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Abstract

Conventional techniques for imposing monotonic-
ity in MLPs by construction involve the use of
non-negative weight constraints and bounded ac-
tivation functions, which pose well-known opti-
mization challenges. In this work, we generalize
previous theoretical results, showing that MLPs
with non-negative weight constraint and activa-
tions that saturate on alternating sides are univer-
sal approximators for monotonic functions. Ad-
ditionally, we show an equivalence between the
saturation side in the activations and the sign of
the weight constraint. This connection allows us
to prove that MLPs with convex monotone acti-
vations and non-positive constrained weights also
qualify as universal approximators, in contrast to
their non-negative constrained counterparts. Our
results provide theoretical grounding to the em-
pirical effectiveness observed in previous works
while leading to possible architectural simplifica-
tion. Moreover, to further alleviate the optimiza-
tion difficulties, we propose an alternative formu-
lation that allows the network to adjust its activa-
tions according to the sign of the weights. This
eliminates the requirement for weight reparam-
eterization, easing initialization and improving
training stability. Experimental evaluation rein-
forces the validity of the theoretical results, show-
ing that our novel approach compares favourably
to traditional monotonic architectures.
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Figure 1. Monotone MLPs with weight-constraint and bounded
activations (pink) and our proposed approach based on ReLU
(blue). The former can only represent bounded functions and,
thus, cannot extrapolate the data trend, which is important in many
domains, such as time-series analysis and predictive maintenance.

1. Introduction

Monotonic neural networks represent a pivotal shift in deep
learning. They bridge the gap between high-capacity non-
linear models and the need for interpretable, consistent out-
puts in various applications. Monotonic MLPs preserve
monotonic input-output relationships, making them particu-
larly suitable for domains that require justified and transpar-
ent decisions (Gupta et al., 2016; Nguyen & Martinez, 2019).
Furthermore, monotonic MLPs have been exploited to build
novel architectures for density estimators (Chilinski & Silva,
2020; Omi et al., 2019; Tagasovska & Lopez-Paz, 2019),
survival analysis (Jeanselme et al., 2023), and remaining
useful life (Sdnchez et al., 2023). In general, the enforce-
ment of constraints on the model architecture guarantees
certain desired properties, such as fairness or robustness.
Furthermore, explicitly designing the model with inductive
biases that exploit prior knowledge has been shown to be
fundamental for efficient generalization (Dugas et al., 2000;
Milani Fard et al., 2016; You et al., 2017). For this reason,
the use of monotonic networks can help both in improv-
ing performance (Mitchell, 1980) and in data efficiency
(Velickovic, 2019).
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Recent works in this field usually fall into one of the follow-
ing two categories: ‘soft monotonicity’ and ‘hard mono-
tonicity’. Soft monotonicity employs optimization con-
straints (Gupta et al., 2019; Sill & Abu-Mostafa, 1996), usu-
ally as additional penalty terms in the loss. This class of ap-
proaches benefits from its simple implementation and inex-
pensive computation. They exploit the power of Multi-Layer
Perceptrons (MLPs) to be able to approximate arbitrary func-
tions. Since penalties are usually applied to dataset sam-
ples, monotonicity is enforced only in-distribution, therefore
struggling to generalize the constraint out-of-distribution.

Hard monotonicity instead imposes constraints on the model
architecture to ensure monotonicity by design (Wehenkel &
Louppe, 2019; Nolte et al., 2023). The simplest way to do
so is to constrain the MLP weights to be non-negative and
to use monotonic activations (Daniels & Velikova, 2010).
The methods proposed in the literature that exploit this
parametrization (Daniels & Velikova, 2010; Wehenkel &
Louppe, 2019) require the usage of bounded activations,
such as sigmoid and hyperbolic tangent, which introduce
well-known optimization challenges due to vanishing gra-
dients (Dubey et al., 2022; Ravikumar & Sriraman, 2023;
Szandata, 2021; Nair & Hinton, 2010; Glorot & Bengio,
2010; Goodfellow et al., 2013). This shortcoming is even
more evident in monotonic NNs with non-negative weights,
where bounded activations make the initialization even more
crucial for optimization. As discussed in Appendix A.2,
poor initialization can lead to saturated activations at the
beginning of training, thus significantly slowing it down.
Furthermore, the use of bounded activations leads to MLPs
that can only represent bounded functions, which may hin-
der generalization, as shown in Figure 1.

Indeed, most recent advances in NNs use activations in
the family of rectified linear functions, such as the popular
ReL.U activation (Vaswani, 2017; He et al., 2016). However,
the use of ReLU activations in MLPs with non-negative
weights is problematic. In fact, an MLP that uses con-
vex activations (such as ReLLU) in conjunction with non-
negative weights can only approximate convex functions,
which severely limits applications (Daniels & Velikova,
2010; Mikulincer & Reichman, 2022). For this reason,
many approaches in the literature still rely on including
bounded activations in the architecture in order to ensure
universal approximation abilities of the network.

The primary aim of this work is to extend the theoretical
basis of monotonic-constrained MLPs, by showing that it
is still possible to achieve universal approximation using
activations that saturate on one side, such as ReLU. To
show that these new findings are not just theoretical tools,
we create a new architecture that only uses saturating activa-
tions with performances comparable to state-of-the-art. Our
contributions can be summarized as follows:

1. We show that constrained MLPs that alternate left-
saturating and right-saturating monotonic activations
can approximate any monotonic function. We also
demonstrate that this can be achieved with a con-
stant number of layers, which matches the best-known
bound for threshold-activated networks.

2. Contrary to the non-negative-constrained formulation,
we prove that an MLP with at least 4 layers, non-
positive-constrained weights, and ReL.U activation is
a universal approximator. More generally, this holds
true for any saturating monotonic activation.

3. We propose a simple parametrization scheme for mono-
tonic MLPs that (i) can be used with saturating acti-
vations; (ii) does not require constrained parameters,
thus making the optimization more stable and less sen-
sitive to initialization; (iii) does not require multiple
activations; (iv) does not require any prior choice of
alternation of any activation and its point reflection.

Our discussion will primarily focus on ReLU activations,
which are widely used in the latest advancements in deep
learning. However, the results apply to the broader family of
monotonic activations that saturate on at least one side. This
includes most members of the family of ReLU-like activa-
tions such as exponential, ELU (Clevert et al., 2016), SeLU
(Klambauer et al., 2017), CELU (Barron, 2017), SReLU
(Jin et al., 2016), and many more.

2. Related work

Monotonicity in neural network architectures is an active
area of research that has been addressed both theoretically
and practically. Prior work can be broadly classified into two
categories: architectures designed with built-in constraints
(hard monotonicity) and those employing regularization and
heuristic techniques to enforce monotonicity (soft mono-
tonicity). Our contribution falls into the former category.

2.1. Hard Monotonicity

Hard-monotonicity aims at building MLPs with provably
monotonicity for any point of the input space. They do so
by constructing the MLP so that only monotonic functions
can be learned. Initial attempts were Deep Lattice Networks
(You et al., 2017) and methods constraining all weights to
have the same sign exemplify this approach (Dugas et al.,
2009; Runje & Shankaranarayana, 2023; Kim & Lee, 2024).
However, constraining the parameters to be non-negative
violates the original MLP formulation, thus invalidating the
universal approximation theorem. Indeed, the universal ap-

Code available at github.com/AMCO-UniPD/monotonic.
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proximation capability of the architecture is proven only
under the condition that the threshold function is used as ac-
tivation and that the network is at least 4 layers deep (Runje
& Shankaranarayana, 2023). Furthermore, the non-negative
parameter constraint also creates issues from an initializa-
tion standpoint, as the assumption for popular initializers
might be violated for positive semidefinite matrixes. Only
recently, new architectures have been proposed with novel
techniques: adapting the Deep Lattice framework to MLPs
(Yanagisawa et al., 2022), working with multiple activations
(Runje & Shankaranarayana, 2023), and constraining the
Lipschitz constant (Raghu et al., 2017). However, Runje &
Shankaranarayana (2023) requires the usage of multiple ac-
tivations, and an a priori split of the layer neurons between
them, which might be suboptimal or require additional tun-
ing, and Nolte et al. (2023) relies on very specific activa-
tions to control such property, as reported by the authors. In
contrast, our work aims to overcome these drawbacks by im-
proving flexibility without compromising the monotonicity
constraint.

2.2. Soft Monotonicity

Soft-monotonicity aims to build monotonic MLPs by mod-
ifying the training instead of the architecture, either using
heuristics or regularizations. Techniques such as point-wise
penalty for negative gradients (Gupta et al., 2019; Sill &
Abu-Mostafa, 1996) and the use of Mixed Integer Linear
Programming (MILP) for certification (Liu et al., 2020)
have been proposed. These methods maintain consider-
able expressive power but do not guarantee monotonicity.
Additionally, the computational expense required for certifi-
cations, such as those using MILP or Satisfiability Modulo
Theories (SMT) solvers, can be prohibitively high.

3. Monotone MLP

A function f:R¢ — R is said to be monotone non-
decreasing with respect to z;, if given 29, 2} € R,i € [1,d],
has the following property:

I )

ey
And similarly, a function f : R? — R s said to be monotone
non-increasing with respect to x; if:

) <al= flry,...,20 . xg) < flxy,. ..

,x%,...,xd).

2
Remark 3.1. Given f(x), g(z) monotonic non-decreasing,
and h(zx), u(x) monotonic non-increasing, f o g is mono-
tonic non-decreasing, f o h is monotonic non-increasing,
and u o h is monotonic non-decreasing.

) <al = flry,..., 20 xg) > fa,. ..

In this work, we will only focus on parametrizing non-
decreasing functions, as the monotonicity can be reversed

by simply inverting the sign of the inputs. '.

An MLP is defined as a parametrized function fy obtained
as composition of alternating affine transformations [ and
non-linear activations oy ’:

folx) =1y o0y ...o5 "oly.

3)
A straightforward approach to building a provable mono-
tonic MLP that respects Equation (1) is to impose con-
straints on its weights and activations, forcing each term in
Equation (3) to be monotonic. For affine transformations
Iy (z) = W9z + b, we only need to enforce the Jacobian
to be non-negative, which is simply the matrix W, while
monotonic activations are, by definition, monotonic.

To optimize the resulting MLP with unconstrained gradient-
based approaches, the non-negative weight constraint is ob-
tained using reparametrization, i.e. [y (z) = g(W ")z + b
for some differentiable g : R — R . Typical reparametriza-
tions use absolute value or squaring.

3.1. Known universal approximation conditions

Despite their surprising performance, one critical flaw of ex-
isting MLP architectures based on weight constraints is the
narrow choice of activation functions. Constrained MLPs
have been shown to be universal function approximators for
monotonic functions, provided the activation is chosen to
be the threshold function, and the number of hidden layers
is greater than the dimension of the input variable (Daniels
& Velikova, 2010). Just recently, this result has been drasti-
cally improved to a constant bound, proving that four layers
are sufficient to have universal approximation properties
(Mikulincer & Reichman, 2022), when using the threshold
function as activation. Therefore, practical implementations
still resort to bounded activations such as sigmoid, tanh, or
ReLU6.

On the other hand, the use of convex activations like ReLU
in a constrained MLP severely limits the expressivity of the
network. To understand why this is the case, consider that:

Proposition 3.2. The composition of monotonic convex
functions is itself monotonic convex.

Since affine transformations are simultaneously convex and
concave, if the activation is chosen to be a monotonic
convex function, then the constrained MLP will only be
able to approximate monotonic convex functions. Despite
this clear disadvantage, there is interest in ReLU activated
monotonic MLPs due to their properties and their perfor-
mances shown in the unconstrained case (Glorot & Ben-
gio, 2010; Hein et al., 2019). Runje & Shankaranarayana
(2023) propose a way to introduce ReLU activation in the

'In the rest of the paper we will use “monotonic” as shorthand
for ”monotonic non-decreasing”, unless otherwise specified
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network. The architecture uses multiple activation functions
derived from a primitive activation o (z), its point reflection
o'(z) = —o(—=x), and, in particular, a bounded sigmoid-
like activation. While the ReLLU activations are ignored in
the subsequent theoretical analysis, this last bounded activa-
tion function is used to ensure the universal approximation

property.

An upper-bound on the minimum required number of lay-
ers to ensure universal approximation of their architecture
is derived from the result in Daniels & Velikova (2010).
Although this bound scales linearly with the number of
input dimensions, the authors observe good empirical per-
formance with just a few layers. In this work, we extend the
result of (Mikulincer & Reichman, 2022), showing that a
constant number of layers is indeed sufficient, even when
using non-threshold activations. This result explains the em-
pirical observations of Runje & Shankaranarayana (2023),
and suggests that one of the three activations employed
might not be necessary.

3.2. Universal approximation theorem for non-threshold
activations

From Proposition 3.2, it follows that a constrained MLP
with ReLU activations cannot be a universal approximator
for monotone functions. However, two MLP layers can
approximate the Heavyside function arbitrarily well if the
activations alternate between ReLU and its point reflection,
as shown in Figure 2. From this observation, it is possible to
use the result of (Daniels & Velikova, 2010) directly, show-
ing that alternating activations between ReLU and its point
reflection is sufficient to construct universal monotonic ap-
proximators. However, the resulting bound on the required
number of layers is linear in the input dimension.

In Appendix A.1 we use similar reasoning and the results
of (Mikulincer & Reichman, 2022) to achieve a loose but
constant bound of 8 layers. However, in this section, we will
derive a tighter bound that instead matches and generalizes

Activation function Heaviside approximation
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Figure 2. Constructions of Heavyside function using a com-
position of ReLU and its point reflection ReLU’ to obtain
ReLU(ReLU’ (ax — 0.5) + 1) = ReLU’(ReLU(ax + 0.5) — 1)

the result derived in Mikulincer & Reichman (2022), while
applying to a broader class of activation functions. Specif-
ically, we will prove that 4 layers are sufficient, provided
that the activations alternate saturation sides.

Definition 3.3. Given a function o : R — R saturates
right/left if the corresponding limit exists and is finite. That
is, o is right-saturating if o(+00) == lim,_, 1o 0(2) € R,
and it is left-saturating if o(—o00) = lim,_, _, o(z) € R.
We will denote the set of right-saturating activations as S+
and the set of left-saturating activations as S~

Proposition 3.4. For every MLP with non-negative weights
and activation o(x), and for any a € R.,b € R, there ex-
ists an equivalent MLP with non-negative weights and acti-
vation ao(x) + b.

In the following proofs, thanks to Proposition 3.4, we will
only consider activations that saturate to zero.

The main result we will prove is the following.

Theorem 3.5. An MLP gy : RY — R with non-negative
weights and 3 hidden layers can interpolate any mono-
tonic non-decreasing function f(x) on any set of n points,
provided that the activation functions are monotonic non-
decreasing and alternate saturation sides. That is, in addi-
tion to monotonicity, either of the following holds:

oV eSS, 0% eS8t oP e S 4
oV eSSt o? eSS, 0% e St (®)]

The first step is proving that hidden units in the first layer
can approximate piecewise-constant functions on specific
half-spaces.

Lemma 3.6. Consider an arbitrary hyperplane defined
by ol (x — ) =0, a € Ri and B € RY, and the open
half-spaces AT = {z : oT (x —B) > 0}, A= = {z:
aT (z — B) < 0}. The i-th neuron in the first hidden layer
of an MLP with non-negative weights can approximate *:

o (+00), ifze At
hi(z) ~ oV (=00), ifz €A™
a(0), otherwise

Proof. Denote by w the weights and by b the bias associated
with the hidden unit under consideration. Then, setting the
parameters to w = Aa’ and b = Aa”' 3 and taking the limit
we have that:

h(z) ~ lim oV (wz+b)= lim o% (/\CYT (z — 5))

A—~+o0 A—~+o0
The limit is either o (+00), oV (—00) or ¢V(0) depending

Note that o (d-00) need not be finite.
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on the sign of o’ (x — f3), proving that:

o (+0), ifal (x—p8)>0
' (z) ~ { oV (—o0), ifal (z—pB) <0
a(0), ifa” (z - B) =0

O

The second step is to prove that one hidden layer can per-
form intersections of subspaces under specific conditions.
In our construction, these will be either half-spaces or inter-
sections of specific half-spaces.

Lemma 3.7. Consider the intersection A = (\;_, A;, for

Ay, ..., A, subsets of R%. For any v in the image of o,

a single unit h(;') in the k-th hidden layer of an MLP with
non-negative weights can approximate:

B () o

hy' () = y1a(x)

provided that b " (z) ~ 0 for x € A;, and either:
o® eS8 and hi "(x) <O0forxz & A;
o® e ST and bl (x) > 0forxz & A;

Proof. Denote by w the weights and by b the bias associated
with the hidden unit under consideration. Then, setting the
weights to w = A17 and taking the limit we have that:

() A k-1)
;' (x) )\ll)rfoo a® (wh" " (z) + b)
— (k—1)
= )\ll)rfoo o' (b + A E h; )

Note that in any case, if ze€()._, A; then
AY" Ay V(z) ~ 0, and the limit simply reduces to
a® (b). On the other hand, for = ¢ (N, A4;, the limit
can be either o (:l:oo) depending on the sign of
h{ V(x). When ¢® € S~ and A} ’(z) < 0, the limit
is simply ¢® (—oc0) = 0. Similarly, when ¢ € ST and
h{ () > 0 the limit is ¢ (+00) = 0.

In both cases, for any v in the image of o we can find a
bias value b so that:

(k) - _ a® (b) =1,
(@) ~ yLa(a) = {U o

if z € m?:l Ai,
otherwise

O

Thanks to Lemma 3.6 and Lemma 3.7, we can now prove
the main result, that is Theorem 3.5. We will only prove
the case 0 € S—, 0® € 8T, 0® € S~ The proof for the
opposite case follows the same structure and is reported in
Appendix A 4.

Proof of Theorem 3.5. Assume, without loss of gener-
ality, that the points zi,...,x, are ordered so that
i <j = f(x;) < f(z;), with ties resolved arbitrarly.
We will proceed by construction, layer by layer.

Layer 1 Since the function to interpolate is monotonic,
for any couple of points x;, z; with ¢ < j, it is possible to
find a hyperplane defined by ajT/ i (:1: - B, /i) = 0 for some
Bjsi € R? and some non-negative normal ;i € ]Ri, such
that z; € A;r/l., ; € A7), where AJT/Z. and A7, denote the
positive and negative half spaces respectively.

Figure 3. Example of representable functions at layer 1.

Using Lemma 3.6, we can ensure that it is possible to have:

h(x) ~ o (—00) = 0,
h o

¢ ifo €A, Vi, j
I(z) = oW (400) > 0,

otherwise

(6

A visual example is shown in Figure 3.

Layer 2 Let us construct the set A = ;_, A7 .. Note

that the sets A} always contain z; and do not contain any
x; for 7 > 4. Using Equation (6), we can apply Lemma 3.7,
which ensures that it is possible to have the following®:

R () 0, ifz g AY o
h (z) ~~® <0, i

Q

otherwise

A visual example is shown in Figure 4.

Layer 3 Consider Ay =(,.._; A}, where A} is the
complement of A;?). Using Equation (7) we can once again
apply Lemma 3.7, which ensures that it is possible to have

the following*:

b (@) = 71y () ®)
Now, we will show that A" represents a level set, i.e.
z; € AY < f(z;) > f(x;). To do so, consider that

3In this case 'y ) < 0 since by assumption o saturates right.
*In this case v® > 0 since by assumption o saturates left.
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Figure 4. Example of representable functions at layer 2.

A(d)

i = Ui A} Since z; € A7, thenz; € A for j <.

Similarly since ; is the largest point contained in A7, A7’

cannot contain x; or any point larger than x;. This shows
® : : .

that A" contains exactly the points {z; : f(z;) > f(x;)}.

A visual example is shown in Figure 5.

N
LA

Figure 5. Example of representable functions at layer 3.

Layer 4 To conclude the proof, simply take the weights
at the fourth layer to be :

f(x1) —b f(332) —
y® ’ )

Since the points are ordered, this ensures that w contains
all non-negative terms, when bias term b is taken to be
b < f(x1). Defining f(x) = b, the output of the MLP can
be expressed as:

n
wTh (x)+b = E (z)

f(x1)

geeey

f(xn) - f(mn—l)
7(3)

go(r) = f(@j-1)) Ly (z)

C))

Evaluating Equation (9) at any of the points z;, it reduces
to the telescopic sum:

= f(z1) + Z (f(z5)
=2

Thus proving that the network correctly interpolates the
target function. O

go(z:) flzj—1)) = f(zs) (10)

3.3. Non-positive constrained monotonic MLP

Consider the simple modification of the standard constrained
MLP approach described in Equation (3). However, instead
of constraining the weights to be non-negative, they are
constrained to be non-positive. Although this simple modi-
fication might seem inconsequential, we will show that this
is not the case. Indeed, we will show that a non-positive
constrained MLP satisfies the conditions of Theorem 3.5, as
long as the activation function saturates on at least one side.
This includes convex activations like ReLLU, which provably
do not yield universal approximators in the non-negative
constrained weight setting. Note that by Remark 3.1, an
MLP defined according to Equation (3) is still monotone
for an even number of non-positively constrained layers;
therefore, it is still possible to construct provably mono-
tonic networks using non-positive weight constraints. We
will only discuss networks with an even number of layers;
however, the result is also valid for an odd number of layers.

A first crucial observation is that o and ¢’ have the same
monotonicity, but saturate in opposite directions.

Proposition 3.8. If o(x) is monotonic non-decreasing, then
its point reflection o' (x) is also monotonic non-decreasing.
If o(x) saturates, then o’ (x) also saturates but in the oppo-
site direction.

From Proposition 3.8 we can obtain an immediate corrollary
of Theorem 3.5 which will prove useful:

Proposition 3.9. An MLP with at least 4 layers, non-
negative weights, and alternating activation o and o' is
a universal monotonic approximator, provided that o satu-
rates on at least one side.

The second observation is that imposing non-positive con-
straints in two adjacent layers with an activation function in
between is equivalent to imposing non-negative constraints
in the two layers and using a point-reflected activation func-
tion between them.

Proposition 3.10. An MLP with W® < 0, W**Y < 0 and
o™ (x) = o(x), is equivalent to an MLP with W® > 0,
W > 0and 0¥ (z) = o' (z) = —o(—x).

From this, it follows that an MLP with an even number of
layers, non-positive weights, and activation o at all layers
is equivalent to an MLP with non-negative weights that
alternate activations between ¢’ and o. This equivalence
can be achieved using Proposition 3.10 by “flipping” the
weight constraints two layers at a time, which also changes
the activations at odd-numbered layers from o to o”.

Thanks to Proposition 3.10, this also shows that:

Proposition 3.11. If o € S~ US™, an MLP with 4 lay-
ers, non-positive weights and activation o, is a universal
approximator for the class of monotonic functions.
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Algorithm 1 Forward pass of a Monotonic MLP with post-
activation switch
Input: data 2 € RY, weight matrix W € R4, bias
vectors b € Rd,, monotonic activation function o
Output: prediction § € RY
W := max(W,0)
W~ := min(W,0)
2T i=W'o(x)
27 =W~ o(—x)
gi=2"+z"+b

Similarly, we can apply the observations of this section
to show that the structure proposed in Runje & Shankara-
narayana (2023) can produce universal monotonic approxi-
mators using only point reflections without the need for the
third activation class.

Although using Theorem 3.5 allows us to prove that a broad
class of constrained MLP architectures are universal mono-
tonic approximators, it does not necessarily translate into
MLPs that are easily optimizable. Consider the computation
for an arbitrary input = and an MLP with ReLU activation
and biases initialized to zero. If > 0, then —|W|z <0,
and thus in the first layer ReLU(—|W |z) = 0. However, if
2 < 0, then ReLU(—|W|z) > 0 and now the second layer
will saturate instead. To allow for efficient and effective
optimization, we must carefully tune the initialization of the
bias term to avoid having 0 gradient everywhere. Broadly
speaking, the weight constraint makes the networks more
sensitive to initialization.

4. Addressing the weight constraint

Historically, the first works that proposed a monotonic neu-
ral network formulation relied on forcing the parameters of
the network to be non-negative, specifically the matrices W
in the affine transformations, combined with bounded mono-
tonic activations, is a sufficient condition to guarantee that
the overall function is monotonic (Daniels & Velikova, 2010;
Sill & Abu-Mostafa, 1996). Recently, Runje & Shankara-
narayana (2023) showed a way to build effective monotonic
MLPs with such a technique by exploiting multiple activa-
tions. However, even though the use of constrained weights
and bounded activation is easy to implement and can be
optimized with any unconstrained gradient optimizer, poor
initialization could lead to vanishing gradient dynamics, as
further explored in Appendix A.2 and Appendix A.3. In-
stead, we will show how to address this issue while also
tackling the necessity of alternating the activation saturation
to have universal approximation capabilities.

4.1. Relaxing weight constraints with activation switches

Assuming that we used the weight-constrained formulation

Figure 6. Computation graph of a single layer of a monotonic NN
with the proposed learned activation via weight sign.

for the construction proposed in Section 3.3, we would still
be left to decide the sequence of activations that should be
used for the MLP, which might be unclear or necessitate
further hyperparameter tuning. However, by slightly rear-
ranging the order of operations, it is possible to construct a
monotone MLP that does not require manual tuning of the
activation saturation side, while, at the same time, relaxing
the weight constraint.

Let us thus consider a single layer f(z) = o(|W|x + b)
in a constrained MLP, that uses the absolute value for
weight reparametrization. Instead of constraining weights,
we can separate W into its positive and negative parts
W = max(W,0) and W~ = min(W,0). This allows us
to express the affine transformation as

Wiz +b=WTx — Wz +b. (11)

Applying the non-linearity to each term of Equation (11)
individually instead of applying it to |W |z, and sharing the
bias term, leads to the parametrization:

fx) =Wtz +b) — (W z+b). (12)

Proposition 4.1. Any function representable using an affine
transformation with non-negative weights followed by either
o or a’ can also be represented using Equation (12), up to
a constant factor.

Proof. When all entries of W have the same sign, one
of the two terms in Equation (12) collapses to +o(b).
Specifically, when W > 0, the expression reduces to
o(|Wlx + b) — o(b), while when W < 0 it reduces to
o(b) — o(—|W|x + b) instead. To conclude the proof recall
that —o(—x) = o’ (). O

The additional constant factor can be accounted for in
the bias term of the following layer. Therefore, Proposi-
tion 4.1 covers both cases employed in Proposition 3.9. This
shows that an MLP obtained by stacking at least 4 blocks
parametrized as Equation (12) is a universal approximator
for monotonic functions. Hence, the proposed formulation
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Table 1. Test metrics across different datasets. The best-performing architecture per dataset is bolded.

Method COMPAS Blog Feedback Loan Defaulter AutoMPG Heart Disease
(Test Accuracy) (Test RMSE) (Test Accuracy) (Test MSE) (Test Accuracy)

XGBoost 68.5% £+ 0.1% 0.176 £ 0.005 63.7% + 0.1% - -
Certified 68.8% £ 0.2% 0.159 £ 0.001 65.2% £+ 0.1% - -
Non-Neg-DNN 69.3% £+ 0.1% 0.154 £ 0.001 65.2% + 0.1% | 10.31 +1.86 89% + 1%
DLN 67.9% £+ 0.3% 0.161 £ 0.001 65.1% + 0.2% | 13.34 +2.42 86% =+ 2%
Min-Max Net 67.8% £+ 0.1% 0.163 £ 0.001 64.9% +0.1% | 10.14 £1.54 75% £ 4%
Constrained MNN | 69.2% + 0.2% 0.154 £ 0.001 65.3% + 0.1% 8.37 £ 0.08 89% + 0%
Scalable MNN 69.3% + 0.9% 0.150 £ 0.001 65.0% + 0.1% 7.44+1.20 88% + 4%
Expressive MNN 69.3% + 0.1% 0.160 +£0.001 | 65.4% +0.1% | 7.58+1.20 90% + 2%
Ours 69.5% +0.1% | 0.149 +0.001 | 65.4% +0.1% | 7.34 + 0.46 94% + 1%

is more expressive compared to a simple weight constraint,
given that they are only a special case of Equation (12).

Alternatively, one could apply similar reasoning working
backwards from the last layer of the network, which would
lead to an alternative formulation, given by

f(x)=WTo(z) + W o(—z) +b. (13)
We will refer to Equation (12) and to Equation (13) as pre-
activation switch and post-activation switch, respectively.

In Figure 6, we report only the post-activation switch’s pseu-
docode and computation graph since it will be the formula-
tion that will also be employed for the experimental part of
the paper. The pre-activation corresponding algorithm and
computational graph can be found in Appendix A.5.

Indeed, the simplicity of the approach can be appreciated:
it shares most of the steps of the forward pass of a tradi-
tional MLP due to the relaxation of the weight constraint
and does not require additional special care for initializa-
tions. In Appendix A.2 we provide additional details on the
optimization properties of the proposed formulation. For all
experiments, the default PyTorch (Paszke et al., 2019) ini-
tialization was used without the need for additional tuning.
A naive implementation can be achieved using a second ma-
trix multiplication. This additional operation can be easily
parallelized and does not require additional data transfers.
For the networks tested, we did not observe any overhead in
practice.

5. Experiments

In this section, we aim to analyze the method’s performance
compared to other alternatives that give monotonic guar-
antees. The first dataset used is COMPAS (Fabris et al.,
2022). COMPAS is a dataset comprised of 13 features, 4 of
which have a monotonic dependency on the classification. A

second classification dataset considered is the Heart Disease
dataset. It consists of 13 features, 2 of which are monotonic
with respect to the output. Lastly, we also test our method
on the Loan Defaulter dataset, comprised of 28 features, 5
of which have a monotonic dependency on the prediction.
To test on a regression task, we use the AutoMPG dataset,
comprised of 7 features, 3 of which are monotonically de-
creasing with respect to the output. A second dataset for
regression is the Blog Feedback dataset (Buza, 2013). Con-
trary to all other datasets, this dataset is composed of a very
small portion of monotonic covariates. In fact, the data set
consists of 280 features, of which only 8 are monotonic with
respect to the output, accounting for 2.8% of the total.

We compare our method with several other approaches that
give monotonic guarantees by construction. In particular,
we compare it to XGBoost(Chen & Guestrin, 2016) Deep
Lattice Network (You et al., 2017), Min-Max Networks
(Daniels & Velikova, 2010), Certified Networks (Liu et al.,
2020), COMET (Sivaraman et al., 2020), Constrained Mono-
tonic Neural Networks (Runje & Shankaranarayana, 2023),
Expressive Monotonic Neural Network (Nolte et al., 2023),
and Scalable Monotonic Neural Networks (Kim & Lee,
2024). With Non-Neg-DNN we refer to a naive constrained
monotonic MLP using sigmoid activations. Similar results
are reported in (Liu et al., 2020), though in a narrower set of
datasets. In Table 1, we report the final test set metrics. For
the proposed method, little to no hyperparameter tuning has
been performed, as the hyperparameters found by (Runje
& Shankaranarayana, 2023) worked without the need for
further tuning. The proposed method matches or exceeds
the performance of all other recently proposed approaches.

6. Conclusions and future works

In this work, we have relaxed the requirements to achieve
universal approximation in monotonic MLPs with con-



Advancing Constrained Monotonic Neural Networks: Achieving Universal Approximation Beyond Bounded Activations

strained weights. We proved that alternating saturation side
in the activations is a sufficient condition to achieve this
property with a finite number of layers. In addition, we
show a connection between the saturation side of the activa-
tions and the sign of the weight constraint. This allows us to
show that the non-positive weight constraint is, surprisingly,
more expressive than the non-negative one, which can only
represent convex functions. We then use this theoretical
analysis to construct a novel parameterization that relaxes
the weight constraint, making the network less sensitive to
initialization. The activation saturation side is learnable,
which ensures universal approximation capabilities even
when using monotonic convex activation, which was pre-
viously not possible. MLPs built with our fully connected,
monotone layer achieve state-of-the-art performance.

Although this work proves that any monotonic saturating
activation can be used to build monotonic MLPs, it is still
an open question whether non-saturating activations, such
as Leaky-ReLU, can be used to build monotonic MLPs.
Furthermore, batch normalization has proven to be highly
effective in the unconstrained case. Still, it has never been
used as a possible solution to the initialization problem for
the monotonic case.

7. Ethical Considerations

The use of the COMPAS dataset in this research acknowl-
edges its status as a common benchmark within the field
of machine learning fairness studies (Angwin et al., 2022;
Dressel & Farid, 2018). Recognizing the complexities and
potential ethical challenges associated with such datasets,
we emphasize a commitment to responsible research prac-
tices. We prioritize transparency and ethical rigor through-
out our study to ensure that the methodologies employed
and the conclusions drawn contribute constructively to the
ongoing discourse in Al ethics and fairness. This approach
underlines our dedication to advancing machine learning
applications in a manner that is conscious of their broader
societal impacts.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Appendix

The appendix is structured in the following way:

* Appendix A.l: in this section, we show the arguably simplest though loosest bound to prove that non-negative
constrained MLPs with ReLLU and ReLLU’ activations are universal approximators.

* Appendix A.2: we discuss how parameterizing the network with non-negative weights leads to optimization issues,
specifically vanishing gradients dynamics.

¢ Appendix A.3: in this section, we will compare the proposed method to the bounded-activation counterpart, showing
how the formulation with sigmoidal activation suffers from vanishing gradients.

* Appendix A.4: in this section we prove the results of Theorem 3.5 for the opposite alternation case.

¢ Appendix A.5: as reported in Section 4, we propose two possible parametrizations, a pre-activation switch, and a
post-activation switch. In Appendix A.5, the pseudocode and the computational graph of the two can be found.

* Appendix A.6 and Appendix A.7: in these sections, we report further information regarding how the results have been
obtained and about the datasets employed for this work.

* Appendix A.8: since Theorem 3.5 only requires the non-linearity to be saturating, in this section we report a brief
overview of other activations that can be applied with the proposed method, in order to underline how it is more general
than just using ReLU activations.

* Appendix A.9: the proof provided for Theorem 3.5 is different to the ones previously proposed in literature. However,
it still ends with the result of requiring 4 layers to be a universal approximator, as previously shown in (Mikulincer &
Reichman, 2022) for the heavy-side function. For readers that are already familiar with such proof, we also report in
Appendix A.9 a proof very similar to the one in (Mikulincer & Reichman, 2022), trying to reuse as much as possible
the original structure.

12



Advancing Constrained Monotonic Neural Networks: Achieving Universal Approximation Beyond Bounded Activations

A.1. Naive bound for universal approximation of alternating MLPs

A simpler, though looser, bound to prove that MLPs with alternating ReLU and its point reflection ReLU’ activations are a
universal monotonic function approximator can be achieved by building on the proof of (Mikulincer & Reichman, 2022).
Two simple observations are sufficient.

Remark A.1. the composition of ReLU and its point reflections ReLU’(z) = —ReLU(—x) can approximate the threshold
function 1,>¢ arbitrarily well:

lim _ReLU(ReLU'(az) + 1) = Lyzo(z) (14)
a—r+00 -

lim _ReLU'(ReLU(az) — 1) = Lyzo(x) — 1 (15)
a—r+00 -

A representation of Equation (14) is provided in Figure 2.

The reason why we can approximate non-convex functions using only ReL.U-like activations is reported in Proposition 3.2.
However, considering Proposition 3.8, we can see how this limitation can be addressed.

Remark A.2. The formulas in Equation (14) can be implemented with a 2-layer constrained MLP, alternating ReL.U and
ReL U’ activations.

This is enough to leverage the existing results for threshold-activated MLP (Mikulincer & Reichman, 2022). This includes
the best-known bound on the number of required hidden layers, which, however, doubles from 3 to 6 due to the need for two
ReLU layers for the Heavyside approximation. However, this naive bound is unnecessarily loose, as shown in Theorem 3.5.

A.2. Initialization issues and Vanishing Gradient in Constrained MLPs
A.2.1. VANISHING GRADIENTS DYNAMICS IN CONSTRAINED MONOTONIC MLPS WITH BOUNDED ACTIVATIONS

As reported in Section 3, a naive approach to ensure monotonicity is to have monotonic activations and to impose
monotonicity to the weights, constraining them to be non-negative. For this reason, the affine transformations of these
networks are usually parametrized as I(x) = g(W)x + b, for some transformation g : R — R_.. Note that the bias can be
any value, as it is a constant and thus does not affect the gradient.

Such networks employed bounded activations, like sigmoid, tanh, or ReLU®6, to have convex-concave activations. This
peculiarity makes them very sensitive to initialization and can potentially lead to vanishing gradient dynamics (Glorot
& Bengio, 2010). To see why constraining weights to be non-negative exacerbates this condition, consider a monotonic
MLP with sigmoidal activations, initialized with random weights according to known, widely used initializers, such as
Glorot, where each matrix is sampled from a symmetric distribution around zero with some variance. Instead, the biases are
initialized to zero, as is usually done. Let’s assume using g(x) = |z|, but the same reasoning can be applied to any other
mapping g. At this point, the MLP comprises layers of the following form o(z) = o(|]W |z + b). Now, let’s consider the
second layer of such MLP. Since the first layer has applied the sigmoid activation, then ¢ (x) € (0, 1). Because of this,
|[W®|o®(x) will be a product of all non-negative terms. Therefore, its result can become significantly large. Then, when
applying the sigmoid activation of the second layer, it will most likely saturate due to the large positive values returned from
the affine transformation. Going on with this reasoning for multiple layers, such behavior will be exacerbated. Appendix A.3
shows one example of such behavior for a very simple function. The same behavior occurs for ReLU6 MLPs, where the
gradient might even become exactly 0, and for tanh MLPs if, for example, the dataset is normalized, which is one of the
most commonly used data-preprocessing.

A simple evidence of such dynamic can be seen in Appendix A.3, where even with a 1D toy example, constrained monotonic
MLPs with sigmoid with few layers show signs of vanishing gradient (Figure 8). However, such signs of vanishing gradient
are evident since initialization, as shown in Figure 9

One possible solution might be using BatchNormalization layers (Ioffe, 2015). BatchNorm has already shown its ef-
fectiveness in tackling initialization and optimization problems. Indeed, BatchNorm is comprised only of the following

transformation: E
BN(z) = _e—Efg] v+ B

v/ Var[z] + ¢

Considering that 4/ Var[z] + € > 0, forcing v > 0 by construction, for example, using v = SoftPlus(v’), makes such
operation monotonic. Usually, it is initialized as § = 0 and v = 1. For this reason, if used as a pre-activation layer, it might
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address exploding pre-activation values, standardizing them around zero. However, the investigation of this approach falls
out of the scope of this work, and it’s left as a future line of research.

A.2.2. INITIALIZATION OF SWITCH MONOTONIC NEURAL NETWORKS

The proposed activation switch parametrization shown in Equation (12) and Equation (13) aims at relaxing monotonic
MLPs by the weight constraint required to ensure monotonicity, while also removing the need to pick a correct sequence
of activations manually. As addressed in the previous chapter, that weight constraint easily leads to vanishing gradients if
used in conjunction with bounded activation, extremized when using ReL.U6 activations, which leads almost always to a
completely dead MLP, as reported in Appendix A.3. Therefore, our parametrization tries to solve this problem from two
points: avoiding directly constraining weights and using unbounded activations.

Nonetheless, it still deviates from the well-studied original MLP formulation. In particular, separating the W matrix into
positive and negative parts might still introduce initialization issues.

Unconstrained 7 Unconstrained

2.5 Constrained (Naive) Constrained Naive
Ours (Post-Activation switch) 6 [ Ours (Post-Activation switch)
Ours (Pre-Activation switch) [ Ours (Pre-Activation switch)

2.01

154

1.01

0.5 1

il
]
=

0.0 -

T T T T T T
2 3 4 0 100 200 300 400 500
f(x) Hidden Dimension

Figure 7. First plot, the distribution of the output of an MLP with the different parametrizations. Second plot, the scaling law of the
expected output after initialization of the different parametrization. In both images, it can be seen how the naive constrained MLP has a
very different scaling behavior compared to the rest.

From an empirical perspective, in Figure 7 we can observe the distribution of a the output of a multilayer MLP with
different parametrization. Unconstrained refers to a naive MLP, Constrained Naive refers to an MLP with |IW| as weight
parameterization, while pre/post activation switch refers to Equation (12) and Equation (13). Indeed, it can be seen how the
naive MLP, no matter the hidden dimension, have 0-mean in predicted value. Instead, the switch activation has a very slow
tendency to increase the expected output from random initialization, as predicted by theory. However, such slight increase,
is notably largely smaller than the one induced by naively constraining the weights to be positive.

However, empirically, the activation-switch formulation does not exhibit initialization issues. Indeed, the result reported in
Table 1 have been obtained with the default PyTorch initialization. Furthermore, such results are the aggregation of multiple
seeds. Thus, the networks used have been initialized with different values.

Overall, we can see how, even though the behavior of activation-switch parametrization slightly deviates from the one
by a normal MLP, such difference does not hinder many performance while still being less than the one obtained by the
constrained counterpart that does not use such a trick.
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A.3. Comparison of different parametrizations on trivial datasets

To showcase the effectiveness of the proposed method to the bounded-activation counterpart, in Figure 8 we compare
them on a simple synthetic example. In particular, the models are asked to approximate f(x) = cos(x) + x, a simple 1D
monotonic function with multiple saddle points. For this reason, it is fundamental for the approximation model to be very
flexible. To showcase the different performances, we will test 4 models. The first model to test is an unconstrained NN,
which shows that an unconstrained model can learn such a function. The second model is a monotonic NN with non-negative
and ReL U activations, which shows that, as shown in theory, it cannot approximate a nonconvex function. The third model
is a monotonic NN with non-negative and sigmoid activations. This model, instead, is shown to be a universal approximator
for monotonic functions but suffers from vanishing gradients. Lastly, the fourth model is the proposed parametrization,
specifically the post-activation setting, as described in Section 4.1.

In Figure 8, it can be seen how the model with non-negative and ReLU activations cannot learn the function as predicted by
theory, since the function that is asked to learn is non-convex. Instead, both the sigmoid model and our proposed approach
successfully approximate it. Still, the sigmoid function struggles to be optimized due to the complications of using sigmoid
activations. Instead, the proposed method exploits rectified linear activations, which, under a regime where the number of
dead neurons is not too high, is much easier to optimize, as explained in the original work that introduced such activation
Glorot & Bengio (2010) and Raghu et al. (2017).

Such a difference is also evident in analyzing the Negative Log Likelihood (NLL) loss of the training. We report in Figure 8
the various training losses obtained with two different sizes of layers. The naive monotonic ReLLU, which cannot approximate
such a function, is indeed the worst. However, even though the sigmoid monotonic NN is a universal approximator, it is the
slowest to learn, probably due to the vanishing gradient problem. Instead, the proposed method that uses ReLU activations
is the fastest to converge, almost catching the unconstrained model in the setting with more neurons.
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Figure 8. First plot, approximation of f(z) using MLPs with layers of 128 neurons. Second plot, approximation of f(x) using MLPs with
layers of 256 neurons. Last plot, training losses of the different methods (full lines represent versions with 128 neurons, dashed lines
represent versions with 256 neurons).

Generally speaking, as also reported at the end of Section 3.3, MLPs with constrained weights require a careful initialization
to avoid non-optimizable configurations. The proposed method in Appendix A.5 alleviates this behavior but is not indifferent
to it.

In order to showcase the vanishing gradient problem exacerbated by the non-negatively constraining, in Figure 9 we create a
128-neuron wide MLP with varying numbers of hidden layers, and we compare the average gradient of the output with
respect to the parameters on the same function approximation problem presented earlier in Figure 8. It can be observed how
the sigmoid monotonic MLP, even with a small number of layers, has one order of magnitude less gradient magnitude; in
particular, it has an average gradient of 0.0019 for 4 layers and 0.00099 for 10 layers. Instead, the ReL.LU monotonic MLP
has an exploding gradient due to the accumulation of activations induced by the pairing of ReLU activation and positive
weight; in particular, it starts from a gradient magnitude of 3.54 for 4 layers and goes to 3311.00 for 10 layers. Finally, the
proposed approach keeps the gradient magnitude in a reasonable magnitude range, starting from a gradient of 0.010 for 4
layers and going to 1.259 for 10 layers. Results are averaged over 20 different random initializations, and plot shows +10.
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In order to better analyze the optimization problems of these architectures, we also report in Figure 10 the distributions
of the gradients of a 6-layers MLP with the various architectures. It can be seen that the sigmoid MLP has extremely low
gradients for the initial layers, leading to slow learning. On the other hand, the ReLU MLP has exploding gradients for the
final layers.

It is worth noting that the same exact configuration, using ReLLU6 as activation, leads to a dead network, as all gradients are
zeroed out due to the saturated section of the activation.

Average gradient w.r.t. network parameters with default initialization

] 7 ReLU constrained MLP
10° 41 e Sigmoid constrained MLP
—>— Proposed approach
103 4
102 .
7 1]
= 10
%Q}
"WS_B 100 4
1071 .
10—2 .
10—3 .
4 5 6 7 8 9
Layers MLP

Figure 9. Average gradient from monotonic MLPs varying the number of layers. Data is shown in the log scale for the y-axis.

Sigmoid MLP RelLU MLP Proposed MLP
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= layer 0 = layer 0 = layer 0
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08 1 layer 4 0] T layer4 08 0 layer 4
= layer 5 I layer 5 0 layer 5
0 layer 6 0 layer 6 1 layer 6
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
0.0 ! 0.0 0.0 ’_,—D L]
-27.5 -25.0 —22.5 -20.0 -17.5 —-15.0 —-12.5 -10.0 -7.5 -100 -75 =50 -25 00 25 50 75 -15 -10 -5 0 5
log (75" 1) log (|52 1) log(IZ5 1)

Figure 10. Distribution of gradients from monotonic MLPs for each layer (layer O is the final one, layer 6 is the first after the input).
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A.4. Proof for opposite alternation of activation for Theorem 3.5

In this section, we will conclude the proof of Theorem 3.5, considering the case with activations that alternate in the
opposite direction from the one reported in the main text. Indeed, in Section 3.2 we proved the result for the case with
oV € 8~,0® € 8§T,0® € S~, while in this section we will prove the case with ¢ € S*,0® € S~,0® € S*. The proof
is extremely similar, with just a few opposite signs due to the opposite alternation. Thus, most constructions will be shared.

Proof of Theorem 3.5 with opposite alternation. Assume, without loss of generality, that the points x1, ..., x, are ordered
sothati < j = f(x;) < f(z;), with ties resolved arbitrarly. We will proceed by construction, layer by layer.

Layer 1 Since the function to interpolate is monotonic, for any couple of points i < j : f(z;) < f(z;) it is possible to
find a hyperplane with non-negative normal, with positive and negative half spaces denoted by A;'/i and A;/i, such that

. - . +
T; € Aj/i,x] € Aj/i.

Using Lemma 3.6, we can ensure that it is possible to have:

M(a) (16)

3

h<il>(x) ~ o (+o00) =0, ifze Aj/i
~ oW (—o00) < 0, otherwise

Layer 2 Let us construct the set A = (., ;
for j < i. Using Equation (16), we can apply Lemma 3.7, which ensures that it is possible to have the following’:

h{ (z) =~ 0, ifz e AY
h(x) ~~4® >0, otherwise

A;r/j. Note that the sets A} always contain z; and do not contain any z;

7)

Layer 3 Consider A" =, .,
Lemma 3.7, which ensures that it is possible to have the following®:

A A® @ e : .
A ; » Where A ; 1s the complement of A ;- Using Equation (17) we can once again apply

B () = AT 40 (2) (18)

K2

Now, we will show that A represents a level set, i.e. z; € AY < f(z;) < f(z;). To do so, consider that

AP =;.j5: A} Since z; € AP, then z; € A for j > i. Similarly since z; is the smallest point contained in A}, A

cannot contain x; or any point smaller than z;. This shows that A;” contains exactly the points {z; : f(z;) < f(z;)}.

Layer 4 To conclude the proof, simply take the weights at the fourth layer to be :

f(xl) - f($2) f(xnfl) - f(xn) f(mn) —b
y® e ~® ’ ~®

Note that compared to Equation (8), here v is now negative, and the terms in the numerators’ difference are reversed.
Since the points are ordered, this ensures that w contains all non-negative terms, when bias term b is taken to be b > f(z,,).
Defining f(x,+1) = b, the output of the MLP can be expressed as:

go(x) = w"hO (@) +b=b+ > (f(z;) = f(xj41)) 1 0 (x) (19)
j:l J
Evaluating Equation (19) at any of the points x;, it reduces to the telescopic sum:
n—1
go(x:) = f(aa) + D (Flay) = fl@jn)) = f) (20)
j=i
Thus proving that the network correctly interpolates the target function. O

>In this case y® > 0 since we are considering the case where o® saturates left.
%1n this case * < 0 since we are considering the case where o saturates right.
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A.5. Algorithms

In Section 4, we show how we can parametrize the activation switch using the sign of the weights. For such a mechanism,
we propose two different parametrizations, one where the switch is applied post-activation and another one pre-activation. In
Figure 6, we report both the pseudo-code and the computational graph for the post-activation formulation. For completeness,
in this section, we also report the pre-activation pseudo-code and computational graph, and for readability and to ease the
comparison, we report them side by side, reporting again the post-activation formulation also reported in the main text. In
particular, in Figure 11, we report the two pseudocode side-by-side, and in Appendix A.5, the relative pseudocodes.

!

Figure 11. Computation graph of a single layer of a ReLU monotonic NN with the proposed learned activation via weight sign. The left
plot reports the computational graph of the post-activation, and the right plot shows the pre-activation switch.

Algorithm 3 Forward pass of a Monotonic ReLU MLP with
post-activation switch

Input: data z € R", weight matrix W € RM>hi-1 piag

Algorithm 2 Forward pass of a Monotonic ReLU MLP with
pre-activation switch

Input: data z € R, weight matrix W € R?*"-1 bias

vectors b € R | activation function o
Output: prediction § € R~

W := max(W,0)

W~ := min(W,0)

vectors b € R activation function o
Output: prediction § € R~

W := max(W,0)

W~ := min(W,0)

2t i=Wto(x)
z7 =W~ o(-x)
g:=zt4+2"+b

A =Wtr+5b
zo =W~ x+b
gi=o(z") —o(27)

A.6. Dataset description

For this work, the code was heavily based on the code provided by Runje & Shankaranarayana (2023) in order to ensure that
the used dataset matched exactly. For this reason, we will report a short description of the employed dataset, but for a further
and more detailed description, refer to the original work (Runje & Shankaranarayana, 2023).

* COMPAS: This dataset is a binary classification dataset composed of criminal records, comprised of 13 features, 4 of
which are monotonic.

* Blog Feedback: This dataset is a regression dataset comprised of 280 features, 8 of which are monotonic, aimed at
predicting the number of comments within 24h.

e Auto MPG: This dataset is a regression dataset aimed at predicting the miles-per-gallon consumption and is comprised
of 7 features, 3 of which are monotonic.

» Heart Disease: This dataset is a classification dataset composed of 13 features, 2 of which are monotonic, aimed at
predicting a possible heart disease.

* Loan Defaulter: This dataset is a classification dataset composed of 28 features, 5 of which are monotonic, and is
aimed at predicting loan defaults.
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A.7. Experiments description

The following are the specifications used to obtain the results reported in Table 2. The experiments were developed in
PyTorch. The training was performed using the Adam optimizer implementation from the PyTorch Library. For all datasets
except BlogFeedback, no hyperparameter tuning has been carried out. Instead, we used similar networks in size and
architecture to (Runje & Shankaranarayana, 2023). For BlogFeedback instead, special care was required, as the dataset
is very large, but the features are very sparse and mostly unconstrained (only 3% are monotonic). Therefore, a small
hyperparameter tuning has been done to find the best setting. CELU has been used as an activation function for the smaller
MLPs to avoid dead neurons.

Table 2. Hyper-parameters used for results reported in Table 1

Hyper-parameter COMPAS ‘ Blog Feedback | Loan Defaulter | AutoMPG | Heart Disease
Learning-rate 1073 1072 1073 1073 1073
Epochs 100 1000 50 300 300
Batch-size 8 256 256 8 8

Free layers size 16 2 16 8 16
Number of free layers 3 2 3 3 3
Monotonic layers size 16 3 16 8 16
Number of monotonic layers 3 2 3 3 3
Activation ReLU CELU ReLU CELU ReLU
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A.8. Extension to other activations

In the rest of the paper, for all the practical examples, we assumed that ReLU was the activation chosen for the MLP.
However, the results in Section 3.3 and Section 4.1 only require that the activation function saturates in at least one of the
two sides, other than being monotonic. If ReLLU falls in such a category, it is not the only one, and many other widely used
ReL U-like activations satisfy the minimal assumptions of Theorem 3.5. For this reason, we will now analyze many other
activations and report whether they comply with our construction. In particular, we report in Table 3 multiple widely used
activations. With them, we also report the respective gradients, whether they are non-decreasing and saturating, and whether
they can be used for the proposed approach.

It can be seen that the proposed method allows the usage of most of today’s widely used activations. However, it is crucial to
notice that even though the proposed method allows for saturating activations, it also can be used with bounded activations,
such as sigmoid and tanh, but that might bring almost no additional advantage over the weight-constrained counterpart.
Any activation that saturates at least one side can be used, given that it is monotonic. Still, the real advantage comes from
activations that saturate only one side.

Table 3. Widely used activations with their corresponding properties, and whether they can be used or not.

Name Function Gradient Monotone | Saturates || Usable
z ifx>0 1 ifz>0
ReLU = = v v v
¢ { 0  otherwise { 0 otherwise
1 > 1 >
LeakyReLU z ifz20 1 ifz=0 /! X X
ax  otherwise a  otherwise
z ifz>0 .
= 1 ifz>0
PReLU {az otherwise { vl v .
otherwise
(cx learnable)
6 ifx>6 ifx > 6
ReLU6 z if0<z<6 if0<z<6 v v v
0 otherwise otherwise
i > >
ELU x i ifz > 0 ifx >0 sl v /!
a(e® —1) otherwise otherwise
i > >
SELU AT ifz =0 | )1 ifz=0 /! v e
a(e® —1) otherwise otherwise
1 > >
CELU | A{" . w20y ife =0 s v e
a(% —1) otherwise % otherwise
GeLU x®(x) \/ﬁ X 4 X
SiLU/Swish zo(z) % X v X
Slngld 1+i_z ﬁ v v v
T_ - e _e—T 2
Tanh e 1- (25=) v v v
Exp e’ e’ v 4 v
SofiSign i THD? v v v
Softplus log(1 + €%) efil v v v
LogSigmoid —log(l1+¢€™7) 1-&-% v v v

! true only if parametrized in such a way to guarantee o > 0
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A.9. Alternative proof of Theorem 3.5

In this section, we will construct a proof similar to the one proposed by Mikulincer & Reichman (2022) to prove the constant
bound of required layers for a constrained MLP with Heavyside activations.

Figure 12. Examples of learnable functions at the first hidden layer.

First layer construction First, let us show that the network can represent piece-wise functions at the first hidden layer.

Lemma A.3. Consider an hyperplane defined by a* (v — ) =0, a € Ri and 3 € R*, and the open half-spaces:
At ={z: o (x - B) > 0}, (21
A” ={z:a" (z - B) <0} (22)
A single neuron in the first hidden layer of an MLP with non-negative weights can approximate " :

oV (4+0), ifze At
hV(z) = ¢ oV (—00), ifx e A™

o(0), otherwise

Proof. Denote by w the weights and by b the bias associated with the hidden unit in consideration. Then, for any A € R,
setting the parameters to w = Ao’ and b = A\a” 3 we have that:

h=0" (wz+b) =0 (A" (z—B))
in the limit, we get:
() ~ 1i 1) T o
h(x) )\Erfooo (Ao (z = B))

The limit is either 0V (+00), o (—00) or ¢V (0) depending on the sign of o (z — 3), proving that

o (+00), ifal (z—B)>0
h(z) = oV (—c0), ifal (x—B)<0
a(0), ifa? (z—B)=0

O

For an easier interpretation of the just stated construction, we show in Figure 12 some samples from the family of functions
that can be learned with this first hidden layer.
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» i
1

Figure 13. Examples of learnable indicator functions at the second hidden layer.

Second layer construction Using Lemma A.3, we can show that alternating saturation directions in the activations is
sufficient to represent indicator functions of intersections and unions of positive half-spaces.

Lemma A4. If oV € ST,0® € S, there exists a rescaling factor v € R, such that a single unit in the second hidden
layer of an MLP with non-negative weights, can approximate:

h® (.’E) ~ +v1lan ((E)
_ +
forany A" = (_, A
Similarly, if oV € 8™, 0% € S, it can approximate
h(z) ~ +yLav(z) — v

Proof. Denote by w the weights and by b the bias associated to the hidden unit in consideration at the second layer. For any
A € R, , setting the weights to w = A17 we have that

h(x) = o (wh +b) = o (b +A> h§“>

Taking the limit, the result only depends on the sign of ) _, h{". Using Lemma A.3, we can ensure that it is possible to have

B () A oV (+o0), ifx € Af
(@)~ oV (—o0), ifzeA;

From here, there are two cases, depending on the saturation of the activations. We will only prove the case when the
activations saturate to zero to avoid needlessly complicated formulas. However, the result holds even in the general case.

If we assume oV € ST,0® € S™:
For z € (_, A, we have h{"(x) = 0 (+00) = 0, while for x ¢ (_, A; have h\’(z) < 0V (4+00) = 0. Therefore

@ (p) = if n AT
lim h®(z) o (b) =1, e Oz:l i
A—rto0 o® (—o0) =0, otherwise

where ~y can be any element of the image of o®, which is a non negative function. Therefore for A™ = ", A:r

h?(x) = y1an (z).

"Note that ¢’ (+00) needs not be finite.
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If instead we assume 0’ € S—,0® € ST:
For z € (N, A;, we have h{’(z) = 0(—o0) = 0, while for z € |JI__, A; have h’(z) > 0.

@(p) = — i noAT
lim h(Z)(x) {U (b) Y ife ¢ Uz:l Az

A—+o0 0¥ (4+00) =0, otherwise

where —y can be any element of the image of o®, that is now a non positive function. Therefore for AY = J!", AJr

h®(z) & —(1 = Lau(x)) = ylav(z) —
O

For a more intuitive understanding of the class of functions that such a constructed second layer can learn, in Figure 13, we
report some samples from that class of functions.

\.
1

Figure 14. Examples of learnable functions at the third hidden layer.

Third layer construction Finally, let us show that a hidden unit in the third layer can perform union and intersection
operations when the second-layer representations are indicator functions of sets.

Lemma A.5. If hf) (x) = 1 4,, there exists a rescaling factor 6 € R such that a single unit in the third hidden layer of an
MLP with non-negative weights can approximate:

R(z) = 461 4(z)
forany A =\J!_, A; when ¥ € S*, and forany A = J;_, A; if o® € S~

We are finally ready to prove the main result.

Proof of Theorem 3.5. Since the function to interpolate is monotonic, for any couple of points z; < z; : f (xl) < flzy) it
is possible to find a hyperplane with non-negative normal, with positive and negative half spaces denoted by A ;and A

il
+
such that z; € A]/l,a:j € Aj/i.

Let us now construct the sets:

= [ 4 " (23)
g <z

= U 4/ " (24)
Jw3>a:,

This ensures that z; < 2; = x; € A}!. Also, since Al is obtained from the intersection of positive half-spaces,
Lemma A.4 ensures a hidden unit at the second hidden layer is able to learn h®(x) ~ 140 (z). Now note that

Avi =Ujipa))> £(a0) Af contains only and all points z; such that f(x;) > f(;). Moreover, from Lemma A.5, we
know that hidden units in the third layer can approximate 14,

As per the previous layers, we show in Figure 14 some samples of functions that the third layer, constructed as just reported,
can learn.
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Fourth layer construction To conclude the proof, take the last layer parameters to be

wy’ = f(xiv1) — f(x;),b" = f(21). This produces the following function approximation

flx) = flz1) + Z La,, (f(@it1) — f(z:))

. f(x) evaluated at any of the points z; provides a telescopic sum where all the terms elide, leaving f(z;) = f(z;).

For the opposite activation pattern, the same result can be obtained in a similar fashion, considering intersections of
U _ +

Az, =Ujis, 5, Ai); instead. O
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