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ABSTRACT

Hallucinations remain one of the major barriers to the reliable deployment of
Large Language Models (LLMs). Recent works have explored both supervised
classification based approaches and unsupervised metric based approaches, with
the latter remaining popular since they do not require labeled data. However, un-
supervised methods lag behind supervised ones for in-domain data, despite hav-
ing slightly better performance out of domain, as we show across 11 datasets and
10 models. This underscores the importance of supervised approaches, but also
highlights their weakness in generalizing to unseen domains. To narrow this gen-
eralization gap, we introduce a simple approach to make supervised hallucination
detectors more generalizable by relying on a curated, multi-domain training mix,
which can complement subsequent addition of task-specific data. In our experi-
ments on hallucination detection on 697K QA samples from 12 open source QA
datasets, we show that incorporating this general training allows supervised meth-
ods to surpass unsupervised metric based methods by an average of +7.25% on
out of domain data, without addition of any task-specific data. We also analyze
scaling behaviors and estimate how much task-specific data is required to achieve
reliable performance, finding that models augmented with general data require up
to 40.3% less task-specific data to achieve close to optimal performance. Together,
our findings highlight both the brittleness of existing supervised hallucination de-
tectors and a simple path toward fortifying them detection against domain shift.

1 INTRODUCTION

Large language models (LLMs) are increasingly deployed across a wide range of applica-
tions, however their tendency to generate factually incorrect or misleading outputs, often termed
hallucinations, poses a critical barrier to their adoption in high-stakes or out-of-distribution settings
(Kim et al., 2025; Dahl et al., 2024). Detecting hallucinations at test time is challenging (Sahoo
et al., 2024), a naive approach is to fact-check outputs against an external reference or database
(Chern et al., 2023; Min et al., 2023). However this requires costly retrieval and fails when no
ground-truth reference exists, calling for other methods to detect hallucinations.

One line of research has leveraged uncertainty estimates as potential signals of model reliability,
and thus, for hallucination detection (Farquhar et al., 2024). Unsupervised methods analyze output
probabilities, response consistency, or cluster semantic entropy (Abdaljalil et al., 2025; Farquhar
et al., 2024; Nikitin et al., 2024; Venhuizen et al., 2019), or use linear probing (Kossen et al., 2024),
while supervised methods train classifiers on model states to detect hallucinations (Liu et al., 2024)
(Figure 1). While supervised methods outperform unsupervised metrics in-domain (Liu et al., 2024),
they lose robustness out-of-domain, often underperforming unsupervised methods when faced with
distribution shift. We empirically validate this in §4.1 by benchmarking supervised against un-
supervised approaches across multiple data domains and model families, showing that while su-
pervised methods excel in-domain, their performance degrades sharply under domain shift, often
under-performing unsupervised methods.

Motivated by this, we introduce an approach to bridge this performance-generalization gap by train-
ing a supervised model on a large and heterogeneous dataset to yield more robust hallucination
detection. Inspired by domain generalization and pretraining works that show how diverse training
data can improve out-of-domain robustness in other tasks such as NLI, NER and sentiment analysis
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Figure 1: Overview of supervised learning based hallucination detection pipeline. We use examples
from QA style benchmarks to generate positive and negative examples of when LLM an hallucinates.
Along with generated features based on the prompt and LLM response, a downstream supervised
learning algorithm is applied to train a classifier that detects these hallucinations based on the input
features. We have two types of data, a general training mix and a task specific set, both of which we
use to train the model, the task specific set confers in-domain specificity while the general training
mix works to prevent overfitting, promoting robustness under domain shift.

(Hosseini et al., 2024; Stacey et al., 2025; Yu et al., 2022), we adapt these principles to uncertainty-
based hallucination detection. In addition, we study scaling law type behaviors, investigating how
much domain-specific data is needed to obtain a classifier with acceptable performance. We conduct
our experiments using different dataset splitting strategies, iteratively testing combinations of train-
test splits across a comprehensive dataset of 697K QA samples from 12 open source QA datasets,
which we further categorize into broad domains. Our evaluation spans 10 different LLMs of varying
sizes to ensure robustness across model families.

Our main contributions are:

• We present a comprehensive benchmarking of supervised hallucination detection meth-
ods against state-of-the-art unsupervised metric-based approaches, across a wide range of
domains and language models, finding that unsupervised methods outperform supervised
ones out-of-domain but not in-domain.

• We introduce a data-driven strategy for improving out-of-domain robustness of supervised
hallucination detectors by scaling up heterogeneous training data, demonstrating its effec-
tiveness at narrowing the performance-generalization gap.

• We provide a systematic analysis of the relationship between training data volume and
classifier performance, offering practical guidelines on data requirements for effective
uncertainty-based hallucination detection.

2 BACKGROUND & RELATED WORKS

Background: Hallucination Detection via Uncertainty Quantification Broadly, there have
been two styles of approaches for uncertainty quantification. On one hand, unsupervised methods
generally seek to estimate uncertainty via analyzing output probabilities, consistency and similar-
ity across multi-generations (Abdaljalil et al., 2025; Farquhar et al., 2024; Nikitin et al., 2024) and
via linear probing (Kossen et al., 2024). For example, semantic entropy (Venhuizen et al., 2019)
clusters multiple generated responses to estimate semantic entropy, where prompts leading to di-
verse sets of clusters implies a higher level of uncertainty. On the other hand, work has explored
supervised classifiers with internal language model states as features trained to estimate uncertainty
(Liu et al., 2024). Figure 1 demonstrates this approach in the white-boxing setting, where internal
states of the LLM are used to predict labeled hallucinations. This approach also applies to black-box
and gray-box settings. For example, we can restrict ourselves to the use aggregated statistics based
on the output logits of the generating LLM in the gray-box setting. In addition, when combined
with a supervised model that produces probability estimates, these probabilities can be interpreted
as uncertainty estimates.
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Benchmarking UQ and Hallucination Detection Previous efforts to benchmark uncertainty
quantification have focused on examining performance vs. efficiency (in terms of number of genera-
tions needed) tradeoffs of UQ methods requiring multiple generations (Xiong et al. (2024); Valentin
et al. (2024)). Ye et al. (2024) utilizes UQ metrics and various datasets to benchmark the certainty
level of different LLMs and calibratedness of their responses. Xiong et al. (2023); Tian et al. (2023)
provide extensive benchmarks across different datasets and models but focus mainly on verbalized
uncertainty, also they do not benchmark on in-domain vs out-domain. Lastly Liu et al. (2024)
benchmarks supervised uncertainty quantification methods across methods and studies the extent of
domain transfer across datasets, but does not focus on when such domain transfer occurs.

Out-Of-Domain Robustness Approaches to improving out-of-domain robustness in machine
learning include training and optimization-based techniques (Wang et al., 2022; Yang et al., 2021)
as well as data-centric approaches. In computer vision, increasing diversity of training data and data
augmentation have been shown to reduce overfitting and improve generalization (Zhou et al., 2020;
Rahman et al., 2019). In NLP, synthetic data have been explored as a means to enhance domain
generalization in natural language inference (Hosseini et al., 2024). Building on these insights, we
study whether large and heterogeneous pretraining can play a similar role for hallucination detection
under domain shift.

3 APPROACH & EXPERIMENTAL SETUP

Our goal is to develop a generalizable method for hallucination detection in the question-answering
(QA) setting. We adopt a supervised classification approach, showing that it outperforms alternative
metric based methods, but that its performance degrades out of domain. To address this challenge,
we explore training on a mix of in-domain and heterogeneous data. This section introduces the task
setup and supervised detection approach as well as datasets, models and experimental setup.

Hallucination in QA setting While ultimately our goal is to measure hallucinations in any LLM
output, as a starting point, we focus mainly on the QA setting, where a LLM generates a textual
response to an input question. This response is scored against a reference response, and incorrect
responses are treated as hallucinations. The task is then to detect such hallucinations given the input
question and corresponding LLM response. We assume a white-box setting with full access to model
internals such as activations and output logits.

We view performance in short-form QA as foundational for hallucination detection in longer-form
generative tasks such as abstractive summarization. This is evidenced by many long-form methods
that first extract atomic facts as a pre-processing step (Thirukovalluru et al., 2024; Min et al., 2023;
Kadavath et al., 2022), making fact-level hallucination detection essential. The QA setting is also
advantageous as it is relatively straightforward to measure correctness, whereas long-form outputs
require fact-extraction and verification across many sentences, a capability that is still an active area
of research (Chen et al., 2025; Liu et al., 2025; Wei et al., 2024b).

Our Approach Our approach focuses on training a multi-domain supervised hallucination detec-
tor using white-box and grey-box LLM features (Figure 1). The pipeline has three components:
(1) generating candidate answers from the generating LLM on QA datasets (2) constructing feature
representations from their internal activations and (3) training a classifier to distinguish between
hallucinated and correct responses. Formally, each sample consists of features (Xprompt, Xresponse)
paired with a binary label y ∈ {0, 1}, where y = 1 denotes a hallucinated (incorrect) response and
y = 0 a correct one.

For features, we follow prior work (Liu et al., 2024; Azaria & Mitchell, 2023) and extract activations
from the middle and final layers of the generating LLM, using only activations corresponding to the
last token of both the prompt and generated response. We then apply dimensionality reduction using
truncated SVD, necessary because the activations are high dimensional (3584-4096) and training
data is limited for some of our splits. Our experiments focus on how data can affect performance,
thus for consistency, we apply SVD across all models even when dataset size exceeds the feature
dimension.
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We evaluate classifiers of the form

f(Xprompt, Xresponse) = yscore, yscore ∈ [0, 1], (1)

where yscore denotes the predicted score of hallucinations, with high scores indicating a higher like-
lihood of hallucination. Final predictions are obtained by thresholding yscore, although we also
evaluate quality of the score itself as described in §3.2. In our experiments, we use a Random For-
est classifier, following prior work in Liu et al. (2024). Random Forests are widely regarded as a
strong and robust baseline across many different problem settings (Wainer, 2016), offering good
performance with minimal tuning (Probst et al., 2019). We also experimented with other classifiers,
namely XGBoost (Chen & Guestrin, 2016) and penalized linear regression and found Random For-
est to be very competitive with these. Additionally we keep hyperparameter constant throughout all
experiments (Appendix E). While optimal hyperparameter vary across dataset splits, we adopt a sin-
gle setting to avoid exhaustive tuning, further our focus is on in-domain vs out-domain performance
which we find to be largely insensitive to hyperparmeter choice.

3.1 DATASETS, MODELS AND METHODS

Evaluation Datasets We collect data from 12 different QA style benchmarks across different
domains and input context length. These datasets along with their domains are listed in Table 1.
Several of the datasets come with a train and a test set. For all our tested models, we found that the
performance on both these sets tended to be similar, and thus we use both. Combined this gives us
a dataset of 697K examples.

Table 1: Benchmarking Datasets used in our study.

Benchmark Citation Domain Dataset
Size

TriviaQA Joshi et al. (2017) Encyclopedic 76.5k
NQ Kwiatkowski et al. (2019) Encyclopedic 91.5k
bioASQ Tsatsaronis et al. (2015) Biology 4.7k
CoQA Reddy et al. (2019) Conversational 116.6k
DROP Dua et al. (2019) Reasoning-heavy 83.6k
HotpotQA Yang et al. (2018) Encyclopedic 97.8k
MedQuAD Ben Abacha & Demner-

Fushman (2019)
Medical 16.4k

NewsQA Trischler et al. (2016) News 78.3k
SimpleQA Wei et al. (2024a) KB QA 4.3k
SQuAD Rajpurkar et al. (2016) Encyclopedic 98.0k
WebQuestions Berant et al. (2013) KB QA 5.8k
OpenLLM Myrzakhan et al. (2024) Various 23.7k

LLMs Considered Our evaluation spans three model families: Llama-3.1 (Dubey et al., 2024),
OLMo2 (OLMo et al., 2024) and Qwen2.5 (Team, 2024). Additionally we consider various post
training schemes, Tulu 3(Lambert et al., 2024) and SimPO-based (Meng et al., 2024) for Llama-3.1,
and the post training process in (Mu et al., 2025) for Qwen-2.5. We evaluate models across different
training stages, namely SFT and SFT+DPO. For computational purposes, we primarily use the 7-8B
variants of these models except for OLMo2 where we considered both 7B and 32B models.

Baseline Unsupervised Methods We consider a mix of multi generation and single generation
methods. These are Semantic Entropy (Farquhar et al. (2024); Venhuizen et al. (2019)), Sindex
(Abdaljalil et al. (2025)), GNLL (Aichberger et al. (2024)) and PTrue (Kadavath et al. (2022)). We
elaborate more on these methods in Appendix A.

3.2 EVALUATION METRICS

We evaluate performance using two metrics. For threshold-agnostic evaluation, we report Area Un-
der Receiver Operating Curve (AUROC), which measures how well a score differentiates between
positive and negative examples across all decision thresholds. AUROC has been used extensively
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Figure 2: Aggregated In-domains and Out-of-domain evaluations for various models macro-
averaged across 11 different datasets. Solid bars represent in-domain performance and cross-hatched
represents out-domain performance. Top Row: AUROC, Bottom Row: F1-Score

in previous work (Liu et al., 2024; Aichberger et al., 2024; Farquhar et al., 2024). For threshold-
aware evaluation, we use F1-score, optimizing thresholds on validation data to maximize this metric.
Additional details on these and alternative metrics are provided in Appendix B.

3.3 LLM AS A JUDGE

We use an LLM as a judge to determine correctness, as prior work has shown that alternative metric-
based approaches (e.g. ROUGE,BLUE,BERTScore) can yield inaccurate labels and substantially
alter results (Santilli et al., 2024; Ielanskyi et al., 2025; Janiak et al., 2025). We initially tested
gpt-4o and gpt-4o-Mini, then sought open-source alternatives for cost efficiency. Among these,
Qwen3-14B (Yang et al., 2025) showed strong agreement with gpt-4o on a large 10K set of
samples as well as with human evaluators on a smaller sample of 100 data points. Thus, we adopt
Qwen3-14B as our primary judge model for labeling hallucinations.

4 RESULTS

Towards building a generalizable hallucination detection system we first quantify the degree of su-
pervised performance loss out-of-domain (§4.1). Then, we demonstrate the effectiveness of our
generalized heterogeneous dataset to reduce domain gap (§4.2). Finally, we investigate scaling law
type behaviors, namely how performance scales with number of data samples (§4.3).

4.1 HOW DO SUPERVISED METHODS PERFORM AGAINST UNSUPERVISED METHODS IN BOTH
THE IN-DOMAIN AND OUT-OF-DOMAIN SETTING?

We compare supervised and unsupervised methods in both the in-domain and out-of-domain settings
across the 11 benchmark dataset. For each source dataset, performance is evaluated on held-out
source data (in-domain) and all other datasets (out-of-domain), repeating this for all source-target
pairs and generating LLMs. Figure 2 reports these results macro-averaged across datasets. Addition-
ally we report performance gaps and associated error bars that account for dataset-specific variations
in Appendix F.

As expected, supervised methods consistently outperform unsupervised ones in-domain across all
benchmarks (Figure 2), with this advantage being consistent across model types and evaluation
metrics. Out-of-domain, however, supervised models experience substantial performance drops,
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often losing their in-domain advantage and performing on par with or even below unsupervised
metrics, highlighting their sensitivity to distribution shift. Among unsupervised methods, the multi-
generation based metrics, SE, Sindex and PFalse generally outperform GNLL, which uses a single
generation. Performance varies across generating LLMs, with SE often the top performer, consistent
with prior work (Farquhar et al., 2024) though other studies report different rankings (Abdaljalil
et al., 2025), likely due to differences in generating LLM or evaluation setup.

4.2 CAN TRAINING ON A LARGE GENERAL DATA-MIX MITIGATE OUT OF DOMAIN
PERFORMANCE DEGRADATION?

Next, we explore our primary question of how dataset diversity affects generalization. We first use a
dataset-level leave-one-out split, where one dataset is held out as the target, termed the Task-Specific
(TS) dataset. The remaining data sets are then combined into a larger, more diverse General (GE)
dataset for training. We further while retain a Task-Specific (TS) dataset for fine-tuning, to test
whether increased diversity mitigates the drop in performance when moving from in-domain to out-
of-domain evaluation.

Leave-one-out experiments. We first evaluate our approach using a dataset level leave-one-out
data split, for this we iteratively select one dataset to leave out and function as the target dataset.
The remaining datasets then function as the general set. The target dataset is split into a train, test
and validation dataset, this allows us to assess the hallucination detection capabilities under two
settings, 1) where the classifier is trained solely on the GE set 2) where the classifier is trained on
both the GE set and some data from the target domain / TS set.

Figure 3: AUROC and F1-Score of different methods aggregated across heldout-benchmarks.
Groups represent the detection performance for different generating models. Bars represent the
method used with green bars showing different variants of supervised methods (differing by training
data used) and remaining bars representing unsupervised methods.

Figure 3, displays results aggregated over the heldout-target datasets for the different LLMs. We
highlight three key observations:

First, we examine the value of target-specific data. Across all held-out targets and generating
LLMs, classifiers trained exclusively on general (GE) data consistently under-perform compared
to those trained with task-specific (TS) data, underscoring the important of target-specific supervi-
sion. This result is unsurprising given our earlier findings on the effectiveness of supervised meth-
ods in-domain. Interestingly, the gap between GE-only and TS-only models persists even for target
datasets with strong similarities to others in the GE set, these would include target datasets such as
Natural Questions. We have observed in the single source experiments, that in some cases training
on another source can outperform a training on the target source. Thus the consistent overall gap
suggests a degree of negative transfer when relying on heterogeneous GE data. Nevertheless, when
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comparing expected performance of scombingle source on out-of-domain, GE-only still seems to
provides a net benefit.

Second, supervised GE models generally outperform unsupervised methods. Comparing GE-
only to unsupervised baselines, Figure 3 shows that GE-only generally matches or exceeds the
best unsupervised methods across models. This advantage is especially pronounced in AUROC,
where GE-only achieves higher average performance than all unsupervised approaches. However,
the pattern is less consistent for F1-score: for OLMo2-Instruct, Qwen2.5-Instruct, and
Llama3.1-Tulu-SFT, GE-only underperforms. A closer analysis for OLMo2-Instruct (Fig-
ure 4) reveals that this dip stems from poor performance on longer-context datasets DROP and
CoQA. Since AUROC remains high, this suggests some sensitivity to thresholding on the general
set. Similar patterns are observed for the other models.

Finally, GE+TS offers limited benefits over TS when target data is abundant. After averaging across
heldout target datasets, we find that GE+TS slightly outperforms TS-only by only a small margin.
We hypothesize that target dataset size explains this. In particular the target datasets tested are
generally quite large (on the order of tens of thousands of examples). In such cases, classifiers may
already be saturated by task-specific data, limiting additional performance gains when adding the
general examples. We explore these scaling effects more systematically in later sections.

Figure 4: AUROC of supervised and unsupervised hallucination detector on OLMo2-32B-Instruct.
Each group represents the heldout target dataset. Bars represent the method used with green bars
showing different variants of supervised methods (differing by training data used) and remaining
bars representing unsupervised methods.

Broad domain shifts While dataset-wise leave-one-out splits are a standard way to assess out of
domain generalization, many of the evaluation datasets in our suite share substantial domain overlap
with one another, for example NQ, TriviaQA both draw heavily from Wikipedia based sources, and
thus we expect that domain transfer from them will be strong. To better disentangle this effect we
curate GE sets based on ’broad’ domains that are more dissimilar to one another, which we list in
Table 1. These results are shown in Figure 5 which plot results of GE and GE+TS under different
choices of the GE set. We only evaluate for two evaluation datasets, bioASQ and MedQuAD which
have the most dissimilar domain in our set of evaluation benchmarks.

Across these settings we observe the same trend that using a GE set can result in a classifier with
better performance than one that uses UQ metric based methods, this results stays consistent over
several choices of GE sets and across models. We find that with the largest ”Encyclopedic-Wiki”
domain included, we did not see much variations in performance when including other domains.

Analysis of Robustness Differences. We further investigate the robustness gaps between the
TS,GE and GE+TS setting using standard error decompositions under domain shift (Ben-David
et al., 2010; Mansour et al., 2009). Our analysis suggests that TS training minimizes source (task-
specific) error but amplifies divergences with other target (out-of-domain) datasets due to a heavier
reliance on domain-specific features. In contrast, GE and GE+TS rely on more domain-invariant
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features, reducing source-target divergence. Appendix H provides the full results and supporting
experiments based on domain classifications probes that empirically demonstrate these differences.

Overall, these results show that while the addition of a large heterogeneous general training mix
alone is insufficient to match the performance with target-specific data, it provides a strong foun-
dation for supervised methods that surpasses unsupervised approaches on AUROC. In addition, we
find some complementary effect when these pretraining data are used together with target-specific
data.

Figure 5: AUROC and F1-scores for aggregated over two target datasets - MedQuAD and bioASQ
under different choices of general data domain. Bars represent the method used with green bars
showing different variants of supervised methods (differing by training data used) and remaining
bars representing unsupervised methods. Hatching patterns on the bar denominate the choice of
general training domain when applicable.

4.3 SCALING LAWS: HOW MUCH IN DOMAIN DATA IS NEEDED TO ADAPT CLASSIFIER?

Our last investigation examines how much in-domain data labeled for hallucinations is needed to
train a classifier with adequate performance, and whether using a large general dataset can improve
data efficiency of this. Obtaining labeled hallucination data can be challenging, which makes a
general-domain data mix to supplement small in-domain labeled dataset for training classifiers. To
examine these effects, we plot learning curves (Perlich, 2011) under both the TS and GE+TS setting.
These curves plot the test-set performance as we vary the amount of task specific training data,
highlighting how quickly a classifier can learn to accurately detect hallucinations. For this setting,
we consider as in earlier only BioASQ and MedQuAD, which we deem as being most unlike the
other datasets. Figure 6 plots an example of these learning curves on Llama 3.1 - Instruct.
Generally, GE+TS dominates TS only in the low data regime of < 1000 examples, with TS-only
catching up soon after. This trend stays consistent across the 10 LLMs tested.

From these learning curves, we seek estimates of two quantities:

1. Crossover Point: At how many training examples does the TS-setting outperform the GE-
only setting.

2. Saturation Point: At what sample count do we achieve 95% of detection performance in
either the GE+TS or TS setting.

The crossover point between TS-only and GE-only marks the estimated amount of data where the
use of target specific data outperforms the use of the general set. This highlights a trade-off between
cost of annotation and model performance. A crossover point at a low number of samples suggests
that supervision from the target domain is highly valuable, whereas one at a high number of sam-
ples suggests that the general set itself might be the most practical choice unless a large and labeled
target/task-specific dataset is available. From the learning curves, we see that GE+TS curves almost
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Figure 6: Learning Curves for Llama-3.1-Instruct under TS only and GE+TS for different
amounts of target specific data. Top Row: Results under different GE set choices with BioASQ
as target domains. Bottom Row: Results under different GE set choices with MedQuAD as target
domains. Lines represent average AUROC value across 10 random seeds and shaded area represents
1.96 * SE.

always lie above TS-only, indicating that GE+TS classifiers outperform or match of TS-only classi-
fiers when given the same number of task-specific samples. Thus, we recommend the GE+TS setup,
as it consistently provides equal or better performance regardless of the amount of task-specific data
available. The saturation points give some guidance on how many labeled samples are needed in
order to maximize the performance of a hallucination detection model.

Table 2: Performance on held-out datasets for cross-over experiments. Values are reported as mean
(standard deviation)

Held-out Data N Cross-over GE/TS Saturation Point GE+TS Saturation Point TS
BioASQ 2520 372.9 (128.6) 485.1 (201.9) 820.7 (263.0)
MedQuAD 8350 348.4 (149.6) 1168.0 (306.0) 1408.2 (712.4)

Table 2 summarizes estimates for the both the crossover and saturation point. Across both heldout
datasets, the expected cross-over between GE and TS occurs at roughly 310-350. Saturation point is
reached relatively early for BioASQ, at 465 samples for GE+TS, and later for MedQuAD, at 1100
for GE+TS. We believe this is largely a function of the total number of samples we had for the
experiment, in the case of medQuAD, the higher number of theoretical samples we had pushed the
estimated maximal performance level higher, resulting in later saturation point. Consistently across
both datasets, saturation point for GE+TS is much lower than that for TS only, 40.3% lower for
bioASQ and 17.0% for MedQuAD, showing that use of the GE set improves data efficacy. Overall,
these serve as a guidance for a practitioner deciding if labeling more data is worth it. For example,
in the case of MedQuAD the expected saturation point of GE+TS at 1168 indicates that if one were
to label an addition 7182 data points (8350-1168), they would only expect about a 5% increase in
performance on AUROC.

5 CONCLUSION

In this paper we have presented a data-driven approach to make super hallucination detectors robust
under domain shift. We first showed that supervised hallucination detection methods significantly
outperforms unsupervised approaches in the in-domain setting, but that this advantage disappears
in the out-domain setting, where unsupervised metric based approaches are comparatively more ro-
bust. We showed that the use of general, heterogeneous data that need not be in the same domain
as the target domain can provide a useful foundation for training supervised classifiers, with such
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classifiers generally surpassing unsupervised models even when data in the target domain is un-
available. Moreover our scaling experiments show that incorporating such general data improves
data efficiency when combined with target specific data, as classifiers require fewer target-specific
samples to achieve the same performance. These findings demonstrate that supervised UQ-based
hallucination detection methods remain a valuable tool. Practitioners can apply classifiers trained
on large general datasets and expect performance that exceeds unsupervised approaches, further,
when available, incorporating target-specific data to these classifiers further improves performance,
consistently outperforming unsupervised methods.
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A UNSUPERVISED METHODS

SEMANTIC ENTROPY Semantic entropy relies on assessing the consistency over multiple gener-
ations to a given reply. This is estimates uncertainty by measuring entropy of a semantic represen-
tation (might be wrong way to phrase it) across multiple sampled output For a single prompt p we
generate S different responses c1, ..., cS . Semantic entropy clusters these responses into semantic
equivalent clusters through the use of a Natural language inference model. Then using the semantic
clusters we can compute semantic entropy by: formula

SINDEX Similar to semantic entropy, Sindex also utilizes multiple generations, however instead
of a NLI model to form clusters sindex uses sentence embeddings combined with a hierarchical
clustering algorithm. Then an adjusted entropy is calculated by: ...

PTRUE PTrue is an LLM as a judge approach that queries the generating LLM on whether a given
statement is True or False, this is done by appending a question to the statement and measuring the
generated token probability of the true token. Following Kadavath et al. (2022) we use a variation of
PTrue where we pass in multiple candidate generations in the prompt as well as the main response
(for which we score correctness). Additionally, for hallucination detection we actually need the
probability inverse (1-pTrue) score, which we call pFalse.
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GNLL GNLL is a likelihood-based score designed to estimate aleatoric uncertainty. Aichberger
et al. (2024) show that under a 0-1 loss, the negative log-likelihood of the Maximum A Posterior
completion is a good estimate (check this) of the aleatoric uncertainty. While this quantity is hard to
identify due to computational intractability of the LLM generating space (find a citation for this) we
can approximate this using either beam search decoding or greedy decoding. For this work we use
the NLL of the greedy decoded sequence as GNLL.

B EVALUATION METRICS

Threshold-Agnostic Metrics Prior works on UQ and hallucination detection primarily evaluate
performance using Area Under Receiver Operating Curve (AUROC) (Liu et al. (2024); Aichberger
et al. (2024); Farquhar et al. (2024)). AUROC measures how well a score differentiates positive and
negative examples. In our casem the score is either a UQ metric or the probability score generated by
a supervised hallucination detector. As a threshold-agnostic metric, AUROC evaluates performance
across all decision thresholds. Other options in this category are Area Under Precision Recall Curve
(AUPRC) and Area Under Accuracy-Reject Curve (AUARC), but we primarily report performance
using AUROC to keep consistent with previous work.

Threshold-Aware Metrics Many unsupervised metric-based methods output unbounded scores,
this is the case for 3 out of 4 methods, SE, Sindex and GNLL. For them to be used practically we
have to set thresholds for determining what are hallucinated responses. With these thresholds set,
we can evaluate standard classification metrics such as accuracy, precision and recall. For this work,
in order to optimize the threshold we use maximize F1-score on a separate validation set. To ensure
fairness in comparison, we optimize thresholds for unsupervised methods on the training set, while
for supervised detectors we rely on a separate validation subset.

C LLM AS A JUDGE

Here we give more details about the LLM-as-a-Judge Procedure. Broadly, we first evaluated GPT-4
as a judge model and found that its assessments were well aligned with human annotations, though
on a relatively small sample. Given the cost of using GPT-4 at scale, we sought an open-source
alternative with similar reliability. Among several candidates, we identified Qwen3-14B Yang
et al. (2025), which exhibited the highest inter-annotator agreement with GPT-4. We therefore adopt
Qwen3-14B as our primary judge model in this work (see Appendix X for details).

C.1 LABELING

To generate labels for hallucination detection, we use a 3 class system:

• 0 - Non-Hallucinations For generated responses deemed correct by the LLM judge

• 1 - Hallucinations For generated responses deemed in-correct by the LLM judge

• 2 - Non Responses For generated responses deemed as non-response by the LLM judge

We construct a small human-labeled set of 25 examples across datasets and model family, including
brief annotations of why they are labeled the way they are. These examples are used in a few-shot
prompt (25-shot) to guide the LLM judge in labeling the full set of responses, this prompt is given
in Figure 7.

C.2 OPEN-SOURCE MODELS

Our initial efforts used mainly gpt-4o as a judge, but we found this prohibitively expensive for
the number of experiments we wanted to do, thus we sought an open-source alternative that would
perform as well. We mainly tested models from the Qwen3 family, named the 14B transformer and
the 30B MoE model. We found Cohen’s Kappa to be higher for the 14B transformer as shown in
Table ??. We also annotate by hand a sample of a 100 model completions and compare that with
our models, which is shown in Table 3, for this sample GPT-4o and Qwen3-14B perform nearly
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LLM-as-a-Judge Prompt

You are an expert evaluator for question-answering systems. You will be assessing the qual-
ity of answers to a given question.
Task: Determine if the candidate answer contains the correct factual information to answer
the question.
Rules: - Respond with 0 if the candidate answer is equivalent in meaning to any reference
answer (synonyms/context OK), or if it contains the specific correct answer. - Respond with
1 if the candidate contains wrong facts, repeats the question, provides no answer, has the
wrong entity, or differs from all reference answers. - Respond with 2 if the model does not
give an answer, asks a clarifying question, or refuses to answer. - Accept additional context
around correct answers. - Accept geographic or temporal equivalents. - Reject if the core
answer is missing or incorrect.
Instructions: Reference answers may be in a numbered list. Score 0 if the candidate
matches any reference answer.
Evaluation Examples:

• Q: What movie starred Tom Cruise? Ref: Top Gun Candidate: ”Top Gun starring
Tom Cruise” → 0

• Q: What movie starred Tom Cruise? Ref: Top Gun Candidate: ”Brad Pitt was in
Top Gun” → 1

• Q: What’s the name of Mob’s brother’s Spanish VA in Mob Psycho 100? Ref:
Javier Olguı́n Candidate: ”I do not have information on the Spanish voice actor...”
→ 2

• Q: What is the major difficulty in carrying out the plan? Ref: Improving the rela-
tionship between Taiwan and the mainland Candidate: ”I’d be happy to help you
identify potential difficulties...” → 2

Figure 7: LLM-as-a-Judge prompt used for labeling responses from different datasets. Only 4 few-
shot examples are shown here due to space constraints, but for actual applications we use a 25-shot
example

identical. Further both have high accuracy and inter annotator agreement, further validating our
choice to use Qwen3-14B

Model Cohen’s Kappa v Human Accuracy vs Human

GPT-4o 0.84 92%
Qwen3-14B 0.85 93%

Table 3: Inter-annotator agreement between LLM-as-a-judge models and human raters.

Model Cohen’s Kappa v GPT-4o Accuracy vs GPT-4o

GPT-4o 1.00 100%
Qwen3-14B 0.756 85.4%
GPT-4o-Mini 0.808 89.4%
Qwen3-A3B30B 0.659 82.2%

Table 4: Inter-annotator agreement between LLM-as-a-judge models and human raters.
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Table 5: Models evaluated in our study.

Hugging Face Model name Model family Size Training stage

meta-llama/Llama-3.1-8B-Instruct Llama-3.1 8B Instruct
allenai/Llama-3.1-Tulu-3-8B-SFT Llama-3.1 8B SFT
allenai/Llama-3.1-Tulu-3-8B Llama-3.1 8B Instruct
princeton-nlp/Llama-3-Base-8B-SFT Llama-3 8B SFT
princeton-nlp/Llama-3-Base-8B-SFT-
DPO

Llama-3 8B SFT + DPO

allenai/OLMo-2-1124-7B-Instruct OLMo-2 7B Instruct
allenai/OLMo-2-1124-7B-SFT OLMo-2 7B SFT
Qwen/Qwen2.5-7B-Instruct Qwen2.5 7B Instruct
normster/RealGuardrails-Qwen2.5-
7B-SFT-DPO

Qwen2.5 7B SFT + DPO

allenai/OLMo-2-0325-32B-Instruct OLMo-2 32B Instruct

D LLMS TESTED

E SUPERVISED TRAINING DETAILS

Here we furnish addition details on the training procedure and model use.

E.1 DATASET

Table 6 gives additional information on dataset sizes and the splits to create the train test and valida-
tion sets per evaluation benchmark.

Table 6: Benchmarking Datasets used in our study.

Benchmark Domain Total
Size

Train
Size

Test
Size

TriviaQA Encyclopedic 100K 10k 10k
NQ Encyclopedic 120K 10k 10k
bioASQ Biology 50K 10k 10k
CoQA Conversational 120K 10k 10k
DROP Reasoning-heavy 96K 10k 10k
HotpotQA Encyclopedic 113K 10k 10k
MedQuAD Medical 50K 10k 10k
NewsQA News 120K 10k 10k
SimpleQA KB QA 100K 10k 10k
SQuAD Encyclopedic 100K 10k 10k
WebQuestions KB QA 6K 10k 10k
OpenLLM Various 22K 10k 10k

E.2 SUPERVISED HALLUCINATION CLASSIFIER

The supervised learning model used as the classifier is a Random Forest (Breiman, 2001). We did
not do extensive hyperparameter tuning per generating LLM and dataset due to compute constraints,
instead opting for a setting of 100 trees and with remaining settings being the default in scikit-learn.
We also included an additional dimensionality reduction step since for many of our experiments we
have the case where the dimensionality of the features exceeded the number of training examples.
This dimensionality reduction is carried out using Singular Value Decomposition (SVD), for which
we use the implementation in scikit-learn. We set a fix dimensionality of 300 after SVD, which is
then used in the Random Forest. Lastly as a pre-processing step before SVD we apply standard
scaling to the raw features.

Features Following Liu et al. (2024) we use activations from the middle and last layer of the
model. For each of these layers we take the activation value corresponding to both the last token and
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the prompt, this creates a large feature space as we take a total of 4 activations per input, for example
if the model’s hidden size is 4096 then the size of the features corresponding to this activation is
16384 (4*4096). In addition we explored the use of several probability based features but find that
they did not impact performance much and omitted them.

F RQ1 ADDITIONAL FIGURES

Figure 8: In-domains evaluations of ”Llama-3.1-Instruct” across 11 different datasets. Supervised
methods plotted along with 4 unsupervised methods and one random classifier baseline. Top Row:
AUROC, Bototm Row: F1-Score

Figure 9: In-domains evaluations for various models macro-averaged across 11 different datasets. In
order to benchmark supervised methods against unsupervised methods we pick the top performing
unsupervised method for macro-averaging. Top Row: AUROC, Bottom Row: F1-Score

G RQ2 ADDITIONAL FIGURES

H DOMAIN SPECIFICITY OF VARIOUS CLASSIFIERS

H.1 DOMAIN SHIFT AND ERROR DECOMPOSITION

Here we provide further analysis on the different behaviors of GE, TS and GE+TS based halluci-
nation detectors. We first consider the hypothetical error decomposition under domain shift (Ben-
David et al., 2010; Mansour et al., 2009). Let Ds and Dt denote the source and target distributions.
Then where ϵt(h) denotes the target error of hypothesis h ∈ H, we have:

ϵt(h) ≤ ϵs(h) +
1

2
dH∆H(Ds, Dt) + λ (2)
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Figure 10: Difference plots comparing unsupervised methods to supervised methods. Heights of
marker correspond to the performance difference between supervised methods and unsupervised
methods. Top: AUROC, Bottom: F1-Score. Positive values indicate that supervised methods per-
formance bettter than unsupervised method. Circles represent in-domain and squares represent out-
of-domain. Error Bars correspond to 1.96 * Standard Error calculated over scores from aggregated
source-target pairs.

The first term ϵs(h) denotes the error on the source domain. 1
2dH∆H(Ds, Dt) is a divergence term

that measures how different source and target distributions are in the feature space induced by h.
The third term λ is a hypothesis mismatch term which captures aggregate performance of the best
hypothesis h∗ ∈ H in both source and target domain. Interpreting our three training regimes TS,GE
and GE+TS within this framework we hypothesize that:

• TS Trained Classifiers minimize ϵs(h), but have high divergence dH∆H(Ds, Dt) due to
the encoding or use of domain-specific features.

• GE Trained Classifiers trained on heterogeneous datasets in contrast, should create a fea-
ture representation that reduces dH∆H(Ds, Dt), although at the cost of increasing source
specific error ϵs(h) on any specific dataset.

• GE+TS Trained Classifiers are likely to have a favorable balance of both terms.

We have seen that TS trained hallucination detectors generally have much higher performance than
GE trained variants, validating that these models have a lower source specific error. To explain why
TS trained classifiers tend to fail out of domain, week seek to validate whether they indeed rely more
heavily on domain-specific features.

H.2 DOMAIN CLASSIFICATION PROBES AND EXPERIMENTAL SETUP

To obtain a proxy that is compatible with the discrete feature sets used in our random forest classi-
fiers, we exploit the Gini importance based feature ranking produced during training to train domain
classification probes. Our hypothesis is that classifiers trained on task-specific data will utilize fea-
tures that better encode domain-specific artifacts, resulting in better performance on the domain
identification task over GE and GE+TS feature sets.

For each training regime (TS, GE, GE+TS) we extract the top 10% of features in the hallucination
detector model. We then train a downstream classifier whose goal is not to detect hallucinations, but
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(a) Supervised-GE vs. others

(b) Supervised-GE+TS vs. others

(c) Supervised-TS vs. others

Figure 11: Difference plots comparing the performance of (a) Supervised-GE, (b) Supervised-
GE+TS, and (c) Supervised-TS against all other methods.

rather to predict from which data set a sample came from. This is done by training a binary domain
classification probe for every task-specific dataset DTS , where we set the positive class as samples
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from DTS and the negative class as samples from DGE . To evaluate we look at the F1-score relative
to the F1-score obtained by a domain classifier trained on all available features.

H.3 RESULTS

Figure 12 displays the relative F1-Score for 5 task-specific datasets bioASQ, MedQUAD, Sim-
pleQA, CoQA and NewsQA, the GE set chosen is the ’encyclopedic-wiki’ set which consists of
datasets with encyclopedic like content (Table 1). The aggregated results show that TS trained
classifiers tend to prioritize features which are domain specific, generally achieving higher rel-
ative F1-Score over GE and GE+TS selected feature sets. Figure 13 displays the same results but
disaggregated to their individual LLMs. We see that the trend is consistent, hPTolding for almost all
tested datasets in 10 of the 12 models.

These results provide empirical evidence explaining the domain shift problem under TS regime, and
why GE and GE+TS training helps mitigate this. TS-only models may have low bias on source
domain, but experience large domain shifts. In contrast GE only models may have higher bias as
they miss task-specific nuances experience a smaller domain shift effect. Lastly we have seen that
GE+TS balances both the bias and domain shift term.

Figure 12: Relative F1-score of domain classification probes trained under 3 feature sets, TS, GE,
GE+TS, scores are aggregated across 12 LLMs
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Figure 13: Relative F1-score of domain classification probes trained under 3 feature sets, TS, GE,
GE+TS, each plot shows results for one of 12 tested LLMs
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