© ® N O g A~ W N =

MXNorm: Reusing block scales for efficient tensor
normalisation

Anonymous Author(s)
Affiliation
Address

email

Abstract

The matrix multiplications which comprise the bulk of computation in deep learning
are being performed in increasingly narrow-precision formats. For example, next
generation Al accelerators support dot products in MXFP4, a format requiring only
4.25 bits per element. However, accelerator performance for low-precision matrix
multiplication far outstrips accelerator performance on reductions and elementwise
computations that are still being performed in higher precision. In this work, we
reduce the cost of the RMSNorm layer by fusing approximating the RMS of a tensor
with the computation of the MX block scales, thereby enabling a 32x decrease in
the size of reductions needed for normalisation. We validate our approximation
method on pre-training of Llama 3 models of 250M and 1B parameters, finding
minimal loss of training accuracy compared to a baseline using RMSNorm with
MXFP8 matmuls.

1 Introduction

Microscaling formats (henceforth referred to as “MX formats™) were proposed by [1]] as a way to
quantise tensors to very few bits per element while preserving the range of higher precision formats
such as BF16 and FP32. MX quantisation chunks a tensor into contiguous blocks of a fixed size and
computes a scale factor for each block, which is used to rescale the elements of the block to the range
of a low precision format. An MX Tensor can therefore be thought of as a tuple of an MX scale
tensor comprised of block scales and an MX values tensor of rescaled, quantised elements. Using
the EEMO format (which only represents integer powers of 2) for the scales preserves the range of
BF16 while adding the minimal number of bits to the representation. The scale for each block is thus
chosen to be the block’s absmax rounded to a power of 2 [1]]. The implementation of this rounding is
not fully standardised and several schemes have been proposed [2-4].

Normalisation layers are essential for ensuring pre-training stability. Various normalisation schemes
have been favoured over the past decade, such as BatchNorm [5] for convolutional neural networks,
LayerNorm for sequence models [6], and more recently RMSNorm [7]] for large language models
such as the Llama series [8H10]. In the case of RMSNorm, each token’s hidden state is normalised
using its root mean square. Placement of norms is also key to pre-training performance, with frontier
models typically placing norms at the start of each residual branch [11]].

We make two observations: (1) MX quantisation and RMSNorm both gather statistics on the tensor
to rescale elements (although the former is scale-preserving and the latter is scale-rectifying), and (2)
when a probability distribution is scaled linearly, the expected absmax of the distribution is scaled
accordingly. From these observations we propose to approximate the RMS using the block scales
calculated during MX quantisation, thereby enabling us to fuse RMSNorm with MX quantisation
for activations and requiring only a single pass of statistics gathering over the whole tensor. Given
the stark difference in FLOPs (10 — 100) between elementwise/reduction (non-matmul) ops and

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

37 matmul ops in modern hardware [[12} [13]], there is now plenty to gain by minimising non-matmul
38 FLOPS when designing compute blocks. We call this new scheme MXNorm and demonstrate its
39 effectiveness in pre-training of language models of up to 1B parameters.

[RMSNorm -> Linear] [RMSNorm -> MX-Linear] [MXNorm -> MXLinear]
o RMSNorm P— RMSNorm [QKVIFFN)
RMSNorm QIV/EaN MXNorm

QKV/FFN
Weight Weight
MXCast MXCast MXCast

Matmul MX Matmul MX Matmul

[RMSNorm] [MXCast } MXNorm (Pre-Round)

RMSNorm
Weight

Activations

RMSNorm Multiply

Activations
Block-
absmax

y
" Divide by
[Es""‘a'e RMS}—,[RMS EstimateJ

Activations Activations

Block-
absmax

Divide by RMSNorm
RMS Weight
Divide by MX Divide by Divide by MX
Scales RMS Estimate, Scales
Multiply Rescale and Cast to E4M3 Rescale and Cast to E4M3
round to EBMO round to EBMO
MX Scales MX Values MX Scales MX Values

Figure 1: Computational graphs for RMSNorm, MXCast, and MXNorm in the context of Norm +
Linear layer pattern. Top left: RMSNorm + Linear graph for high precision training. Top middle:
RMSNorm + Linear graph with linear inputs cast to MX (MXLinear). Top right: RMSNorm approx-
imated with MXNorm and RMSNorm weight fused with Linear weight. Bottom left: RMSNorm
graph. Bottom middle: MXCast graph for MXFP8 activations. Note that MXCast is applied to
weights (E4M3 values) and gradients (ESM2 or E4AM3 values) as well. Bottom right: MXNorm graph
for pre-round scheme.

40 2 Methods

41 Here we will briefly describe RMSNorm, MXFP casting, and our main contribution: MXNorm. The
42 differences between each of these schemes and their use in a Norm + Linear layer is summarised in

43 Figure

4 2.1 RMSNorm

45 Given an activation tensor X € RV*LP RMSNorm normalises each token of the tensor X using the
46 calculated RMS S, given by:

1 D
Ly a
k=1

47 The learnable gain parameter y € R” rescales the normalised X along the hidden dimension to give
48 output Z as follows:

Zij = (Xij/Si)v; ()
49 In the Llama 3 architecture, there is an RMSNorm layer immediately prior to the QKV projection in
50 each attention layer and immediately prior to the input and gate projections of the FFN (which can be
51 fused into a single matmul), following the pre-norm architecture [[11]. This leads to the "RMSNorm
52 -> Linear" pattern shown in the top-left of Figure

53

54

55
56
57
58

59

60
61
62

63
64
65
66

67

68
69
70
71
72

73
74
75
76
77
78
79

80

81
82
83

2.2 Conversion to MX

For a block B € R¥ with K entries, the scale value B(*) is given by

B®) = pow2_round(resca1e(m}§mx |Bi|)) 3)

where the function pow2_round rounds its input to a power of 2, and rescale divides the input by
the largest power of 2 representable by the MX-values data format, e.g., 256 for E4M3. The details of
pow2_round are implementation defined, with possible options given by [[1H3]]. For our experiments
we use the method defined in [2], enumerated as ScaleCalculationMode.RCEIL in TorchAO [4].

2.3 Approximation of RMS during MX quantisation

We observe that the RMS of a zero-centred distribution correlates strongly with the expected maximum
absolute value of a block of input samples (Figure 2| left). Motivated by this, we define two possible
approximations to the RMS using these block absmaxes either before or after pow2_round is applied.

There is a linear relationship between the mean block absmax and the expected RMS of the data
distribution (Figure [2] left). We empirically estimate the expected ratio ¢ between the RMS and the
mean of the block absmaxes. We use this coefficient to rescale the block-absmax before rounding to
MX-scales in what we call the pre-round scheme. That is, if D = M K where K is the block size,

we have S; = ¢ ﬁ > Maxy | Ximk|, where X is reshaped to have shape (IV, M, K) for simplicity.

In contrast, the relationship between the mean rounded block-absmax and RMS of the data distribution
is not linear and indeed has no tractable form (see Figure@ left). Instead, we model this monotonic
function with a piecewise linear approximation derived empirically from a Gaussian assumption,
exploiting the fact that the function is cyclic on a logarithmic scale to make the number of pieces
finite (see Appendix [F|for full details). This gives us our post-round scheme.

We demonstrate the fidelity of our approximation by comparing the output of a modified
mx_quantise function mx_norm on the distribution of scales and value tensors on RMSNorm
followed by mx_quantise. The middle two panels of Figure[2] shows that the distribution of scales
and values using the pre-round scheme is almost identical whereas the post-round scheme represents
larger scales with higher frequency, which in turn slightly decreases the mode of the distribution of val-
ues. We also demonstrate that the approximation quality as measured by 72 improves asymptotically
towards 1 as the number of blocks increases (see Figure [2] right).

2 2 . .y 1.000
3 327 ik ;2 0.975
[} (] : s 0.
% 22 5 2 s 2
o 2! 0 -5 > 2 0.950
93 x x 2710 : He
v, = = : 1 20.925
¥ 2 a -8 a p-14 i Hs
S _ : i@ 0.900
m 2 : o
271 21 -10 -5 0 -10 0 22 25
RMS log2(scale) log2(value) # Blocks
No norm MXNorm (pre-round) MXNorm (post-round) RMSNorm + MXCast

Figure 2: MXNorm as an approximation of RMSNorm. Left: Relationship between the mean of
block scales and the RMS. (Both axes are on a log scale.) Middle Left: MX scale distribution of
normalised tensors. Middle Right: MX value distribution of normalised tensors. Right: MXNorm 72
goodness-of-fit approaches 1 with more blocks.

2.4 MXNormLinear

To build an MXNormLinear layer, we take as our starting point an RMSNorm layer followed by a
Linear layer (ignoring biases). This takes input X, linear layer weights W, and an affine norm gain
parameter y and outputs Y = ZW T, where Z is defined as in Equations and

84
85
86
87
88

89
90
91

92

93
94
95

96
97
98

99
100
101
102
103
104
105

106

107
108
109

110
111
112
113

For an MXNormLinear layer we approximate the RMS S; using one of the approaches described in
Sectionto produce S;. Since the output of MXNorm must be an MX Tensor and the inputs to the
MX-matmul must also be an MX Tensor, we cannot apply the norm gain and so cannot materialise Z
directly. Instead we apply these affine gains to the weights to produce the fused weight W’ where
W, = Wijv; and compute

Y = mx_norm(X) mx_quantise(W')T 4

where the output Y is accumulated in higher precision. The details of the gradient of MXNormLinear
are given in Appendix [C] A PyTorch implementation of the MXNormLinear forward and backward
pass is given in Appendix

3 Experiments and Results

4.00 250M params x 5B tokens 1B params x 20B tokens
Norm type

@ 375 RMSNorm
9 3.50 MXNorm (pre-round)
2325 MXNorm (post-round)
= Matmul Precision
g 3.00 -@— MXFP8

2.75 =#= BFloatl6

2.50

2713 2—11 279 2—7 2—5 273 2713 2—11 279 2—7 2—5 273
Learning Rate Learning Rate

Figure 3: Learning rate sensitivity of MXNorm compared to RMSNorm. Left: 250M parameter
model (depth=4, width=2048). Right: 1B parameter model (depth=16, width=2048)

We validate MXNorm on pretraining of Llama 3 models [[10] of different sizes on the SlimPajama
dataset [14], comparing against a baseline of RMSNorm followed by MXLinear layers. For full
details, please refer to Appendix [A]

We examined pre-training stability by running a learning rate sweep on 250M parameter and 1B
parameter models trained on 5B and 20B tokens respectively. The effect of quantisation is often felt
on training stability and can be seen at smaller scales by examining learning rate sensitivity [[15]].

In Figure|3] we demonstrate that there is a small degradation in the training loss ([RMS + MXLinear]
250M: 3.14, 1B: 2.63) for MXNorm schemes that is slightly smaller for the pre-round scheme (250M:
3.13, 1B: 2.67) vs. the post-round scheme (250M: 3.16, 1B: 2.68). In addition, as learning rate
increases the pre-round scheme maintains a loss closer to the baseline than the post-round scheme,
indicating greater training stability. This trend can be seen at both 250M and 1B parameter scales.
We show loss curves for the optimum learning rate of 1B models in Appendix [E| The presence of
loss spikes with MXNorm schemes further indicates a slight loss in training stability.

4 Conclusion

We demonstrate the possibility of estimating the RMS during calculation of MX-scales with minimal
overhead in a way that removes the need for RMSNorm in LLM pre-training. We show at up to 1B
scale that this approach leads to minimal loss of pre-training performance.

It remains to be seen whether MXNorm is sufficiently stable for larger scale pre-training and whether
the benefits can be realised as wall-clock speedups in pre-training and inference. Future work could
also consider methods to convert pre-trained models using RMSNorm to using MXNorm using a
method like post-training quantisation.

1

4

115
116
17
118
119
120
121
122

123
124

125
126
127
128

129
130
131
132

133
134

135
136

137
138

139
140
141
142

143
144

145
146

147
148
149

150
151
152
153

154
155
156

157
158
159
160
161

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Bita Darvish Rouhani, Ritchie Zhao, Ankit More, Mathew Hall, Alireza Khodamoradi,
Summer Deng, Dhruv Choudhary, Marius Cornea, Eric Dellinger, Kristof Denolf, Stosic
Dusan, Venmugil Elango, Maximilian Golub, Alexander Heinecke, Phil James-Roxby,
Dharmesh Jani, Gaurav Kolhe, Martin Langhammer, Ada Li, Levi Melnick, Maral Mes-
makhosroshahi, Andres Rodriguez, Michael Schulte, Rasoul Shafipour, Lei Shao, Michael
Siu, Pradeep Dubey, Paulius Micikevicius, Maxim Naumov, Colin Verrilli, Ralph Wittig,
Doug Burger, and Eric Chung. Microscaling data formats for deep learning, 2023. URL
https://arxiv.org/abs/2310.10537.

Asit Mishra, Dusan Stosic, and Simon Layton. Recipes for pre-training llms with mxfp8, 2025.
URL https://arxiv.org/abs/2506.08027.

PyTorch AO Team. Scalecalculationmode.even. GitHub repository, 2024. URL https:
//github.com/pytorch/ao/blame/e6b38bb0el1477aebaacala3d30de70598be43290/
torchao/prototype/mx_formats/config.py#L69-L72, Lines 69-72 in tor-
chao/prototype/mx_formats/config.py, commit e6b38bb.

Andrew Or, Apurva Jain, Daniel Vega-Myhre, Jesse Cai, Charles David Hernandez, Zhenrui
Zheng, Driss Guessous, Vasiliy Kuznetsov, Christian Puhrsch, Mark Saroufim, Supriya Rao,
Thien Tran, and Aleksandar Samardzi¢. Torchao: Pytorch-native training-to-serving model
optimization, 2025. URL https://arxiv.org/abs/2507.16099.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift, 2015. URL https://arxiv.org/abs/1502.03167.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL
https://arxiv.org/abs/1607.06450.

Biao Zhang and Rico Sennrich. Root mean square layer normalization, 2019. URL https:
//arxiv.org/abs/1910.07467,

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez,
Armand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models, 2023. URL https://arxiv.org/abs/2302.13971l

Llama Team. Llama 2: Open foundation and fine-tuned chat models, 2023. URL https:
//arxiv.org/abs/2307.09288,

Llama Team. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407 |
21783l

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai
Zhang, Yanyan Lan, Liwei Wang, and Tie-Yan Liu. On layer normalization in the transformer
architecture, 2020. URL https://arxiv.org/abs/2002.04745,

Jacob Austin, Sholto Douglas, Roy Frostig, Anselm Levskaya, Charlie Chen, Sharad Vikram,
Federico Lebron, Peter Choy, Vinay Ramasesh, Albert Webson, and Reiner Pope. How to scale
your model. 2025. URL https://jax-ml.github.io/scaling-book/tpus/. Retrieved
from https://jax-ml.github.io/scaling-book/.

NVIDIA Corporation. Nvidia blackwell architecture technical overview. Techni-
cal overview, NVIDIA Corporation, 2024. URL https://resources.nvidia.com/
en-us-blackwell-architecture. Accessed: 2025-08-19.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel
Hestness, and Nolan Dey. SlimPajama: A 627B token cleaned and
deduplicated version of RedPajama. https://www.cerebras.net/blog/
slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama,
2023. URL https://huggingface.co/datasets/cerebras/SlimPajama-627B.

https://arxiv.org/abs/2310.10537
https://arxiv.org/abs/2506.08027
https://github.com/pytorch/ao/blame/e6b38bb0e1477ae6aaca0a3d30de70598be43290/torchao/prototype/mx_formats/config.py#L69-L72
https://github.com/pytorch/ao/blame/e6b38bb0e1477ae6aaca0a3d30de70598be43290/torchao/prototype/mx_formats/config.py#L69-L72
https://github.com/pytorch/ao/blame/e6b38bb0e1477ae6aaca0a3d30de70598be43290/torchao/prototype/mx_formats/config.py#L69-L72
https://github.com/pytorch/ao/blame/e6b38bb0e1477ae6aaca0a3d30de70598be43290/torchao/prototype/mx_formats/config.py#L69-L72
https://github.com/pytorch/ao/blame/e6b38bb0e1477ae6aaca0a3d30de70598be43290/torchao/prototype/mx_formats/config.py#L69-L72
https://arxiv.org/abs/2507.16099
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1910.07467
https://arxiv.org/abs/1910.07467
https://arxiv.org/abs/1910.07467
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2002.04745
https://jax-ml.github.io/scaling-book/tpus/
https://resources.nvidia.com/en-us-blackwell-architecture
https://resources.nvidia.com/en-us-blackwell-architecture
https://resources.nvidia.com/en-us-blackwell-architecture
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B

162
163
164
165
166

167
168
169
170

[15]

[16]

Mitchell Wortsman, Peter J. Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D.
Co-Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, Jeffrey Pennington, Jascha Sohl-
dickstein, Kelvin Xu, Jaehoon Lee, Justin Gilmer, and Simon Kornblith. Small-scale proxies
for large-scale transformer training instabilities, 2023. URL https://arxiv.org/abs/2309,
14322.

Wanchao Liang, Tianyu Liu, Less Wright, Will Constable, Andrew Gu, Chien-Chin Huang, Iris
Zhang, Wei Feng, Howard Huang, Junjie Wang, Sanket Purandare, Gokul Nadathur, and Stratos
Idreos. Torchtitan: One-stop pytorch native solution for production ready 1lm pre-training, 2025.
URL https://arxiv.org/abs/2410.06511l

https://arxiv.org/abs/2309.14322
https://arxiv.org/abs/2309.14322
https://arxiv.org/abs/2309.14322
https://arxiv.org/abs/2410.06511

171 Contents

172 [I_Infroduction| 1
173 [2__Methods 2
174 2.1 RMSNorm|. o 2
175 2.2 Conversionto MXI. 3
176 2.3 Approximation of RMS during MX quantisationf. 3
177 24 MXNormlineard 3
178 |3 Experiments and Results| 4
179 [4_Conclusion| 4
180 |A Experimental Details| 8
181 [B__Compute resources| 8
182 [C_Gradient calculation of MXNormlLinear| 8
183 [D Implementation of MXNormLinear] 9
184 [E_Convergence of Llama 3 1B with MXNorm| 10
185 [F__Post-round MXNorml| 1
186 .1 Approximating the average of the rounded scale factors| 11
187 |2 Approximating the RMS from the MXtensor| 12

188

189
190

191
192

193

194
195
196
197

198

199
200
201

202

203
204
205

206

207
208

209

A Experimental Details
For all experiments we use the TorchTitan [[16] distributed pre-training library with FSDP in conjunc-
tion with TorchAO [4]] for MX quantisation.

We use the hyperparameters in Table [T|for our experiments. For learning rate sweeps we increment
in powers of 2 from 271* to 273, In all other cases we reuse the default hyperparameters used for
Llama 3 pre-training in TorchTitan using FSDP and BFloat16.

Table 1: Pretraining configuration for Llama 3 models

Model Size
250M 1B
Global batch size 32 256
Sequence length 4096 4096
Total training tokens 5.24B 20.97B
Transformer layer Count 4 16
Hidden dimension 2048 2048
Q:KV head ratio 4:1 4:1
FFN dimension 3072 3072

Each transformer layer contains both an attention layer and a feedforward network. Note that our
250M model preserves the width of the 1B model, only reducing layer count. We chose this method of
scaling down models to preserve the accuracy of our approximation to 2 > 0.99 for both pre-rounded
and post-rounded estimates of the RMS via MXNorm (see Figure [2).

B Compute resources

Our 250M models are trained in 90 minutes on a single node with 8 NVIDIA H100s connected by
NVLink. Our 1B models are trained in 6 hours on 4 nodes comprising 32 NVIDIA H100s connected
by NVLink. We thank LambdaL abs for providing the compute for this project.

C Gradient calculation of MXNormLinear

For the gradient calculation we approximate the gradient of RMSNorm followed by a linear layer.
Given the gradient of the loss with respect to the output VY, the backwards pass for RMSNorm is
given by:

(VZ) = (VY)W)
(VW) =(VY)"Z (6)
(V9); = (Xij - (V2)iy) @)
k
(VX) = (VZ)y ®)
Uij = (Z(vxmxik) Xij ©)
k
(VX)=(S"H)TVX — %(5—3)TU (10

In the above, we introduce the term X defined by Xij = X;;/5;. In addition, we define .S L eRN

to be given by (S~!); = S; ! and similarly for S~3. For the gradient of MXNormLinear, we reuse
the calculation of RMS-Norm backward as a straight-through estimator of MXNorm, using a cached

RMS estimate S described in Section

210
211
212
213

214

215
216
217

We must take care when quantising Z to MX format since we must quantise along the columns of Z
rather than the rows as in the forward pass. We again re-use the cached RMS estimate to materialise

a high-precision form of X/ S before quantising. We also defer applying the affine norm parameters
for the gradient of weights VI until after the MX-matmul i.e.,

(VW) = mx_quantise(VY)" mx_quantise(X/S) -~y (11)

D Implementation of MXNormLinear

We provide a PyTorch implementation for the forward and backward pass of MXNormLinear using the
pre-norm scheme. We omit the details of pow2_round since there is no standardised implementation
[4]. In our experiments we use the implementation defined by [2]].

import torch

from torchao.prototype.mx_formats.mx_tensor import MXTensor
from math import log2, floor

from mx_norm_utils import pow2_round

def absmax_scale_factor(block_size):
mnn
Estimated RMS(X)/E[maz(abs(X))] using monte carlo sampling
from Gaussian distribution
mnn
if block_size == 16:
return 0.4817
elif block_size == 32:
return 0.4260
elif block_size == 64:
return 0.3850

def get_largest_pow2(dtype):
return 2 ** floor(log2(torch.finfo(dtype) .max))

def mx_quantise(x, mx_data_dtype, block_size):
x_blocked = x.reshape (*x.shape[:-1], -1, block_size)
block_absmax = x_blocked.abs().amax(dim=-1, keepdim=True)
largest_pow2 = get_largest_pow2(mx_data_dtype)
mx_scales = pow2_round(block_absmax / largest_pow2)
mx_data = x_blocked / mx_scales.unsqueeze(-1)
mx_data = mx_data.reshape(x.shape)
mx_data = mx_data.to(mx_data_dtype)
mx_scales = mx_scales.to(torch.float8_e8mOfnu)
return MXTensor (mx_scales, mx_data, mx_data_dtype, block_size, x.dtype)

def mx_norm(x, mx_data_dtype, block_size):
x_blocked = x.reshape(*x.shapel[:-1], -1, block_size)
block_absmax = x_blocked.abs().amax(dim=-1, keepdim=True)

absmaz_scale_factor returns the exzpected ratio

of the RMS divided by the mean of the absmazes

coef = absmax_scale_factor(block_size)

rms_estimate = block_absmax.mean(dim=-1, keepdim=True) * coef
scaled_block_absmax = block_absmax / rms_estimate
largest_pow2 = get_largest_pow2(mx_data_dtype)

mx_scales = pow2_round(scaled_block_absmax / largest_pow2)

Creating data tensor: want mr_scale * mz_data = z / rms_estimate
So we want mz_data = (z / rms_estimate) / mz_scale

Need to cast MX scales back to match dtypes for divide

mx_data = (x_blocked / rms_estimate) / mx_scales

mx_data = mx_data.reshape(x.shape)

mx_data = mx_data.to(mx_data_dtype)

218

return MXTensor (mx_scales, mx_data, mx_data_dtype, block_size, x.dtype)

def mx_norm_linear_forward(x, norm_weight, linear_weight, mx_data_dtype, block_size):
mx_normalised_activations = mx_norm(x, mx_data_dtype, block_size)
mx_fused_weight = mx_quantise(norm_weight * linear_weight, mx_data_dtype, block_size)
return torch.mm(mx_normalised_activations, mx_fused_weight.t())

def rms_norm_grad(grad_out, x, rms):
delta = torch.mean(grad_out * x, dim=-1, keepdim=True)
grad_x = rms.pow(-1) * grad_out - rms.pow(-3) * x * delta
return grad_x

def mx_norm_linear_backward(
grad_out, rms_estimate, x, norm_weight, linear_weight, mx_data_dtype, block_size
):
Need grad_out to be mz_quantised along both rows and columns
mx_grad_out = mx_quantise(grad_out, mx_data_dtype, block_size)
mx_t_grad_out = mx_quantise(grad_out.t(), mx_data_dtype, block_size)

Divide by rms_estimate from forward pass in higher precision

normed_x = x / rms_estimate

mx_t_normed_x = mx_quantise(normed_x.t(), mx_data_dtype, block_size)
mx_linear_weight = mx_quantise(linear_weight, mx_data_dtype, block_size)

Compute parameter gradients

grad_mm_input = torch.mm(mx_grad_out, mx_linear_weight.t())
grad_linear_weight = torch.mm(mx_t_grad_out, mx_t_normed_x.t()) * norm_weight
grad_norm_weight = torch.sum(normed_x * grad_mm_input, dim=0)

Compute gradient w.r.t input

Use rms_norm_grad as a straight through estimator for mz_norm
grad_normed_x = grad_mm_input * norm_weight

grad_x = rms_norm_grad(grad_normed_x, x, rms_estimate)

return grad_x, grad_norm_weight, grad_linear_weight

E Convergence of Llama 3 1B with MXNorm

4.0
12 Norm type
RMSNorm 3.8
MXNorm (pre-round)
10 3.6

MXNorm (post-round)

é Matmul Precision § 3.4
3 g —— MXFP8 4
2 --- BFloat16 232
£ 5
© ©
£ 6 £ 30
2.8
4
2.6
2 2.4
220 22 25 27 29 31 233 23 0.0 0.5 1.0 1.5 2.0
Tnkens Tokens lelO

Figure A.1: Training loss convergence of 1B parameter models trained on 20B tokens with MXNorm
and RMSNorm. Left: Training loss shown with x-axis on log scale to highlight early training
behaviour. Right: Training loss shown with x-axis on linear scale to highlight later training behaviour.

10

219

220
221
222
223
224

225
226

227

228
229

231

232

233

234

236
237

F Post-round MXNorm

F.1 Approximating the average of the rounded scale factors

We wish to calculate the expected value of the rounded MX scale factors assuming the tensor is
drawn from a Gaussian distribution with mean zero and unknown standard deviation. Suppose
X; ~ N(0,0%) for 0 < i < K where K is the MX block size and the X;’s are independent. We

define 7(z) := 21%°92(*)] for the rounded MX scale factors in ESMO (ignoring the rescale operation
in Equation 3} which amounts to multiplication by a constant and hence can be factored out of the
calculations).

We then have .
E(max(r(X) = > 27 P(max(r(X,) = 2/)

j=—00
We therefore need to compute P(max;(r(X;)) = 27). We have

P(max(r(X;)) = 2/)

=PFi:r(X;) =20 AVi:r(X;) < 29)
=P(Fi:2 <|X;| < 2T AV X < 271

Applying the law of probability that P(A A B) = P(B) - P(A|B) gives:

=P(Vi:|X;| <2 ~P(3i 12 <X < 20t

Vi | X < 2J'+1>

=P(|Xo| < 27TH)K . (1 - P(Vi DX < 2

Vi |X;| < 23'“))

The simplification of the left-hand term of the product comes from the fact that the X;’s are indepen-
dent and identically distributed (the choice of X is arbitrary).

Applying the law of probability that if C' = D we have P(C|D) = P(C U D)/P(D) = P(C)/P(D)
gives:

= P(|Xo| < 201K . (1 _ P(IXo| < 2)X)

P(| Xo| < 29+1)N
=P(|Xo| < 2)% —P(|Xo| < 27T1)¥

Note that if X ~ N(0,0?), then (using the symmetry of the Gaussian distribution):

P(|Xo| < 2) = P(Xo < 7) — P(Xo < —z) = P(Xo < 7) — (1 — P(Xo <))
:P<X0<$)—(1—]P)(X0<C(J)):2-]P)(X0<$(})—1

Using the CDF of the standard normal distribution ®(-), we therefore have the following:

E(max(r(X;))) = i 9i . <(2 B(2 o) — 1>K - <2 B2 /o) — 1)K>

K2
j=—o0

As |j]| increases, the term in the sum rapidly decreases, so the sum can be truncated from a sum over
j € Ntoasumover —J < j < J for large J with little loss in accuracy. This truncated sum can
then be calculated using any mathematical software package that supports evaluating the CDF of the
standard normal distribution (including PyTorch).

11

238

239
240

241
242
243

244
245

246
247
248
249
250

F.2 Approximating the RMS from the MX tensor

For a fixed block size K, we define f : RT™ — R to be given by f(0) = E(max;(r(X;))) when
X; ~N(0,0?) for 0 < i < K and the X;’s are independent.

We observe that f is strictly increasing since if the standard deviation is greater we expect the rounded
scale factors to be greater, and therefore f is invertible. Hence given the mean of the rounded scale
factors X we can approximate the RMS of the original values as f~!(X).

Since f is strictly increasing, we can compute f~1(X) to an arbitrary degree of precision by finding
01,09 such that f(o1) < X < f(o2) and then iteratively narrowing this range using a binary search.

However, this is computationally expensive to do at every layer in a model. We observe that
f(20) = 2f(0) (since r(2x) = 2r(x) and max; |2X;| = 2max; | X;|). Thus we can pre-compute
F7H2/4) for 0 < i < A for some A and approximate f~! on the interval [1,2] using linear
interpolation on these pre-computed values, and approximate f~!(x) elsewhere using the identity
f~Y(x) = 27F f~1(2*2), where k is chosen such that 2Fz € [1,2].

12

251

254

259

260
261

262

263
264
265
266

267
268
269
270
271
272
273
274
275

276

277

278

279

280

281
282

284
285

286

287
288

289
290
291

292

294
295

296

297

298

NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We claim to show minimal degradation in pre-training loss at 1B parameter
scale and demonstrate this in Figure 3]

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

13

299
300

301

302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

324
325
326
327

328

329
330

331

332
333

335
336
337
338
339
340
341
342
343
344

345

350
351
352

Justification: We acknowledge in Section [that MXNorm appears to be slightly less stable
than RMSNorm, which needs further investigation for models larger than 1B parameters.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

 The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper is primarily empirical, though we do provide a derivation of how
the piecewise linear approximation for the post-round scheme can be computed.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Full experimental details are provided in Appendix |A|and a PyTorch imple-
mentation is provided in Appendix [D] We acknowledge that not everyone has access to the
computational resources to reproduce this work in a reasonable amount of time.

14

353

354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381

383
384

385

386
387
388

389

390
391

392

394

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use open datasets [14] and open-source libraries for training [16] and
quantisation [4].

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

408
409

410
411
412

413
414
415

416

417

418

419

420
421

422
423

424

425
426

427

428
429

431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450

451

452
453
454

455

457

458

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide these in Section [3]and Appendix [A]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The experiments require significant computational resources and computing
error bars would increase the amount of compute needed by a significant factor.

Guidelines:

* The answer NA means that the paper does not include experiments.

e The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide details of the compute used in Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

16

459
460
461
462
463
464
465

466

467
468

469

470
471
472

473

474
475
476
477
478

479

480
481

482

483
484

485

486
487
488
489
490
491
492
493
494

496
497
498
499
500
501
502
503
504
505
506

508

509
510
511

9.

10.

11.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper focuses on efficient pre-training and open source web-scale datasets.
We acknowledge Jevon’s Paradox, that making systems more efficient may paradoxically
lead to increased energy use.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: This paper is a foundational work on efficient pre-training and as such does
not have any particular societal impact.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

17

https://neurips.cc/public/EthicsGuidelines

512

513

514

515

516
517
518
519

520
521

522
523
524

525

526
527
528

529

530

531

532
533

535
536

537
538

539
540
541
542

543
544

545
546

547

548

550

551

552

553

554
555
556

558

559
560

561

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We acknowledge the use of open source datasets and libraries.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not release any assets alongside this work.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

18

paperswithcode.com/datasets

562
563
564

565

566

567

568

569

570
571
572

573
574
575

576
577

578
579
580
581

582

583

584

594

595

596
597
598
599

600

601
602

603

604
605
606
607

15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Methods
	RMSNorm
	Conversion to MX
	Approximation of RMS during MX quantisation
	MXNormLinear

	Experiments and Results
	Conclusion
	Experimental Details
	Compute resources
	Gradient calculation of MXNormLinear
	Implementation of MXNormLinear
	Convergence of Llama 3 1B with MXNorm
	Post-round MXNorm
	Approximating the average of the rounded scale factors
	Approximating the RMS from the MX tensor

