FORTIFYING HALLUCINATION DETECTION TO OUT-OF-DOMAIN DATA

Anonymous authors

Paper under double-blind review

ABSTRACT

Hallucinations remain one of the major barriers to the reliable deployment of Large Language Models (LLMs). Recent works have explored both supervised classification based approaches and unsupervised metric based approaches, with the latter remaining popular since they do not require labeled data. However, unsupervised methods lag behind supervised ones for in-domain data, despite having slightly better performance out of domain, as we show across 11 datasets and 10 models. This underscores the importance of supervised approaches, but also highlights their weakness in generalizing to unseen domains. To narrow this generalization gap, we introduce a simple approach to make supervised hallucination detectors more generalizable by relying on a curated, multi-domain training mix, which can complement subsequent addition of task-specific data. In our experiments on hallucination detection on 697K QA samples from 12 open source QA datasets, we show that incorporating this general training allows supervised methods to surpass unsupervised metric based methods by an average of +7.25% on out of domain data, without addition of any task-specific data. We also analyze scaling behaviors and estimate how much task-specific data is required to achieve reliable performance, finding that models augmented with general data require up to 40.3% less task-specific data to achieve close to optimal performance. Together, our findings highlight both the brittleness of existing supervised hallucination detectors and a simple path toward fortifying them detection against domain shift.

1 Introduction

Large language models (LLMs) are increasingly deployed across a wide range of applications, however their tendency to generate factually incorrect or misleading outputs, often termed *hallucinations*, poses a critical barrier to their adoption in high-stakes or out-of-distribution settings (Kim et al., 2025; Dahl et al., 2024). Detecting hallucinations at test time is challenging (Sahoo et al., 2024), a naive approach is to fact-check outputs against an external reference or database (Chern et al., 2023; Min et al., 2023). However this requires costly retrieval and fails when no ground-truth reference exists, calling for other methods to detect hallucinations.

One line of research has leveraged *uncertainty estimates* as potential signals of model reliability, and thus, for hallucination detection (Farquhar et al., 2024). *Unsupervised* methods analyze output probabilities, response consistency, or cluster semantic entropy (Abdaljalil et al., 2025; Farquhar et al., 2024; Nikitin et al., 2024; Venhuizen et al., 2019), or use linear probing (Kossen et al., 2024), while *supervised* methods train classifiers on model states to detect hallucinations (Liu et al., 2024) (Figure 1). While supervised methods outperform unsupervised metrics in-domain (Liu et al., 2024), they lose robustness out-of-domain, often underperforming unsupervised methods when faced with distribution shift. We empirically validate this in §4.1 by benchmarking supervised against unsupervised approaches across multiple data domains and model families, showing that while supervised methods excel in-domain, their performance degrades sharply under domain shift, often under-performing unsupervised methods.

Motivated by this, we introduce an approach to bridge this performance-generalization gap by training a supervised model on a large and heterogeneous dataset to yield more robust hallucination detection. Inspired by domain generalization and pretraining works that show how diverse training data can improve out-of-domain robustness in other tasks such as NLI, NER and sentiment analysis

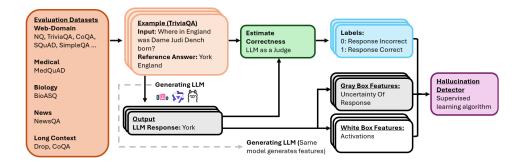


Figure 1: Overview of supervised learning based hallucination detection pipeline. We use examples from QA style benchmarks to generate positive and negative examples of when LLM an hallucinates. Along with generated features based on the prompt and LLM response, a downstream supervised learning algorithm is applied to train a classifier that detects these hallucinations based on the input features. We have two types of data, a general training mix and a task specific set, both of which we use to train the model, the task specific set confers in-domain specificity while the general training mix works to prevent overfitting, promoting robustness under domain shift.

(Hosseini et al., 2024; Stacey et al., 2025; Yu et al., 2022), we adapt these principles to uncertainty-based hallucination detection. In addition, we study scaling law type behaviors, investigating how much domain-specific data is needed to obtain a classifier with acceptable performance. We conduct our experiments using different dataset splitting strategies, iteratively testing combinations of traintest splits across a comprehensive dataset of 697K QA samples from 12 open source QA datasets, which we further categorize into broad domains. Our evaluation spans 10 different LLMs of varying sizes to ensure robustness across model families.

Our main contributions are:

- We present a comprehensive benchmarking of supervised hallucination detection methods against state-of-the-art unsupervised metric-based approaches, across a wide range of domains and language models, finding that unsupervised methods outperform supervised ones out-of-domain but not in-domain.
- We introduce a data-driven strategy for improving out-of-domain robustness of supervised hallucination detectors by scaling up heterogeneous training data, demonstrating its effectiveness at narrowing the performance-generalization gap.
- We provide a systematic analysis of the relationship between training data volume and classifier performance, offering practical guidelines on data requirements for effective uncertainty-based hallucination detection.

2 BACKGROUND & RELATED WORKS

Background: Hallucination Detection via Uncertainty Quantification Broadly, there have been two styles of approaches for uncertainty quantification. On one hand, *unsupervised* methods generally seek to estimate uncertainty via analyzing output probabilities, consistency and similarity across multi-generations (Abdaljalil et al., 2025; Farquhar et al., 2024; Nikitin et al., 2024) and via linear probing (Kossen et al., 2024). For example, semantic entropy (Venhuizen et al., 2019) clusters multiple generated responses to estimate semantic entropy, where prompts leading to diverse sets of clusters implies a higher level of uncertainty. On the other hand, work has explored *supervised* classifiers with internal language model states as features trained to estimate uncertainty (Liu et al., 2024). Figure 1 demonstrates this approach in the white-boxing setting, where internal states of the LLM are used to predict labeled hallucinations. This approach also applies to black-box and gray-box settings. For example, we can restrict ourselves to the use aggregated statistics based on the output logits of the generating LLM in the gray-box setting. In addition, when combined with a supervised model that produces probability estimates, these probabilities can be interpreted as uncertainty estimates.

Benchmarking UQ and Hallucination Detection Previous efforts to benchmark uncertainty quantification have focused on examining performance vs. efficiency (in terms of number of generations needed) tradeoffs of UQ methods requiring multiple generations (Xiong et al. (2024); Valentin et al. (2024)). Ye et al. (2024) utilizes UQ metrics and various datasets to benchmark the certainty level of different LLMs and calibratedness of their responses. Xiong et al. (2023); Tian et al. (2023) provide extensive benchmarks across different datasets and models but focus mainly on verbalized uncertainty, also they do not benchmark on in-domain vs out-domain. Lastly Liu et al. (2024) benchmarks supervised uncertainty quantification methods across methods and studies the extent of domain transfer across datasets, but does not focus on when such domain transfer occurs.

Out-Of-Domain Robustness Approaches to improving out-of-domain robustness in machine learning include training and optimization-based techniques (Wang et al., 2022; Yang et al., 2021) as well as data-centric approaches. In computer vision, increasing diversity of training data and data augmentation have been shown to reduce overfitting and improve generalization (Zhou et al., 2020; Rahman et al., 2019). In NLP, synthetic data have been explored as a means to enhance domain generalization in natural language inference (Hosseini et al., 2024). Building on these insights, we study whether large and heterogeneous pretraining can play a similar role for hallucination detection under domain shift.

3 APPROACH & EXPERIMENTAL SETUP

Our goal is to develop a generalizable method for hallucination detection in the question-answering (QA) setting. We adopt a supervised classification approach, showing that it outperforms alternative metric based methods, but that its performance degrades out of domain. To address this challenge, we explore training on a mix of in-domain and heterogeneous data. This section introduces the task setup and supervised detection approach as well as datasets, models and experimental setup.

Hallucination in QA setting While ultimately our goal is to measure hallucinations in any LLM output, as a starting point, we focus mainly on the QA setting, where a LLM generates a textual response to an input question. This response is scored against a reference response, and incorrect responses are treated as hallucinations. The task is then to detect such hallucinations given the input question and corresponding LLM response. We assume a white-box setting with full access to model internals such as activations and output logits.

We view performance in short-form QA as foundational for hallucination detection in longer-form generative tasks such as abstractive summarization. This is evidenced by many long-form methods that first extract atomic facts as a pre-processing step (Thirukovalluru et al., 2024; Min et al., 2023; Kadavath et al., 2022), making fact-level hallucination detection essential. The QA setting is also advantageous as it is relatively straightforward to measure correctness, whereas long-form outputs require fact-extraction and verification across many sentences, a capability that is still an active area of research (Chen et al., 2025; Liu et al., 2025; Wei et al., 2024b).

Our Approach Our approach focuses on training a multi-domain supervised hallucination detector using white-box and grey-box LLM features (Figure 1). The pipeline has three components: (1) generating candidate answers from the *generating LLM* on QA datasets (2) constructing feature representations from their internal activations and (3) training a classifier to distinguish between hallucinated and correct responses. Formally, each sample consists of features $(X_{\text{prompt}}, X_{\text{response}})$ paired with a binary label $y \in \{0,1\}$, where y=1 denotes a hallucinated (incorrect) response and y=0 a correct one.

For features, we follow prior work (Liu et al., 2024; Azaria & Mitchell, 2023) and extract activations from the middle and final layers of the generating LLM, using only activations corresponding to the last token of both the prompt and generated response. We then apply dimensionality reduction using truncated SVD, necessary because the activations are high dimensional (3584-4096) and training data is limited for some of our splits. Our experiments focus on how data can affect performance, thus for consistency, we apply SVD across all models even when dataset size exceeds the feature dimension.

$$f(X_{\text{prompt}}, X_{\text{response}}) = y_{\text{score}}, \quad y_{\text{score}} \in [0, 1],$$
 (1)

where $y_{\rm score}$ denotes the predicted score of hallucinations, with high scores indicating a higher likelihood of hallucination. Final predictions are obtained by thresholding $y_{\rm score}$, although we also evaluate quality of the score itself as described in §3.2. In our experiments, we use a Random Forest classifier, following prior work in Liu et al. (2024). Random Forests are widely regarded as a strong and robust baseline across many different problem settings (Wainer, 2016), offering good performance with minimal tuning (Probst et al., 2019). We also experimented with other classifiers, namely XGBoost (Chen & Guestrin, 2016) and penalized linear regression and found Random Forest to be very competitive with these. Additionally we keep hyperparameter constant throughout all experiments (Appendix E). While optimal hyperparameter vary across dataset splits, we adopt a single setting to avoid exhaustive tuning, further our focus is on in-domain vs out-domain performance which we find to be largely insensitive to hyperparmeter choice.

3.1 Datasets, Models and Methods

Evaluation Datasets We collect data from 12 different QA style benchmarks across different domains and input context length. These datasets along with their domains are listed in Table 1. Several of the datasets come with a train and a test set. For all our tested models, we found that the performance on both these sets tended to be similar, and thus we use both. Combined this gives us a dataset of 697K examples.

Table	1: Be	enchm	arking	Data	sets 1	used	in	our	stud	y.

Benchmark	Citation	Domain	Dataset Size
TriviaQA	Joshi et al. (2017)	Encyclopedic	76.5k
NQ	Kwiatkowski et al. (2019)	Encyclopedic	91.5k
bioASQ	Tsatsaronis et al. (2015)	Biology	4.7k
CoQA	Reddy et al. (2019)	Conversational	116.6k
DROP	Dua et al. (2019)	Reasoning-heavy	83.6k
HotpotQA	Yang et al. (2018)	Encyclopedic	97.8k
MedQuAD	Ben Abacha & Demner-	Medical	16.4k
	Fushman (2019)		
NewsQA	Trischler et al. (2016)	News	78.3k
SimpleQA	Wei et al. (2024a)	KB QA	4.3k
SQuAD	Rajpurkar et al. (2016)	Encyclopedic	98.0k
WebQuestions	Berant et al. (2013)	KB QA	5.8k
OpenLLM	Myrzakhan et al. (2024)	Various	23.7k

LLMs Considered Our evaluation spans three model families: Llama-3.1 (Dubey et al., 2024), OLMo2 (OLMo et al., 2024) and Qwen2.5 (Team, 2024). Additionally we consider various post training schemes, Tulu 3(Lambert et al., 2024) and SimPO-based (Meng et al., 2024) for Llama-3.1, and the post training process in (Mu et al., 2025) for Qwen-2.5. We evaluate models across different training stages, namely SFT and SFT+DPO. For computational purposes, we primarily use the 7-8B variants of these models except for OLMo2 where we considered both 7B and 32B models.

Baseline Unsupervised Methods We consider a mix of multi generation and single generation methods. These are Semantic Entropy (Farquhar et al. (2024); Venhuizen et al. (2019)), Sindex (Abdaljalil et al. (2025)), GNLL (Aichberger et al. (2024)) and PTrue (Kadavath et al. (2022)). We elaborate more on these methods in Appendix A.

3.2 EVALUATION METRICS

We evaluate performance using two metrics. For threshold-agnostic evaluation, we report Area Under Receiver Operating Curve (AUROC), which measures how well a score differentiates between positive and negative examples across all decision thresholds. AUROC has been used extensively

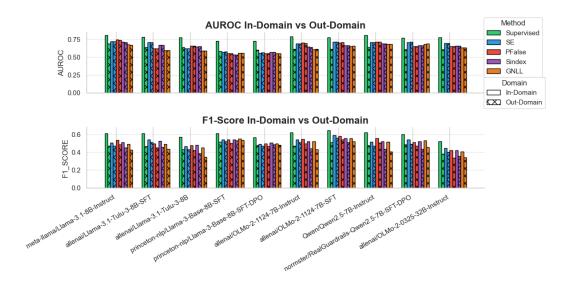


Figure 2: Aggregated In-domains and Out-of-domain evaluations for various models macro-averaged across 11 different datasets. Solid bars represent in-domain performance and cross-hatched represents out-domain performance. Top Row: AUROC, Bottom Row: F1-Score

in previous work (Liu et al., 2024; Aichberger et al., 2024; Farquhar et al., 2024). For threshold-aware evaluation, we use F1-score, optimizing thresholds on validation data to maximize this metric. Additional details on these and alternative metrics are provided in Appendix B.

3.3 LLM As a Judge

We use an LLM as a judge to determine correctness, as prior work has shown that alternative metric-based approaches (e.g. ROUGE,BLUE,BERTScore) can yield inaccurate labels and substantially alter results (Santilli et al., 2024; Ielanskyi et al., 2025; Janiak et al., 2025). We initially tested gpt-40 and gpt-40-Mini, then sought open-source alternatives for cost efficiency. Among these, Qwen3-14B (Yang et al., 2025) showed strong agreement with gpt-40 on a large 10K set of samples as well as with human evaluators on a smaller sample of 100 data points. Thus, we adopt Qwen3-14B as our primary judge model for labeling hallucinations.

4 RESULTS

Towards building a generalizable hallucination detection system we first quantify the degree of supervised performance loss out-of-domain (§4.1). Then, we demonstrate the effectiveness of our generalized heterogeneous dataset to reduce domain gap (§4.2). Finally, we investigate scaling law type behaviors, namely how performance scales with number of data samples (§4.3).

4.1 How do supervised methods perform against unsupervised methods in both the in-domain and out-of-domain setting?

We compare supervised and unsupervised methods in both the in-domain and out-of-domain settings across the 11 benchmark dataset. For each source dataset, performance is evaluated on held-out source data (in-domain) and all other datasets (out-of-domain), repeating this for all source-target pairs and generating LLMs. Figure 2 reports these results macro-averaged across datasets. Additionally we report performance gaps and associated error bars that account for dataset-specific variations in Appendix F.

As expected, supervised methods consistently outperform unsupervised ones in-domain across all benchmarks (Figure 2), with this advantage being consistent across model types and evaluation metrics. Out-of-domain, however, supervised models experience substantial performance drops,

often losing their in-domain advantage and performing on par with or even below unsupervised metrics, highlighting their sensitivity to distribution shift. Among unsupervised methods, the multigeneration based metrics, SE, Sindex and PFalse generally outperform GNLL, which uses a single generation. Performance varies across generating LLMs, with SE often the top performer, consistent with prior work (Farquhar et al., 2024) though other studies report different rankings (Abdaljalil et al., 2025), likely due to differences in generating LLM or evaluation setup.

4.2 CAN TRAINING ON A LARGE GENERAL DATA-MIX MITIGATE OUT OF DOMAIN PERFORMANCE DEGRADATION?

Next, we explore our primary question of how dataset diversity affects generalization. We first use a dataset-level leave-one-out split, where one dataset is held out as the target, termed the **Task-Specific** (**TS**) **dataset**. The remaining data sets are then combined into a larger, more diverse **General** (**GE**) **dataset** for training. We further while retain a **Task-Specific** (**TS**) **dataset** for fine-tuning, to test whether increased diversity mitigates the drop in performance when moving from in-domain to out-of-domain evaluation.

Leave-one-out experiments. We first evaluate our approach using a dataset level leave-one-out data split, for this we iteratively select one dataset to leave out and function as the target dataset. The remaining datasets then function as the general set. The target dataset is split into a train, test and validation dataset, this allows us to assess the hallucination detection capabilities under two settings, 1) where the classifier is trained solely on the GE set 2) where the classifier is trained on both the GE set and some data from the target domain / TS set.

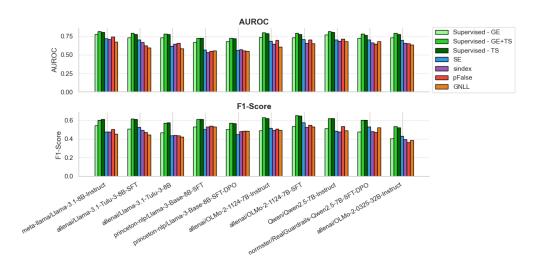


Figure 3: AUROC and F1-Score of different methods aggregated across heldout-benchmarks. Groups represent the detection performance for different generating models. Bars represent the method used with green bars showing different variants of supervised methods (differing by training data used) and remaining bars representing unsupervised methods.

Figure 3, displays results aggregated over the heldout-target datasets for the different LLMs. We highlight three key observations:

First, we examine the value of target-specific data. Across all held-out targets and generating LLMs, classifiers trained exclusively on general (GE) data consistently under-perform compared to those trained with task-specific (TS) data, underscoring the important of target-specific supervision. This result is unsurprising given our earlier findings on the effectiveness of supervised methods in-domain. Interestingly, the gap between GE-only and TS-only models persists even for target datasets with strong similarities to others in the PT set, these would include target datasets such as Natural Questions. We have observed in the single source experiments, that in some cases training on another source can outperform a training on the target source. Thus the consistent overall gap suggests a degree of negative transfer when relying on heterogeneous GE data. Nevertheless, when

comparing expected performance of scombingle source on out-of-domain, GE-only still seems to provides a net benefit.

Second, supervised GE models generally outperform unsupervised methods. Comparing GE-only to unsupervised baselines, Figure 3 shows that GE-only generally matches or exceeds the best unsupervised methods across models. This advantage is especially pronounced in AUROC, where PT-only achieves higher average performance than all unsupervised approaches. However, the pattern is less consistent for F1-score: for OLMO2-Instruct, Qwen2.5-Instruct, and Llama3.1-Tulu-SFT, GE-only underperforms. A closer analysis for OLMO2-Instruct (Figure 4) reveals that this dip stems from poor performance on longer-context datasets DROP and CoQA. Since AUROC remains high, this suggests some sensitivity to thresholding on the general set. Similar patterns are observed for the other models.

Finally, GE+TS offers limited benefits over TS when target data is abundant. After averaging across heldout target datasets, we find that GE+TS slightly outperforms TS-only by only a small margin. We hypothesize that target dataset size explains this. In particular the target datasets tested are generally quite large (on the order of tens of thousands of examples). In such cases, classifiers may already be saturated by task-specific data, limiting additional performance gains when adding the general examples. We explore these scaling effects more systematically in later sections.

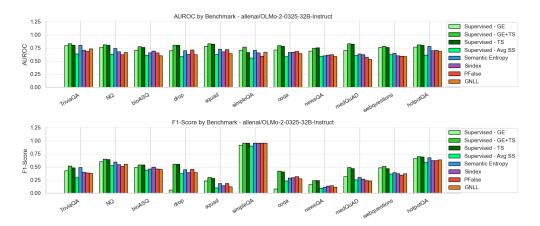


Figure 4: AUROC of supervised and unsupervised hallucination detector on *OLMo2-32B-Instruct*. Each group represents the heldout target dataset. Bars represent the method used with green bars showing different variants of supervised methods (differing by training data used) and remaining bars representing unsupervised methods.

Broad domain shifts While dataset-wise leave-one-out splits are a standard way to assess out of domain generalization, many of the evaluation datasets in our suite share substantial domain overlap with one another, for example NQ, TriviaQA both draw heavily from Wikipedia based sources, and thus we expect that domain transfer from them will be strong. To better disentangle this effect we curate PT sets based on 'broad' domains that are more dissimilar to one another, which we list in Table 1. These results are shown in Figure 5 which plot results of GE and GE+FT under different choices of the GE set. We only evaluate for two evaluation datasets, bioASQ and MedQuAD which have the most dissimilar domain in our set of evaluation benchmarks.

Across these settings we observe the same trend that using a GE set can result in a classifier with better performance than one that uses UQ metric based methods, this results stays consistent over several choices of PT sets and across models. We find that with the largest "Encyclopedic-Wiki" domain included, we did not see much variations in performance when including other domains.

Overall, these results show that while the addition of a large heterogeneous general training mix alone is insufficient to match the performance with target-specific data, it provides a strong foundation for supervised methods that surpasses unsupervised approaches on AUROC. In addition, we find some complementary effect when these pretraining data are used together with target-specific data.

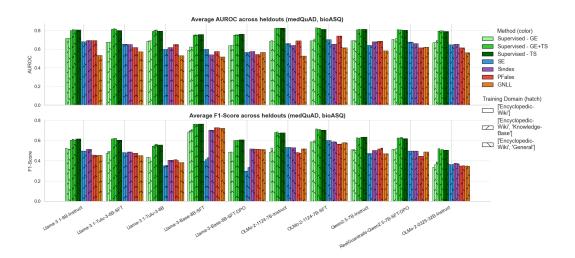


Figure 5: AUROC and F1-scores for aggregated over two target datasets - MedQuAD and bioASQ under different choices of general data domain. Bars represent the method used with green bars showing different variants of supervised methods (differing by training data used) and remaining bars representing unsupervised methods. Hatching patterns on the bar denominate the choice of general training domain when applicable.

4.3 SCALING LAWS: HOW MUCH IN DOMAIN DATA IS NEEDED TO ADAPT CLASSIFIER?

Our last investigation examines how much in-domain data labeled for hallucinations is needed to train a classifier with adequate performance, and whether using a large general dataset can improve data efficiency of this. Obtaining labeled hallucination data can be challenging, which makes a general-domain data mix to supplement small in-domain labeled dataset for training classifiers. To examine these effects, we plot learning curves (Perlich, 2011) under both the TS and GE+TS setting. These curves plot the test-set performance as we vary the amount of task specific training data, highlighting how quickly a classifier can learn to accurately detect hallucinations. For this setting, we consider as in earlier only BioASQ and MedQuAD, which we deem as being most unlike the other datasets. Figure 6 plots an example of these learning curves on Llama 3.1 - Instruct. Generally, GE+TS dominates TS only in the low data regime of < 1000 examples, with TS-only catching up soon after. This trend stays consistent across the 10 LLMs tested.

From these learning curves, we seek estimates of two quantities:

- 1. **Crossover Point**: At how many training examples does the TS-setting outperform the GE-only setting.
- 2. **Saturation Point**: At what sample count do we achieve 95% of detection performance in either the GE+TS or TS setting.

The crossover point between TS-only and GE-only marks the estimated amount of data where the use of target specific data outperforms the use of the general set. This highlights a trade-off between cost of annotation and model performance. A crossover point at a low number of samples suggests that supervision from the target domain is highly valuable, whereas one at a high number of samples suggests that the general set itself might be the most practical choice unless a large and labeled target/task-specific dataset is available. From the learning curves, we see that GE+TS curves almost always lie above TS-only, indicating that GE+TS classifiers outperform or match of TS-only classifiers when given the same number of task-specific samples. Thus, we recommend the GE+TS setup, as it consistently provides equal or better performance regardless of the amount of task-specific data available. The saturation points give some guidance on how many labeled samples are needed in order to maximize the performance of a hallucination detection model.

Table 2 summarizes estimates for the both the crossover and saturation point. Across both heldout datasets, the expected cross-over between GE and TS occurs at roughly 310-350. Saturation point is reached relatively early for BioASQ, at 465 samples for GE+TS, and later for MedQuAD, at 1100

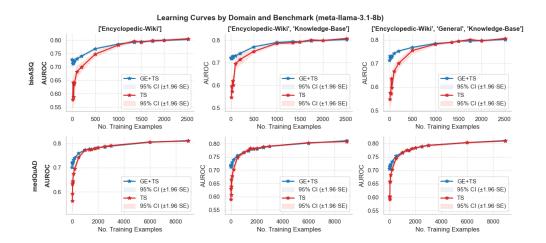


Figure 6: Learning Curves for Llama-3.1-Instruct under TS only and GE+TS for different amounts of target specific data. Top Row: Results under different GE set choices with BioASQ as target domains. Bottom Row: Results under different GE set choices with MedQuAD as target domains. Lines represent average AUROC value across 10 random seeds and shaded area represents 1.96 * SE.

Table 2: Performance on held-out datasets for cross-over experiments. Values are reported as mean (standard deviation)

Held-out Data	N	Cross-over GE/TS	Saturation Point GE+TS	Saturation Point TS
BioASQ	2520	372.9 (128.6)	485.1 (201.9)	820.7 (263.0)
MedQuAD	8350	348.4 (149.6)	1168.0 (306.0)	1408.2 (712.4)

for GE+TS. We believe this is largely a function of the total number of samples we had for the experiment, in the case of medQuAD, the higher number of theoretical samples we had pushed the estimated maximal performance level higher, resulting in later saturation point. Consistently across both datasets, saturation point for PT+FT is much lower than that for FT only, 40.3% lower for bioASQ and 17.0% for MedQuAD, showing that use of the PT set improves data efficacy. Overall, these serve as a guidance for a practitioner deciding if labeling more data is worth it. For example, in the case of MedQuAD the expected saturation point of PT+FT at 1168 indicates that if one were to label an addition 7182 data points (8350-1168), they would only expect about a 5% increase in performance on AUROC.

5 Conclusion

In this paper we have presented a data-driven approach to make super hallucination detectors robust under domain shift. We first showed that supervised hallucination detection methods significantly outperforms unsupervised approaches in the in-domain setting, but that this advantage disappears in the out-domain setting, where unsupervised metric based approaches are comparatively more robust. We showed that the use of general, heterogeneous data that need not be in the same domain as the target domain can provide a useful foundation for training supervised classifiers, with such classifiers generally surpassing unsupervised models even when data in the target domain is unavailable. Moreover our scaling experiments show that incorporating such general data improves data efficiency when combined with target specific data, as classifiers require fewer target-specific samples to achieve the same performance. These findings demonstrate that supervised UQ-based hallucination detection methods remain a valuable tool. Practitioners can apply classifiers trained on large general datasets and expect performance that exceeds unsupervised approaches, further, when available, incorporating target-specific data to these classifiers further improves performance, consistently outperforming unsupervised methods.

REFERENCES

- Samir Abdaljalil, Hasan Kurban, Parichit Sharma, Erchin Serpedin, and Rachad Atat. Sindex: Semantic inconsistency index for hallucination detection in llms. *arXiv preprint arXiv:2503.05980*, 2025.
 - Lukas Aichberger, Kajetan Schweighofer, and Sepp Hochreiter. Rethinking uncertainty estimation in natural language generation. *arXiv preprint arXiv:2412.15176*, 2024.
 - Amos Azaria and Tom Mitchell. The internal state of an llm knows when it's lying. *arXiv preprint arXiv:2304.13734*, 2023.
 - Asma Ben Abacha and Dina Demner-Fushman. A question-entailment approach to question answering. *BMC bioinformatics*, 20(1):511, 2019.
 - Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase from question-answer pairs. In *Proceedings of the 2013 conference on empirical methods in natural language processing*, pp. 1533–1544, 2013.
 - Leo Breiman. Random forests. *Machine learning*, 45(1):5–32, 2001.
 - Mingda Chen, Yang Li, Xilun Chen, Adina Williams, Gargi Ghosh, and Scott Yih. Factory: A challenging human-verified prompt set for long-form factuality. *arXiv preprint arXiv:2508.00109*, 2025.
 - Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In *Proceedings of the* 22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794, 2016.
 - I Chern, Steffi Chern, Shiqi Chen, Weizhe Yuan, Kehua Feng, Chunting Zhou, Junxian He, Graham Neubig, Pengfei Liu, et al. Factool: Factuality detection in generative ai–a tool augmented framework for multi-task and multi-domain scenarios. *arXiv preprint arXiv:2307.13528*, 2023.
 - Matthew Dahl, Varun Magesh, Mirac Suzgun, and Daniel E Ho. Large legal fictions: Profiling legal hallucinations in large language models. *Journal of Legal Analysis*, 16(1):64–93, 2024.
 - Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner. Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs. *arXiv* preprint arXiv:1903.00161, 2019.
 - Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. *arXiv e-prints*, pp. arXiv–2407, 2024.
 - Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. Detecting hallucinations in large language models using semantic entropy. *Nature*, 630(8017):625–630, 2024.
 - Mohammad Javad Hosseini, Andrey Petrov, Alex Fabrikant, and Annie Louis. A synthetic data approach for domain generalization of nli models. *arXiv preprint arXiv:2402.12368*, 2024.
 - Mykyta Ielanskyi, Kajetan Schweighofer, Lukas Aichberger, and Sepp Hochreiter. Addressing pit-falls in the evaluation of uncertainty estimation methods for natural language generation. In *ICLR Workshop: Quantify Uncertainty and Hallucination in Foundation Models: The Next Frontier in Reliable AI*, 2025.
 - Denis Janiak, Jakub Binkowski, Albert Sawczyn, Bogdan Gabrys, Ravid Schwartz-Ziv, and Tomasz Kajdanowicz. The illusion of progress: Re-evaluating hallucination detection in llms. *arXiv* preprint arXiv:2508.08285, 2025.
 - Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly supervised challenge dataset for reading comprehension. *arXiv preprint arXiv:1705.03551*, 2017.
 - Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez, Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language models (mostly) know what they know. *arXiv preprint arXiv:2207.05221*, 2022.

Yubin Kim, Hyewon Jeong, Shan Chen, Shuyue Stella Li, Mingyu Lu, Kumail Alhamoud, Jimin Mun, Cristina Grau, Minseok Jung, Rodrigo Gameiro, et al. Medical hallucinations in foundation models and their impact on healthcare. *arXiv preprint arXiv:2503.05777*, 2025.

- Jannik Kossen, Jiatong Han, Muhammed Razzak, Lisa Schut, Shreshth Malik, and Yarin Gal. Semantic entropy probes: Robust and cheap hallucination detection in llms. *arXiv preprint arXiv:2406.15927*, 2024.
- Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a benchmark for question answering research. *Transactions of the Association for Computational Linguistics*, 7:453–466, 2019.
- Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers in open language model post-training. *arXiv preprint arXiv:2411.15124*, 2024.
- Linyu Liu, Yu Pan, Xiaocheng Li, and Guanting Chen. Uncertainty estimation and quantification for llms: A simple supervised approach. *arXiv preprint arXiv:2404.15993*, 2024.
- Xin Liu, Lechen Zhang, Sheza Munir, Yiyang Gu, and Lu Wang. Verifact: Enhancing long-form factuality evaluation with refined fact extraction and reference facts. *arXiv preprint arXiv:2505.09701*, 2025.
- Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a reference-free reward. *Advances in Neural Information Processing Systems*, 37:124198–124235, 2024.
- Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer, Luke Zettlemoyer, and Hannaneh Hajishirzi. Factscore: Fine-grained atomic evaluation of factual precision in long form text generation. *arXiv preprint arXiv:2305.14251*, 2023.
- Norman Mu, Jonathan Lu, Michael Lavery, and David Wagner. A closer look at system prompt robustness. *arXiv preprint arXiv:2502.12197*, 2025.
- Aidar Myrzakhan, Sondos Mahmoud Bsharat, and Zhiqiang Shen. Open-llm-leaderboard: From multi-choice to open-style questions for llms evaluation, benchmark, and arena. *arXiv preprint arXiv:2406.07545*, 2024.
- Alexander Nikitin, Jannik Kossen, Yarin Gal, and Pekka Marttinen. Kernel language entropy: Fine-grained uncertainty quantification for llms from semantic similarities. *Advances in Neural Information Processing Systems*, 37:8901–8929, 2024.
- Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, et al. 2 olmo 2 furious. *arXiv preprint arXiv:2501.00656*, 2024.
- Claudia Perlich. Learning curves in machine learning. In *Encyclopedia of machine learning*, pp. 577–580. Springer, 2011.
- P Probst, MN Wright, and AL Boulesteix. Hyperparameters and tuning strategies for random forest, wires data mining and knowledge discovery, 9, e1301, 2019.
- Mohammad Mahfujur Rahman, Clinton Fookes, Mahsa Baktashmotlagh, and Sridha Sridharan. Multi-component image translation for deep domain generalization. In 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 579–588. IEEE, 2019.
- Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for machine comprehension of text. *arXiv preprint arXiv:1606.05250*, 2016.
- Siva Reddy, Danqi Chen, and Christopher D Manning. Coqa: A conversational question answering challenge. *Transactions of the Association for Computational Linguistics*, 7:249–266, 2019.

- Pranab Sahoo, Prabhash Meharia, Akash Ghosh, Sriparna Saha, Vinija Jain, and Aman Chadha. A comprehensive survey of hallucination in large language, image, video and audio foundation models. *arXiv preprint arXiv:2405.09589*, 2024.
- Andrea Santilli, Miao Xiong, Michael Kirchhof, Pau Rodriguez, Federico Danieli, Xavier Suau, Luca Zappella, Sinead Williamson, and Adam Golinski. On a spurious interaction between uncertainty scores and answer evaluation metrics in generative qa tasks. In *Neurips Safe Generative AI Workshop* 2024, 2024.
- Joe Stacey, Lisa Alazraki, Aran Ubhi, Beyza Ermis, Aaron Mueller, and Marek Rei. How to improve the robustness of closed-source models on nli. *arXiv preprint arXiv:2505.20209*, 2025.
- Qwen Team. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024.

- Raghuveer Thirukovalluru, Yukun Huang, and Bhuwan Dhingra. Atomic self-consistency for better long form generations. *arXiv preprint arXiv:2405.13131*, 2024.
- Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea Finn, and Christopher D Manning. Just ask for calibration: Strategies for eliciting calibrated confidence scores from language models fine-tuned with human feedback. *arXiv* preprint arXiv:2305.14975, 2023.
- Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris, Alessandro Sordoni, Philip Bachman, and Kaheer Suleman. Newsqa: A machine comprehension dataset. *arXiv preprint arXiv:1611.09830*, 2016.
- George Tsatsaronis, Georgios Balikas, Prodromos Malakasiotis, Ioannis Partalas, Matthias Zschunke, Michael R Alvers, Dirk Weissenborn, Anastasia Krithara, Sergios Petridis, Dimitris Polychronopoulos, et al. An overview of the bioasq large-scale biomedical semantic indexing and question answering competition. *BMC bioinformatics*, 16(1):138, 2015.
- Simon Valentin, Jinmiao Fu, Gianluca Detommaso, Shaoyuan Xu, Giovanni Zappella, and Bryan Wang. Cost-effective hallucination detection for llms.(2024). *URL https://arxiv.org/abs/2407.21424*, 2024.
- Noortje J Venhuizen, Matthew W Crocker, and Harm Brouwer. Semantic entropy in language comprehension. *Entropy*, 21(12):1159, 2019.
- Jacques Wainer. Comparison of 14 different families of classification algorithms on 115 binary datasets. *arXiv preprint arXiv:1606.00930*, 2016.
- Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu, Yiqiang Chen, Wenjun Zeng, and Philip S Yu. Generalizing to unseen domains: A survey on domain generalization. *IEEE transactions on knowledge and data engineering*, 35(8):8052–8072, 2022.
- Jason Wei, Nguyen Karina, Hyung Won Chung, Yunxin Joy Jiao, Spencer Papay, Amelia Glaese, John Schulman, and William Fedus. Measuring short-form factuality in large language models. *arXiv preprint arXiv:2411.04368*, 2024a.
- Jerry Wei, Chengrun Yang, Xinying Song, Yifeng Lu, Nathan Hu, Jie Huang, Dustin Tran, Daiyi Peng, Ruibo Liu, Da Huang, et al. Long-form factuality in large language models. *Advances in Neural Information Processing Systems*, 37:80756–80827, 2024b.
- Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie Fu, Junxian He, and Bryan Hooi. Can llms express their uncertainty? an empirical evaluation of confidence elicitation in llms. *arXiv* preprint *arXiv*:2306.13063, 2023.
- Miao Xiong, Andrea Santilli, Michael Kirchhof, Adam Golinski, and Sinead Williamson. Efficient and effective uncertainty quantification for llms. In *Neurips Safe Generative AI Workshop 2024*, 2024.
- An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*, 2025.

Shuai Yang, Kui Yu, Fuyuan Cao, Lin Liu, Hao Wang, and Jiuyong Li. Learning causal representations for robust domain adaptation. *IEEE Transactions on Knowledge and Data Engineering*, 35 (3):2750–2764, 2021.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov, and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question answering. *arXiv preprint arXiv:1809.09600*, 2018.

Fanghua Ye, Mingming Yang, Jianhui Pang, Longyue Wang, Derek Wong, Emine Yilmaz, Shuming Shi, and Zhaopeng Tu. Benchmarking llms via uncertainty quantification. *Advances in Neural Information Processing Systems*, 37:15356–15385, 2024.

Yu Yu, Shahram Khadivi, and Jia Xu. Can data diversity enhance learning generalization? In *Proceedings of the 29th international conference on computational linguistics*, pp. 4933–4945, 2022.

Kaiyang Zhou, Yongxin Yang, Timothy Hospedales, and Tao Xiang. Learning to generate novel domains for domain generalization. In *European conference on computer vision*, pp. 561–578. Springer, 2020.

A UNSUPERVISED METHODS

SEMANTIC ENTROPY Semantic entropy relies on assessing the consistency over multiple generations to a given reply. This is estimates uncertainty by measuring entropy of a semantic representation (might be wrong way to phrase it) across multiple sampled output For a single prompt p we generate S different responses $c_1, ..., c_S$. Semantic entropy clusters these responses into semantic equivalent clusters through the use of a Natural language inference model. Then using the semantic clusters we can compute semantic entropy by: formula

SINDEX Similar to semantic entropy, Sindex also utilizes multiple generations, however instead of a NLI model to form clusters sindex uses sentence embeddings combined with a hierarchical clustering algorithm. Then an adjusted entropy is calculated by: ...

PTRUE PTrue is an LLM as a judge approach that queries the generating LLM on whether a given statement is True or False, this is done by appending a question to the statement and measuring the generated token probability of the *true* token. Following Kadavath et al. (2022) we use a variation of PTrue where we pass in multiple candidate generations in the prompt as well as the main response (for which we score correctness). Additionally, for hallucination detection we actually need the probability inverse (1-pTrue) score, which we call pFalse.

GNLL is a likelihood-based score designed to estimate aleatoric uncertainty. Aichberger et al. (2024) show that under a 0-1 loss, the negative log-likelihood of the Maximum A Posterior completion is a good estimate (check this) of the aleatoric uncertainty. While this quantity is hard to identify due to computational intractability of the LLM generating space (find a citation for this) we can approximate this using either beam search decoding or greedy decoding. For this work we use the NLL of the greedy decoded sequence as GNLL.

B EVALUATION METRICS

Threshold-Agnostic Metrics Prior works on UQ and hallucination detection primarily evaluate performance using Area Under Receiver Operating Curve (AUROC) (Liu et al. (2024); Aichberger et al. (2024); Farquhar et al. (2024)). AUROC measures how well a score differentiates positive and negative examples. In our casem the score is either a UQ metric or the probability score generated by a supervised hallucination detector. As a threshold-agnostic metric, AUROC evaluates performance across all decision thresholds. Other options in this category are Area Under Precision Recall Curve (AUPRC) and Area Under Accuracy-Reject Curve (AUARC), but we primarily report performance using AUROC to keep consistent with previous work.

Threshold-Aware Metrics Many unsupervised metric-based methods output unbounded scores, this is the case for 3 out of 4 methods, SE, Sindex and GNLL. For them to be used practically we have to set thresholds for determining what are hallucinated responses. With these thresholds set, we can evaluate standard classification metrics such as accuracy, precision and recall. For this work, in order to optimize the threshold we use maximize F1-score on a separate validation set. To ensure fairness in comparison, we optimize thresholds for unsupervised methods on the training set, while for supervised detectors we rely on a separate validation subset.

C LLM AS A JUDGE

Here we give more details about the LLM-as-a-Judge Procedure. Broadly, we first evaluated GPT-4 as a judge model and found that its assessments were well aligned with human annotations, though on a relatively small sample. Given the cost of using GPT-4 at scale, we sought an open-source alternative with similar reliability. Among several candidates, we identified Qwen3-14B Yang et al. (2025), which exhibited the highest inter-annotator agreement with GPT-4. We therefore adopt Qwen3-14B as our primary judge model in this work (see Appendix X for details).

C.1 LABELING

To generate labels for hallucination detection, we use a 3 class system:

- **0 Non-Hallucinations** For generated responses deemed correct by the LLM judge
- 1 Hallucinations For generated responses deemed in-correct by the LLM judge
- 2 Non Responses For generated responses deemed as non-response by the LLM judge

We construct a small human-labeled set of 25 examples across datasets and model family, including brief annotations of why they are labeled the way they are. These examples are used in a few-shot prompt (25-shot) to guide the LLM judge in labeling the full set of responses, this prompt is given in Figure 7.

C.2 OPEN-SOURCE MODELS

Our initial efforts used mainly gpt-40 as a judge, but we found this prohibitively expensive for the number of experiments we wanted to do, thus we sought an open-source alternative that would perform as well. We mainly tested models from the Qwen3 family, named the 14B transformer and the 30B MoE model. We found Cohen's Kappa to be higher for the 14B transformer as shown in Table ??. We also annotate by hand a sample of a 100 model completions and compare that with our models, which is shown in Table 3, for this sample GPT-40 and Qwen3-14B perform nearly identical. Further both have high accuracy and inter annotator agreement, further validating our choice to use Qwen3-14B

Model	Cohen's Kappa v Human	Accuracy vs Human
GPT-40	0.84	92%
Qwen3-14B	0.85	93%

Table 3: Inter-annotator agreement between LLM-as-a-judge models and human raters.

Model	Cohen's Kappa v GPT-40	Accuracy vs GPT-40
GPT-40	1.00	100%
Qwen3-14B	0.756	85.4%
GPT-4o-Mini	0.808	89.4%
Qwen3-A3B30B	0.659	82.2%

Table 4: Inter-annotator agreement between LLM-as-a-judge models and human raters.

LLM-as-a-Judge Prompt

 You are an expert evaluator for question-answering systems. You will be assessing the quality of answers to a given question.

Task: Determine if the candidate answer contains the correct factual information to answer the question.

Rules: - Respond with 0 if the candidate answer is equivalent in meaning to any reference answer (synonyms/context OK), or if it contains the specific correct answer. - Respond with 1 if the candidate contains wrong facts, repeats the question, provides no answer, has the wrong entity, or differs from all reference answers. - Respond with 2 if the model does not give an answer, asks a clarifying question, or refuses to answer. - Accept additional context around correct answers. - Accept geographic or temporal equivalents. - Reject if the core answer is missing or incorrect.

Instructions: Reference answers may be in a numbered list. Score 0 if the candidate matches any reference answer.

Evaluation Examples:

- Q: What movie starred Tom Cruise? Ref: Top Gun Candidate: "Top Gun starring Tom Cruise" → 0
- Q: What movie starred Tom Cruise? Ref: Top Gun Candidate: "Brad Pitt was in Top Gun" \rightarrow 1
- Q: What's the name of Mob's brother's Spanish VA in Mob Psycho 100? Ref: Javier Olguín Candidate: "I do not have information on the Spanish voice actor..."
 → 2
- Q: What is the major difficulty in carrying out the plan? Ref: Improving the relationship between Taiwan and the mainland Candidate: "I'd be happy to help you identify potential difficulties..." → 2

Figure 7: LLM-as-a-Judge prompt used for labeling responses from different datasets. Only 4 few-shot examples are shown here due to space constraints, but for actual applications we use a 25-shot example

D LLMs Tested

Table 5: Models evaluated in our study.

Hugging Face Model name	Model family	Size	Training stage
meta-llama/Llama-3.1-8B-Instruct	Llama-3.1	8B	Instruct
allenai/Llama-3.1-Tulu-3-8B-SFT	Llama-3.1	8B	SFT
allenai/Llama-3.1-Tulu-3-8B	Llama-3.1	8B	Instruct
princeton-nlp/Llama-3-Base-8B-SFT	Llama-3	8B	SFT
princeton-nlp/Llama-3-Base-8B-SFT-	Llama-3	8B	SFT + DPO
DPO			
allenai/OLMo-2-1124-7B-Instruct	OLMo-2	7B	Instruct
allenai/OLMo-2-1124-7B-SFT	OLMo-2	7B	SFT
Qwen/Qwen2.5-7B-Instruct	Qwen2.5	7B	Instruct
normster/RealGuardrails-Qwen2.5-	Qwen2.5	7B	SFT + DPO
7B-SFT-DPO			
allenai/OLMo-2-0325-32B-Instruct	OLMo-2	32B	Instruct

E SUPERVISED TRAINING DETAILS

Here we furnish addition details on the training procedure and model use.

E.1 DATASET

Table 6 gives additional information on dataset sizes and the splits to create the train test and validation sets per evaluation benchmark.

Table 6: Benchmarking Datasets used in our study.

Benchmark	Domain	Total Size	Train Size	Test Size
TriviaQA	Encyclopedic	100K	10k	10k
NQ	Encyclopedic	120K	10k	10k
bioASQ	Biology	50K	10k	10k
CoQA	Conversational	120K	10k	10k
DROP	Reasoning-heavy	96K	10k	10k
HotpotQA	Encyclopedic	113K	10k	10k
MedQuAD	Medical	50K	10k	10k
NewsQA	News	120K	10k	10k
SimpleQA	KB QA	100K	10k	10k
SQuAD	Encyclopedic	100K	10k	10k
WebQuestions	KB QA	6K	10k	10k
OpenLLM	Various	22K	10k	10k

E.2 SUPERVISED HALLUCINATION CLASSIFIER

The supervised learning model used as the classifier is a Random Forest (Breiman, 2001). We did not do extensive hyperparameter tuning per generating LLM and dataset due to compute constraints, instead opting for a setting of 100 trees and with remaining settings being the default in scikit-learn. We also included an additional dimensionality reduction step since for many of our experiments we have the case where the dimensionality of the features exceeded the number of training examples. This dimensionality reduction is carried out using Singular Value Decomposition (SVD), for which we use the implementation in scikit-learn. We set a fix dimensionality of 300 after SVD, which is then used in the Random Forest. Lastly as a pre-processing step before SVD we apply standard scaling to the raw features.

Features Following Liu et al. (2024) we use activations from the middle and last layer of the model. For each of these layers we take the activation value corresponding to both the last token and the prompt, this creates a large feature space as we take a total of 4 activations per input, for example if the model's hidden size is 4096 then the size of the features corresponding to this activation is 16384 (4*4096). In addition we explored the use of several probability based features but find that they did not impact performance much and omitted them.

F RQ1 Additional Figures

G RQ2 Additional Figures

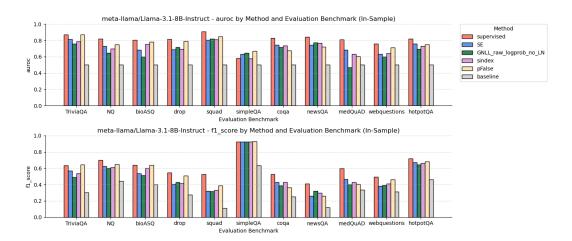


Figure 8: In-domains evaluations of "Llama-3.1-Instruct" across 11 different datasets. Supervised methods plotted along with 4 unsupervised methods and one random classifier baseline. Top Row: AUROC, Bototm Row: F1-Score

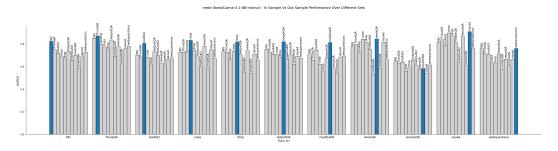


Figure 9: In-domains evaluations for various models macro-averaged across 11 different datasets. In order to benchmark supervised methods against unsupervised methods we pick the top performing unsupervised method for macro-averaging. Top Row: AUROC, Bottom Row: F1-Score

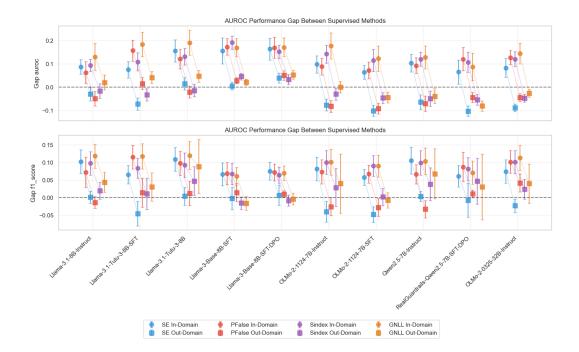


Figure 10: Difference plots comparing unsupervised methods to supervised methods. Heights of marker correspond to the performance difference between supervised methods and unsupervised methods. Top: AUROC, Bottom: F1-Score. Positive values indicate that supervised methods performance better than unsupervised method. Circles represent in-domain and squares represent out-of-domain. Error Bars correspond to 1.96 * Standard Error calculated over scores from aggregated source-target pairs.

Figure 11: Difference plots comparing the performance of (a) Supervised-GE, (b) Supervised-GE+TS, and (c) Supervised-TS against all other methods.