

14

Table 13: Hyperparameter configurations for OPLoRA Computation Efficiency and Addi-
tional Analysis.

Setting SST-2 QQP MNLI QNLI RTE MRPC CoLA STS-B
Batch Size 32

Learning Rate 2e-4 2e-4 2e-4 2e-4 le-4 le-4 le-4 le-4
Budget 1250K 2250K 2500K 1750K 750K 750K 1200K 1000K
Epochs 10 5 5 10 20 20 20 20
Warmup Steps 500 2800 3000 1000 100 100 100 100

Table 14: Hyperparameter configurations for LoRA (r=8, 16) Computation Efficiency and
Additional Analysis.

Setting SST-2 QQP MNLI QNLI RTE MRPC CoLA STS-B
Batch Size 32 (shared across all tasks)

Learning Rate 2e-4 2e-4 2e-4 2e-4 le-4 le-4 le-4 le-4
Epochs 10 5 5 10 20 20 20 20
Warmup Steps 500 2800 3000 1000 100 100 100 100

G ADDITIONAL ANALYSIS

G.1 COMPARISON OF IMPORTANCE ESTIMATION METHODS

Our goal was to identify an importance metric that maximizes model performance while
minimizing additional computational overhead. To achieve this, we first conducted a
preliminary comparison of several efficient methods on the SST-2 task, using metrics derived
from gradients, weights, and activations, as shown in Table This initial experiment
revealed that the Absolute Gradient metric provided the highest accuracy (93.8), establishing
it as the most promising candidate among the low-overhead options.

Building on this result, we performed a more rigorous, large-scale comparison across the full
GLUE benchmark to finalize our choice, as detailed in Table This second experiment
directly compared the two strongest gradient-based metrics: the absolute gradient (||g||1)
and the squared gradient (||g||3). The Absolute Gradient once again demonstrated superior
performance, achieving a higher average score of 84.9. These results confirm that the absolute
gradient offers the best approach for maximizing task performance among the computationally
efficient methods we evaluated, validating its selection as the default importance metric for
our framework.

15

Table 15: Hyperparameter configurations for the Alpaca benchmark.

Setting OPLoRA DPLoRA (p=0.8) LoRA (r=8)
Batch Size 2

Learning Rate 1.0e-04

Epochs 5

Weight Decay 0.08

Max Grad Norm 0.612

Max Sequence Length 256

Warmup Ratio 0.044

LoRA Dropout 0.069

Gradient Accumulation Steps 16

LoRA Budget 40M 40M N/A
Pruning Steps N/A 10 N/A
Pruning Target Reduction N/A 0.8 N/A
Importance EMA Decay N/A 0.015 N/A
Momentum Penalty Weight N/A 0.809 N/A
Recovery Steps N/A 100 N/A
Extended Recovery Steps N/A 200 N/A

Table 16: Comparison of importance scoring methods using the OPLoRA model on SST-2
(conducted on a single run with seed 42).

Method Accuracy
Absolute Gradient (default) 93.8
Weight 93.4
Activation 93.4
Top 10 Gradient 93.6

Table 17: Comparison of importance metrics for DPLoRA (p=0.8).
Importance Metric CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B Avg.

Absolute Gradient (|[g;) 621 85.7 80.5 919 805 775 935 898 849
Squared Gradient (||g/|3) 57.1 85.6 88.3 91.7 88.7 776 93.0 87.5 83.7

16

	Introduction
	Related Work
	Parameter-Efficient Fine-Tuning (PEFT)
	Refinements of the LoRA Update Mechanism
	Automated Rank Allocation via Importance-Based Strategies

	Methods
	OPLoRA: Optimal Rank Allocation (Pruning Stage 1)
	Progressive Pruning (Pruning Stage 2)

	Experiments
	Experimental Setup
	Main Results
	Results on Instruction Following
	Analysis and Discussion
	Ablation Study

	Conclusion
	Use of Large Language Models
	GLUE and Alpaca Results with Statistical Variability
	Hyperparameter Settings on GLUE
	Hyperparameter Settings on Alpaca
	Computing Infrastructure
	Reproducibility Settings
	Practical Solvability of ILP-Based Optimization
	Additional Analysis
	Comparison of Importance Estimation Methods

