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Abstract

Speculative decoding generally dictates having a small, efficient draft model that is
either pretrained or distilled offline to a particular target model series, for instance,
Llama or Qwen models. However, within online deployment settings, there are
two major challenges: 1) usage of a target model that is incompatible with the
draft model; 2) expectation of latency improvements over usage and time. In
this work, we propose OmniDraft, a unified framework that enables a single draft
model to operate with any target model and adapt dynamically to user data. We
introduce an online n-gram cache with hybrid distillation fine-tuning to address
the cross-vocabulary mismatch across draft and target models; and further im-
prove decoding speed by leveraging adaptive drafting techniques. OmniDraft is
particularly suitable for on-device LLM applications where model cost, efficiency
and user customization are the major points of contention. This further highlights
the need to tackle the above challenges and motivates the “one drafter for all”
paradigm. We showcase the proficiency of the OmniDraft framework by perform-
ing online learning on math reasoning, coding and text generation tasks. Notably,
OmniDraft enables a single Llama-68M model to pair with various target models
including Vicuna-7B, Qwen2-7B and Llama3-8B models for speculative decoding;
and additionally provides up to 1.5-2x speedup.

1 Introduction

Unlike traditional auto-regressive generation in LLMs, speculative decoding (SpD) [25} 9] offers a
unique advantage to accelerate LLM inference by decoupling the generation phase and verification
phase. Speculative decoding generally requires a small but efficient draft model and a large target
model. The draft model generates a sequence of proposed tokens to be verified by the target in one
shot, amortizing the target model’s memory bottleneck in batch inference and attaining better tokens
per second throughput. The speedup factor relies not only on the predictability of the generated text
like commonly occurring phrases, but also on the alignment between draft and target model. As
such, a common practice is to utilize draft and target models from the same model family given their
consistency in pretrained data, tokenization and training configurations. Alternatively, one might
consider distilling a target model into a smaller model to serve as the drafter [S3} 130], which still
follows the same principle of better alignment leading to greater speedup.

The tight coupling of draft and target models limits flexibility of model selection and creates additional
overhead for draft model distillation and maintenance, especially when deploying LLMs at scale
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Figure 1: Overview of the OmniDraft framework: during cross-vocabulary speculative decoding,
the drafter (Llama-68M) generates multiple tokens d; with corresponding distributions ¢;. Cross-
vocabulary translator then converts the drafter tokens into tokens in the vocabulary of the target model
(Llama3-8B). In this example, token dy(’Snow’) and d4(’is’) are directly mapped to target tokens ¢
and ¢, while token d;(f”), d2(’1a’) and d3(’ke’) are merged into a single target token ¢; (’flake’),
since there is a mapping item in the n-gram cache. The translated proposal ¢; along with combined
probabilities ¢; is verified by the target model, resulting in ¢, and ¢; being accepted while ¢5 being
rejected and replaced by 5. The target outputs tokens and their probabilities p; are translated into
drafter tokens and sent back to drafter for next round of drafting. The n-gram cache is updated by
inserting a new unseen item (’st’,’amps’->’stamps’). Meanwhile, the accepted and corrected tokens
from the target model are used to align the drafter through online cross-vocabulary distillation.
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across diverse hardware platforms and updating target models overtime. It is compelling to use a
universal lightweight model on-device to draft tokens for a broad range of targets models. This
universality greatly simplifies deployment, facilitates easy optimization, and allows for rapid model
updates. Furthermore, the heterogeneity of on-device and cloud hardware presents an opportunity for
hybrid speculative decoding. This enables users to choose between running any target model locally
or on the cloud, balancing model performance, inference cost, and privacy concerns.

However, building a universal drafter for speculative decoding presents several unique challenges.
Firstly, different family of target models might use tokenizers with different vocabularies. This is
natural since target models are typically trained with massive pretrained data and hence a larger
vocabulary is needed to include higher-order n-grams or BPE [7] merges. As a result, the vocabulary
mismatch breaks the speculative decoding formulation where the draft and target model need to
evaluate probabilities over the same set of tokens. A previous work UAG addresses vocabu-
lary mismatch with an intermediate translation layer, but it primarily deals with tokens within the
intersection of the drafter and target vocabularies, which might "falsely" reject good tokens from the
drafter. Secondly, independent training of the drafter and target models can result in misaligned pre-
dicted token distributions, which reduces the acceptance rate during verification. This misalignment
diminishes the efficiency benefits of speculative decoding. Although existing research [53] 30} 34]
has explored techniques to improve alignment between the drafter and target, the alignment is often
done offline with assumption of a fixed target model. In practice, the target model may change due to
user personalization or tasks switching, further complicating the alignment issue. Additionally, edge
devices usually have limited memory, compute capacity, and power budget. The drafting process
must therefore be efficient to maximize the benefits of speculative decoding.

To address the challenges, we propose a scalable speculative decoding framework, named OmniDraft,
centered on an on-device universal drafter that generates draft tokens for a wide variety of target
models. An overview of OmniDraft is shown in Figure[T] To tackle the vocabulary mismatch
issue and enable cross-vocabulary speculative decoding, we introduce an n-gram cache to store
cross-vocabulary mappings from draft tokens to target tokens. By integrating the n-gram cache
into the speculative decoding algorithm, we alleviate vocabulary mismatches and achieve a higher
acceptance rate for future queries. We further employ online knowledge distillation to improve
alignment between the drafter and target. A hybrid distillation loss, combining token-level and
distribution level objectives, updates the drafter using the target’s accepted and corrected outputs.
This enables continuous alignment during speculative decoding, even when the target model changes
due to personalization or task switching. To further improve runtime efficiency, we incorporate
online adaptive drafting, where the drafter dynamically adjust the number of tokens it proposes



based on predicted confidence. The adaptive drafting balances generation cost and acceptation rate,
maximizing throughput under device constraints.

Overall, our OmniDraft framework enables a robust, efficient and flexible speculative decoding
system with a universal drafter for on-device applications. Through extensive experiments, we show
that a single Llama-68M draft model can be paired with various target models including Vicuna-7B,
Qwen2-7B and Llama3-8B models for cross-vocabulary speculative decoding and provides up to
1.5-2x speedup on reasoning, coding and text generation tasks.

Contributions (1) We propose cross-vocabulary speculative decoding via online n-gram cache that
translates between drafter and target vocabularies, enabling speculative decoding across models with
different tokenizers; (2) We introduce online knowledge distillation with hybrid alignment loss, which
updates the drafter using accepted and corrected outputs from the target model to improve alignment
and acceptance rate over time; (3) We integrate alignment training with adaptive drafting, allowing
the drafter to dynamically adjust draft length based on alignment confidence for improved efficiency
and speedup.

2 Related work

Speculative decoding The idea of speculative decoding is proposed and formalized in the pioneer
works of [25] 9]]. Subsequent works have centered around optimizing different components of the
speculative decoding framework. Some have highlighted tree attention to facilitate simultaneous
verification of multiple draft sequences such as Speclnfer [32], Medusa [[8] and Sequoia [[11]. There
is also focus on more efficient drafting by using retrieval-based methods as in Lookahead [16], REST
[19]], NEST [26], RASD [38]], or by using dynamic length drafting as in BiLD [22], DISCO [31]],
AdaEDL [2], SpecDec++ [21], EAGLE2 [28]].

More recent works explore speculative decoding in the context of vocabulary adaptation like UAG
[45] and AdaptiVocab [35]], long-context tasks like LongSpec [50], MagicDec [41], or more efficient
draft models as in EAGLE [27], Speculative Streaming [3], and self speculative decoding as in [S1]],
[14], [48]).

Distillaton Model distillation in LLMs is crucial for speculative decoding since quality of the draft
model dictates the final speed-up. Early works on sequence model distillation include [3] 23| 46].
There are also recent works that have specific focus on LLM distillation such as MiniLLM [[18]] and
GKD [1]. Most closely aligned to our setting are the works of DistillSpec [53] and OSD [30] that aim
towards training a better draft model to a given target. Another related line of works is distillation on
different tokenizers as in [6} 33} [34].

Online adaptation Compared to model finetuning on a fixed offline training set over multiple
epochs, online adaptation focuses on continual learning or few-shot generalization to new data.
Frameworks such as ProtoNet [42]] and MAML [[15]] address the few-shot learning problem. Robotics
and reinforcement learning also offer insights with works like DAGGER [40], RL"2 [13]] and PEARL
[39] for continuous adaptation to new tasks. There are also works that emphasize online adaptation
for LLMs as in [20} 43} 29]. Lastly in speculative decoding, OSD [30] explicitly optimizes for draft
model online adaptation which is closest to ours.

3 Methodology

Notation Assume a small draft model M, and a large target model M, let p(y:|z, y<;) and
q(yt|x, y<¢) be the distributions of next-token predictions at time step ¢ for M, and M, respectively,
where z represents the prompt prefix and x, y represents the context at time step ¢. For convenience,
we use p(y;) and ¢(y;) as shorthands for p(y:|z, y<¢) and q(y:|z, y<.) for the remaining sections. k
denotes the number of tokens proposed by the drafter M, and p’(y;+;) = norm(max(0, p(y4;) —
q(y¢+4))) is the residual distribution for the resampling, as per the original SpD algorithm [25] 9]

[53,130, [1]] shows that better alignment between the draft and target model gives higher acceptance
rate and hence higher speedup in speculative decoding. To align them, some common distillation
losses include supervised finetuning (FT) or sequence level Knowledge Distillation (KD) Lgpr(6) =



E(z,)~(x,Y) [— log g (y|z)], and supervised KD Lgp(0) = E(zy)~(x,v) [D(M,] |Mg)(y|gj)] with a
selected choice of divergence metric D.

3.1 Cross-vocabulary N-gram Cache

Normal speculative decoding is infeasible when the draft vocabulary V;, and target vocabulary V),
are different, since the rejection scheme relies on acceptance ratios evaluated on the same token
min(1, p(yi+:)/q(yi+:)) and the residual distribution norm(max(0, p(y¢+:) —q(ys+:))) also requires
per-token probability differences. This foreshadows two issues: 1) tokens without direct mapping
between the drafter vocabulary and target vocabulary cannot be handled i.e. the drafter can propose
tokens not recognized by the target or vice-versa. 2) target can “falsely” reject good tokens from the
drafter. This occurs when the drafter proposes a sequence of (sub-)tokens that constitute a merged
token/n-gram in target, but target rejects the sequence since it prioritizes the merged token over the
prefix sub-token. This is a byproduct of the tokenization process that optimizes for the longest token
in the vocabulary or sequentially applies merge rules to get the longest possible token ([47, 24} [7])).

UAG [45] addresses the first mismatch with a translation layer between the drafter and target and
derives the intersection of draft and target vocabularies, where tokens have direct mappings. During
proposal stage, UAG suppresses tokens outside of the intersection and converts drafter token ids to
target ids with the mapping. After verification, if a token without direct mapping is sampled, the
translation layer will invoke the target and draft tokenzier to map the target token to sub-tokens in
draft vocabulary. However, UAG cannot solve the second mismatch meaning it only guarantees
feasibility of cross-vocabulary speculative decoding but lacks in optimality.

To overcome this, we propose to build a cache of n-grams C that tracks the instances of target-draft
token translations. Denote target tokens ¢; € V,, and drafter tokens d; € V, then the n-grams
cache is C = {(t;, [d}] j=1.n) }, Where each element represents a mapped n-gram instance given the

matching context so far ctz,, d},ds, - -+, d!, = tokenize,(detokenize, (ctz,, t;)). In inference time,
we add a postprocessing (pp) stage at the translation layer, where we scan over the proposed draft
tokens dy, - - - , dy+r—1 and merge sub-tokens that hit the n-gram cache. The resulting new sequence
tey -+, tryrm and their draft probabilities ¢'(t;), - - - , ¢’ (t¢4m) Will be under the target vocabulary
space and follow the mapping rule

, di,q(d;) if direct mapping, t; <> d;
tid (t) = Y 1o okun(ld c e herwi 1)
ookup([d}]j=1:n,C),I]; a(dj) otherwise
This cross-vocabulary mapping translates the draft sequence to the target vocabulary space, ensuring
speculative decoding still functions well with per-token acceptance ratios min(1, p(t;44)/q (ts+i))-
From the perspective of the final matched text, p(t;) and []; q(d;) would be the probability of
producing that specific chunk of text in their respective tokenization space.

However, in the correction stage we require the full distribution for the residual distribution instead

of point-wise evaluation of probabilities, which is infeasible since p(-), ¢(-) work on different space.
Hence we enhance the mapping rule|l|as

I1; q(d;) 4 if n-gram mapped, t <> [d’]j=1.n 4
VteV,, @) =<qld)- [1;a(d;) prefix sub-token of n-gram, t = dj )
q(t) otherwise

We use the mapped probability for the selected n-gram but adjust the prefix sub-token probability
by subtracting the n-gram probability. This can be seen as approximately re-allocating the original
probability mass assigned to prefix sub-token d under the draft distribution ¢(-), between the “new”
n-gram token and the prefix sub-token under the modified draft distribution ¢’(-). This is also related
to the known problem of tokenization bias [37]]. Using mapping [2] we at least ensure point-wise,
approximate correctness of the n-gram token for the residual distribution norm(max (0, p(tz4i) —
q'(te+4))). Note that we can apply[2|to the n-grams sampled and matched from the current speculative
round. Evaluating all other n-grams require re-running drafter at the step of rejection which is
impractical. We summarize the modified speculative decoding with our proposed mappings in
Algorithm



Algorithm 1 Cross-vocabulary Speculative Decoding

1: Given draft model ¢(-), target model p(-), n-gram cache C
2: Given draft length k, max length T', prompt z

3: Initialize ¢ < 0, ctxg, ctx, < T

4: whilet<T do

5: fori=1:kdo

6: Sample draft auto-regressively di1; ~ q(diyi|ctzq, d<iti)

7:  end for

8:  Apply translation mapping [IP|to get m proposed tokens and draft probabilities in target space
9: teyo stepme1,¢ (te), -+ @ (Ferm—1)
10:  In parallel, compute target probabilities on mapped tokens
11 p(te), -, p(tegm)

12:  Apply rejection sampling with acceptance ratios min(1, p(¢;+;)/q’ (t;+:)) and correction
residual distributions norm(max(0, p(t:4+i) — ¢’ (t+14))) to get n accepted tokens

13: t, -+ ,t4+n—1 for some accepted length n

14:  if n == m then

15: Sample free token ¢;4,, ~ p(t;+m,) and add to accepted tokens, n <— m + 1
16:  end if

17:  Apply reverse translation to get accepted p tokens in draft space

18: ctxy,dy, -+, dirp—1 = tokenize, (detokenize, (ctzp, by, -+, titn—1))

19:  Add to n-gram cache C if there exists unseen n-gram instance
20: ¢ <t + n,update ctxg, ctz,

21: end while

22: Return results

3.2 Cross-vocabulary Distillation

Using the n-gram cache with the approximate distribution mapping helps to draft and verify n-gram
tokens as if operating under the target vocabulary directly. To extend it for online adaptation, we
propose a hybrid distillation framework that progressively aligns the draft and target model on both
direct mapping tokens and n-gram tokens. Given the online setting, we have limited access to the
target model so we distill on the draft model generated data, or simply on-policy data similar to
GKD [1]]. We employ reverse KL on direct mapping tokens for richer supervision signals, but use
maximum log-likelihood (NLL) on n-gram tokens since we only have reliable point-wise evaluation
of probabilities on those tokens. Overall, our proposed hybrid distillation loss is

Ccross_vocab_dislill(e) = »CDM(Q) + AﬁN—gram(a) (3)

= . %Nq(.) Dr1.(qpl|p) (i) Ipm(di) — Alog qo(di|x) In-gram (ds) 4

ti,q' <mapping(di,q)

where Zpn, IN.gram are the indicator functions to identify if current token is part of direct mapping or
n-gram,; this is implemented as binary masks in practice. Note that the KL loss term corresponds
to direct mapping token ¢; <> d;, and divergence is computed in the target vocabulary space given
q(+) is elevated to ¢'(-) via the translation mapping. The NLL loss term however operates in drafter
vocabulary space to increase likelihoods of drafter tokens which constitute an n-gram accepted by the
target during inference.

The parameter A can either be a hyperparameter to account for ratio imbalance between direct
mapping tokens and n-gram tokens, or can be a dynamic weight such as the verified target probability
of the n-gram. The latter leads to a loss term of AN gram(€) = —p(t;) log go(d;|x), which can be
treated as the point-wise KL evaluated on the n-gram token.

Moreover, it is possible to extend the NLL or point-wise KL loss to an approximate KL loss using
mapping 2| as Ln-gram = D .(qp(t:|x)||p(t:]x)). This is equivalent to using KL on the intersection
tokens plus the n-gram and it’s first sub-token. Due to the additional components on the intersection
tokens and the fist sub-token, this approximate KL loss can provide richer learning signal. Empirically
we only observed minimal improvement from the approximate KL loss, as shown in section[4.3.4]



3.3 Online Adaptive Drafting

One observation in performing cross-vocabulary speculative decoding is that we are implicitly
shortening the proposal draft length, since multiple sub-tokens map to a single n-gram token. We
then explicitly incorporate adaptive drafting to gain even better speedup for on-device speculative
decoding focusing on the same vocab setting. We adopt the framework in SpecDec++ [21] where
a lightweight head network f;(-) predicts the acceptance rate of the current proposed token. The
acceptance prediction head takes the embedding of the proposed token e; as input, and is trained
using weighted BCE loss Lyqap With acceptance ratios min(1, p(y;)/q(y;)) as labels. It then controls
if to early exist based on the cumulative probability of at least one proposed token getting rejected
and a given stopping threshold ~.

P(y; accepted|y; accepted) = sigmoid(fy(e;)) (5)
k
P(31 <i <k, st y;rejected) =1 — H P(y; accepted|y; accepted) (6)
i=1
P31 <i<k, st.y;rejected) >~y = exit (7)

However in online adaptation, the labels are subject to change since the draft model is continuously
finetuned with distillation loss Ly to align with the target, which could cause distribution shift for
dynamic drafting.

We propose two variants of online adaptive drafting. The first one performs draft model alignment and
acceptance prediction head training jointly at each update step Lioine = Luistint + Ladapt- The second
one interleaves two trainings such that we perform multiple acceptance prediction updates per draft
model alignment update, aiming to mimic slowly moving labels to reduce distribution shift. Unlike
the first variant that performs both updates jointly using the online data batch, for the second variant
we keep a larger buffer for the acceptance prediction updates which includes data from previous
batches. This helps to enhance training stability and adaptation speed for the acceptance prediction.

4 Results

Models To show the efficacy of OmniDraft on the setting of a single drafter for multiple targets, we
fix the drafter to be Llama-68M [32] and the target model to be Llama3-8B [17], Qwen2-7B [49] for
the cross vocabulary results, as well as Vicuna-7B [52] for the same family vocabulary evaluation.

Tasks We perform online distillation across 4 tasks: GSM8K [12], Alpaca [44]], XSum [36]and a
combined MBPP+HumanEval [4]][[10] datasets. Each task has a dedicated train and test set or we
slice out the a portion of the train set as the test set. For the MBPP+HumanEval, we combine the two
datasets to add some more diversity to the data for the coding tasks. The training is conducted for a
specific number of steps (<1 epoch) across each of the tasks as per general online adaptation setting.
All the tokens will contribute to the loss calculation including the tokens that were accepted by the
target as they would provide option for improved alignment between the two models. Moreover, all
experiments are performed with temperature 0.01, unless specified otherwise. We also include the
setting for online adaptation of the drafter using LoRA across all the tasks. Using dynamic adapter
switching we can pair the same drafter with any target across any of the task which is the ideal
scenario for on-device online speculative decoding.

Evaluation Metrics

* Speedup - Walltime acceleration rate, measures the improvement in tokens-per-second
throughput. We follow Medusa’s [8] convention.

* Acceptance Rate - Ratio of accepted tokens to proposed tokens averaged over speculative
decoding steps, measures alignment between draft and target model.

Notation We refer to SpD,,, as the baseline speculative decoding which uses direct mapping be-
tween vocabularies. N-gram postprocessing (pp) refers to using the N-gram cache as a postprocessing
technique without directly training on it as we proposed in Algorithm [I] N-gram hit refers to the
average number of successful N-gram cache lookups that were accepted by the target per speculative
decoding step.



4.1 Cross-vocabulary Online Distillation

Table |I| shows the results on the test set after training. Across all the tasks, Lpm + L£N-gram @approach
perform better than training only on Lpy. Overall, this indicates that the additional Ln_gram plays a
significant role in improving the acceptance rate. Moreover, Lpm + LN-gram With LoRA finetuning
performs reasonably well across all of the tasks when compared to the baseline. The largest speedup
is obtained for the GSM8K dataset for both the target models, with XSum being the least improved
task. We observe XSum could also be improved by increasing the number of training samples as a
scaling effect. Figure [2] portrays the training dynamics across all tasks for both the acceptance rate
and speedup metrics. For all the experiments, we can see the metrics improve as training proceeds.
The instability seen in some of the LoRA curves could indicate that training hyper-parameters are not
fully optimized or that training plateaus quicker for certain tasks, which could also explain why there
is still a small gap between the LoRA and the full finetuned model performance.

Table 1: Performance on Cross-vocabulary Distillation with Llama-68M and two different targets

GSMSK MBPP+HumanEval Alpaca XSum
Target Method
Acc Rate  Speedup AccRate Speedup AccRate Speedup AccRate Speedup

SpD s 0.10 0.94x 0.09 1.03x 0.09 0.96x 0.11 0.91x
Llama3-8B Lpwm 0.32 1.58x 0.22 1.26x 0.16 1.25x 0.20 1.20x
Lpm +ALN-gram 0.42 1.70x 0.27 1.33x 0.20 1.30x 0.24 1.24x
Lpm +ALN.gram + LORA 0.37 1.59x 0.19 1.28x 0.17 1.21x 0.23 1.21x
SpDp s 0.14 1.04x 0.09 0.91x 0.13 1.01x 0.12 0.96x
Qwen2-7B Lpm 0.33 1.50x 0.22 1.29x 0.17 1.25x 0.19 1.16x
Lpm +ALN-gram 0.37 1.61x 0.26 1.36x 0.20 1.30x 0.22 1.22x
Lom +ALN.gram + LORA 0.31 1.41x 0.21 1.21x 0.18 1.25x 0.22 1.21x
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Figure 2: Cross-vocabulary SpD online distillation on Llama-68M with Qwen2-7B as target

4.2 Online Adaptive Drafting

Table [2] shows the test results of online adaptive drafting with ablations to the different training
variants. Across all tasks we observe a consistent increase in acceptance rate. This is the combined
effect of better model alignment due to distillation, and also the acceptance prediction head learning
to exit early when there is a higher chance for proposal rejection

In terms of speedup, we can also see improvement in most tasks except on GSM8K where the
distill-only baseline outperforms both adaptive drafting variants. This could be due to the latency
reduction over the number of the proposed tokens are not sufficient in comparison to the increase in
successful accepted tokens with longer draft length. We hypothesize it could be due the difficulty in
training the acceptance prediction head in an online setting. This involves optimizing with respect to



changing labels and training only on incoming data without a stable corrective feedback compared to
offline training. By end of the one epoch training, the acceptance prediction head might not have
converged well to align with the current distilled drafter, leading to sub-optimal performance.

Finally, we also observe the interleaved variant has better speedup than the joint variant on average
(similar in Alpaca and Xsum, larger increment in GSM8K and MBPP+HumanEval). But the joint
variant has higher acceptance rates over all tasks, indicating it might be underestimating the acceptance
probability, leading to wrongful early exit. This could be a direct consequence of the previously
mentioned training challenges, which is alleviated with the interleaved variant with more stable
training.

Table 2: Performance on Online Adaptive Drafting with Llama-68M and Vicuna-7B.

GSMBK MBPP+HumanEval Alpaca XSum
Target Method
AccRate Speedup AccRate Speedup AccRate Speedup AccRate Speedup
SpD 0.21 1.44x 0.14 1.22x 0.20 1.44x 0.20 1.42x
Vicuna-7B Adapt Only 0.38 1.50x 0.28 1.34x 0.38 1.52x 0.38 1.51x
Distill Only 0.42 2.20x 0.35 1.92x 0.25 1.57x 0.23 1.53x
Joint Distill + Adapt 0.61 2.08x 0.51 1.91x 0.44 1.61x 0.42 1.59x
Interleaved Distill + Adapt 0.52 2.15x 0.48 1.94x 0.41 1.60x 0.38 1.58x

4.3 Ablations Studies
4.3.1 Scalability to Larger Target and Draft Models

We perform an ablation on scaling the target and draft model and compare the various metrics and
whether it follows a similar trend. As shown in Table we used a new family of LLMs, the Qwen2.5
series of models of larger sizes including 7B, 14B and 32B parameters. Datasets used are GSM8k
and MBPP+HumanEval. We also performed analysis on a larger drafter of size 160M parameters.
The performance on these larger models are consistent with our previous results, with larger target
models resulting in 2x improvement on the GSM8K dataset. The Omnidraft framework demonstrates
strong scalability as the size of the target LLM increases, as shown in the table. While the gap
between the drafter and the target model grows with model size, the drafter remains the limiting
factor. During training, the drafter progressively aligns with the target; however, once it reaches its
alignment capacity, further increase in target size continues to yield speedup improvements, while the
acceptance rate plateaus. Regarding the larger drafter, the Llama-160M parameter model was chosen
after taking into consideration the increased latency of around 3x of the drafter model compared
to Llama-68M. Overall, the larger drafter model does introduce a reduction in the overall speedup
across all target models, however, due to its enhanced potential capability, the acceptance rate does
improve across all the target models.

4.3.2 N-gram Cache Memory Footprint

We also analyzed the various cache size at the end of training for each of the reported tasks as shown
in Table[d] Overall n-gram cache size across tasks remain relatively small compared to the size of
the draft or target model. This indicates potential feasibility for on-device setting given the small
overhead.

4.3.3 Effectiveness of N-gram Cache

In this section, we focus on the impact of the N-gram cache to different training variants as per Table
[3l We perform ablation on a subset of GSM8K dataset (4k samples) across multiple techniques. It
can be seen that the baseline SpD,,;, performs poorly which indicates the mismatch between the
drafter and the target model alignment for the pretrained models. We also capture all the possible
N-gram matches during the SpD j,,, baseline for the train set, and then use the cache as a lookup
for an improved baseline in the SpD,,, + N-gram,, . As such there is a cache hit of 0.87, which
indicates that the baseline model without any pretraining can still benefit with the N-gram cache. We
also train the model to improve the alignment using Lpy and although without the N-gram, we can
still see a large improvement over the baseline. Moreover. when we train with N-gram,, , there is a
further improvement on the overall speedup. Finally, we train using both Lpm + ALN.gram, Which
provides the best results across all techniques on different draft length k.



Table 3: Comparison of Cross-vocabulary Distillation Performance with Llama-68M and Llama-160M across
three target models

Target Method GSMSK MBPP+HumanEval
Acc Rate  Speedup AccRate Speedup
SpD 5, (68M) 0.15 1.02x 0.10 0.94x
Lom +MCxgam (68M) 0401  1.66x 0.27 1.33x
Qwen2.5 7B SpD,,,, (160M) 0.18  070x 0.3  0.60x
Lom +Noxgram (160M)  0.47 1.12x 0.32 0.90x
SpD,,,, (68M) 0.15 1.17x 0.10 1.14x
Lom +MCngram (68M) 0407  192x 0272 1.57x
Qwen2.3 148 g - (160M) 0178 089 0.3  0.84x
Lom +MCxgam (160M) 0472 1.40x 0.33 1.19x
SpD,,,; (68M) 0.153 1.30x 0.10 1.23x
Lom +NCxgram (68M)  0.42 205x 0274  17Ix
Qwen2.5 328 SpD,,, (160M) 0.187 1.03x 0.133 0.97x
Lom +MCxgram (160M)  0.49 1.62x 0335  1.40x

Table 4: Summary of final N-gram cache size across tasks with Llama-68M drafter and Qwen2-7B target after
online inference and distillation. Cache memory (MB) is derived from pympler.asizeof.asizeof().

GSMS8K  MBPP+HumanEval Alpaca XSUM

Training Samples 7473 910 8000 4000
Cache Size (#n-grams) 5569 2238 20339 17013
Cache Memory (MB) 1.372 0.501 4.569 3.924

4.3.4 Distillation Loss Comparisons

The different loss variants also provide different levels of performance on the test set as shown in
Table @ When trained only on the £n_gram, the training is very unstable. This could either be due
to the number of n-grams being substantially smaller than the direct mapping tokens within most
datasets, or the training requires additional constraints to direct towards a minima. Consequently,
training on the combined loss provides better performance metrics across temperatures as well. The
final Lpm KL + ALN.gram KL, [2} provides slightly better results on temperature = 1 indicating the
impact of the additional KL over the intersection vocabulary which is beneficial for the sampling
process. However, we noticed tuning the scaling factor A becomes critical and hence we use Equation
[T]for all of the experiments since it was much more stable across all tasks. We fix a A = 0.2 for all
the tasks, across all experiments.

4.3.5 Adaptive Drafter Initialization and Thresholds

Two additional aspects in training and using adaptive drafting are the acceptance prediction head
initialization and the stopping threshold for early exit. Before the joint training of model distillation
and adaptive drafting, we can pretrain the acceptance prediction head on an offline dataset, while
keeping the drafter fixed. This should ideally capture some priors of the draft-target alignment and
provide a better initialization for the online joint training. To verify this, we pretrain the acceptance
prediction head on the Alpaca dataset for 1 and 3 epochs respectively, and use the two checkpoints as
initialization for online training. We observe mixed results where the pretrained initializations harm
performance on GSMS8K and XSum, and only improve on MBPP+HumanEval by small margins. We
suspect MBPP+HumanEval has a closer affinity in data distribution to Alpaca while the other two do
not, which leads to negative transfer with pretraining.

The stopping threshold ~ in adaptive drafting also plays a key role for speedup performance. In
Alpaca and XSum we observe a conservative threshold of v = 0.3 is sufficient to attain better
speedup than baselines, while in GSM8K and MBPP+HumanEval we need a more relaxed threshold



Table 5: Effect of n-grams cache with Llama-68M and Llama3-8B on GSMS8K (subset)

Metrics SpDpys SpDpys + N-gram,,, Lpm  Lom + N-gram,,,  Lpm + ALN-gram
k=3
Acc Rate 0.16 0.20 0.40 0.42 0.46
Speedup 1.04x 1.16x 1.59x 1.61x 1.66x
Avg n-gram hit 0 0.87 0 0.48 2.40
k=4
Acc Rate 0.12 0.16 0.32 0.35 0.41
Speedup 1.01x 1.11x 1.51x 1.54x 1.61x
Avg n-gram hit 0 1.49 0 0.75 3.66

Table 6: Training Loss comparisons with Llama-68M and Llama3-8B on GSM8K (subset)
Metrics EN-gram NLL ,CDM NLL + £N-gram NLL »CDM KL +»CN-gram NLL ,CDM KL + £N-gram KL

Temperature = 0.01

Acc Rate 0.090 0.368 0.375 0.376

Speedup 0.86x 1.51x 1.57x 1.57x
Temperature = 1

Acc Rate 0.070 0.271 0.273 0.275

Speedup 0.79x 1.23x 1.27x 1.31x

of v = 0.7 to achieve comparable speedup. We also observe applying a relaxed threshold on model
trained on a stricter threshold improves speedup performance, indicating adaptive drafting could be
prone to underestimating the maximum acceptance draft length. It also suggests the actual stopping
threshold to be used for inference should be chosen based on the task and then adjusted based on
online performance.

4.4 Limitations

While most of our results indicate the potential of our methodology and the OmniDraft framework,
some potential limitations still require additional research. 1) Although we are training on incoming
data for online adaptation of the drafter, since it is limited to a single iteration of the data stream, there
is still potential for instability on new unseen data. 2) We currently use the full n-gram cache per task
per target model, however, should memory become a bottleneck, it would require optimized cache
eviction policy to cater to edge devices. 3) Special tokens that do not have direct mapping currently
would require some additional effort to handle. Consequently, this would make it less seamless
to integrate multi-modal tasks. As part of our future plan of action, although cross-vocabulary
speculative decoding already implicitly includes the adaptive proposal length due to n-gram merge,
we are working towards incorporating an explicit adaptive head in the cross-vocabulary setting.

5 Conclusion

In this work we propose the OmniDraft framework that leverages n-gram cache and hybrid distillation
loss to enable cross-vocabulary speculative decoding. We show how the draft model can be aligned to
different target models with different vocabulary space via online adaptation, and we further showcase
online adaptive drafting to get additional speedup. Our empirical results also show good performance
across all metrics. Overall, OmniDraft shows great potential and could pave way to new on-device
LLM applications.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer:[Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Section 4.4 discusses the limitations of our methodology.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper focuses on enabling cross vocabulary online speculative decoding
and providing analysis and insights on the performances. There is no associated theoretical
proof.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This paper provides all the details of the experiments and the necessary
information for reporducibility. The details are provided in the appendix.
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Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: The paper uses open-source datasets, which are all available on huggingface.
Links to all datasets are provided. We definitely want to provide access to code. However, it
takes time for corporate legal team to review and approve. If reviewers feel necessary, we
will try our best to accelerate the process of releasing code

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer:[Yes]
Justification: All experimental details and results are provided
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We have a multitude of experiments done across different models and across
different tasks. However for the main tables in the graph, we have done the evaluation by
averaging 3 runs each with a different seed and reported the number in the main table. We
have also done some ablations on some experiments for further analysis.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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10.

Answer: [Yes]

Justification: All our experiements are done on a single NVIDIA-A100 40GB RAM GPU,
for both training and inference.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

« If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper provides research results and analysis on impact of cross vocab
online speculative decoding to speed up LLM inference. We do not see any negative societal
impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.
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* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: All the experiments conducted in the paper are based on open source datasets
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All references on data source are provided
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release any new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.
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* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.
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* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Implementation Details

This appendix provides detailed information about the implementation and training setup used in our
experiments.

A.1 Model and Hardware Details

Throughout our work, we use the environment setup with NVIDIA A100 GPU (40/80GB), PyTorch
2.1.0 framework, CUDA version 12.1, and Ubuntu 22.04 LTS. Our models used include Llama-68M
[32], Llama3-8B [17], Qwen2-7B [49] and Vicuna-7B [52]. We train the Llama-68M model in our
experiments. Their model details are listed in the following.

Table 7: Model hyperparameters

Hyperparameter Value
model Llama-68M
layers 2

hidden size 768
attention heads 12
activation function SiLU

Table 8: Model latency and vocabulary statistics

Model Wall-time per Step (s) Vocabulary Size Intersection with Llama-68M
Llama-68M 0.00203 32000 32000
Qwen2-7B 0.02667 152064 22275
Llama3-8B 0.02846 128256 22416
Vicuna-7B 0.02683 32000 32000

A.2 Training Details
Our experiments use GSM8K [12]], Alpaca [44], XSum [36] and a combined MBPP+HumanEval

[4[10] datasets. We also show the major hyperparameters used across the experiments. For evaluation,
we perform three runs with different seeds and report the average in the main results sections.

Table 9: Dataset details

Dataset GSMS8K MBPP+HumanEval Alpaca XSum
train 8K 1K 8K 4K/8K
test 200 228 100 100

Table 10: Training hyperparameters

Hyperparameter Value
batch size 8
learning rate (LR)  le-4/2e-5
LR scheduler constant

optimizer AdamW
51 0.9
Ba 0.999
weight decay 0.01/0
epochs 1 (online)
mixed precision FP16
LoRA rank 32
temperature 0.01
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B Additional Experiment Details

B.1 Speedup Metric

We follow the convention in Medusa [8] to define the speedup metric. Given acceleration rate as the
average number of tokens decoded per decoding step and overhead as the average per step latency of
the proposed model divided by that of the vanilla model, speedup refers to the wall-time acceleration
rate and can be computed with speedup = acceleration rate/overhead.

B.2 Adaptive Drafting Training

We show the training curves for adaptive drafting across all tasks. It can be seen that our proposed
variants of joint or interleaved align + adapt training have the best performances in both average
acceptance rate ans speedup.
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Figure 3: Online Adaptive Drafting training plot of Llama-68M vs Vicuna-7B

B.3 Adaptive Drafting LoRA Training

To showcase the idea of “one drafter for all”, we further show results of online adaptive drafting with
LoRA used in distillation in Table[TT] We observe slightly lower performances across tasks compared
to distillation with full fine-tuning as expected. But each of the distillation or distillation with adaptive
drafting baseline with LoRA still outperforms normal speculative decoding. And distillation with
adaptive drafting outperforms the distillation only baseline, except on GSM8K where the gap is
minimal.

By demonstrating the compatibility of LoRA with our proposed online distillation and adaptive
drafting training, we empower a single draft model to serve as the backbone and selectively fine-tune
LoRA modules and acceptance prediction heads for any potential target model. This would strike a
good balance to keep minimal memory overhead while retaining the benefits of greater speedup and
flexibility, which are ideal for on-device applications.

Table 11: Performance on Online Adaptive Drafting using LoRA with rank 32 with Llama-68M and Vicuna-7B.

T GSMSK MBPP+HumanEval Alpaca XSum
arget Method
Acc Rate  Speedup AccRate Speedup AccRate Speedup AccRate Speedup
SpD 0.21 1.44x 0.14 1.22x 0.20 1.44x 0.20 1.42x
Vicuna-7B LoRA Distill Only 0.37 1.95x 0.24 1.52x 0.25 1.54x 0.23 1.49x
Joint LoRA Distill + Adapt 0.49 1.87x 0.39 1.59x 0.39 1.58x 0.41 1.54x
Interleaved LoRA Distill + Adapt 0.49 1.94x 0.38 1.61x 0.42 1.58x 0.39 1.55x
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B.4 Cross-vocabulary SpD online distillation on Llama-68M with Llama3-8B as target

Figure d]showcases the training dynamics of Llama-68M with Llama3-8B as the target model. Similar
to the previous Figure 2] the pattern is very much matched. Overall, across all the tasks, our methods
are able to improve upon the SpD baseline significantly as training progresses.
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Figure 4: Cross-vocabulary SpD online distillation on Llama-68M with Llama3-8B as target

B.5 Rank ablation for Cross-vocabulary online distillation of LoRA

We also ablate on the rank for the LoRA experiments, specifically focussed on the Lpy +ALN-gram
+ LoRA method. As shown in the Table@ it is clear that as the rank increases, performance also
improves, but beyond rank 32, there is a diminishing return in terms of overall improvement. As such
we choose a conservative rank of 32 across all our experiments, tasks and methodologies. Moreover,
for the “one drafter for all” setting, folding of the LoRA weights is infeasible and as such having a
lower rank would benefit the overall memory and compute required for the drafter model on-device.

Table 12: Effect of rank for Lpm +ALN-gram + LORA for Llama-68M and Llama3-8B on GSM8SK

Metrics \ LoRA Rank 8 16 32 64 128
Acc Rate 0.30 0.34 0.37 0.38 0.38
Speedup 1.478x  1.543x  1.595x 1.625x  1.632x

B.6 Distribution Shift

B.6.1 Heterogeneous Dataset Shift

We also ablated on dataset distribution shift and data heterogeneity. We analyzed our training
framework by starting the training on the GSM8K dataset and after around 1k steps, shifting to a
new data distribution of MBPP+HumanEval Mix. As shown in Figure [5] initially, both speedup
and acceptance rate show a steady upward trend, indicating that the model is learning effectively
and becoming more efficient. At step 1000, we introduce a new dataset with a different distribution
which causes a sharp drop in both acceptance rate and speedup, highlighting the impact of this
shift. However, following this disruption, both metrics begin to gradually recover, demonstrating the
model’s ability to adapt to the new data distribution over time. Additionally, when using our n-gram
cache, the recovery seems to be much better and larger when compared to no cache. Finally, when
comparing to the model that was solely trained on MBPP+HumanEval mix dataset, the model is able
to slowly reach similar performance on both metrics. Overall, using our n-gram cache and despite the
distribution shift, the model is showing resilience and adaptability to the new dataset.

24



| Transition Point

o 250 500 750 1000 1250 1500 1750 2000
Training Steps

| Transition Point

Acceptance Rate

o 250 500 750 1000 1250 1500 1750 2000
—— Without N-gram Cache
—— With N-gram Cache

Figure 5: Dataset Drift tracking during training by switching the dataset from GSMSK to
MBPP+HumanEval at Step 1000 for Llama-60M vs Qwen-2.5-7B model

B.6.2 Target Model Shift

To further understand the impact of target model drift during training, We conducted empirical
analysis on target switching between Qwen2.5 7B and 14B at arbitrary step intervals (e.g., 14B —
7B — 14B) As shown in Figure [6] our observations indicate that the drafter model is able to re-align
seamlessly after each switch. Notably, switching to the 7B model yields reduced speedup due to
its lower drafter latency, while maintaining alignment quality. This behavior is largely attributed to
the fact that the target models belong to the same model family and as such the drafter is able to
continually align during training. We also evaluated the impact of enabling the n-gram cache during
target switching. Results show that the drafter recovers alignment quickly when the cache is enabled.
However, in scenarios involving cross-family model swaps, a new n-gram cache is preferred due
to differences in tokenization. In such cases, a simple distribution shift is insufficient to maintain
alignment.

Speedup

< Transition Point |« Transition Point

8

< Transition Point |« Transition Point

400 600 800
—— Without N-gram Cache
—— With N-gram Cache

Figure 6: Model Drift tracking during training by switching the target model from 14B to 7B and
back to 14B at step 300 and step 600, with Llama-68M as drafter
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C Additional Algorithm Details

We show the detailed algorithm for cross-vocabulary distillation in Algorithm[2} The online distillation
training leverages our proposed cross-vocabulary speculative decoding in inference or data collection,
and uses the hybrid distillation loss to update the draft model.

Algorithm 2 Cross-vocabulary Distillation

1: Given target p(+), drafter ¢o(-), online data stream S, data buffer Q, update interval I.
2: 1,9+ 0,{}
3: while True do

4. x~Si+i+1

5:  Get aresponse y with cross-vocabulary speculative decoding as in Algorithm [I]
6:  Append (z,y) to Q

7. ifi mod I == 0 then

8: Update gy on Q with hybrid distillation 10ss L¢ross_vocab,_distin (6)

9: Q<+ {}
10:  endif

11: end while

We show the detailed algorithms for the two variants of online adaptive drafting training in Algorithm
and The distillation loss Lgisin(6) uses KL divergence on generated response tokens. The
adaptive drafting loss Laqapt(¢) is a weighted BCE loss between the acceptance prediction head
outputs and acceptance ratio labels constructed from the target model p and current draft model .

Algorithm 3 Online Adaptive Drafting — Joint Training

1: Given target p(-), drafter gy(-), acceptance prediction head f,(-), online data stream S, data
buffer Q, update interval .

2: 3,9+ 0,{}

3: while True do

4 r~Si+i+1

5:  Get aresponse y with speculative decoding using adaptive drafting
6:  Push (z,y) to Q

7. ifi mod I == 0 then

8: Update gy on Q with distillation loss Lgisin(6)

9: Compute labels I = min(1, p(y)/qe(y)) on (z,y) € Q
10: Update fy on {(x,y,1)} o with adaptive drafting 1oss Ladapt(¢)
11: Q<+ {}
12 endif

13: end while

D Cross-vocabulary N-gram Cache Ablations

D.1 N-gram distributions

To showcase the captured n-grams during our cross-vocabulary speculative decoding, we collect
the n-gram cache across tasks after online training with the hybrid distillation losses. We plot the
distribution of the n-gram counts with respect to the frequencies they are encountered in Figure[7]
We include n-grams with maximum frequency of 3000 and use a log-scale of the n-gram counts
for cleaner visualization. N-grams with higher frequencies over 3000 typically represents a group
of delimiters such as spaces and newline characters that are used for formatting. Besides these,
we can observe a clear long-tail distribution for more frequent n-grams. Although the majority
of n-grams have low frequencies which are not guaranteed to re-appear in future data stream, the
long-tail frequency n-grams still have non-trivial contribution and can be utilized to speed up the
cross-vocabulary speculative decoding process. We also notice the frequent n-grams constitute a
higher percentage in the MBPP+HumanEval domain, despite having smaller dataset size. It indicates
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Algorithm 4 Online Adaptive Drafting — Interleaved Training

1: Given target p(-), drafter gy(-), acceptance prediction head f,4(-), online data stream S, distillation
data buffer Q, adaptive drafting data buffer R with max size IV, batch size B, update interval I.

24, QR 0,{},{}
3: while True do
4 z~Si+—i+1
5:  Get aresponse y with speculative decoding using adaptive drafting
6:  Push (z,y) to Q
7. ifi mod I == 0 then
8: Update gg on Q with distillation loss Lgisin (6)
9: Push Qto R
10: if |R| > N then
11: Evict early data from R
12: end if
13: Q<+ {}
14:  else
15: Sample abatch Rp € R
16: Compute labels I = min(1, p(y)/qs(y)) on (z,y) € Rp
17: Update f, on {(z,y,1)} s with adaptive drafting loss L,dapt(¢)
18:  endif

19: end while

the n-gram cache technique for cross-vocabulary speculative decoding can be more effective in
well-structured domain like coding.
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Figure 7: Cross-vocabulary N-gram Distributions of Llama-68M and Qwen2-7B

D.2 N-gram inference examples

Next in Table [I3] we show examples of the n-grams being used from the cache during inference
in different tasks. The n-gram examples are extracted from actual samples in the datasets with
Llama-68M and Qwen2-7B, given a draft length of 4 each proposal or speculative decoding step.
Pink tokens represent tokens with direct mapping between the drafter vocabulary and target vo-
cabulary. Yellow tokens represent sub-tokens in the drafter space and the corresponding n-gram
tokens in the target space, which are mapped via cache lookup. Lime tokens represent those that
are accepted by the target model after verification. Note that even with the mapping, the proposed
n-gram tokens are not guaranteed to be accepted and require cross-vocabulary distillation to further
align their distributions with the target.
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Proposed Tokens (Drafter Vocab) Mapped Tokens (Target Vocab) Accepted Tokens
GSMSK
There , fore, ,, there Therefore , ,, there -
appoint , ments , ., Since appointments , ., Since appointments
of, qu, izz, es of , quizzes -

distance , tra, ve, led

distance , traveled

distance , traveled

_, to, _, sw
asc, ending , order, .
=, C, ounter, (

test, _, sol, ution

MBPP+HumanEval

to

= s =

ascending , order , .

SW

=, Counter, (

test , _solution

ascending , order
=, Counter, (

Future , of , A, I

of , Int, ellig, ent
most , common , n, oun

Imp, act, :, **

Alpaca

Future , of , Al
of , Intelligent
most , common , noun
Impact , :**

most, common , noun
Impact

an, off , ender, .
is, on, going , .
Ins, pect, or, David
and , thank , ed, the

XSum

an , offender, .
is , ongoing , .
Inspector , David
and , thanked , the

an, offender, .
is, ongoing , .
Inspector

Table 13: Examples of N-gram Cache Across Tasks. Each row represents one cross-vocabulary
speculative decoding step/proposal extracted from the inference results on the data test set (no
sequential order between rows). Drafter proposes 4 tokens each time, which are mapped to the target

space either as direct mapping tokens or as merged n-gram tokens . Target model then verifies

the mapped tokens to get the final accepted tokens , plus any correction token from the residual
distribution or a sampled free token if all mapped tokens are accepted. We also denote no token being

@ 9

accepted as “-”.
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D.3 N-gram learning

Ngram Hit

Acceptance Ratio

—— temperature-0.01 —— temperature-0.2 - temperature-0.5 —— temperature-0.99

Figure 8: Evolution of n-gram tokens learning with Llama-68M and Llama3-8B on
MBPP+HumanEval dataset. N-gram hit refers to the number of n-grams proposed by drafter
in each response, averaged over query samples. Acceptance ratio refers to the quantity min(1,p/q)
in speculative decoding, it is averaged over proposal steps with an n-gram token and is indicative of
the distribution alignment between the drafter and target. These two metrics show cross-vocabulary
distillation learns to slowly align n-gram distributions to the target and utilize them more in inference.

From Figure @ it can be seen that during the training of Lpm +ALN_gram 01 MBPP+HumanEval
dataset, the average acceptance ratio for the n-grams is steadily improving, showing the impact of
the loss function for better alignment of the n-grams. Furthermore, the impact is clearly visible even
across different temperatures. Similarly as training progresses, the average number of successful
cache hit for n-gram tokens per query is also improving.

D.4 N-gram Cache Growth Rate
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Figure 9: N-gram cache growth rate for Llama-68M drafter and Qwen2-7B target on GSM8K (4K
subset) and MBPP+HumanEval datasets.

From Figure 0] We can define the growth rate of the N-gram cache to be growth_rate =
cache_size/training_tokens. From the tables, we can observe that the cache grows sub-linearly
with number of tokens processed in online learning. The growth rate of the N-gram cache can also be
seen to continually decrease.
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D.5 N-gram Cache Scalability

Table[T4]indicates how speedup is impacted by different max cache size and cache eviction policies:
Least Recently Used (LRU) that evicts the n-gram that hasn’t been accessed for the longest time,
Least Frequently Used (LFU) that removes the n-gram with the lowest access frequency. “1/4" and
“1/2" refer to using max cache size as a quarter and half of the full final cache size that we previously
trained.

Among all eviction policies and max cache sizes, both evaluation metrics are better than using no
cache. Specifically LRU shows diminishing returns over the growth of the cache. Meanwhile LFU
plateaus at an earlier stage, with performance matching the full cache even with a quarter of the size.
This could be due to LFU capturing most of the high frequency and important n-grams, compared to
LRU which only captures the recent n-grams. In the context of on-device deployment, this implies
with proper selection of cache size and eviction strategy, we can potentially attain robust performance
given only constrained memory resources, highlighting the practical feasibility of our approach.

Table 14: Cache size scaling on MBPP+HumanEval
Cache Size  Cache Type Acc Rate  Speedup

No Cache - 0.219 1.29x
1/4 LRU 0.254 1.33x
LFU 0.259 1.36x

12 LRU 0.261 1.35x
LFU 0.263 1.36x

Full Cache - 0.267 1.36x
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