
Generative Panoramic Image Stitching

Mathieu Tuli*
LG Electronics

tuli.mathieu@gmail.com

Kaveh Kamali*
LG Electronics

kaveh.kamali@lge.com

David B. Lindell
LG Electronics

University of Toronto
lindell@cs.toronto.edu*joint first authors

RealFill proposed

reference images

RealFill proposed

reference images

Figure 1: We introduce a generative method for panoramic image stitching from multiple casually
captured reference images that exhibit strong parallax, lighting variation, and style differences. Our
approach fine-tunes an inpainting diffusion model to match the content and layout of the reference
images. After fine-tuning, we outpaint one reference image (e.g., the leftmost reference view shown
here) to create a seamless panorama that incorporates information from the other views. Unlike prior
methods such as RealFill [52], which produces artifacts when outpainting large scene regions (red
boxes), our method more accurately preserves scene structure and spatial composition.

Abstract

We introduce the task of generative panoramic image stitching, which aims to
synthesize seamless panoramas that are faithful to the content of multiple reference
images containing parallax effects and strong variations in lighting, camera capture
settings, or style. In this challenging setting, traditional image stitching pipelines
fail, producing outputs with ghosting and other artifacts. While recent generative
models are capable of outpainting content consistent with multiple reference im-
ages, they fail when tasked with synthesizing large, coherent regions of a panorama.
To address these limitations, we propose a method that fine-tunes a diffusion-based
inpainting model to preserve a scene’s content and layout based on multiple refer-
ence images. Once fine-tuned, the model outpaints a full panorama from a single
reference image, producing a seamless and visually coherent result that faithfully
integrates content from all reference images. Our approach significantly outper-
forms baselines for this task in terms of image quality and the consistency of image
structure and scene layout when evaluated on captured datasets.



1 Introduction

Creating a coherent visual representation from multiple input images is a long-standing problem in
computer vision [50, 51], and many techniques have been proposed to combine multiple images from
different perspectives to synthesize panoramas [7], multi-perspective images [1, 40, 47], or photo
montages [2, 38]. More recently, image generation models make it possible to render or outpaint
new image content based on one or more input images [46, 52]. Inspired by methods for panorama
synthesis and recent image generation techniques, we propose to address the task of generative
panoramic image stitching—i.e., we seek to generate seamless panoramas that are faithful to the
content of multiple reference images captured from different viewpoints with strong variations in
lighting or style (Figure 1). AutoStitch [7] (homography-based)

UDIS [37] (local warping-based)

Figure 2: Conventional panoramic im-
age stitching methods [7, 37] fail to
account for strong parallax effects or
variations in lighting or style.

A standard approach for panoramic image stitching involves
detecting feature correspondences and estimating geometric
transformations between input images [7]. Then, the input
images are warped based on the estimated transformation
and blended together into a panorama [9, 41]. Conven-
tionally, these techniques use a homography to relate input
images, which assumes that there is no parallax (i.e., no
translation between captured viewpoints) [50]. Violating
this assumption results in artifacts, such as ghosting [14],
as shown in Figure 2 (top). Hence, a significant amount of
effort has been devoted to improving robustness to view-
point changes, e.g., by optimizing local warping opera-
tions [11, 17, 25, 28, 29, 30, 31, 59, 60], by using graph cuts
to minimize seams between blended images [14, 18, 60], or
optimizing neural networks [36, 37], but completely avoid-
ing artifacts is challenging when images are captured from
significantly different positions. Further, standard tech-
niques for image stitching assume that camera acquisition
settings and illumination conditions are roughly constant
across input images; while image blending can help to miti-
gate small variations in camera gain, exposure, white balance, or scene illumination [7, 9, 41] it fails
to handle strong variations in the lighting or style of input images (Figure 2, bottom).

A separate line of work seeks to create panoramic images via image synthesis. For example, using
generative models, recent approaches synthesize panoramas from a text prompt [5, 15, 26, 58] or
inpaint masked regions of an input panorama [56]; however, these methods do not handle the stitching
of reference images with overlapping fields of view and significant parallax effects. The recent work
of Tang et al. [52] uses a pre-trained image generation model for reference-guided inpainting, which
is close to our task. Specifically, they fine-tune an image diffusion model to inpaint a set of casually
captured reference images from different viewpoints and lighting conditions. After fine-tuning, the
model can be used to outpaint an existing image in a way that is consistent with the content of the
reference images and robust to parallax or lighting variations. However, we find that attempting to
use this approach for panoramic image stitching fails, as outpainting large missing regions results in
artifacts and scene layouts that are not faithful to the input reference images (see Figure 1).

Here, we address limitations of conventional methods for panoramic image stitching as well as more
recent, reference-driven outpainting techniques [52]. Given a set of casually captured reference
images, we first compute a coarse alignment of the images via conventional feature matching and
homography estimation [7], resulting in a set of warped images and their approximate locations on
an initial panorama. To correct artifacts in this initial panorama—such as those caused by parallax or
lighting inconsistencies—we fine-tune [46] a large, pre-trained inpainting diffusion model [3] to
solve a position-aware inpainting task. Specifically, we fine-tune the model to inpaint and outpaint
each warped input image while conditioning on positional encodings that reflect the image’s location
within the panorama. Once fine-tuned, the model is used to iteratively outpaint the panorama from a
single reference image, resulting in a seamless composite that integrates content from all reference
views as shown in Figure 1.

2



In summary, we make the following contributions.

• We propose the task of generative panoramic image stitching, which seeks to generate panoramas
that are faithful to a set of reference images containing significant parallax effects and variations in
illumination or style.

• We address this task with a method that estimates the coarse layout of the reference images within
a panorama and then fine-tunes a diffusion model to generate a seamless output panorama via
position-aware outpainting.

• We evaluate our approach on a dataset of captured images and show state-of-the-art results for this
task compared to baselines based on reference-driven image outpainting and image stitching.

2 Related Work

Our work also connects to other methods for learning-based image stitching, multi-perspective
rendering, 3D reconstruction, and reference-driven outpainting.

Learning-based image stitching. While conventional image stitching pipelines typically use
feature-based homography estimation [50], other approaches directly regress a homography using a
neural network [13, 24, 35] or learned features [61], which can improve performance for dynamic
scenes or images with limited texture. Nie et al. [36, 37] introduce a two-stage procedure for image
stitching that first predicts a homography between two input images using a neural network and then
warps the resulting image using a transformer or thin-plate splines to reduce stitching artifacts. Our
procedure uses a similar two-stage approach, but we leverage a standard feature-based approach
for the initial alignment [7], which we find generalizes well to our captured in-the-wild images.
Then, instead of directly warping the input images, we leverage generative priors and position-aware
inpainting and outpainting to synthesize a seamless panorama. As such, our approach scales to handle
multiple input images, and we avoid stitching artifacts due to parallax or lighting variations because
the output panorama is synthesized by the generative model rather than produced by warping the
input images.

Multi-perspective rendering and 3D reconstruction. It is also possible to synthesize panoramas
using image-based rendering [1, 4, 32, 38, 43]. Given a sufficiently densely captured set of input
images, one can directly capture or estimate the desired set of light rays used to assemble an
output panorama or multi-perspective image [4, 6, 27, 44]. Alternatively, one can reconstruct a 3D
representation of the scene and render novel views from any desired viewpoint [43, 55, 12, 8, 34].
Still, these techniques cannot be easily applied to our proposed task, where only a few images are
provided as input, camera poses are unknown, and the images have inconsistencies, e.g., due to
variations in camera capture settings, color palette, or lighting.

Reference-driven image editing. Rather than directly stitching the input images, our approach
generates a panorama by outpainting one of the input views using content from the others. This
design is motivated by prior work on reference-driven inpainting. For instance, Yang et al.[57] inpaint
masked regions of an image using objects from a reference image depicting a different scene. Zhou
et al.[63] extend this idea to multiple images from the same scene. Most similar to our method, Tang
et al.[52] fine-tune a diffusion model for reference-guided outpainting; however, their method does
not incorporate scene layout information and fails in the context of panorama synthesis (see Fig.1).

3 Generative Panoramic Image Stitching

We introduce our approach by first providing a brief background on latent diffusion models. Then,
we describe our method for generative panoramic image stitching based on (1) initial panorama
layout estimation via homography estimation and warping, (2) fine-tuning a diffusion model for
position-aware panorama inpainting and outpainting, and (3) generating a seamless panorama via
iterative outpainting. An overview of the approach is shown in Figure 3.

3



reference images position-aware inpainting/outpainting

ho
m

og
ra

ph
y 

es
t. 

&
 w

ar
pi

ng

inpainting
diffusion 

model

output

fine-
tuning

sparse panorama layouts

positional encoding map

Figure 3: Method overview. Given a set of reference images {x(i)
ref }Ni=1, we generate sparse panorama

layouts {x(i)
pano}Ni=1 by detecting features [33], estimating homographies, and warping each reference

image to its location in a sparse panorama containing only that image. We then fine-tune a pre-trained
inpainting diffusion model for a position-aware inpainting/outpainting task. During training, random
crops are taken from the sparse panoramas and a positional encoding map xγ . Each panorama crop is
processed using an encoder ESD, and we we multiply the resulting latent image z

(i)
crop with a random

binary mask (1−m). We process the crop of xγ with an encoder Ectx and use the result to condition
the diffusion model. The other inputs — the masked version of z(i)crop, the mask m, and the noisy
latent image zt — are concatenated together and passed as input to the model. After fine-tuning, we
generate seamless panoramas by outpainting one of the initial sparse panoramas.

3.1 Preliminaries: Latent Diffusion Models

Latent diffusion models [48] are based on a forward and reverse process that either gradually
introduces noise or removes it from a latent image z0 — i.e., an image encoded into the latent space
of an image autoencoder. Latent images are typically lower in resolution than conventional images
and so operating in the latent space yields improvements in computation and memory [45].

More specifically, latent diffusion models use a Markovian forward process to iteratively transform
the latent image z0 into standard Gaussian noise zT ∼ N (0, I) over T time steps. The intermediate
noisy images zt produced during this process are defined as [19]

zt =
√
αtz0 +

√
1− αtϵ, (1)

where ϵ ∼ N (0, I) and the set of values {αt}Tt=1 defines a fixed noise schedule such that increasing t
corresponds to adding more noise. In turn, the reverse process estimates zt−1 by gradually denoising
from zT ∼ N (0, I). The clean latent image z0 is generated through a reverse diffusion process
by iteratively predicting the noise ϵ at each time step using a neural network Ψ. Then, applying a
decoder network converts the latent image into a conventional image x.

In the conditional reverse process, the network is trained to predict the noise by minimizing the loss
L = Ez,t,ϵ ∥ Ψ(zt, t, C)− ϵ ∥22 . (2)

Here, the network is given a conditioning signal C—e.g., a text prompt or a masked image for
inpainting. At inference time, Ψ is sampled to remove noise from zT and iteratively estimate zt−1

until the clean latent image z0 is recovered.

3.2 Panorama Layout Estimation & Positional Encoding

Given a set of N input reference images {x(i)
ref }Ni=1, where x

(i)
ref ∈ RHref×Wref×3

+ , we aim to generate a
panorama xpano ∈ RHpano×Wpano×3 via latent diffusion that seamlessly stitches together scene content
from the reference views and outpaints uncaptured scene regions.

The first step in this procedure involves producing an initial panorama layout via homography
estimation and warping. We adapt the procedure of Brown et al. [7] to detect feature correspondences
between the input images, estimate homographies, and warp each image into cylindrical coordinates.
The result of this procedure is a set of sparse panoramas {x(i)

pano}Ni=1, x(i)
pano ∈ RHpano×Wpano×3

+ , which
each contains a single warped reference image (see Figure 3).

We also associate the panorama with a positional encoding map xγ [34]. The map is computed
using a function γ(p) = [cos(πf1p), sin(πf1p), . . . , cos(πfF p), sin(πfF p)]

T , where {fi}Fi=1 are
the encoding frequencies, and the function γ(·) is applied to each vertical and horizontal pixel
coordinate p. Encoding each pixel coordinate results in xγ ∈ RHpano×Wpano×4F , where F is the
number of positional encoding frequencies. Additional details are provided in Supp. Section S1.1.

4



3.3 Fine-tuning for Position-aware Inpainting and Outpainting

We use the set of panoramas {x(i)
pano}Ni=1 and the positional encoding map xγ to fine-tune an inpainting

diffusion model for position-aware inpainting and outpainting.

Architecture. Our approach adapts a pre-trained inpainting diffusion model Ψ(zt, t, C) (we use
Stable Diffusion 2.1 [3]). The model is conditioned on the input

C = {m, (1−m)⊙ z(i)crop, cctx}, (3)

where m is a randomly generated binary mask to be inpainted or outpainted, ⊙ indicates Hadamard
product, and z

(i)
crop is a randomly cropped region of x(i)

pano that we encode into the latent space using the
Stable Diffusion encoder ESD, or z(i)crop = ESD(RANDCROP(x

(i)
pano)). The context embedding tensor

cctx is produced as cctx = Ectx(RANDCROP(xγ)), where we apply the same random crop to the
positional encoding map xγ as for x(i)

pano. We process the cropped version of xγ using Ectx, a small
three-layer convolutional encoder with a linear layer (see Supp. Section S1.2).

While the context embedding tensor cctx is used by the pre-trained model for text conditioning, our
approach repurposes it to encode the positional information, and we provide the tensor as input to the
cross-attention layers of the network. The other conditioning signals (i.e., m and (1−m)⊙ z

(i)
crop)

are concatenated with the noisy latent image zt and passed as input to the diffusion model. A more
detailed description of the architecture is provided in Supp. Section S1.

Optimization. We fine-tune the network Ψ to minimize the loss function

L = E
ϵ,z

(i)
crop,i,t,m

[∥∥∥mvalid ⊙
(
Ψ(z

(i)
crop,t, t, C)− ϵ

)∥∥∥2
2

]
, (4)

where mvalid is a binary mask that restricts the loss to regions of z(i)crop that correspond to non-empty
areas in the cropped sparse panorama x(i)

pano. Hence, we fine-tune the model to minimize the difference
between the noise it predicts and the noise added to z

(i)
crop, where z

(i)
crop,t =

√
αtz

(i)
crop +

√
1− αtϵ (as

described in Equation 1). input sparse panorama

output

inference order

Figure 4: Panorama generation. We use
the fine-tuned model to iteratively outpaint
each tile (green grid) of the panorama, in
order of distance from the center (white
arrows), to create a seamless result.

We use low-rank adaptation (LoRA) [22] to optimize the
model’s self-attention layers and preserve the capabili-
ties of the Stable Diffusion model’s pre-trained weights.
The cross-attention layers undergo full-parameter fine-
tuning to better adapt to the positional encoding infor-
mation provided by cctx. Last, we initialize and optimize
all parameters of the context encoder Ectx.

3.4 Panorama Generation

After fine-tuning, we generate a seamless panorama
xpano by outpainting one of the initial sparse panora-
mas x

(i)
pano. The main challenge in this step is that the

resolution of the panorama is much larger than the nom-
inal resolution for which the inpainting diffusion model
is trained—so we cannot generate the entire panorama
in a single inference pass. Instead, we sequentially denoise tiles of the panorama to generate the final
output as depicted in Figure 4. We apply the sequential denoising procedure to the sparse panorama
containing a centered warped reference image — this is an arbitrary image to which we register the
other reference images during the initial layout estimation process (Section 3.2).

Specifically, we generate an evenly spaced grid of overlapping image tiles or boxes {b(i)}Bi=1 across
the panorama, where b(i) = {x(i), y(i), H,W} gives the pixel coordinates of the corner of the tile
and the height and width of the tile. In practice, we use 20% overlap between tiles, and we set
H = W = 512. After positioning the tiles, if some tiles extend beyond the extent of the panorama,
the overlap is reduced until all tiles fit within the panorama in both the vertical and horizontal

5



dimensions. For each tile in the grid, we run the full reverse diffusion process using the DDPM
sampler [19] to inpaint/outpaint the missing regions of the tile. Inpainting/outpainting masks are
feathered and composited with the current state of the generated panorama xpano. Different than
training, where we randomly sample the mask values m, during inference we set the m values to
indicate which regions of each input tile have not yet been generated. The tiles are denoised in order
of increasing distance from their centroids to that of the warped reference image. We summarize this
procedure in Algorithm 1.

3.5 Implementation Details
Algorithm 1: Panorama Generation

Input: x(0)
pano ◀ Input sparse panorama

xγ ◀ Positional encoding map
{b(i)}Bi=1

◀ Tiles covering panorama
Output: Panorama xpano with all tiles denoised
// Order tiles based on distance
[b(1),b(2), . . . ,b(B)]← ORDERBYDIST({b(i)}Bi=1)
for i = 1 to B do

// Initialize noisy latent by adding noise
to reference latent

zb(i),T ← ESD(x
(0)
pano[b

(i)]) + ϵ, ϵ ∼ N (0, σ2I)

cctx ← Ectx(xγ [b
(i)])

m← GETREGIONTOINPAINT(zb(i),T )

for t = T to 1 do
// Denoise tile
zb(i),t−1 ←

DENOISE(zb(i),t,m, (1−m)⊙ zb(i),t−1, cctx)

// Update output with denoised tile using
latent decoder DSD

xpano[b
(i)]← COMPOSITE(xpano[b

(i)],DSD(zb(i),0))

return xpano

Masking and augmentation. In-
painting masks are synthesized with
randomly generated patterns follow-
ing Tang et al. [52]. We also intro-
duce an augmentation scheme which
perturbs the location of the warped
images in the sparse panorams with a
random similarity transformation. We
find that this helps to avoid seams
from appearing in the final output
panoramas at the boundary locations
of the warped images.

Training and inference. We apply
LoRA to the Stable Diffusion model’s
self-attention layers and fully fine-
tune the cross-attention layers and
Ectx, using AdamW with learning rates
of 1× 10−4 (LoRA), 3× 10−4 (cross-
attention), and 8× 10−4 (Ectx). Train-
ing runs for 4,000 iterations with batch size 32 and takes 4.5 hours on 2×A100 GPUs. At inference,
a 1000 × 3000 panorama typically takes 1 minute to generate on a single RTX 2080 Ti. We use
classifier-free guidance [20] with cctx = 0 and a guidance scale of 1.5.

Correspondence-based seed selection. We employ a correspondence-based seed selection pro-
cess [52] to identify generated panoramas whose layout matches the result of feature-based image
registration [7]. Specifically, we generate ten panoramas with different random seeds and take our
output to be the panorama with the most feature matches (computed with LoFTR [49]) compared to
the reference. Please see Supp. Section S1 for additional implementation details.

4 Experiments

Dataset. We collect two image datasets of eight scenes each, with several images captured for each
scene. One dataset consists of tripod-captured images collected by rotating a camera on a tripod, and
a set of casually captured images from different scene viewpoints using a handheld camera (Fujifilm
X100 VI). In the casually captured dataset, the distance between viewpoints varies by up to one to
two meters, and we also introduce other challenging variations, such as capturing images of the same
scene with varying illumination conditions, camera white balance, or image color palette.

The tripod-captured dataset, with minimal parallax, aligns with assumptions of standard stitching
methods and is used to compute a reference panorama for evaluating image quality. The casually
captured dataset tests robustness to parallax, illumination, and style variations. A detailed description
of the captured scenes and the number of captured images for each scene is provided in Supp.
Section S1.6.

To facilitate comparison across output panoramas, we include one tripod-captured image within the
set of casually captured images. We configure our method and all baselines so that this shared image
is placed at the center of the output panorama, ensuring a consistent layout across output panoramas
from both sets of images.

6



re
f. 

im
ag

es
re

fe
re

nc
e

in
pu

t
SD

 In
pa

in
t.

R
ea

lF
ill

pr
op

os
ed

Figure 5: Qualitative results on the tripod-captured dataset. We find that our approach produces
panoramas that are more consistent with the layout and content of the reference panorama than
baseline approaches based on inpainting/outpainting.
Method PSNR (dB) ↑ SSIM ↑ LPIPS ↓ DreamSim ↓ DINO ↑ CLIP ↑ LoFTR (L2 Distance) ↓ LoFTR (Matching) ↑

SD2 9.97 (0.74) 0.267 (0.099) 0.650 (0.040) 0.295 (0.050) 0.916 (0.031) 0.859 (0.074) 85.45 (56.00) 0.012 (0.003)
RealFill 11.71 (1.61) 0.366 (0.143) 0.559 (0.069) 0.198 (0.040) 0.952 (0.020) 0.918 (0.048) 43.01 (35.07) 0.030 (0.010)
proposed 12.11 (2.05) 0.388 (0.136) 0.453 (0.077) 0.107 (0.031) 0.974 (0.019) 0.941 (0.033) 15.11 (7.60) 0.181 (0.080)

Table 1: Quantitative assessment of generative panoramic image stitching on the tripod-captured
image dataset. We outpaint a single warped reference image (see Figure 5), and compare the generated
result to a reference panorama produced using AutoStitch [7]. Our approach generates panoramas
that are most faithful to the reference images. Standard deviations are reported in parentheses.

Baselines. We compare our approach to multiple baselines, starting with the conventional image
stitching method of Brown and Lowe [7] (AutoStitch), which uses feature matching, homography
estimation, warping, and blending. We chose this baseline because (1) it informs our own panorama
layout estimation step, and (2) we found, through empirical evaluation, that it was more robust than
other methods for parallax-tolerant stitching. In particular, we found AutoStitch’s bundle adjustment
procedure more effective for stitching multiple images than recent methods tailored to pairwise
stitching or reliant on pre-trained networks, which failed to generalize to our captured image datasets.

We also compare to the Stable Diffusion 2 inpainting model [3], which serves as the backbone of our
method. This baseline omits our positional encoding and fine-tuning strategy, but follows the same
iterative outpainting procedure. Additionally, we compare to RealFill [52], using their inpainting-
based fine-tuning strategy and generating panoramas using our iterative outpainting process. For the
Stable Diffusion 2 baseline, we use a guidance scale of 7.5 during inference, and for RealFill we
follow their implementation and do not use guidance.

Metrics. We evaluate our method using standard image quality metrics, learning-based metrics
that assess high-level image structure, and feature-matching-based metrics that assess how well our
approach preserves the scene layout. Specifically, we use standard image quality metrics: peak

7



re
f. 

im
ag

es
in

pu
t

A
ut

oS
tit

ch
R

ea
lF

ill
pr

op
os

ed

Figure 6: Qualitative results on the casually captured dataset. Even in this challenging scenario,
where the input images have strong parallax effects and variations in style, illumination, color palette,
or camera capture settings, our approach reconstructs seamless panoramas that preserve the content
and layout of the reference.
Method PSNR ↑ SSIM ↑ LPIPS ↓ DreamSim ↓ DINO ↑ CLIP ↑ LoFTR (L2 Distance) ↓ LoFTR (Matching) ↑
SD2 9.97 (0.74) 0.267 (0.099) 0.650 (0.040) 0.295 (0.050) 0.916 (0.031) 0.859 (0.074) 85.45 (56.00) 0.012 (0.003)
RealFill 11.47 (1.50) 0.360 (0.141) 0.578 (0.058) 0.197 (0.024) 0.943 (0.024) 0.912 (0.036) 30.75 (7.82) 0.026 (0.008)
AutoStitch 10.61 (1.74) 0.335 (0.128) 0.554 (0.060) 0.202 (0.070) 0.949 (0.017) 0.906 (0.042) 16.57 (8.34) 0.168 (0.048)
proposed 11.35 (2.15) 0.374 (0.143) 0.508 (0.076) 0.137 (0.033) 0.971 (0.013) 0.917 (0.035) 17.97 (5.14) 0.130 (0.056)

Table 2: Quantitative assessment of generative panoramic image stitching from casually captured
images. We compare the generated results to a reference panorama using AutoStitch [7] on the
tripod-captured dataset. Our approach generates panoramas that are close to the reference despite
operating on images with parallax and variations in style or lighting.

signal-to-noise ratio, structure similarity [54], and learned perceptual image patch similarity [62]. To
evaluate high-level image structure, we use DreamSim [16], which assesses similarity in semantic
content and layout. We also compute the cosine similarity between the DINO [10] and CLIP [42]
full-image embeddings. Additionally, we use image feature matches from LoFTR [49] to assess how
well the layout of the output panorama matches a reference. We report both the L2 distance between
the pixel coordinates of matching features and the number of matched features divided by the total
number of features in the reference image (see Supp. Section S1.8 for more details).
Qualitative results. We show qualitative results on the tripod-captured dataset in Figure 5 and on
the casually-captured image datasets in Figures 1 and 6. For the tripod-captured dataset we observe
that the Stable Diffusion inpainting model [3] produces image content that is locally plausible, but
fails to adhere to the layout and content of the actual scene. RealFill [52] improves on this result, but
tends to repeat scene content from the reference images without respecting the actual scene layout.
Our approach provides a much closer match to the layout provided by the reference panorama while
also resolving seams and avoiding ghosting artifacts.

For the casually captured results in Figure 6, we compare to AutoStitch [7], which fails to convincingly
blend between the different image regions, resulting in ghosting and other artifacts. We see similar
artifacts for RealFill as in the tripod-captured dataset, and we find that our approach produces
seamless results that are more consistent with the layout and content of the scene. Additional results
for all scenes are included in Supp. Section S2.

Quantitative results. We report quantitative results on the tripod-captured and casually captured
image datasets in Tables 1 and Tables 2, respectively. For the tripod-captured dataset, we construct a
reference panorama using the method AutoStitch [7], which is well-suited to these images, as they

8



Method PSNR ↑ SSIM ↑ LPIPS ↓ DreamSim ↓ DINO ↑ CLIP ↑ LoFTR (L2 Distance) ↓ LoFTR (Matching) ↑
proposed (w/o perturb) 10.83 (1.76) 0.394 (0.100) 0.547 (0.058) 0.146 (0.011) 0.971 (0.014) 0.920 (0.042) 20.90 (3.76) 0.099 (0.040)
proposed (w/o LoRA) 11.00 (1.89) 0.420 (0.102) 0.534 (0.054) 0.142 (0.019) 0.972 (0.012) 0.923 (0.032) 19.37 (5.06) 0.117 (0.042)
proposed (random seed) 11.24 (2.07) 0.375 (0.140) 0.514 (0.076) 0.139 (0.034) 0.971 (0.012) 0.922 (0.034) 19.95 (7.48) 0.121 (0.052)
proposed 11.35 (2.15) 0.374 (0.143) 0.508 (0.076) 0.137 (0.033) 0.971 (0.013) 0.917 (0.035) 17.97 (5.14) 0.130 (0.056)

Table 3: Ablation study. We evaluate the effects of omitting (1) the similarity transform used to perturb
the location of the warped images in the sparse panoramas (w/o perturb.), (2) LoRA and instead using
full fine-tuning on the model’s self-attention layers (w/o LoRA), and (3) correspondence-based seed
selection (random seed). We compare the generated results to a reference panorama produced using
AutoStitch [7] on the tripod-captured dataset.
have minimal parallax or variations in illumination. We find that the proposed approach generates
panoramas that are significantly more consistent with the layout of the reference panorama than the
baselines. This trend is clear from the qualitative results as well as the metrics that assess similarity in
high-level image structure (e.g., DreamSim, CLIP) and in layout based on feature matching (LoFTR).
We note that low-level image quality metrics (e.g., PSNR, SSIM) are perhaps less useful for assessing
performance on this task because small variations in layout can produce large changes in the pixel
values. Nevertheless, these metrics follow the same trend as the high-level metrics, and we include
them for completeness.

For the casually captured image dataset, we compare the output of our approach and baselines to the
same reference panorama as before (i.e., computed with the tripod-captured dataset). For RealFill and
our proposed method, we employ correspondence-based seed selection. Since the set of input images
differs from that of the reference panorama, we notice worse performance in the low-level image
quality metrics on this dataset. However, our approach still outperforms baselines for most metrics.
We notice similar trends in the high-level image quality metrics to those of the tripod-captured dataset,
which suggests that our approach retains the same layout and structure as the reference despite the
significantly more challenging setting. While Autostitch [7] performs slightly better than our method
on the feature-matching based metrics, it achieves this at a cost of seams and other artifacts because
it imperfectly accounts for parallax and variations in capture settings or illumination.

Ablation study. We conduct an ablation study on four scenes from the casually captured dataset
(see Table 3). We evaluate (1) not perturbing the warped image positions (Section 3.5), (2) replacing
LoRA with full fine-tuning of the self-attention layers, and (3) using a single random seed instead of
correspondence-based seed selection. Without perturbation, the model is less robust to misalignments
in the initial layout estimation; full fine-tuning shows no significant advantage over LoRA and is
more computationally expensive; correspondence-based seed selection improves the overall image
quality and feature similarity. In Supp. Section S2.3 we provide additional ablations to evaluate the
effects of guidance scale, seed selection, tiling strategy, and positional encoding frequencies.

5 Discussion winter spring

Figure 7: Generative stitching result
(bottom) with changing scene con-
tent in the reference images (top).
See Supp. Section S1.6 for all ref-
erence images for this scene.

Our work overcomes several failure cases associated with con-
ventional panoramic image stitching methods and shows the
utility of image generation methods for this low-level com-
puter vision task. We see multiple promising directions for
future work. While our method is currently fine-tuned on
a single scene, future extensions could train a more general
model that can incorporate layout and content from multi-
ple reference images in a feed-forward fashion. Additionally,
we demonstrate how our method can handle input images
with large variations in viewpoint, lighting, white balance,
and color palette. However, strong variations in scene con-
tent, such as dynamic scenes with many moving objects, can
be challenging to handle with our layout estimation scheme,
which leverages conventional feature matching and homography estimation. In Fig. 7 we show that
our method is relatively robust to scene changes, e.g., using images captured in winter and spring, but
tackling highly dynamic scenes remains an interesting challenge.

Broader impact. In contrast to conventional image-stitching methods, we use an image generation
model that can hallucinate scene content. Hence, our method should be used for applications where
the qualitative appearance of an output panorama is more important than the strict pixel-level fidelity.

9



References
[1] Aseem Agarwala, Maneesh Agrawala, Michael Cohen, David Salesin, and Richard Szeliski. Photographing

long scenes with multi-viewpoint panoramas. In Proc. ACM SIGGRAPH. 2006.

[2] Aseem Agarwala, Mira Dontcheva, Maneesh Agrawala, Steven Drucker, Alex Colburn, Brian Curless,
David Salesin, and Michael Cohen. Interactive digital photomontage. In Proc. ACM SIGGRAPH. 2004.

[3] Stability AI. Stable-diffusion-2-inpainting, 2022.

[4] Robert Anderson, David Gallup, Jonathan T Barron, Janne Kontkanen, Noah Snavely, Carlos Hernández,
Sameer Agarwal, and Steven M Seitz. Jump: virtual reality video. ACM Trans. Graph., 35(6):1–13, 2016.

[5] Omer Bar-Tal, Lior Yariv, Yaron Lipman, and Tali Dekel. Multidiffusion: Fusing diffusion paths for
controlled image generation. In Proc. ICML, 2023.

[6] James R Bergen and Edward H Adelson. The plenoptic function and the elements of early vision. Comput.
Models Vis. Process., 1(8):3, 1991.

[7] Matthew Brown and David G Lowe. Automatic panoramic image stitching using invariant features. Int. J.
Comput. Vis., 74:59–73, 2007.

[8] Chris Buehler, Michael Bosse, Leonard McMillan, Steven Gortler, and Michael Cohen. Unstructured
lumigraph rendering. In Proc. SIGGRAPH, 2001.

[9] Peter J Burt and Edward H Adelson. A multiresolution spline with application to image mosaics. ACM
Trans. Graph., 2(4):217–236, 1983.

[10] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand
Joulin. Emerging properties in self-supervised vision transformers. In Proc. ICCV, 2021.

[11] Che-Han Chang, Yoichi Sato, and Yung-Yu Chuang. Shape-preserving half-projective warps for image
stitching. In Proc. CVPR, 2014.

[12] Paul E Debevec, Camillo J Taylor, and Jitendra Malik. Modeling and rendering architecture from
photographs: A hybrid geometry-and image-based approach. In Proc. SIGGRAPH, 1996.

[13] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Deep image homography estimation. arXiv
preprint arXiv:1606.03798, 2016.

[14] Ashley Eden, Matthew Uyttendaele, and Richard Szeliski. Seamless image stitching of scenes with large
motions and exposure differences. In Proc. CVPR, 2006.

[15] Stanislav Frolov, Brian B Moser, and Andreas Dengel. Spotdiffusion: A fast approach for seamless
panorama generation over time. In Proc. WACV, 2025.

[16] Stephanie Fu, Netanel Tamir, Shobhita Sundaram, Lucy Chai, Richard Zhang, Tali Dekel, and Phillip Isola.
Dreamsim: Learning new dimensions of human visual similarity using synthetic data. In Proc. NeurIPS,
2023.

[17] Junhong Gao, Seon Joo Kim, and Michael S Brown. Constructing image panoramas using dual-homography
warping. In Proc. CVPR, 2011.

[18] Junhong Gao, Yu Li, Tat-Jun Chin, and Michael S Brown. Seam-driven image stitching. In Eurographics,
2013.

[19] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Proc. NeurIPS,
2020.

[20] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In Proc. NeurIPS Workshop on Deep
Generative Models and Downstream Applications, 2021.

[21] Alain Hore and Djemel Ziou. Image quality metrics: Psnr vs. ssim. In 2010 20th international conference
on pattern recognition, pages 2366–2369. IEEE, 2010.

[22] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. Lora: Low-rank adaptation of large language models. In Proc. ICLR, 2022.

[23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. Advances in neural information processing systems, 25, 2012.

[24] Hoang Le, Feng Liu, Shu Zhang, and Aseem Agarwala. Deep homography estimation for dynamic scenes.
In Proc. CVPR, 2020.

[25] Kyu-Yul Lee and Jae-Young Sim. Warping residual based image stitching for large parallax. In Proc.
CVPR, 2020.

[26] Yuseung Lee, Kunho Kim, Hyunjin Kim, and Minhyuk Sung. Syncdiffusion: Coherent montage via
synchronized joint diffusions. Proc. NeurIPS, 2023.

[27] Marc Levoy and Pat Hanrahan. Light field rendering. In Proc. SIGGRAPH, 1996.

10



[28] Jing Li, Zhengming Wang, Shiming Lai, Yongping Zhai, and Maojun Zhang. Parallax-tolerant image
stitching based on robust elastic warping. IEEE Trans. Multimedia, 20(7):1672–1687, 2017.

[29] Tianli Liao and Nan Li. Single-perspective warps in natural image stitching. IEEE Trans. Image Process.,
29:724–735, 2019.

[30] Chung-Ching Lin, Sharathchandra U Pankanti, Karthikeyan Natesan Ramamurthy, and Aleksandr Y
Aravkin. Adaptive as-natural-as-possible image stitching. In Proc. CVPR, 2015.

[31] Wen-Yan Lin, Siying Liu, Yasuyuki Matsushita, Tian-Tsong Ng, and Loong-Fah Cheong. Smoothly
varying affine stitching. In Proc. CVPR, 2011.

[32] Feng Liu, Michael Gleicher, Hailin Jin, and Aseem Agarwala. Content-preserving warps for 3d video
stabilization. ACM Trans. on Graph., 28(3):1–9, 2009.

[33] David G Lowe. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis., 60:91–110,
2004.

[34] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng.
NeRF: Representing scenes as neural radiance fields for view synthesis. Commun. ACM, 65(1):99–106,
2021.

[35] Ty Nguyen, Steven W Chen, Shreyas S Shivakumar, Camillo Jose Taylor, and Vijay Kumar. Unsupervised
deep homography: A fast and robust homography estimation model. IEEE Robot. Autom. Lett., 3(3):2346–
2353, 2018.

[36] Lang Nie, Chunyu Lin, Kang Liao, Shuaicheng Liu, and Yao Zhao. Unsupervised deep image stitching:
Reconstructing stitched features to images. IEEE Transactions on Image Processing, 30:6184–6197, 2021.

[37] Lang Nie, Chunyu Lin, Kang Liao, Shuaicheng Liu, and Yao Zhao. Parallax-tolerant unsupervised deep
image stitching. In Proc. ICCV, 2023.

[38] Yoshikuni Nomura, Li Zhang, and Shree K Nayar. Scene collages and flexible camera arrays. In Proc.
Eurographics, 2007.

[39] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre
Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning robust visual
features without supervision. arXiv preprint arXiv:2304.07193, 2023.

[40] Shmuel Peleg, Benny Rousso, Alex Rav-Acha, and Assaf Zomet. Mosaicing on adaptive manifolds. IEEE
Trans. Pattern Anal. Mach. Intell., 22(10):1144–1154, 2000.

[41] Patrick Pérez, Michel Gangnet, and Andrew Blake. Poisson image editing. In Proc. ACM SIGGRAPH.
2003.

[42] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In Proc. ICML, 2021.

[43] Alex Rav-Acha, Giora Engel, and Shmuel Peleg. Minimal aspect distortion (MAD) mosaicing of long
scenes. Int. J. Comput. Vis., 78:187–206, 2008.

[44] Christian Richardt, Yael Pritch, Henning Zimmer, and Alexander Sorkine-Hornung. Megastereo: Con-
structing high-resolution stereo panoramas. In Proc. CVPR, 2013.

[45] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proc. CVPR, 2022.

[46] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman. Dream-
booth: Fine tuning text-to-image diffusion models for subject-driven generation. In Proc. CVPR, 2023.

[47] Steven M Seitz and Jiwon Kim. Multiperspective imaging. IEEE Comput. Graph. Appl., 23(6):16–19,
2003.

[48] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In Proc. ICML, 2015.

[49] Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, and Xiaowei Zhou. Loftr: Detector-free local feature
matching with transformers. In Proc. CVPR, 2021.

[50] Richard Szeliski et al. Image alignment and stitching: A tutorial. Found. Trends Comput. Graph. Vis.,
2(1):1–104, 2007.

[51] Richard Szeliski and Heung-Yeung Shum. Creating full view panoramic image mosaics and environment
maps. In Proc. ACM SIGGRAPH, 1997.

[52] Luming Tang, Nataniel Ruiz, Qinghao Chu, Yuanzhen Li, Aleksander Holynski, David E Jacobs, Bharath
Hariharan, Yael Pritch, Neal Wadhwa, Kfir Aberman, et al. Realfill: Reference-driven generation for
authentic image completion. ACM Trans. Graph., 43(4):1–12, 2024.

11



[53] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[54] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error
visibility to structural similarity. IEEE Trans. Image Process., 13(4):600–612, 2004.

[55] Daniel N Wood, Daniel I Azuma, Ken Aldinger, Brian Curless, Tom Duchamp, David H Salesin, and
Werner Stuetzle. Surface light fields for 3d photography. In Proc. SIGGRAPH, 2000.

[56] Tianhao Wu, Chuanxia Zheng, and Tat-Jen Cham. Panodiffusion: 360-degree panorama outpainting via
diffusion. In Proc. ICLR, 2024.

[57] Binxin Yang, Shuyang Gu, Bo Zhang, Ting Zhang, Xuejin Chen, Xiaoyan Sun, Dong Chen, and Fang Wen.
Paint by example: Exemplar-based image editing with diffusion models. In Proc. CVPR, 2023.

[58] Weicai Ye, Chenhao Ji, Zheng Chen, Junyao Gao, Xiaoshui Huang, Song-Hai Zhang, Wanli Ouyang, Tong
He, Cairong Zhao, and Guofeng Zhang. Diffpano: Scalable and consistent text to panorama generation
with spherical epipolar-aware diffusion. In Proc. NeurIPS, 2024.

[59] Julio Zaragoza, Tat-Jun Chin, Michael S Brown, and David Suter. As-projective-as-possible image stitching
with moving DLT. In Proc. CVPR, 2013.

[60] Fan Zhang and Feng Liu. Parallax-tolerant image stitching. In Proc. CVPR, 2014.

[61] Jirong Zhang, Chuan Wang, Shuaicheng Liu, Lanpeng Jia, Nianjin Ye, Jue Wang, Ji Zhou, and Jian Sun.
Content-aware unsupervised deep homography estimation. In Proc. ECCV, 2020.

[62] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proc. CVPR, 2018.

[63] Yuqian Zhou, Connelly Barnes, Eli Shechtman, and Sohrab Amirghodsi. Transfill: Reference-guided
image inpainting by merging multiple color and spatial transformations. In Proc. CVPR, 2021.

12



Generative Panoramic Image Stitching
Supplementary Material

S1 Supplementary Implementation Details

S1.1 Data Preparation

We use reference images capturing a scene from multiple viewpoints to build a panorama. Images are
aligned via homography-based registration and warped onto a panorama of size Hpano ×Wpano using
homography matrices Hi, computed with feature matching (we use SIFT [33, 7]).

A global positional encoding xγ ∈ RHpano×Wpano×C , with C ∈ {4, 8, 12}, encodes spatial patterns.
Coordinates x ∈ [0,Wpano], y ∈ [0, Hpano] are normalized:

px =
2x−Wpano

Wpano
, py =

2y −Hpano

Hpano
.

Frequencies are:

fi = exp

(
log fmin +

i(log fmax − log fmin)

F

)
, i = 0, . . . , F − 1.

The encoding is:

xγ(y, x, c) =


sin(πpxfc/2), c = 2i,

cos(πpxfc/2), c = 2i+ 1,

sin(πpyf(c−2F )/2), c = 2F + 2i,

cos(πpyf(c−2F )/2), c = 2F + 2i+ 1,

where F = C/4 is the number of frequencies per dimension, i = 0, . . . , F − 1, and c denotes the
channel index. In our proposed method, we use fmin = 1, fmax = 50 and C = 12.

S1.2 Positional Encoding Processing

A crop of the global positional encoding xγ [b] ∈ RHpano×Wpano×C , where b = {x, y,W = 512, H =
512}, is transformed into context embeddings cctx ∈ RB×77×1024 (where B is the batch size) through
a convolutional processing module. The transformation proceeds as follows:

F1 = GELU (Conv2D(xγ [b], kernel = 4, stride = 2, padding = 1, out = 128)) ,

F2 = GELU (Conv2D(F1, kernel = 4, stride = 2, padding = 1, out = 128)) ,

F3 = AdaptiveAvgPool2D(F2, (7, 11)),

reducing the spatial dimensions from 512 × 512 to 7 × 11. The feature map is then reshaped and
projected to a higher-dimensional space:

F4 = Reshape(F3, (B, 77, 128)),

F5 = Linear(F4, out = 1024),

yielding F5 ∈ RB×77×1024. A token-level positional encoding inspired by transformer-based
language models [53] is added to F5. This encoding is precomputed for all 77 token positions and
uses sinusoidal functions to encode each token’s position in the sequence. For each token index
p ∈ {0, 1, . . . , 76}, its corresponding embedding PE(p) ∈ R1024 is defined by:

PE(p, 2i) = sin
(
p/100002i/d

)
, PE(p, 2i+ 1) = cos

(
p/100002i/d

)
,

1



for i ∈ {0, 1, . . . , d/2 − 1}, where d = 1024 is the embedding dimension. The token positional
encoding is added to F5, i.e., F6 = F5 + PE, where PE ∈ R77×1024 is broadcast across the batch
dimension. Finally, a layer normalization is applied:

cctx = LayerNorm(F6),

producing the final context embeddings cctx ∈ RB×77×1024, which are used as input to the pre-trained
inpainting diffusion model’s cross-attention layers. The entire positional encoding processor network
is trained from scratch, allowing it to optimally learn the transformation from spatial positional
encodings to meaningful context embeddings for the panorama inpainting and outpainting task.

S1.3 Attention Mechanisms

The model employs self-attention and cross-attention to integrate internal features across multiple
views and enforce spatial consistency, respectively.

S1.3.1 Self-Attention

Self-attention operates on the latent feature map z ∈ RB×C×H×W (e.g., C = 320, H = W = 64),
flattened to zflat ∈ RB×N×C where N = H ×W . We use multi-head attention, with h heads, each
processing a subspace of dimension dhead = C/h:

Qi = zflatWq,i, Ki = zflatWk,i, Vi = zflatWv,i,

where Wq,i,Wk,i,Wv,i ∈ RC×dhead . Attention scores are computed as:

Ahead,i =
QiK

⊤
i√

dhead
∈ RB×N×N ,

with outputs aggregated across heads:
Attentionself = Concat(Attentionhead,1, . . . ,Attentionhead,h)Wo,

where Wo ∈ RC×C . This enables global spatial reasoning, crucial for maintaining coherence across
different views in the final panoramic image.

S1.3.2 Cross-Attention

Cross-attention integrates context embeddings cctx ∈ RB×77×1024 with zflat

Qi = zflatW
cross
q,i , Ki = cctxW

cross
k,i , Vi = cctxW

cross
v,i ,

where W cross
q,i ∈ RC×dhead , and W cross

k,i ,W cross
v,i ∈ R1024×dhead . The output is

Attentioncross = Concat(Attentioncross,1, . . . ,Attentioncross,h)W
cross
o ,

ensuring inpainted regions align with the spatial context, preserving consistent features like textures
and lighting across multiple input views.

S1.4 Inpainting Model Architecture and Inputs

The architecture backbone is based on the Stable Diffusion 2.1 inpainting model [3], which uses
an encoder–decoder UNet architecture with embedded self-attention and cross-attention layers for
multi-scale reasoning. The denoising process follows the DDPM framework [19], where a noisy
latent representation is progressively refined to reconstruct the image.

As described in the main paper, we adapt the pre-trained inpainting diffusion model Ψ(z
(i)
crop,t, t, C)

where
C = {m, (1−m)⊙ z(i)crop, cctx}, (S1)

Noisy Latent Input. During training, the input noisy latent input z(i)crop,t is generated by corrupting

the encoded latent of a random crop from the input panorama set {x(i)
pano}Ni=1 with noise, as

z(i)crop = ESD(RANDCROP(x(i)
pano)),

where the noisy latent is then

z
(i)
crop,t =

√
αtz

(i)
crop +

√
1− αtϵ

2



Conditioned Input and Mask. Following Stable Diffusion 2.1, the inpainting mask m ∈
{0, 1}B×1×64×64 is a downsampled representation of the region to be inpainted. It is constructed
by combining random shapes with warped boundary regions to simulate occlusion patterns. The
conditioning input, z(i)crop, is masked by (1−m) to simulate occlusion and then concatenated with the
mask itself and the noised latent zt as input to the UNet.

Context Embeddings. The embeddings cctx ∈ RB×77×1024 are derived from the same crop
dimensions used for z(i)crop, applied to the positional encoding map xγ and passed through the context
encoder Ectx:

cctx = Ectx(RANDCROP(xγ)).

These embeddings replace text conditioning and are fed into the cross-attention blocks of the UNet
(see Section S1.3.2), enabling spatially-aware denoising. This conditioning scheme enables the model
to perform both inpainting and outpainting with spatial coherence.

S1.5 Training

Training begins by sampling a latent representation z
(i)
crop and the corresponding positional embedding

cctx as explained in S1.4. The diffusion model Ψ(z
(i)
crop,t, t, C) is trained to predict the noise added to

the latent during the forward diffusion process by minimizing the loss function Equation 1.

Optimization Strategy. The model parameters are optimized using the AdamW optimizer. To
preserve the generative power of the pre-trained Stable Diffusion model, we adopt a selective fine-
tuning approach:

• LoRA (Low-Rank Adaptation) [22] is applied to the self-attention layers of the UNet
to enable efficient adaptation with fewer trainable parameters. We use a learning rate of
1× 10−4.

• Cross-attention layers are fully fine-tuned to allow better integration of positional context
via cctx. We use a learning rate of 3× 10−4.

• The VAE encoder/decoder and other layers of the UNet remain frozen to retain the fidelity
of the original image reconstruction.

• The context encoder Ectx, which produces cctx, is trained from scratch using standard
initialization. We use a learning rate of 8× 10−4.

S1.6 Dataset

Figure S1 and Figure S2 show the reference images for the tripod-captured and casually-captured
datasets, respectively. Both include the same eight scenes, captured (for the most part) at the exact
same time: variations in lighting or time of day are captured in the casually captured set. The tripod-
captured dataset attempts to capture a complete coverage of the scene, while the casually-captured
dataset includes variations that make conventional stitching methods like AutoStitch [7] difficult.
Specifically, we outline the variations for each scene as follows:

“Backyard” scene

Lighting/time-of-day (night vs. day), small parallax

“Bedroom” scene

Lighting (lights on vs. off), small parallax

“College” scene

White balance, image color filtering

3



“Donuts” scene

Image color filtering, strong parallax

“Livingroom” scene

Lighting variation (lights on vs. off), strong parallax, missing objects (foosball table removed),
image orientation (landscape, portrait)

“Street” scene

Seasonal variation (winter vs. summer), small parallax, different objects (cars), image orientation
(landscape, portrait)

“Subway” scene

Image color filtering (sepia), image orientation (landscape, portrait)

“Waterfront” scene

Strong parallax, white balance, image color filtering, image orientation (landscape, portrait)

S1.7 Baseline Implementation Details

RealFill [52]. We follow the default implementation guidelines and code for RealFill. We use
the default prompt “a photo of sks” and guidance scale of 0.99 (as used in the original work)
during inference. RealFill employs a simple prompt fine-tuning strategy as proposed in [46], where
each reference image is randomly cropped during training and fine-tuned with the same input
prompt. RealFill uses random masking during training and samples each reference image with equal
probability.

SD2 Inpainting. We use ChatGPT to generate the following text prompts to inpaint scenes in our
dataset using the Stable Diffusion 2 inpainting [3] baseline. We fed it the reference images and asked
it to describe the scene for an in/outpainting task. We use the default guidance scale of 7.5.

“Backyard” scene prompt

A cozy backyard garden patio on a sunny spring afternoon, with light wooden fencing arranged
in a chevron pattern enclosing the space. The ground is a mix of wooden decking and brick
pavers. There is a modern white outdoor dining table surrounded by white molded chairs with
wooden legs. Raised garden beds line the perimeter, filled with lush green ferns, hostas, and
flowering tulips. A small Japanese maple tree with red leaves adds a vibrant accent. Overhead,
string lights hang between tall trees. Suburban townhouses and fire escapes are visible beyond
the fence. Continue the garden with more raised beds, greenery, and cozy shaded seating areas.

“Bedroom” scene prompt

A cozy bedroom with warm lighting and natural wood trim. A soft grey bedspread covers a
modern dark wood bed, with a large plush gnome toy sitting upright at the head of the bed. The
gnome has a fluffy white beard, red hat, and blue outfit. To the side, there’s a pair of bright yellow
slippers on the bed. The walls are painted beige, with framed artwork and a tall wooden door.
Hardwood floors reflect the warm overhead light. The room is neat but lived-in, with a cardboard
box on the floor, a dresser topped with a camera and board games, and open shelves filled with
books and gadgets. Extend the scene naturally with matching lighting, wood finishes, and layout.

4



W
at
er
fr
on
t

Su
bw
ay

St
re
et

Li
vi
ng
ro
om

B
ed
ro
om

B
ac
ky
ar
d

D
on
ut
s

C
ol
le
ge

Figure S1: Reference images for the the tripod-captured dataset. Eight scenes were captured, showing
a range of contexts.

5



Li
vi
ng
ro
om

B
ed
ro
om

St
re
et

Su
bw
ay

W
at
er
fr
on
t

B
ac
ky
ar
d

D
on
ut
s

C
ol
le
ge

Figure S2: Reference images for the casually captured dataset. Eight scenes were captured, mirroring
the tripod-captured dataset. This dataset shows challenging scenarios, where the input images
have strong parallax effects (“Waterfront”, “Donuts”), variations in style (“Waterfront”, “Subway”),
illumination (“Bedroom”, “Backyard”), color palette (“Waterfront”, “Donuts”, “College”), or seasonal
changes (“Street”).

6



“College” scene prompt

A serene university courtyard on a crisp early spring morning, lined with tall leafless trees casting
long shadows across the stone-paved paths. Old gothic stone buildings and vintage street lamps
border the green lawn, while scattered wooden benches sit empty under the bare branches. A
soft blue sky with gentle morning sunlight peeks through the trees, illuminating the historic
campus in a calm, peaceful atmosphere. Natural lighting, detailed textures, realistic architecture,
high-resolution photo.

“Donuts” scene prompt

Urban back alley beside a bright yellow building with murals depicting industrial and artistic
scenes, a red ‘RECEIVING’ sign, and barred windows. A silver sports car is parked on the street
beside a city parking meter. Adjacent to it is a pastel pink storefront with bold ‘HOT DOG’
signage, garbage bins, and leafless winter trees. In the distance, high-rise glass apartments and
brick institutional buildings frame the cityscape. Overcast sky, soft urban lighting, clean and
calm street scene.

“Livingroom” scene prompt

Extend the cozy living room with warm lighting and rustic cabinetry, holiday decor continuing
throughout the space.

“Street” scene prompt

A quiet urban residential street in winter, lined with large Victorian red-brick houses with gabled
roofs and stone foundations. Bare trees stand on small front lawns covered in patches of snow.
Parked cars line the street, including compact sedans and hatchbacks. The sky is clear and blue,
with soft late afternoon sunlight casting long shadows. A mix of brick textures, wooden porches,
and balconies add architectural charm. Extend the street with similar architecture, snow-covered
sidewalks, more houses in perspective, and consistent lighting and color tone.

“Subway” scene prompt

A vintage subway concourse with brown ceramic tiles and steel railings, illuminated by ceiling
spotlights. A surreal mural on the wall shows whimsical floating objects, vintage figures, a red
car, a lion on a bed, and abstract staircases, all set against a bright grassy hill and a blue sky
with clouds. Large glass windows above let in natural daylight and reveal leafless tree branches
outside. The overall atmosphere is clean, quiet, and dreamlike, blending realism with surrealism.

“Waterfront” scene prompt

Toronto waterfront promenade on a clear sunny day, with a patterned brick walkway, stone
barriers, life buoys on silver poles, modern industrial dock buildings across the lake, calm blue
water, Porter Airlines ferry terminal, and distant city skyline with high-rise towers, boats on the
lake, realistic urban scenery, vibrant shadows and natural lighting

S1.8 Metrics

To evaluate the quality of generated panoramic images, we employ a comprehensive set of metrics
that assess standard image quality, high-level image structure, and preservation of scene layout.
The latter two use learning-based metrics and feature-matching-based metrics, respectively. We
evaluate generated panoramas xgen

pano ∈ RHpano×Wpano×3
+ against the reference panorama produced using

AutoStitch [7] on the tripod-captured dataset xref
pano ∈ RHpano×Wpano×3

+ . All metrics except DreamSim,
CLIP, and DINO omit the region of the sparse panorama provided as input during inference (defined
by a binary mask minput ∈ {0, 1}Hpano×Wpano ) to focus on inpainted areas. Below, we describe each
metric, its implementation details, and its significance.

7



PSNR (Peak Signal-to-Noise Ratio). Measures pixel-level similarity [21], defined as

PSNR = 10 · log10

(
MAX2x

MSE(xref
pano,x

gen
pano)

)
,

where MAXx = 255 for 8-bit RGB images, and MSE(·) is the mean squared error between valid pixels
(i.e., where minput = 0) of xref

pano and xgen
pano. Higher values indicate better pixel fidelity.

SSIM (Structural Similarity Index). Assesses structural and perceptual similarity by comparing
luminance, contrast, and structure in grayscale images [54]:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
,

where µx, µy are means, σx, σy are variances, σxy is covariance, and c1, c2 are constants. We
compute SSIM on grayscale images with masked regions (minput = 1) set to zero. Higher values
indicate better structural consistency.

LPIPS (Learned Perceptual Image Patch Similarity). Measures perceptual similarity using a
pre-trained AlexNet [23], as proposed by Zhang et al. [62]. For permuted image tensors xref

pano,x
gen
pano ∈

RB×3×Hpano×Wpano
+ , normalized to [−1, 1], LPIPS computes feature distances as

LPIPS =
1

H ′W ′

∑
h,w

lossAlex(xref
pano,x

gen
pano) · (1−m′

input),

where lossAlex is the weighted L2 distance between feature activations from AlexNet layers, m′
input

is the resized mask, and H ′,W ′ match the feature map size. Lower values indicate better perceptual
similarity.

DreamSim [16]. Evaluates high-level perceptual similarity using the DreamSim model trained on
human perceptual judgments. The metric is:

DreamSim = dreamsim_model(xref′
pano,x

gen′
pano),

where xref′
pano,x

gen′
pano are images resized to 224 × 224 to match the model’s input requirements. The

DreamSim model, based on a vision transformer, predicts perceptual similarity by comparing feature
embeddings. Lower scores indicate closer perceptual alignment.

DINO. Measures semantic similarity using the DINOv2-base model [39] as the cosine distance
between features extracted from the last hidden state:

DINO =
cos(featref, featgen) + 1

2
,

where featref, featgen are mean-pooled features from the last hidden state of DINOv2, and cos(·) is
the cosine similarity. Higher values indicate better semantic alignment.

CLIP. Assesses semantic similarity using the CLIP ViT-B/32 model [42]. The CLIP score is defined
as the cosine similarity between normalized CLIP image embeddings:

CLIP = cos(zref
clip, z

gen
clip),

where zref
clip, z

gen
clip are image embeddings from the forward pass of the CLIP ViT-B/32 model. Higher

values indicate better semantic consistency.

LoFTR Metrics. Evaluates feature correspondence using LoFTR [49]. Images are resized to
512× 512 and converted to grayscale and then processed. We report both the L2 distance between
the pixel coordinates of matching features and the number of matched features divided by the total
number of features in the reference image. Specifically,

LoFTR_L2_Distance =
1

N

N∑
i=1

√∑
(mkptsref

i − mkptsgen
i )2,

LoFTR_Match_Proportion =
N

total_features
,

8



L2
 d

is
ta

nc
e

G
en

er
at

ed
R

ef
er

en
ce

0

100

Figure S3: Example of LoFTR feature matching between reference and generated panoramas. White
circles mark selected keypoints in the reference, with corresponding points in the generated panorama
color-coded by L2 pixel distance from their reference positions.

where mkptsref, mkptsgen are matched keypoints outside minput, N is the number of valid matches
between the reference and the generated panorama identified by LoFTR, and total_features
is the number of reference keypoints identified by LoFTR in the reference panorama. Lower
LoFTR_L2_Distance and higher LoFTR_Match_Proportion indicate better correspondence. An
example of matches identified by LoFTR for an image crop is visualized in Figure S3.

S1.9 Inference Procedure Details

During inference, we adopt a tile-based approach to progressively generate the full panoramic canvas.
For each tile, the model performs T denoising steps, leveraging the concatenated input and cross-
attention-guided context embeddings cctx to produce the tile output. We used T = 50. This procedure
is repeated for all tiles, and the final panoramic image xgen

pano is assembled sequentially, tile by tile.
Tiles are sorted by the distance to the centroid of the starting reference image, in increasing distance,
in a breadth-first-search manner. This allows the denoising of tiles with overlap of the starting
reference image first, and subsequently outpainting tiles with overlap from previous generations. An
example is shown in Figure S4.

Correspondence-based seed selection. Due to stochasticity in the inference process, the generation
quality varies between random seeds. This is amplified by the numerous tiles required to denoise a full
panorama, and artifacts early-on may propagate throughout the canvas. We employ a correspondence-
based seed selection process [52] to mitigate this problem, identifying generated panoramas whose
layout matches the result of feature-based image registration [7]. An example of various seed
generations is shown in Figure S5. We generate ten panoramas with different random seeds and take
our output to be the panorama with the most feature matches (computed with LoFTR [49]) compared
to the output of AutoStich [7] on the casually-captured dataset. Final metrics would be calculated by
comparing the reference panorama from the tripod-captured dataset. This process could be further
enhanced with more seeds, depending on desired computation budget (e.g. RealFill [52] generates 64
outputs).

S2 Supplementary Results

S2.1 Tripod-Captured Dataset

We show the additional 5 scenes for the tripod-captured dataset in Figure S6. Similar to before,
we observe that the Stable Diffusion inpainting model [3] produces image content that is locally

9



0 1 2

3 4 5

6 7 8

21 22
...

23

Figure S4: Example of the tiling strategy to generate the full panoramic canvas. Tiles closest to the
reference image are denoised first, with subsequent tiles denoised in a breadth-first-search manner.

selected

Figure S5: Example of the correspondence-based seed selection strategy to generate the full panoramic
canvas. We generate 10 panoramas with different seeds and select the one with most feature matches.
The selected panorama has the least artifacts in this example and is the most seamless and similar to
the reference.

plausible, but fails to adhere to the layout and content of the actual scene. Similar to previous scenes,
RealFill [52] improves on this result, but tends to repeat scene content and ignores scene layout. Our
approach provides a much closer match to the layout provided by the reference panorama.

S2.2 Casually Captured Dataset

We show the additional three scenes for the casually captured dataset in Figure S7. Similar to other
scenes, AutoStitch [7], fails to convincingly blend between the different image regions, resulting
in ghosting and other artifacts. RealFill exhibits similar artifacts as in the tripod-captured dataset,
and we find that our approach produces seamless results that are more consistent with the layout and
content of the scene.

10



re
f. 

im
ag

es
in

pu
t

re
fe

re
nc

e
R

ea
lF

ill
pr

op
os

ed
SD

 In
pa

in
t.

re
f. 

im
ag

es
in

pu
t

re
fe

re
nc

e
R

ea
lF

ill
pr

op
os

ed
SD

 In
pa

in
t.

Figure S6: Qualitative results on the additional scenes from the tripod-captured dataset. We find
that our approach produces panoramas that are more consistent with the layout and content of the
reference panorama than baseline approaches based on inpainting/outpainting.

11



re
f. 

im
ag

es
in

pu
t

A
ut

oS
tit

ch
R

ea
lF

ill
pr

op
os

ed
re

f. 
im

ag
es

Figure S7: Qualitative results of the additional three scenes on the casually captured dataset. Even in
this challenging scenario, where the input images have strong parallax effects and variations in style,
illumination, color palette, or camera capture settings, our approach reconstructs seamless panoramas
that preserve the content and layout of the reference.

S2.3 Supplementary Ablation Studies

Quantitative results. We conduct an ablation study on the casually captured dataset (see Table S1).
We evaluate (1) the effects of parameter choices in positional encoding frequencies (number of
channels, max frequency, and omitting token positional encodings), (2) inference strategies, omitting
the reference image during inference and denoising tiles row-by-row, with rows sorted by distance
to the starting image in the y-axis, and tiles sorted by the distance to the centroid in the x-axis, (3)
various guidance scales, (4) various overlap ratios, and (5) training without positional encoding and
only using warped reference images. Each ablation uses correspondence-based seed selection to
eliminate concerns over seed selection.

Significantly lower max frequency (10Hz), smaller number of channels (4 channels), and no token
positional encoding show improvements in some image quality metrics, but a fall in the feature-
matching-based metrics. The higher frequencies of the proposed method (12-channels, 50Hz) allow
for finer details and better reconstruction of features from the reference images.

Removing the reference image shows a drop across the board in performance, showing the necessity
of a starting reference image, as expected. Performance still outperforms prior baselines (see Table 2).

Guidance scales between 1.5 and 2.00 and overlap ratios between 0.1 and 0.2 show the best perfor-
mance in class. We chose a guidance scale of 1.5 with an overlap ratio of 0.2. Generating panoramas
using a row-by-row sorting shows marginal improvements in some metrics, however, we found
qualitatively that more artifacts are produced. These artifacts are more evident to users, and therefore
we opted not to use this strategy.

w
/o

 p
er

tu
rb

w
/ p

er
tu

rb

Figure S8: Qualitative evaluation of the ablation omit-
ting the similarity transform used to perturb the location
of the warped images in the sparse panoramas.

RealFill with warped reference images suf-
fers from similar repetitive content and a
lack of adhesion to the reference layout,
demonstrating the need for our proposed
positional encoding conditioning.

12



Method PSNR ↑ SSIM ↑ LPIPS ↓ DreamSim ↓ DINO ↑ CLIP ↑ LoFTR (L2 Distance) ↓ LoFTR (Matching) ↑
proposed (10Hz) 11.09 (2.03) 0.414 (0.100) 0.532 (0.065) 0.137 (0.024) 0.971 (0.011) 0.917 (0.034) 21.65 (4.48) 0.119 (0.037)
proposed (4 channels) 11.12 (1.96) 0.416 (0.102) 0.543 (0.065) 0.134 (0.013) 0.973 (0.011) 0.914 (0.042) 21.95 (5.54) 0.109 (0.039)
proposed (w/o token pos enc) 10.99 (2.29) 0.413 (0.104) 0.544 (0.068) 0.149 (0.033) 0.975 (0.009) 0.913 (0.037) 19.89 (3.82) 0.114 (0.044)
proposed (no ref) 10.20 (2.04) 0.311 (0.138) 0.666 (0.067) 0.235 (0.065) 0.943 (0.011) 0.866 (0.047) 26.89 (6.25) 0.107 (0.042)
proposed (guidance=0.99) 12.22 (1.92) 0.395 (0.140) 0.508 (0.061) 0.154 (0.032) 0.972 (0.011) 0.922 (0.043) 18.13 (4.57) 0.118 (0.057)
proposed (guidance=1.00) 12.22 (1.92) 0.395 (0.140) 0.508 (0.061) 0.154 (0.032) 0.972 (0.011) 0.922 (0.043) 18.13 (4.57) 0.118 (0.057)
proposed (guidance=2.00) 11.07 (2.25) 0.363 (0.135) 0.514 (0.073) 0.145 (0.044) 0.972 (0.012) 0.922 (0.038) 17.20 (4.32) 0.131 (0.056)
proposed (guidance=3.00) 10.43 (2.28) 0.348 (0.129) 0.539 (0.073) 0.165 (0.042) 0.968 (0.013) 0.919 (0.032) 16.91 (5.64) 0.122 (0.058)
proposed (guidance=5.00) 9.57 (2.14) 0.330 (0.125) 0.593 (0.066) 0.188 (0.041) 0.962 (0.018) 0.917 (0.035) 17.79 (6.15) 0.109 (0.055)
proposed (guidance=7.50) 8.80 (1.50) 0.310 (0.107) 0.648 (0.049) 0.251 (0.065) 0.940 (0.034) 0.897 (0.040) 24.03 (15.30) 0.097 (0.056)
proposed (overlap=0.00) 11.37 (2.18) 0.373 (0.144) 0.514 (0.079) 0.136 (0.031) 0.974 (0.009) 0.919 (0.035) 17.82 (5.25) 0.124 (0.052)
proposed (overlap=0.10) 11.34 (1.89) 0.372 (0.137) 0.507 (0.077) 0.140 (0.033) 0.970 (0.012) 0.920 (0.030) 16.52 (5.02) 0.128 (0.053)
proposed (overlap=0.50) 11.56 (2.11) 0.377 (0.140) 0.501 (0.082) 0.135 (0.040) 0.970 (0.010) 0.927 (0.029) 19.20 (7.96) 0.128 (0.055)
proposed (overlap=0.75) 11.71 (2.06) 0.378 (0.133) 0.499 (0.084) 0.135 (0.038) 0.971 (0.013) 0.932 (0.022) 18.43 (9.01) 0.119 (0.062)
proposed (row-by-row) 11.54 (2.16) 0.379 (0.142) 0.507 (0.070) 0.131 (0.026) 0.974 (0.011) 0.911 (0.045) 17.75 (4.98) 0.129 (0.051)
RealFill (warped ref) 10.39 (1.64) 0.309 (0.132) 0.667 (0.080) 0.248 (0.040) 0.932 (0.020) 0.884 (0.024) 60.56 (26.77) 0.016 (0.002)
proposed 11.35 (2.15) 0.374 (0.143) 0.508 (0.076) 0.137 (0.033) 0.971 (0.013) 0.917 (0.035) 17.97 (5.14) 0.130 (0.056)

Table S1: Ablation study. We evaluate the effects of (1) using a max frequency of 10Hz for the
positional encoding (10Hz), (2) using 4 channels for the positional encoding (4 channels), (3)
omitting the token positional encoding in the positional encoding (w/o token pos enc), (4) omitting
the reference image during inference (no ref), (5) various guidance scales (guidance), (6) various
overlap ratios (overlap), (7) tiling strategy, denoising row-by-row (row-by-row), and (8) RealFill
trained with the warped reference images. We compare the generated results to a reference panorama
produced using AutoStitch [7] on the tripod-captured dataset as in the main paper.

Qualitative results. We show qualitative
results for the effect of perturbing the lo-
cations of sparse images in the panorama
Figure S8. Without perturbation, the model
is less robust to misalignments in the initial
layout estimation.

We show qualitative results for the various
guidance scales in Figure S9. Lower guid-
ance scales (< 1.5) maintain scene quality but fail to properly blend through artifacts (e.g. building
remains grayscale). Guidance scales between 1.5− 2 show how scene cohesion can be maintained
while also resolving artifacts found in the reference images (building is well blended). Higher
guidances begin to exhibit “cartoonish” effects and the scene loses cohesion (obvious seams between
regions in the panorama).

guidance = 0.99

guidance = 3.00 guidance = 5.00 guidance = 7.50

guidance = 1.50 guidance = 2.00

Figure S9: Qualitative comparison of various guidance scales on the casually-captured dataset. We
find that increasing guidance leads to more “cartoonish” outputs and more seams, with a guidance
scale around 1.5 showing best results.

13


	Introduction
	Related Work
	Generative Panoramic Image Stitching
	Preliminaries: Latent Diffusion Models
	Panorama Layout Estimation & Positional Encoding
	Fine-tuning for Position-aware Inpainting and Outpainting
	Panorama Generation
	Implementation Details

	Experiments
	Discussion

	Supplementary Implementation Details
	Data Preparation
	Positional Encoding Processing
	Attention Mechanisms
	Self-Attention
	Cross-Attention

	Inpainting Model Architecture and Inputs
	Training
	Dataset
	Baseline Implementation Details
	Metrics
	Inference Procedure Details

	Supplementary Results
	Tripod-Captured Dataset
	Casually Captured Dataset
	Supplementary Ablation Studies



