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CREST: Cross-modal Resonance through Evidential Deep
Learning for Enhanced Zero-Shot Learning

Anonymous Author(s)

ABSTRACT
Zero-shot learning (ZSL) enables the recognition of novel classes by
leveraging semantic knowledge transfer from known to unknown
categories. This knowledge, typically encapsulated in attribute de-
scriptions, aids in identifying class-specific visual features, thus
facilitating visual-semantic alignment and improving ZSL perfor-
mance. However, real-world challenges such as distribution imbal-
ances and attribute co-occurrence among instances often hinder the
discernment of local variances in images, a problem exacerbated
by the scarcity of fine-grained, region-specific attribute annota-
tions. Moreover, the variability in visual presentation within cate-
gories can also skew attribute-category associations. In response,
we propose a bidirectional cross-modal ZSL approach CREST. It
begins by extracting representations for attribute and visual local-
ization and employs Evidential Deep Learning (EDL) to measure
underlying epistemic uncertainty, thereby enhancing the model’s
resilience against hard negatives. CREST incorporates dual learning
pathways, focusing on both visual-category and attribute-category
alignments, to ensure robust correlation between latent and ob-
servable spaces. Moreover, we introduce an uncertainty-informed
cross-modal fusion technique to refine visual-attribute inference.
Extensive experiments demonstrate our model’s effectiveness and
unique explainability across multiple datasets. Our code and data
are available at: https://anonymous.4open.science/r/CREST-1CEC.

CCS CONCEPTS
• Computing methodologies→ Learning paradigms.

KEYWORDS
Zero-Shot Learning, Multimodality, Evidential Deep Learning, Con-
trastive Learning

1 INTRODUCTION
Humans frequently possess the talent to grasp novel concepts rely-
ing on prior experience without the need to see them beforehand.
For instance, a peacock is commonly known as a bird with a col-
orful fan-shaped tail; if individuals have previous knowledge of
birds and fans, they can quickly identify a peacock. However, unlike
humans, widely used and studied supervised deep learning models
are typically limited to classifying samples belonging to categories
seen during training, lacking the capacity to handle samples from
unseen categories during training, thus lacking generality and flex-
ibility. Therefore, to further advance Artificial General Intelligence
(AGI) [4] and achieve true implementation, Zero-Shot Learning
(ZSL) was introduced to identify new classes by leveraging inherent
semantic relationships during learning [19, 33–35, 44]. It is already
extensively applied in tasks with broad real-world applications,
e.g., image classification [18, 63], semantic segmentation [5, 17],
video understanding [66, 71], 3D generation [29, 67], etc., which

VSArt Gallery Arcade

(a)

VS Hotel

(b)

Hotel with Room

Figure 1: Challenges in instance-level recognition in the
real world: (a) Attributes distribution imbalances—significant
frequency differences among attributes; (b) Attributes co-
occurrence—tendency of certain attributes to appear together,
influencing model bias (further statistical details are avail-
able in the Supplementary Material).

also contributes significantly to the robust development of Large
Language Models (LLMs) [31, 58] and Embodied AI [26, 56].

In ZSL, attributes stand as key semantic descriptors for visual
features of images, representing a widely embraced form of an-
notation. Unfortunately, the attribute annotations are more often
categorical rather than regional [13]. Dense attention interactions
do not guarantee that models directly grasp the correspondence
between local visual-semantic information and categories, nor do
they alleviate the model’s epistemic uncertainty when confronted
with unseen categories [51]. That is because the skewed distribu-
tion of attributes in the real world, as well as the issues arising from
attribute co-occurrence shown in Figure 1.

Existing methods overlook the importance of aligning regional
features with categories. Models may link specific attributes, like a
red bird’s bill, to "bill color red" but struggle to deduce the bird’s
species. This challenge is compounded as attributes across species
are often intertwined. Furthermore, real-world images of the same
category vary significantly due to factors like camera angles, back-
ground, distances, lights and the motions, making it difficult for
dense attention to learn hard category-matching patterns. This can
increase epistemic uncertainty when merging features for infer-
ence, potentially exacerbating modal conflicts and impairing model
performance [65].

To this end, we integrate Evidential Deep Learning (EDL) [51]
into ZSL for the first time, leading to a novel framework, named
Cross-modal Resonance through Evidential Deep Learning for En-
hanced Zero-ShoT Learning, termed as CREST. Specifically, we
employ the Visual Grounding Transformer (VGT) and the Attribute
Grounding Transformer (AGT) to extract bidirectional, region-
level features from images and attributes. Unlike conventional ap-
proaches that simply adjust distances within the representation
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space based on category [13], our strategy addresses vision vari-
ability and feature-category alignment directly. We first introduce
instance-level contrastive learning for adaptive vision alignment
and employ a technique similar to non-maximum suppression to
reduce attribute overlap between categories, facilitating deeper
attribute-category insights. To counteract the potential degrada-
tion from hard-negative samples [48], we apply EDL for epistemic
uncertainty measure and develop an uncertainty-driven fusion
method [23, 24, 38, 65]. This enhances the model’s generalization
in downstream tasks by merging semantic knowledge across repre-
sentation spaces. To summarize, our contributions are as follows:

• We propose CREST, a novel ZSL framework that consid-
ers bidirectional cross-modal representations of attributes
and visual features. Moreover, it leverages dual learning
pathways, focusing on both visual-category and attribute-
category alignments, learning implicit matching patterns
between features and categories from fine-grained visual
elements and attribute texts.

• To the best of our knowledge, CREST is the first in ZSL to
apply EDL for measuring epistemic uncertainty and miti-
gating potential conflicts in cross-modal fusion.

• Extensive experiments show that CREST performs competi-
tively on three well-known ZSL benchmarks, i.e., CUB [59],
SUN [46], and AWA2 [60]. Comprehensive ablations and
analyses further validate the effectiveness and explainabil-
ity of our approach.

2 RELATEDWORK
2.1 Zero-shot learning
ZSL can be classified into two main categories based on the classes
encountered during the testing phase: Conventional ZSL (CZSL)
and Generalized ZSL (GZSL), where CZSL is designed to predict
classes that have not been seen during training, whereas GZSL ex-
tends its predictive capability to both seen and unseen classes [60].
The core concept of ZSL revolves around learning discriminative
and transferable visual features based on semantic information, e.g.,
attribute descriptions [34], sentence embeddings [49], and DNA [2],
enabling effective visual-semantic interactions. Among these, at-
tributes stand out as the most commonly used semantic information
within ZSL. Early research focused on harnessing visual-semantic
interactions to transfer knowledge to unseen categories [1, 37, 55].
These initial attempts, particularly through embedding-based meth-
ods, entailed learning a mapping between seen categories and their
corresponding semantic vectors, followed by employing nearest
neighbor searches within the embedding space to classify unseen
categories [68, 70]. Since they primarily rely on seen category sam-
ples, the effectiveness was significantly limited due to a bias towards
these categories, exacerbating the challenge in GZSL. Novel regu-
larization and space modification strategies have been developed to
improve ZSL model generalization [36, 45, 54]. Generative models,
including VAEs [11, 12, 50, 57], GANs [10, 21, 61, 63], and gen-
erative flows [53, 74], synthetically enhance feature spaces with
unseen class characteristics. These methods, aiming to bridge the
domain gap, reframes ZSL as a supervised task by providing a
means to compensate for the lack of unseen class data. Despite
progress, these methods often neglect localized visual cues in favor

of global information, overlooking the nuanced, fine-grained at-
tributes essential for dissecting complex semantic categories [6, 14].
This oversight weakens the visual representations obtained, di-
minishing the efficacy of the visual-semantic knowledge transfer.
Subsequently, intricate attentions are integrated into ZSL to priori-
tize salient features and attributes, improving model discernment
[16, 28, 32, 39, 43, 75]. And Recent studies have started experi-
menting with the deployment of intricate attention to engage with
region-level visual-attribute features [6–8, 13]. These methods high-
light distinctive, fine-grained features, evolving towards complex
attention modules for deeper semantic understanding. However,
due to instance-level visual variability and inter-class attribute
coupling, fine-grained representations may not guarantee accurate
feature-to-category matching. This paper delves into aligning latent
feature and category spaces.

2.2 Evidential Deep Learning for Classification
EDL enhances machine learning by enabling models to quantify un-
certainty, thus bolstering reliability and interpretability. Grounded
in subjective logic principles [30], EDL has emerged as a response to
the challenges of model confidence and uncertainty, as highlighted
in neural network calibration issues by [20]. The framework’s util-
ity was further solidified by [51], which introduced a method to
quantify classification uncertainty, significantly increasing deep
learning model trustworthiness. The adaptability of EDL to vari-
ous data contexts has been demonstrated through applications like
open set action recognition [3], signifying its efficacy in handling
new and unseen data types. The scope of EDL further expanded to
multi-view classification [23], showcasing its ability to integrate
and reason with information from multiple sources. This integra-
tionwas further enhanced by introducing dynamic evidential fusion
[24], highlighting EDL’s adaptability in complex data environments.

Recent advancements, such as adaptive EDL for semi-supervised
learning [72] and its application in multimodal decision-making
[52], havemarked EDL’s progression towards addressing real-world
data challenges. Additionally, [65] illustrates EDL’s potential in con-
flictive multi-view learning scenarios, reinforcing its capacity to
support reliable decision-making across diverse applications. In ZSL,
there exists epistemic uncertainty in the gap between region-level
fine-grained latent space and category space. Moreover, dual-stream
visual-attribute interactions do not necessarily align representation
spaces. Therefore, we apply EDL to assess feature-category align-
ment uncertainties independently and introduces an uncertainty-
driven fusion framework for coherent visual-attribute inference.

3 METHODOLOGY
3.1 Problem Definition
ZSL equips models to recognize targets in unseen categories. The
training set, 𝐷𝑠 = {(𝑥𝑠 , 𝑦𝑠 ) |𝑥𝑠 ∈ X𝑠 , 𝑦𝑠 ∈ Y𝑠 }, consists of sam-
ples from known categories, with 𝑥𝑠 as images labeled 𝑦𝑠 . The set
𝐷𝑢 = {(𝑥𝑢 , 𝑦𝑢 ) |𝑥𝑢 ∈ X𝑢 , 𝑦𝑢 ∈ Y𝑢 } captures samples from new
categories. With Y𝑢 and Y𝑠 distinct, each 𝑦 aligns with a category
𝑐 ∈ C = C𝑠 ∪ C𝑢 . This framework leverages attribute information
from C𝑠 for knowledge transfer to C𝑢 . Assuming predefined at-
tributes for each category, quantified as either continuous or binary
values, the dataset’s attribute space is A = {𝑎1, . . . , 𝑎 |A | }. Each
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Figure 2: The CREST model’s architecture is depicted in Figure 2, initiating with modules (a) and (b) that perform bidirectional
grounding to localize features within visuals and attributes. Following this, modules (c) and (d) engage in dual learning to align
visual-category and attribute-category in the latent space. The process concludes with an uncertainty-driven fusion module (e),
which integrates bidirectional evidence to enable robust visual-attribute inference.

category’s attribute profile, 𝑐 , is depicted by 𝑧𝑐 = [𝑧𝑐1, . . . , 𝑧
𝑐
|A | ]

⊤,
reflecting the value of each associated attribute.

3.2 Cross-modal Feature Extraction
Feature Extraction: Attributes and Vision.We extract textual
features using the pre-trained GloVe model[47], while employing
ResNet-101[25] as the CNN backbone to distill visual features from
images (as depicted in Figure 2(a)(b)). These features support the
development of a bidirectional grounding Transformer.

Bidirectional Grounding Transformer. In the decoding phase,
the VGT and AGT refine visual and semantic attributes, respectively.
The VGT attend semantic features to localize relevant image re-
gions, whereas the AGT interprets semantic information through
regional visual features. Both decoders employ a streamlined cross-
attention module, with the encoder output𝑈 serving as keys 𝐾 and
values 𝑉 , and semantic embeddings as queries 𝑄 . This methodol-
ogy establishes a bidirectional link between images and attributes,

enhancing the recognition of unseen categories. The process is
concisely described as follows:

𝐾 = 𝑈𝑊𝑘 , 𝑉 = 𝑈𝑊𝑣, 𝑄 = 𝑉𝑊𝑞,

𝐹 = SoftMax

(
𝑄𝐾⊤√︁
𝑑𝑘

)
𝑉 , (1)

where𝑊𝑞 ,𝑊𝑘 ,𝑊𝑣 are the learnable weights in cross attention, 𝑑𝑘
represents the dimension of the features. After 𝑛 layers of iteration,
the output 𝐹 is transformed by a FeedForward layer:

𝐹𝑉 = ReLU
((
𝐹𝑊1 + 𝑏1

)
𝑊2 + 𝑏2

)
. (2)

The AGT structure is analogous to the VGT, differing only in the
modalities employed as queries in the cross-attention modules.
Overall, the features of attribute and visual localization 𝐹𝐴, 𝐹𝑉 can
be respectively captured through the application of AGT and VGT.

3
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Figure 3: The Birds of an identical category (i.e. black-footed
albatross) captured in varying angles, backgrounds, distances,
illumination, motions, etc. illustrating the dynamic nature
of vision variability.

3.3 Vision Instance-level Contrastive Learning
Generally speaking, existing methods achieve implicit alignment
with the categorical space by mapping latent semantic matches in
text to relevant visual regions in images, subsequently employing
fine-grained embeddings. However, in the real world, the images
captured often exhibit visual variability due to factors such as an-
gles, backgrounds, distances, illumination, and motion (as shown
in Figure 3). This variability significantly diminishes the practical
effectiveness of textual semantics since the fine-grained visual rep-
resentations derived from text may not necessarily correspond to
the typical categories intended. Conversely, subjects from different
categories might appear visually similar due to these influencing
factors. To foster proximity among similar entities and distance
among distinct categories in the representational space, some ap-
proaches might consider employing intra-group category labels for
supervision. This method, however, could yield suboptimal solu-
tions due to the vision variability present in an open-world scenario.
To this end, we propose the Visual Instance-level Contrastive Learn-
ing (VICL) to mitigate the gap between fine-grained visual latent
space and intra-category space.

LVICL = E𝑥∼X𝑠 [− log 𝑓𝜃 (𝑣 | 𝑠, 𝑥)] , (3)

𝑓𝜃 =
exp

(
𝐷

(
𝑣, 𝑣+

)
/𝜏

)
exp (𝐷 (𝑣, 𝑣+) /𝜏) + ∑

�̃�−∈N(�̃�) exp (𝐷 (𝑣, 𝑣−) /𝜏) , (4)

where 𝑣 , 𝑣+ and 𝑣− represent a candidate positive sample, its pos-
itive sample and negative sample respectively. And we adopt a
strategy that adjusts for intra-category visual variability through a
similarity-based selection of positive samples. Given a batch, the
similarity score 𝐷 (𝑣, 𝑣+) is computed. If no intra-category sample
resemble the candidate, we then identify the similar samples across
the batch to serve as the positive samples, irrespective of category,
based on the similarity score. This approach enables the model to
maintain category coherence despite visual discrepancies.

3.4 Decoupled Insight for Grounding Semantics
Traditional methods typically align attribute features with visual
features in a straightforward manner to achieve recognition out-
comes. However, as illustrated in Figure 4, where attributes cou-
pling across categories, posing challenges to accurate identifica-
tion. As shown in Figure 2(d), similar visual regions can share the
same attributes and intensify the challenges. Hence, we propose
Decoupled Insight for Grounding Semantics (DIGS) loss and lever-
age a Meta-Pattern Bank to develop an auxiliary sparse attention

Brown

White

Brown

Long and 

Brown

Short and 

Red

Long and 

Brown

Throat

Bill

Figure 4: Illustration of attribute coupling across bird species,
highlighting shared and divergent traits.

module Φ ∈ R𝜙×𝑑 , where 𝜙 and 𝑑 (𝑑 < |A|) respectively represents
the total number of memory pattern vectors and their dimensional
attributes.

𝑄 (𝑖 ) = 𝐹𝐴𝑖 𝑊𝑄 + 𝑏𝑄 ,

𝑎
(𝑖 )
𝑗

=
exp(𝑄 (𝑖 )Φ[ 𝑗]⊤)∑𝜙
𝑘=1 exp(𝑄

(𝑖 )Φ[𝑘]⊤)
,

𝑉
(𝑖 )
∗ =

∑︁𝜙

𝑗=1
𝑎
(𝑖 )
𝑗

Φ[ 𝑗] .

(5)

Specifically, in a batch with 𝑁 samples, our model uses the AGT
to map the ℎ-dimensional features 𝐹𝐴 ∈ R𝑁×ℎ to the queries 𝑄 ∈
R𝑁×𝑑 in the latent space of a meta pattern bank with𝑊𝑄 ∈ Rℎ×𝑑
and bias 𝑏𝑄 ∈ Rℎ×𝑑 . These queries compute similarity scores with
pattern vectors Φ via dot products. Equation 5 delineates the trans-
formation where 𝑄 (𝑖 ) = 𝐹𝐴

𝑖
𝑊𝑄 + 𝑏𝑄 generates the attention score

𝑎
(𝑖 )
𝑗

that leads to the sparse attention-weighted feature vector𝑉 (𝑖 )
∗ .

This vector is subsequently remapped to the latent space of 𝐹𝐴 ,
and directly added to it, enhancing the feature set by integrating
the weighted information from the latent space. To decouple the
attribute-category mapping in this latent space, we embrace the
DIGS loss inspired by non-maximum suppression (NMS). It operates
on two fronts:

(i). The triplet loss component incentivizes the distinction be-
tween the closest and second-closest memory pattern vectors. Let
𝑄 (𝑖 ) be the query representation for the 𝑖-th example, Φ[𝑝] the
most similar memory pattern (positive sample), and Φ[𝑛] the sec-
ond most similar memory pattern (negative sample). The triplet
loss is then defined as:

Ltp =

𝑁∑︁
𝑖=1

max
(𝑄 (𝑖 ) − Φ[𝑝]

2 − 𝑄 (𝑖 ) − Φ[𝑛]
2 + 𝜆, 0) , (6)

where 𝜆 is a margin enforcing that the similarity between 𝑄 (𝑖 ) and
Φ[𝑝] exceeds that between𝑄 (𝑖 ) and Φ[𝑛] by at least 𝜆, encouraging
the model to focus on positive samples and hard negatives and pull
positive samples closer to the anchor 𝑄 (𝑖 ) than negative ones.

(ii). The regularization term promotes compact clustering of
patterns by minimizing the distance between each query and its
most similar memory pattern. This is quantified as:

Lreg =

𝑁∑︁
𝑖=1

𝑄 (𝑖 ) − Φ[𝑝]
2 , (7)

By synthesizing these components, the DIGS loss is articulated
as LDIGS = Ltp +Lreg. Hence, it ensures that the memory patterns
not only cluster tightly but also maintain separation, enabling the
model to discern and generalize known patterns effectively while
grasping the relational structure of the prototypes.
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Figure 5: Visualization of Classification Confidence. In a
three-category classification context, the correct outcome
is presumed to be the first category. Ideally, a model with
good calibration should yield Confident and Precise (CP) de-
cisions (a) or Erroneous and Uncertain (EU) outcomes (d).
On the other hand, instances of Confident but Unclear (CU)
judgments (b) and Erroneous but Positive (EP) assertions (c)
are indicative of areas where model certainty needs to be
aligned more accurately with its precision.

3.5 Evidential deep learning
Given two opinions on the same instance, 𝜔𝐴 = (𝑏𝐴, 𝑢𝐴, 𝑎𝐴) and
𝜔𝐵 = (𝑏𝐵, 𝑢𝐵, 𝑎𝐵), their synthesis 𝜔𝐴⊕𝐵 combines their beliefs,
uncertainty, and evidence as follows:

𝑏𝐴⊕𝐵
𝑘

=
𝑏𝐴
𝑘
𝑢𝐵 + 𝑏𝐵

𝑘
𝑢𝐴

𝑢𝐴 + 𝑢𝐵
, 𝑢𝐴⊕𝐵 =

2𝑢𝐴𝑢𝐵

𝑢𝐴 + 𝑢𝐵
, 𝑎𝐴⊕𝐵

𝑘
=
𝑎𝐴
𝑘
+ 𝑎𝐵

𝑘

2
,

where 𝑎𝐴, 𝑎𝐵 represent two different base distribution(e.g. Uniform
distribution). The conflict degree 𝑐 (𝜔𝐴, 𝜔𝐵) assesses the divergence
and shared certainty between 𝜔𝐴 and 𝜔𝐵 :

𝑐 (𝜔𝐴, 𝜔𝐵) = 𝑐𝑝 (𝜔𝐴, 𝜔𝐵) · 𝑐𝑐 (𝜔𝐴, 𝜔𝐵), (8)

𝑐𝑝 (𝜔𝐴, 𝜔𝐵) = 1/2
∑︁𝐾

𝑘=1
|𝑝𝐴
𝑘
− 𝑝𝐵

𝑘
|, (9)

𝑐𝑐 (𝜔𝐴, 𝜔𝐵) = (1 − 𝑢𝐴) (1 − 𝑢𝐵), (10)
where 𝑝 represent the linear projected probability distributions of
the opinions by Dirichlet parameters (i.e. 𝑏 and 𝑢). This framework
facilitates a nuanced analysis of agreement and discord between
the opinions.

As illustrated in Figure(2), we treat the outputs of VGT and
AGT as evidence vectors, which typically involve issues of am-
biguous recognition. Employing EDL allows us to precisely quan-
tify these uncertainties, thereby deriving accurate recognition re-
sults. For each instance {x𝑚𝑛 }𝑀

𝑚=1, the modality count𝑀 encapsu-
lates two modalities in our bidirectional grounding Transformer,
namely visual-to-attribute and attribute-to-visual. The network
computes Dirichlet distribution parameters 𝜶𝑚𝑛 = e𝑚𝑛 + 1, where
e𝑚𝑛 = 𝑓𝑚

𝜃
(x𝑚𝑛 ) is the predicted evidence vector, with 𝑓𝑚

𝜃
denot-

ing the modality-specific transformation function. The uncertainty
mass derived as 𝑢𝑚𝑛 = 𝐾∑𝐾

𝑘=1 (𝛼𝑚𝑘,𝑛 )
, where 𝐾 = |C|. Adapting to uni-

modal evidence-based classification, the traditional cross-entropy
loss is intricately tailored for compatibility with this framework:

L𝐴𝐶𝐸
(
𝜶𝑚𝑛

)
=

∫ [∑︁𝐾

𝑗=1
−𝑦𝑛𝑗 log𝑝𝑛𝑗

] ∑𝐾
𝑗=1 𝑝

𝛼𝑚
𝑛𝑗

−1
𝑛𝑗

𝐵 (𝜶𝑛)
𝑑p𝑛,

=
∑︁𝐾

𝑗=1
𝑦𝑛𝑗

(
𝜓 (𝑆𝑛) −𝜓

(
𝛼𝑚𝑛𝑗

))
,

(11)

where L𝐴𝐶𝐸 (𝜶𝑚𝑛 ) denotes the unimodal adaptive cross-entropy
loss for the parameters 𝜶𝑚𝑛 of the Dirichlet distribution for a single

instance 𝑛. Utilizing the digamma function𝜓 , the integral is simpli-
fied to the expectation of the logarithm of predicted probabilities,
where 𝑆𝑛 represents the sum of Dirichlet parameters for instance 𝑛,
reflecting the total evidence across all classes. The objective of this
adaptive loss function is to adjust the network’s output parameters
to accurately represent the inherent uncertainty in predictions, en-
abling the network to make confident predictions when evidence
is ample and maintain a degree of uncertainty when evidence is
scarce.

Nevertheless, the aforementioned loss function fails to address
the issue of insufficient evidence caused by incorrect labels. There-
fore, we incorporate a Kullback-Leibler (KL) divergence term into
the loss function.

L𝐾𝐿
(
𝜶𝑚𝑛

)
= 𝐾𝐿

[
𝐷

(
𝒑𝑛 | �̃�𝑚𝑛

)
∥𝐷 (𝒑𝑛 | 1)

]
= log

©«
Γ

(∑𝐾
𝑘=1 𝛼

𝑚
𝑛𝑘

)
Γ(𝐾)∏𝐾

𝑘=1 Γ
(
𝛼𝑚
𝑛𝑘

) ª®®¬ ,
+

∑︁𝐾

𝑘=1

(
𝛼𝑚
𝑛𝑘

− 1
) [
𝜓

(
𝛼𝑚
𝑛𝑘

)
−𝜓

(∑︁𝐾

𝑗=1
𝛼𝑚𝑛𝑗

)]
,

(12)

where𝐷 (𝑝𝑛 | 1) represents the uniformDirichlet distribution, �̃�𝑚𝒏 =

yn+ (1−yn) ⊙𝜶𝒎
𝒏 denotes the Dirichlet parameters after excluding

non-misleading evidence from the predicted parameters 𝜶𝑚𝑛 for
the 𝑛-th instance, and Γ(·) signifies the gamma function.

Hence, for the 𝑛-th instance in the single-modality setting with
Dirichlet distribution parameter 𝜶𝒎

𝒏 , the loss is computed as fol-
lows:

L𝐴𝐶𝐶
(
𝜶𝑚𝑛

)
= 𝐿𝐴𝐶𝐸

(
𝜶𝑚𝑛

)
+ 𝜆𝑡𝐿𝐾𝐿

(
𝜶𝑚𝑛

)
, (13)

Where 𝜆𝑡 = min(1.0, 𝑡/E) ∈ [0, 1] denotes the annealing coeffi-
cient, with 𝑡 being the index of the current training epoch and
E representing the annealing steps. Gradually increasing the in-
fluence of KL divergence in the loss function prevents premature
convergence of misclassified instances to a uniform distribution.

To ensure consistency across differing perspectives during train-
ing, amethod tominimize the degree of opinion conflict is employed.
The consistency loss for instance

{
x𝑚𝑛

}𝑀
𝑚=1 is calculated as follows:

L𝐶𝑂𝑁 =
1

𝑀 − 1

∑︁𝑀

𝑝=1

(∑︁𝑀

𝑞≠𝑝
𝑐

(
𝝎
𝑝
𝑛 ,𝝎

𝑞
𝑛

))
. (14)

In the processes of VGT and AGT, mismatches may arise, linking
attribute features to incorrect visual parts, or the reverse. The pa-
rameter 𝑐 serves to measure the conflict level between two opinions,
where 𝑐 = 0 denotes a lack of conflict and 𝑐 = 1 denotes direct op-
position. For the specific instance

{
x𝑚𝑛

}𝑀
𝑚=1, the overall EDL loss

functions can be given as follows:

L𝐸𝐷𝐿 = L𝐴𝐶𝐶 (�̂�𝒏) + 𝛽
∑︁𝑀

𝑚=1
L𝐴𝐶𝐶

(
𝜶𝑚𝑛

)
+ 𝛾L𝐶𝑂𝑁 . (15)

where �̂�𝒏 shaped by the fusion of modalities driven by uncertainty
𝑢𝑚𝑛 (e.g., the uncertainty-weighted average of modalities’ 𝜶𝑚𝑛 ) cali-
brates the EDL loss relative to the observed conflict degree.

3.6 Model training and optimization strategies
Attribute Reinforced Semantic Integration.We introduce an
Attribute ReInforced SEmantic Integration (ARISE) to improve
model discrimination by embedding attribute information into
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Figure 6: Evolution of model uncertainty on CUB and SUN
datasets with increasing epochs, showing a shift towards
lower uncertainty as the model converges.

the loss function, enhancing classification. By featuring a self-
calibrating component, it mitigates overfitting and promotes at-
tribute generalization, regulated by a balancing coefficient 𝜆𝐶𝐴𝐿 .
Given a batch of 𝑛𝑏 training images {𝑥𝑖 }𝑛𝑏𝑖=1 with their correspond-
ing class semantic vectors 𝑧𝑐 , L𝐴𝑅𝐼𝑆𝐸 can be formally represented
as follows:

L𝐴𝑅𝐼𝑆𝐸 = − 1
𝑛𝑏

𝑛𝑏∑︁
𝑖=1

[
log

exp (𝑓 (𝑥𝑖 ) · 𝑧𝑐 )∑
𝑐∈C𝑠 exp

(
𝑓 (𝑥𝑖 ) · 𝑧𝑐

)
−𝜆𝐶𝐴𝐿

C𝑢∑︁
𝑐′=1

log
exp

(
𝑓 (𝑥𝑖 ) · 𝑧𝑐

′ + I[𝑐′∈C𝑢 ]
)

∑
𝑐∈C exp

(
𝑓 (𝑥𝑖 ) · 𝑧𝑐 + I[𝑐∈C𝑢 ]

) 
(16)

where 𝑓 (𝑥𝑖 ) = 𝜇𝜶𝐴
𝑖

+ (1 − 𝜇)𝜶𝑉
𝑖

with a blanced coefficient 𝜇.
L𝐴𝑅𝐼𝑆𝐸 aims to minimize the discrepancy between the predicted
and true distributions, taking into account the attribute similari-
ties between categories, serving as a regularization term that en-
courages the model to learn generalizable features across different
categories. Therefore, the overall loss can be obtained as follows:

L = L𝐴𝑅𝐼𝑆𝐸 + L𝑉 𝐼𝐶𝐿 + L𝐷𝐼𝐺𝑆 + 𝜆𝐸𝐷𝐿L𝐸𝐷𝐿 (17)

3.7 Zero-Shot Inference
Upon completing the training of CREST, we extract the visual
embeddings of a test sample 𝑥𝑖 in the semantic space relative to
VGT and AGT, denoted as 𝜶𝑉

𝑖
and 𝜶𝐴

𝑖
. Given that the semantic-

augmented visual embeddings from VGT and AGT offer comple-
mentary information, we integrate their predictions through com-
bination coefficients 𝜇 for a calibrated test label prediction of 𝑥𝑖 ,
expressed as:

𝑐∗ = arg max
𝑐∈C𝑢/C

(
𝜇𝜶𝐴𝑖 + (1 − 𝜇)𝜶𝑉𝑖

)⊤
· 𝑧𝑐 + I[𝑐∈C𝑢 ] (18)

In this formula, C𝑢/C pertains to the CZSL/GZSL scenarios, re-
spectively.

4 EXPERIMENTS
Dataset. Our study investigates three principal zero-shot learn-
ing (ZSL) benchmarks: two fine-grained datasets, CUB [59] and
SUN [46], and one coarse-grained dataset, AWA2 [60]. CUB encom-
passes 11,788 images across 200 bird classes (150 seen, 50 unseen),
featuring 312 attributes. SUN includes 14,340 images spanning 717
scene categories (645 seen, 72 unseen) with 102 attributes. AWA2
contains 37,322 images of 50 animal classes (40 seen, 10 unseen),
each described by 85 attributes.
Evaluation Protocols. Following Xian et al.’s framework [62],

we evaluated the top-1 accuracy in both CZSL and GZSL setups.
In CZSL, accuracy is assessed solely by predicting unseen classes.
For GZSL, we compute the accuracy for both seen (𝑆) and un-
seen (𝑈 ) classes and employ their harmonic mean (defined as
𝐻 = (2 × 𝑆 ×𝑈 )/(𝑆 +𝑈 )) as the evaluative metric.
Implementation Details We adopt the training divisions sug-
gested by [61]. The feature extraction backbone is a ResNet101
architecture, which has been pre-trained on ImageNet and is uti-
lized without further fine-tuning. The optimization is performed
using the Adam optimizer, with hyperparameters set to learning
rate of 0.0001 and a weight decay of 0.0001. And the batch size
parameters is set to 64. Based on empirical evidence, the hyperpa-
rameters 𝜆𝐸𝐷𝐿 and 𝜆𝐶𝐴𝐿 are fixed at 0.001 and 0.2 across all datasets.
Finally, the encoder and decoder layers of our bidirectional ground-
ing Transformer are configured with a single attention head.

4.1 Comparison with the State of the Art
In our comparative analysis, we have examined 17 representative or
state-of-the-art models from the period of 2020-2023, as illustrated
in Table 1. Our CRESTmodel consistently outperforms most models
across the three benchmarks: CUB, SUN, and AWA2, in terms of
CZSL accuracy. Notably, CREST achieves the highest harmonic
mean (H) on both CUB and AWA2 benchmarks, indicating a well-
balanced performance between seen (S) and unseen (U) classes,
which is a critical measure in ZSL.

Our CREST model exhibits robust performance in the GZSL
setting for unseen classes (U) on AWA2, achieving competitive
accuracy. This highlights CREST’s capability to recognize new cat-
egories effectively while maintaining strong performance on seen
classes. Furthermore, the results indicate that while some models
like TransZero++ [6] exhibit high accuracy in seen classes, they
do not necessarily maintain this level of performance in unseen
classes. In contrast, CREST delivers a more consistent and superior
performance across both classes, emphasizing its efficacy in a more
diverse and practical setting. The incremental advances observed
with CREST affirm the effectiveness of our approach in addressing
the challenges intrinsic to zero-shot learning, specifically in main-
taining high discriminative power while effectively handling the
domain shift between seen and unseen categories.

4.2 Ablation Studies
In the ablation study depicted in the first image, the effectiveness
of various components of the CREST model is evaluated on CUB
and SUN datasets. The study illustrates the importance of each
component to the model’s performance in both GZSL and CZSL.

The removal of the AGT from CREST results in a notable de-
crease in harmonic mean (H) and accuracy (ACC), demonstrating
AGT’s significant role in feature transformation. Without the VGT,
the model’s performance drops drastically, especially in the GZSL
scenario, indicating VGT’s critical contribution to visual feature
integration. The exclusion of the EDL module also leads to dimin-
ished GZSL and CZSL outcomes, suggesting its key part in robust
fusion and reinforcement of resilience against hard negatives.

Further analysis shows that the VICL andDIGS loss both enhance
the GZSL performance, as their absence results in lower H scores.
Setting the coefficient 𝜆𝐶𝐴𝐿 of to zero slightly reduces the H scores
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Figure 7: Visualizing attention and uncertainty in attribute recognition on the CUB benchmark: Rows display attention maps
for various bird species, with decreasing attribute certainty from top to bottom. Each image is annotated with attribute labels
and corresponding confidence scores, highlighting the model’s focus areas.

Table 1: Results(%) of CREST with the baselines on the CUB, SUN, and AWA2 benchmarks. Asterisks (*) identify journal articles,
while Underlined numbers denote second-highest results. And Bold figures highlight the leading metrics. Performance metrics
encompass CZSL accuracy (ACC), GZSL accuracies for unseen (U) and seen (S) classes, and the harmonic mean (H) computed as
𝐻 = 2×𝑆×𝑈

𝑆+𝑈 , which gauges the equilibrium between U and S. ACC represents the top-1 classification accuracy in CZSL.

Methods CZSL CZSL CZSL

ACC U S H ACC U S H ACC U S H

TF-VAEGAN [42] (ECCV’20) 64.9 52.8 64.7 58.1 66.0 45.6 40.7 43.0 72.2 59.8 75.1 66.6
Composer [27] (NeurIPS’20) 69.4 56.4 63.8 59.9 62.6 55.1 22.0 31.4 71.5 62.1 77.3 68.8

APN [69] (NeurIPS’20) 72.0 65.3 69.3 67.2 61.6 41.9 34.0 37.6 68.4 57.1 72.4 63.9
DVBE [41] (CVPR’20) - 53.2 60.2 56.5 - 45.0 37.2 40.7 - 63.6 70.8 67.0

DAZLE [28] (CVPR’20) 66.0 56.7 59.6 58.1 59.4 52.3 24.3 33.2 67.9 60.3 75.7 67.1
RGEN [64] (ECCV’20) 76.1 60.0 73.5 66.1 63.8 44.0 31.7 36.8 73.6 67.1 76.5 71.5

CE-GZSL [22] (CVPR’21) 77.5 63.1 66.8 65.3 63.3 48.8 38.6 43.1 70.4 63.1 78.6 70.0
GCM-CF [73] (CVPR’21) - 61.0 59.7 60.3 - 47.9 37.8 42.2 - 60.4 75.1 67.0

FREE [10] (ICCV’21) - 55.7 59.9 57.7 - 47.4 37.2 41.7 - 60.4 75.4 67.1
HSVA [11] (NeurIPS’21) 62.8 52.7 58.3 55.3 63.8 48.6 39.0 43.3 - 59.3 76.6 66.8
AGZSL [15] (ICLR’21) 57.2 41.4 49.7 45.2 63.3 29.9 40.2 34.3 73.8 65.1 78.9 71.3

GEM-ZSL [40] (CVPR’21) 77.8 64.8 69.3 67.2 62.8 38.1 35.7 36.9 67.3 64.8 77.5 70.6
MSDN [8] (CVPR’22) 76.1 68.7 67.5 68.1 65.8 52.2 34.2 41.3 70.1 62.0 74.5 67.7

TransZero [7] (AAAI’22) 76.8 69.3 68.3 68.8 65.6 52.6 33.4 40.8 70.1 61.3 82.3 70.2
TransZero++ [6] (TPAMI’22)* 78.3 67.5 73.6 70.4 67.6 48.6 37.8 42.5 72.6 64.6 82.7 72.5

DUET [13] (AAAI’23) 72.3 62.9 72.8 67.5 64.4 45.7 45.8 45.8 69.9 63.7 84.7 72.7
DSP [9] (ICML’23) - 62.5 73.1 67.4 - 57.7 41.3 48.1 - 63.7 88.8 74.2

CREST (Ours) 78.6 71.1 72.4 71.7 66.3 50.4 39.8 43.2 73.5 63.9 87.5 74.1

CUB SUN AWA2

GZSL GZSL GZSL

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 2: Ablation results for CREST onCUB and SUN datasets,
detailing GZSL and CZSL performance for unseen (U) and
seen classes (S), harmonic mean (H), and ACC.

Methods
CUB SUN

GZSL CZSL GZSL CZSL

U S H ACC U S H ACC
CREST w/o AGT 0.640 0.684 0.661 0.741 0.465 0.316 0.613 0.626
CREST w/o VGT 0.262 0.404 0.445 0.477 0.333 0.304 0.574 0.586
CREST w/o EDL 0.709 0.726 0.718 0.780 0.519 0.318 0.394 0.644
CREST w/o VICL 0.684 0.711 0.697 0.767 0.55 0.291 0.381 0.615
CREST w/o DIGS 0.689 0.722 0.705 0.769 0.468 0.326 0.385 0.606
CREST 𝜆𝐶𝐴𝐿 = 0 0.592 0.720 0.650 0.761 0.462 0.331 0.386 0.624
CREST (Full) 0.711 0.724 0.717 0.786 0.504 0.398 0.432 0.663

1 E - 4 5 E - 4 0 . 0 0 1 0 . 0 0 5 0 . 0 1 0 . 0 5 0 . 1 0 . 5 1 50 . 0
0 . 2
0 . 4
0 . 6
0 . 8

 U
 S
 H
 A C C

l C A L

1 E - 4 5 E - 4 0 . 0 0 1 0 . 0 0 5 0 . 0 1 0 . 0 5 0 . 1 0 . 5 1 50 . 0
0 . 2
0 . 4
0 . 6
0 . 8

 U
 S
 H
 A C C

l E D L

1 E - 4 5 E - 4 0 . 0 0 1 0 . 0 0 5 0 . 0 1 0 . 0 5 0 . 1 0 . 5 1 50 . 0
0 . 2
0 . 4
0 . 6
0 . 8

 U
 S
 H
 A C C

l E D L
1 E - 4 5 E - 4 0 . 0 0 1 0 . 0 0 5 0 . 0 1 0 . 0 5 0 . 1 0 . 5 1 50 . 0

0 . 2
0 . 4
0 . 6
0 . 8

 U
 S
 H
 A C C

l C A L

( a ) ( b )

( c ) ( d )

CU
B

SU
N

Figure 8: Parameter tuning results for 𝜆𝐶𝐴𝐿 and 𝜆𝐸𝐷𝐿 of cor-
responding loss functions on the CUB and SUN datasets.

but the overall full model displays superior performance in terms
of both H and ACC, which solidifies the synergy and necessity of
the full complement of CREST in achieving state-of-the-art results.

4.3 Hyperparameter Analysis
The parameter tuning for the CREST model indicates a clear opti-
mum range for both 𝜆𝐶𝐴𝐿 and 𝜆𝐸𝐷𝐿 . Performance peaks at mod-
erate values of 𝜆𝐶𝐴𝐿 before declining, signifying its critical role in
balancing GZSL and CZSL outcomes. The influence of 𝜆𝐸𝐷𝐿 appears
more stable, with only a slight drop at high values, suggesting its
robust contribution to the model’s consistent performance across
diverse visual tasks. These findings highlight CREST’s ability to
maintain accuracy while effectively generalizing to new categories,
marking its strengths in a zero-shot learning context.

4.4 Qualitative Results
Dynamic Uncertainty Progressive Reduction Visualizations.
Figure 6 showcases the evolution of model uncertainty for both
the CUB and SUN datasets over training epochs. The density plots
vividly demonstrate howuncertainty decreases as the epochs progre-
ss, with a significant shift towards lower uncertainty levels upon
model convergence. This provides empirical evidence of CREST’s
learning stability and its increasing confidence in predicting class at-
tributes over time, reflecting its robustness and efficacy in handling
diverse data.

AttentionMapping and Confidence Scoring Visualizations.
In Figure 7, attention visualization on the CUB Dataset is cou-
pled with uncertainty quantification in attribute recognition. The

(a) (b) (c)

Figure 9: t-SNE visualizations of features for classes in GZSL,
with settings including a random selection of 10 classes from
both seen and unseen categories. (a) and (b) illustrate the
distinct clusters formed by VGT and AGT, respectively. Sub-
figure (c) displays the integrated representation post-EDL
fusion, denoting the combined VGT and AGT spaces, which
shows enhanced clustering of attributes across classes.

descending order of rows from top to bottom corresponds to a
decrease in attribute certainty, with each image annotated with
attribute labels and scores. This not only confirmsCREST’s nuanced
understanding of attribute saliency but also illustrates the impact of
real-world variables such as background clutter and occlusions on
the model’s performance. Additionally, the model demonstrates a
keen perception of hard negatives, as reflected in higher uncertainty
scores for attributes that are ambiguous or potentially misleading,
which underscores its advanced capability for self-assessment and
adaptability in complex visual scenarios.

t-SNE Visualizations. For Figure 9, the t-SNE visualizations
illustrate the distinct clustering capabilities of the CREST model.
The separate subfigures (a) and (b) highlight the feature spaces cre-
ated by the VGT and AGT, respectively. Subfigure (c) reveals how
the integration of VGT and AGT, through EDL fusion, enhances
the distinctiveness of clusters, successfully separating the 10 ran-
domly selected classes from both seen and unseen categories. This
indicates CREST’s powerful ability to delineate classes in a shared
feature space, essential for ZSL.

5 CONCLUSION AND FUTUREWORK
In conclusion, CREST introduces a pioneering bidirectional cross-
modal framework that adeptly addresses the visual-semantic gap
in ZSL. By navigating distribution imbalances and attribute co-
occurrence, it employs localized representation extraction and EDL-
based uncertainty estimation, enhancing resilience and improving
alignment in challenging ZSL scenarios. Our extensive evaluations
establish CREST’s advanced capabilities, reinforcing its standing as
an effective and interpretable ZSL solution.

In future work, we intend to integrate CREST with LLMs to
further enhance semantic alignment and interpretability. This in-
tegration aims to enrich CREST’s robustness in handling complex
zero-shot learning scenarios, thereby extending its applicability
and effectiveness in ZSL tasks. Through this synergy, we seek to
unlock deeper semantic insights and cater to a broader range of
applications in the ever-evolving landscape of machine learning.
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