
FORTIFYING HALLUCINATION DETECTION TO OUT-OF-DOMAIN DATA

000
001
002
003
004
005 **Anonymous authors**
006 Paper under double-blind review
007
008
009
010

ABSTRACT

011 Hallucinations remain one of the major barriers to the reliable deployment of
012 Large Language Models (LLMs). Recent works have explored both supervised
013 classification based approaches and unsupervised metric based approaches, with
014 the latter remaining popular since they do not require labeled data. However, un-
015 supervised methods lag behind supervised ones for in-domain data, despite hav-
016 ing slightly better performance out of domain, as we show across 11 datasets and
017 10 models. This underscores the importance of supervised approaches, but also
018 highlights their weakness in generalizing to unseen domains. To narrow this gen-
019 eralization gap, we introduce a simple approach to make supervised hallucination
020 detectors more generalizable by relying on a curated, multi-domain training mix,
021 which can complement subsequent addition of task-specific data. In our experi-
022 ments on hallucination detection on 697K QA samples from 12 open source QA
023 datasets, we show that incorporating this general training allows supervised meth-
024 ods to surpass unsupervised metric based methods by an average of +7.25% on
025 out of domain data, without addition of any task-specific data. We also analyze
026 scaling behaviors and estimate how much task-specific data is required to achieve
027 reliable performance, finding that models augmented with general data require up
028 to 40.3% less task-specific data to achieve close to optimal performance. Together,
029 our findings highlight both the brittleness of existing supervised hallucination de-
030 tectors and a simple path toward fortifying them detection against domain shift.
031

1 INTRODUCTION

032 Large language models (LLMs) are increasingly deployed across a wide range of applica-
033 tions, however their tendency to generate factually incorrect or misleading outputs, often termed
034 *hallucinations*, poses a critical barrier to their adoption in high-stakes or out-of-distribution settings
035 (Kim et al., 2025; Dahl et al., 2024). Detecting hallucinations at test time is challenging (Sahoo
036 et al., 2024), a naive approach is to fact-check outputs against an external reference or database
037 (Chern et al., 2023; Min et al., 2023). However this requires costly retrieval and fails when no
038 ground-truth reference exists, calling for other methods to detect hallucinations.
039

040 One line of research has leveraged *uncertainty estimates* as potential signals of model reliability,
041 and thus, for hallucination detection (Farquhar et al., 2024). *Unsupervised* methods analyze output
042 probabilities, response consistency, or cluster semantic entropy (Abdaljalil et al., 2025; Farquhar
043 et al., 2024; Nikitin et al., 2024; Venhuizen et al., 2019), or use linear probing (Kossen et al., 2024),
044 while *supervised* methods train classifiers on model states to detect hallucinations (Liu et al., 2024)
045 (Figure 1). While supervised methods outperform unsupervised metrics in-domain (Liu et al., 2024),
046 they lose robustness out-of-domain, often underperforming unsupervised methods when faced with
047 distribution shift. We empirically validate this in §4.1 by benchmarking supervised against un-
048 supervised approaches across multiple data domains and model families, showing that while su-
049 pervised methods excel in-domain, their performance degrades sharply under domain shift, often
050 under-performing unsupervised methods.

051 Motivated by this, we introduce an approach to bridge this performance-generalization gap by train-
052 ing a supervised model on a large and heterogeneous dataset to yield more robust hallucination
053 detection. Inspired by domain generalization and pretraining works that show how diverse training
data can improve out-of-domain robustness in other tasks such as NLI, NER and sentiment analysis

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
19

108 **Benchmarking UQ and Hallucination Detection** Previous efforts to benchmark uncertainty
109 quantification have focused on examining performance vs. efficiency (in terms of number of genera-
110 tions needed) tradeoffs of UQ methods requiring multiple generations (Xiong et al. (2024); Valentin
111 et al. (2024)). Ye et al. (2024) utilizes UQ metrics and various datasets to benchmark the certainty
112 level of different LLMs and calibratedness of their responses. Xiong et al. (2023); Tian et al. (2023)
113 provide extensive benchmarks across different datasets and models but focus mainly on verbalized
114 uncertainty, also they do not benchmark on in-domain vs out-domain. Lastly Liu et al. (2024)
115 benchmarks supervised uncertainty quantification methods across methods and studies the extent of
116 domain transfer across datasets, but does not focus on when such domain transfer occurs.
117

118 **Out-Of-Domain Robustness** Approaches to improving out-of-domain robustness in machine
119 learning include training and optimization-based techniques (Wang et al., 2022; Yang et al., 2021)
120 as well as data-centric approaches. In computer vision, increasing diversity of training data and data
121 augmentation have been shown to reduce overfitting and improve generalization (Zhou et al., 2020;
122 Rahman et al., 2019). In NLP, synthetic data have been explored as a means to enhance domain
123 generalization in natural language inference (Hosseini et al., 2024). Building on these insights, we
124 study whether large and heterogeneous pretraining can play a similar role for hallucination detection
125 under domain shift.
126

127 3 APPROACH & EXPERIMENTAL SETUP

128 Our goal is to develop a generalizable method for hallucination detection in the question-answering
129 (QA) setting. We adopt a supervised classification approach, showing that it outperforms alternative
130 metric based methods, but that its performance degrades out of domain. To address this challenge,
131 we explore training on a mix of in-domain and heterogeneous data. This section introduces the task
132 setup and supervised detection approach as well as datasets, models and experimental setup.
133

134 **Hallucination in QA setting** While ultimately our goal is to measure hallucinations in any LLM
135 output, as a starting point, we focus mainly on the QA setting, where a LLM generates a textual
136 response to an input question. This response is scored against a reference response, and incorrect
137 responses are treated as hallucinations. The task is then to detect such hallucinations given the input
138 question and corresponding LLM response. We assume a white-box setting with full access to model
139 internals such as activations and output logits.
140

141 We view performance in short-form QA as foundational for hallucination detection in longer-form
142 generative tasks such as abstractive summarization. This is evidenced by many long-form methods
143 that first extract atomic facts as a pre-processing step (Thirukovalluru et al., 2024; Min et al., 2023;
144 Kadavath et al., 2022), making fact-level hallucination detection essential. The QA setting is also
145 advantageous as it is relatively straightforward to measure correctness, whereas long-form outputs
146 require fact-extraction and verification across many sentences, a capability that is still an active area
147 of research (Chen et al., 2025; Liu et al., 2025; Wei et al., 2024b).
148

149 **Our Approach** Our approach focuses on training a multi-domain supervised hallucination detec-
150 tor using white-box and grey-box LLM features (Figure 1). The pipeline has three components:
151 (1) generating candidate answers from the *generating LLM* on QA datasets (2) constructing feature
152 representations from their internal activations and (3) training a classifier to distinguish between
153 hallucinated and correct responses. Formally, each sample consists of features $(X_{\text{prompt}}, X_{\text{response}})$
154 paired with a binary label $y \in \{0, 1\}$, where $y = 1$ denotes a hallucinated (incorrect) response and
155 $y = 0$ a correct one.
156

157 For features, we follow prior work (Liu et al., 2024; Azaria & Mitchell, 2023) and extract activations
158 from the middle and final layers of the generating LLM, using only activations corresponding to the
159 last token of both the prompt and generated response. We then apply dimensionality reduction using
160 truncated SVD, necessary because the activations are high dimensional (3584-4096) and training
161 data is limited for some of our splits. Our experiments focus on how data can affect performance,
thus for consistency, we apply SVD across all models even when dataset size exceeds the feature
dimension.
162

162 We evaluate classifiers of the form
163

$$f(X_{\text{prompt}}, X_{\text{response}}) = y_{\text{score}}, \quad y_{\text{score}} \in [0, 1], \quad (1)$$

165 where y_{score} denotes the predicted score of hallucinations, with high scores indicating a higher like-
166 lihood of hallucination. Final predictions are obtained by thresholding y_{score} , although we also
167 evaluate quality of the score itself as described in §3.2. In our experiments, we use a Random For-
168 est classifier, following prior work in Liu et al. (2024). Random Forests are widely regarded as a
169 strong and robust baseline across many different problem settings (Wainer, 2016), offering good
170 performance with minimal tuning (Probst et al., 2019). We also experimented with other classifiers,
171 namely XGBoost (Chen & Guestrin, 2016) and penalized linear regression and found Random For-
172 est to be very competitive with these. Additionally we keep hyperparameter constant throughout all
173 experiments (Appendix E). While optimal hyperparameter vary across dataset splits, we adopt a sin-
174 gle setting to avoid exhaustive tuning, further our focus is on in-domain vs out-domain performance
175 which we find to be largely insensitive to hyperparameter choice.

176 3.1 DATASETS, MODELS AND METHODS

178 **Evaluation Datasets** We collect data from 12 different QA style benchmarks across different
179 domains and input context length. These datasets along with their domains are listed in Table 1.
180 Several of the datasets come with a train and a test set. For all our tested models, we found that the
181 performance on both these sets tended to be similar, and thus we use both. Combined this gives us
182 a dataset of 697K examples.

184 Table 1: Benchmarking Datasets used in our study.

Benchmark	Citation	Domain	Dataset Size
TriviaQA	Joshi et al. (2017)	Encyclopedic	76.5k
NQ	Kwiatkowski et al. (2019)	Encyclopedic	91.5k
bioASQ	Tsatsaronis et al. (2015)	Biology	4.7k
CoQA	Reddy et al. (2019)	Conversational	116.6k
DROP	Dua et al. (2019)	Reasoning-heavy	83.6k
HotpotQA	Yang et al. (2018)	Encyclopedic	97.8k
MedQuAD	Ben Abacha & Demner-Fushman (2019)	Medical	16.4k
NewsQA	Trischler et al. (2016)	News	78.3k
SimpleQA	Wei et al. (2024a)	KB QA	4.3k
SQuAD	Rajpurkar et al. (2016)	Encyclopedic	98.0k
WebQuestions	Berant et al. (2013)	KB QA	5.8k
OpenLLM	Myrzakhan et al. (2024)	Various	23.7k

200 **LLMs Considered** Our evaluation spans three model families: Llama-3.1 (Dubey et al., 2024),
201 OLMo2 (OLMo et al., 2024) and Qwen2.5 (Team, 2024). Additionally we consider various post
202 training schemes, Tulu 3(Lambert et al., 2024) and SimPO-based (Meng et al., 2024) for Llama-3.1,
203 and the post training process in (Mu et al., 2025) for Qwen-2.5. We evaluate models across different
204 training stages, namely SFT and SFT+DPO. For computational purposes, we primarily use the 7-8B
205 variants of these models except for OLMo2 where we considered both 7B and 32B models.

207 **Baseline Unsupervised Methods** We consider a mix of multi generation and single generation
208 methods. These are Semantic Entropy (Farquhar et al. (2024); Venhuizen et al. (2019)), Sindex
209 (Abdaljalil et al. (2025)), GNLL (Aichberger et al. (2024)) and PTrue (Kadavath et al. (2022)). We
210 elaborate more on these methods in Appendix A.

212 3.2 EVALUATION METRICS

214 We evaluate performance using two metrics. For threshold-agnostic evaluation, we report Area Under
215 Receiver Operating Curve (AUROC), which measures how well a score differentiates between
positive and negative examples across all decision thresholds. AUROC has been used extensively

Figure 2: Aggregated In-domains and Out-of-domain evaluations for various models macro-averaged across 11 different datasets. Solid bars represent in-domain performance and cross-hatched represents out-domain performance. Top Row: AUROC, Bottom Row: F1-Score

in previous work (Liu et al., 2024; Aichberger et al., 2024; Farquhar et al., 2024). For threshold-aware evaluation, we use F1-score, optimizing thresholds on validation data to maximize this metric. Additional details on these and alternative metrics are provided in Appendix B.

3.3 LLM AS A JUDGE

We use an LLM as a judge to determine correctness, as prior work has shown that alternative metric-based approaches (e.g. ROUGE, BLUE, BERTScore) can yield inaccurate labels and substantially alter results (Santilli et al., 2024; Ielanskyi et al., 2025; Janiak et al., 2025). We initially tested gpt-4o and gpt-4o-Mini, then sought open-source alternatives for cost efficiency. Among these, Qwen3-14B (Yang et al., 2025) showed strong agreement with gpt-4o on a large 10K set of samples as well as with human evaluators on a smaller sample of 100 data points. Thus, we adopt Qwen3-14B as our primary judge model for labeling hallucinations.

4 RESULTS

Towards building a generalizable hallucination detection system we first quantify the degree of supervised performance loss out-of-domain (§4.1). Then, we demonstrate the effectiveness of our generalized heterogeneous dataset to reduce domain gap (§4.2). Finally, we investigate scaling law type behaviors, namely how performance scales with number of data samples (§4.3).

4.1 HOW DO SUPERVISED METHODS PERFORM AGAINST UNSUPERVISED METHODS IN BOTH THE IN-DOMAIN AND OUT-OF-DOMAIN SETTING?

We compare supervised and unsupervised methods in both the in-domain and out-of-domain settings across the 11 benchmark dataset. For each source dataset, performance is evaluated on held-out source data (in-domain) and all other datasets (out-of-domain), repeating this for all source-target pairs and generating LLMs. Figure 2 reports these results macro-averaged across datasets. Additionally we report performance gaps and associated error bars that account for dataset-specific variations in Appendix F.

As expected, supervised methods consistently outperform unsupervised ones in-domain across all benchmarks (Figure 2), with this advantage being consistent across model types and evaluation metrics. Out-of-domain, however, supervised models experience substantial performance drops,

270 often losing their in-domain advantage and performing on par with or even below unsupervised
 271 metrics, highlighting their sensitivity to distribution shift. Among unsupervised methods, the multi-
 272 generation based metrics, SE, Sindex and PFalse generally outperform GNLL, which uses a single
 273 generation. Performance varies across generating LLMs, with SE often the top performer, consistent
 274 with prior work (Farquhar et al., 2024) though other studies report different rankings (Abdaljalil
 275 et al., 2025), likely due to differences in generating LLM or evaluation setup.

276

277 4.2 CAN TRAINING ON A LARGE GENERAL DATA-MIX MITIGATE OUT OF DOMAIN 278 PERFORMANCE DEGRADATION?

279 Next, we explore our primary question of how dataset diversity affects generalization. We first use a
 280 dataset-level leave-one-out split, where one dataset is held out as the target, termed the **Task-Specific**
 281 (**TS**) **dataset**. The remaining data sets are then combined into a larger, more diverse **General (GE)**
 282 **dataset** for training. We further while retain a **Task-Specific (TS) dataset** for fine-tuning, to test
 283 whether increased diversity mitigates the drop in performance when moving from in-domain to out-
 284 of-domain evaluation.

285

286 **Leave-one-out experiments.** We first evaluate our approach using a dataset level leave-one-out
 287 data split, for this we iteratively select one dataset to leave out and function as the target dataset.
 288 The remaining datasets then function as the general set. The target dataset is split into a train, test
 289 and validation dataset, this allows us to assess the hallucination detection capabilities under two
 290 settings, 1) where the classifier is trained solely on the GE set 2) where the classifier is trained on
 291 both the GE set and some data from the target domain / TS set.

309 Figure 3: AUROC and F1-Score of different methods aggregated across heldout-benchmarks.
 310 Groups represent the detection performance for different generating models. Bars represent the
 311 method used with green bars showing different variants of supervised methods (differing by training
 312 data used) and remaining bars representing unsupervised methods.

313

314 Figure 3, displays results aggregated over the heldout-target datasets for the different LLMs. We
 315 highlight three key observations:

316 *First*, we examine the value of target-specific data. Across all held-out targets and generating
 317 LLMs, classifiers trained exclusively on general (GE) data consistently under-perform compared
 318 to those trained with task-specific (TS) data, underscoring the important of target-specific supervi-
 319 sion. This result is unsurprising given our earlier findings on the effectiveness of supervised meth-
 320 ods in-domain. Interestingly, the gap between GE-only and TS-only models persists even for target
 321 datasets with strong similarities to others in the GE set, these would include target datasets such as
 322 Natural Questions. We have observed in the single source experiments, that in some cases training
 323 on another source can outperform a training on the target source. Thus the consistent overall gap
 suggests a degree of negative transfer when relying on heterogeneous GE data. Nevertheless, when

324 comparing expected performance of scombingle source on out-of-domain, GE-only still seems to
 325 provides a net benefit.

326 *Second*, supervised GE models generally outperform unsupervised methods. Comparing GE-
 327 only to unsupervised baselines, Figure 3 shows that GE-only generally matches or exceeds the
 328 best unsupervised methods across models. This advantage is especially pronounced in AUROC,
 329 where GE-only achieves higher average performance than all unsupervised approaches. However,
 330 the pattern is less consistent for F1-score: for OLMo2-Instruct, Qwen2.5-Instruct, and
 331 Llama3.1-Tulu-SFT, GE-only underperforms. A closer analysis for OLMo2-Instruct (Figure
 332 4) reveals that this dip stems from poor performance on longer-context datasets DROP and
 333 CoQA. Since AUROC remains high, this suggests some sensitivity to thresholding on the general
 334 set. Similar patterns are observed for the other models.

335 *Finally*, GE+TS offers limited benefits over TS when target data is abundant. After averaging across
 336 heldout target datasets, we find that GE+TS slightly outperforms TS-only by only a small margin.
 337 We hypothesize that target dataset size explains this. In particular the target datasets tested are
 338 generally quite large (on the order of tens of thousands of examples). In such cases, classifiers may
 339 already be saturated by task-specific data, limiting additional performance gains when adding the
 340 general examples. We explore these scaling effects more systematically in later sections.

361 **Broad domain shifts** While dataset-wise leave-one-out splits are a standard way to assess out of
 362 domain generalization, many of the evaluation datasets in our suite share substantial domain overlap
 363 with one another, for example NQ, TriviaQA both draw heavily from Wikipedia based sources, and
 364 thus we expect that domain transfer from them will be strong. To better disentangle this effect we
 365 curate GE sets based on 'broad' domains that are more dissimilar to one another, which we list in
 366 Table 1. These results are shown in Figure 5 which plot results of GE and GE+TS under different
 367 choices of the GE set. We only evaluate for two evaluation datasets, bioASQ and MedQuAD which
 368 have the most dissimilar domain in our set of evaluation benchmarks.

369 Across these settings we observe the same trend that using a GE set can result in a classifier with
 370 better performance than one that uses UQ metric based methods, this results stays consistent over
 371 several choices of GE sets and across models. We find that with the largest "Encyclopedic-Wiki"
 372 domain included, we did not see much variations in performance when including other domains.

373 **Analysis of Robustness Differences.** We further investigate the robustness gaps between the
 374 TS, GE and GE+TS setting using standard error decompositions under domain shift (Ben-David
 375 et al., 2010; Mansour et al., 2009). Our analysis suggests that TS training minimizes source (task-
 376 specific) error but amplifies divergences with other target (out-of-domain) datasets due to a heavier
 377 reliance on domain-specific features. In contrast, GE and GE+TS rely on more domain-invariant

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
features, reducing source-target divergence. Appendix H provides the full results and supporting experiments based on domain classifications probes that empirically demonstrate these differences.

Overall, these results show that while the addition of a large heterogeneous general training mix alone is insufficient to match the performance with target-specific data, it provides a strong foundation for supervised methods that surpasses unsupervised approaches on AUROC. In addition, we find some complementary effect when these pretraining data are used together with target-specific data.

Figure 5: AUROC and F1-scores for aggregated over two target datasets - MedQuAD and bioASQ under different choices of general data domain. Bars represent the method used with green bars showing different variants of supervised methods (differing by training data used) and remaining bars representing unsupervised methods. Hatching patterns on the bar denote the choice of general training domain when applicable.

4.3 SCALING LAWS: HOW MUCH IN DOMAIN DATA IS NEEDED TO ADAPT CLASSIFIER?

Our last investigation examines how much in-domain data labeled for hallucinations is needed to train a classifier with adequate performance, and whether using a large general dataset can improve data efficiency of this. Obtaining labeled hallucination data can be challenging, which makes a general-domain data mix to supplement small in-domain labeled dataset for training classifiers. To examine these effects, we plot learning curves (Perlich, 2011) under both the TS and GE+TS setting. These curves plot the test-set performance as we vary the amount of task specific training data, highlighting how quickly a classifier can learn to accurately detect hallucinations. For this setting, we consider as in earlier only BioASQ and MedQuAD, which we deem as being most unlike the other datasets. Figure 6 plots an example of these learning curves on Llama 3.1 - Instruct. Generally, GE+TS dominates TS only in the low data regime of < 1000 examples, with TS-only catching up soon after. This trend stays consistent across the 10 LLMs tested.

From these learning curves, we seek estimates of two quantities:

1. **Crossover Point:** At how many training examples does the TS-setting outperform the GE-only setting.
2. **Saturation Point:** At what sample count do we achieve 95% of detection performance in either the GE+TS or TS setting.

The crossover point between TS-only and GE-only marks the estimated amount of data where the use of target specific data outperforms the use of the general set. This highlights a trade-off between cost of annotation and model performance. A crossover point at a low number of samples suggests that supervision from the target domain is highly valuable, whereas one at a high number of samples suggests that the general set itself might be the most practical choice unless a large and labeled target/task-specific dataset is available. From the learning curves, we see that GE+TS curves almost

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 6: Learning Curves for Llama-3.1-Instruct under TS only and GE+TS for different amounts of target specific data. Top Row: Results under different GE set choices with BioASQ as target domains. Bottom Row: Results under different GE set choices with MedQuAD as target domains. Lines represent average AUROC value across 10 random seeds and shaded area represents $1.96 * SE$.

always lie above TS-only, indicating that GE+TS classifiers outperform or match TS-only classifiers when given the same number of task-specific samples. Thus, we recommend the GE+TS setup, as it consistently provides equal or better performance regardless of the amount of task-specific data available. The saturation points give some guidance on how many labeled samples are needed in order to maximize the performance of a hallucination detection model.

Table 2: Performance on held-out datasets for cross-over experiments. Values are reported as mean (standard deviation)

Held-out Data	N	Cross-over GE/TS	Saturation Point GE+TS	Saturation Point TS
BioASQ	2520	372.9 (128.6)	485.1 (201.9)	820.7 (263.0)
MedQuAD	8350	348.4 (149.6)	1168.0 (306.0)	1408.2 (712.4)

Table 2 summarizes estimates for the both the crossover and saturation point. Across both heldout datasets, the expected cross-over between GE and TS occurs at roughly 310-350. Saturation point is reached relatively early for BioASQ, at 465 samples for GE+TS, and later for MedQuAD, at 1100 for GE+TS. We believe this is largely a function of the total number of samples we had for the experiment, in the case of medQuAD, the higher number of theoretical samples we had pushed the estimated maximal performance level higher, resulting in later saturation point. Consistently across both datasets, saturation point for GE+TS is much lower than that for TS only, 40.3% lower for bioASQ and 17.0% for MedQuAD, showing that use of the GE set improves data efficacy. Overall, these serve as a guidance for a practitioner deciding if labeling more data is worth it. For example, in the case of MedQuAD the expected saturation point of GE+TS at 1168 indicates that if one were to label an addition 7182 data points (8350-1168), they would only expect about a 5% increase in performance on AUROC.

5 CONCLUSION

In this paper we have presented a data-driven approach to make super hallucination detectors robust under domain shift. We first showed that supervised hallucination detection methods significantly outperforms unsupervised approaches in the in-domain setting, but that this advantage disappears in the out-domain setting, where unsupervised metric based approaches are comparatively more robust. We showed that the use of general, heterogeneous data that need not be in the same domain as the target domain can provide a useful foundation for training supervised classifiers, with such

486 classifiers generally surpassing unsupervised models even when data in the target domain is un-
487 available. Moreover our scaling experiments show that incorporating such general data improves
488 data efficiency when combined with target specific data, as classifiers require fewer target-specific
489 samples to achieve the same performance. These findings demonstrate that supervised UQ-based
490 hallucination detection methods remain a valuable tool. Practitioners can apply classifiers trained
491 on large general datasets and expect performance that exceeds unsupervised approaches, further,
492 when available, incorporating target-specific data to these classifiers further improves performance,
493 consistently outperforming unsupervised methods.

494

495 REFERENCES

496

497 Samir Abdaljalil, Hasan Kurban, Parichit Sharma, Erchin Serpedin, and Rachad Atat. Sindex: Se-
498 mantic inconsistency index for hallucination detection in llms. *arXiv preprint arXiv:2503.05980*,
499 2025.

500 Lukas Aichberger, Kajetan Schweighofer, and Sepp Hochreiter. Rethinking uncertainty estimation
501 in natural language generation. *arXiv preprint arXiv:2412.15176*, 2024.

502 Amos Azaria and Tom Mitchell. The internal state of an llm knows when it's lying. *arXiv preprint*
503 *arXiv:2304.13734*, 2023.

505 Asma Ben Abacha and Dina Demner-Fushman. A question-entailment approach to question an-
506 swering. *BMC bioinformatics*, 20(1):511, 2019.

507 Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wort-
508 man Vaughan. A theory of learning from different domains. *Machine learning*, 79(1):151–175,
509 2010.

511 Jonathan Berant, Andrew Chou, Roy Frostig, and Percy Liang. Semantic parsing on freebase from
512 question-answer pairs. In *Proceedings of the 2013 conference on empirical methods in natural*
513 *language processing*, pp. 1533–1544, 2013.

514 Leo Breiman. Random forests. *Machine learning*, 45(1):5–32, 2001.

516 Mingda Chen, Yang Li, Xilun Chen, Adina Williams, Gargi Ghosh, and Scott Yih. Factory: A
517 challenging human-verified prompt set for long-form factuality. *arXiv preprint arXiv:2508.00109*,
518 2025.

519 Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In *Proceedings of the*
520 *22nd ACM SIGKDD international conference on knowledge discovery and data mining*, pp. 785–794,
521 2016.

523 I Chern, Steffi Chern, Shiqi Chen, Weizhe Yuan, Kehua Feng, Chunting Zhou, Junxian He, Gra-
524 ham Neubig, Pengfei Liu, et al. Factool: Factuality detection in generative ai—a tool augmented
525 framework for multi-task and multi-domain scenarios. *arXiv preprint arXiv:2307.13528*, 2023.

527 Matthew Dahl, Varun Magesh, Mirac Suzgun, and Daniel E Ho. Large legal fictions: Profiling legal
528 hallucinations in large language models. *Journal of Legal Analysis*, 16(1):64–93, 2024.

529 Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
530 Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs. *arXiv*
531 *preprint arXiv:1903.00161*, 2019.

533 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
534 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
535 *arXiv e-prints*, pp. arXiv–2407, 2024.

536 Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. Detecting hallucinations in large
537 language models using semantic entropy. *Nature*, 630(8017):625–630, 2024.

538 Mohammad Javad Hosseini, Andrey Petrov, Alex Fabrikant, and Annie Louis. A synthetic data
539 approach for domain generalization of nli models. *arXiv preprint arXiv:2402.12368*, 2024.

540 Mykyta Ielanskyi, Kajetan Schweighofer, Lukas Aichberger, and Sepp Hochreiter. Addressing pit-
541 falls in the evaluation of uncertainty estimation methods for natural language generation. In *ICLR*
542 *Workshop: Quantify Uncertainty and Hallucination in Foundation Models: The Next Frontier in*
543 *Reliable AI*, 2025.

544

545 Denis Janiak, Jakub Binkowski, Albert Sawczyn, Bogdan Gabrys, Ravid Schwartz-Ziv, and Tomasz
546 Kajdanowicz. The illusion of progress: Re-evaluating hallucination detection in llms. *arXiv*
547 *preprint arXiv:2508.08285*, 2025.

548

549 Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
550 supervised challenge dataset for reading comprehension. *arXiv preprint arXiv:1705.03551*, 2017.

551

552 Saurav Kadavath, Tom Conerly, Amanda Askell, Tom Henighan, Dawn Drain, Ethan Perez,
553 Nicholas Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli Tran-Johnson, et al. Language mod-
554 els (mostly) know what they know. *arXiv preprint arXiv:2207.05221*, 2022.

555

556 Yubin Kim, Hyewon Jeong, Shan Chen, Shuyue Stella Li, Mingyu Lu, Kumail Alhamoud, Jimin
557 Mun, Cristina Grau, Minseok Jung, Rodrigo Gameiro, et al. Medical hallucinations in foundation
558 models and their impact on healthcare. *arXiv preprint arXiv:2503.05777*, 2025.

559

560 Jannik Kossen, Jiatong Han, Muhammed Razzak, Lisa Schut, Shreshth Malik, and Yarin Gal.
561 Semantic entropy probes: Robust and cheap hallucination detection in llms. *arXiv preprint*
562 *arXiv:2406.15927*, 2024.

563

564 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
565 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
566 benchmark for question answering research. *Transactions of the Association for Computational
567 Linguistics*, 7:453–466, 2019.

568

569 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
570 man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers
571 in open language model post-training. *arXiv preprint arXiv:2411.15124*, 2024.

572

573 Linyu Liu, Yu Pan, Xiaocheng Li, and Guanting Chen. Uncertainty estimation and quantification
574 for llms: A simple supervised approach. *arXiv preprint arXiv:2404.15993*, 2024.

575

576 Xin Liu, Lechen Zhang, Sheza Munir, Yiyang Gu, and Lu Wang. Verifact: Enhancing long-
577 form factuality evaluation with refined fact extraction and reference facts. *arXiv preprint*
578 *arXiv:2505.09701*, 2025.

579

580 Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation: Learning bounds
581 and algorithms. *arXiv preprint arXiv:0902.3430*, 2009.

582

583 Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
584 reference-free reward. *Advances in Neural Information Processing Systems*, 37:124198–124235,
585 2024.

586

587 Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis, Wen-tau Yih, Pang Wei Koh, Mohit Iyyer,
588 Luke Zettlemoyer, and Hannaneh Hajishirzi. Factscore: Fine-grained atomic evaluation of factual
589 precision in long form text generation. *arXiv preprint arXiv:2305.14251*, 2023.

590

591 Norman Mu, Jonathan Lu, Michael Lavery, and David Wagner. A closer look at system prompt
592 robustness. *arXiv preprint arXiv:2502.12197*, 2025.

593

594 Aidar Myrzakhan, Sondos Mahmoud Bsharat, and Zhiqiang Shen. Open-llm-leaderboard: From
595 multi-choice to open-style questions for llms evaluation, benchmark, and arena. *arXiv preprint*
596 *arXiv:2406.07545*, 2024.

597

598 Alexander Nikitin, Jannik Kossen, Yarin Gal, and Pekka Marttinen. Kernel language entropy: Fine-
599 grained uncertainty quantification for llms from semantic similarities. *Advances in Neural Infor-
600 mation Processing Systems*, 37:8901–8929, 2024.

594 Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita
595 Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, et al. 2 olmo 2 furious. *arXiv preprint*
596 *arXiv:2501.00656*, 2024.

597

598 Claudia Perlich. Learning curves in machine learning. In *Encyclopedia of machine learning*, pp.
599 577–580. Springer, 2011.

600 P Probst, MN Wright, and AL Boulesteix. Hyperparameters and tuning strategies for random forest,
601 wires data mining and knowledge discovery, 9, e1301, 2019.

602

603 Mohammad Mahfujur Rahman, Clinton Fookes, Mahsa Baktashmotagh, and Sridha Sridharan.
604 Multi-component image translation for deep domain generalization. In *2019 IEEE Winter Con-*
605 *ference on Applications of Computer Vision (WACV)*, pp. 579–588. IEEE, 2019.

606

607 Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
608 for machine comprehension of text. *arXiv preprint arXiv:1606.05250*, 2016.

609

610 Siva Reddy, Danqi Chen, and Christopher D Manning. Coqa: A conversational question answering
challenge. *Transactions of the Association for Computational Linguistics*, 7:249–266, 2019.

611

612 Pranab Sahoo, Prabhash Meharia, Akash Ghosh, Sriparna Saha, Vinija Jain, and Aman Chadha.
613 A comprehensive survey of hallucination in large language, image, video and audio foundation
models. *arXiv preprint arXiv:2405.09589*, 2024.

614

615 Andrea Santilli, Miao Xiong, Michael Kirchhof, Pau Rodriguez, Federico Danieli, Xavier Suau,
616 Luca Zappella, Sinead Williamson, and Adam Golinski. On a spurious interaction between un-
617 certainty scores and answer evaluation metrics in generative qa tasks. In *Neurips Safe Generative*
618 *AI Workshop 2024*, 2024.

619

620 Joe Stacey, Lisa Alazraki, Aran Ubhi, Beyza Ermis, Aaron Mueller, and Marek Rei. How to improve
the robustness of closed-source models on nli. *arXiv preprint arXiv:2505.20209*, 2025.

621

622 Qwen Team. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2024.

623

624 Raghuveer Thirukovalluru, Yukun Huang, and Bhuwan Dhingra. Atomic self-consistency for better
long form generations. *arXiv preprint arXiv:2405.13131*, 2024.

625

626 Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea
627 Finn, and Christopher D Manning. Just ask for calibration: Strategies for eliciting calibrated
628 confidence scores from language models fine-tuned with human feedback. *arXiv preprint*
629 *arXiv:2305.14975*, 2023.

630

631 Adam Trischler, Tong Wang, Xingdi Yuan, Justin Harris, Alessandro Sordoni, Philip Bachman, and
632 Kaheer Suleman. Newsqa: A machine comprehension dataset. *arXiv preprint arXiv:1611.09830*,
2016.

633

634 George Tsatsaronis, Georgios Balikas, Prodromos Malakasiotis, Ioannis Partalas, Matthias
635 Zschunke, Michael R Alvers, Dirk Weissenborn, Anastasia Krithara, Sergios Petridis, Dimitris
636 Polychronopoulos, et al. An overview of the bioasq large-scale biomedical semantic indexing and
question answering competition. *BMC bioinformatics*, 16(1):138, 2015.

637

638 Simon Valentin, Jinmiao Fu, Gianluca Detommaso, Shaoyuan Xu, Giovanni Zappella, and
639 Bryan Wang. Cost-effective hallucination detection for llms.(2024). URL <https://arxiv.org/abs/2407.21424>, 2024.

640

641 Noortje J Venhuizen, Matthew W Crocker, and Harm Brouwer. Semantic entropy in language com-
642 prehension. *Entropy*, 21(12):1159, 2019.

643

644 Jacques Wainer. Comparison of 14 different families of classification algorithms on 115 binary
645 datasets. *arXiv preprint arXiv:1606.00930*, 2016.

646

647 Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu, Yiqiang Chen, Wenjun
Zeng, and Philip S Yu. Generalizing to unseen domains: A survey on domain generalization. *IEEE*
transactions on knowledge and data engineering, 35(8):8052–8072, 2022.

648 Jason Wei, Nguyen Karina, Hyung Won Chung, Yunxin Joy Jiao, Spencer Papay, Amelia Glaese,
649 John Schulman, and William Fedus. Measuring short-form factuality in large language models.
650 *arXiv preprint arXiv:2411.04368*, 2024a.

651

652 Jerry Wei, Chenguang Yang, Xinying Song, Yifeng Lu, Nathan Hu, Jie Huang, Dustin Tran, Daiyi
653 Peng, Ruibo Liu, Da Huang, et al. Long-form factuality in large language models. *Advances in*
654 *Neural Information Processing Systems*, 37:80756–80827, 2024b.

655 Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie Fu, Junxian He, and Bryan Hooi. Can llms
656 express their uncertainty? an empirical evaluation of confidence elicitation in llms. *arXiv preprint*
657 *arXiv:2306.13063*, 2023.

658

659 Miao Xiong, Andrea Santilli, Michael Kirchhof, Adam Golinski, and Sinead Williamson. Efficient
660 and effective uncertainty quantification for llms. In *Neurips Safe Generative AI Workshop 2024*,
661 2024.

662 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
663 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
664 *arXiv:2505.09388*, 2025.

665

666 Shuai Yang, Kui Yu, Fuyuan Cao, Lin Liu, Hao Wang, and Jiuyong Li. Learning causal representa-
667 tions for robust domain adaptation. *IEEE Transactions on Knowledge and Data Engineering*, 35
668 (3):2750–2764, 2021.

669

670 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
671 and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
672 answering. *arXiv preprint arXiv:1809.09600*, 2018.

673

674 Fanghua Ye, Mingming Yang, Jianhui Pang, Longyue Wang, Derek Wong, Emine Yilmaz, Shuming
675 Shi, and Zhaopeng Tu. Benchmarking llms via uncertainty quantification. *Advances in Neural*
676 *Information Processing Systems*, 37:15356–15385, 2024.

677

678 Yu Yu, Shahram Khadivi, and Jia Xu. Can data diversity enhance learning generalization? In
679 *Proceedings of the 29th international conference on computational linguistics*, pp. 4933–4945,
680 2022.

681

682 Kaiyang Zhou, Yongxin Yang, Timothy Hospedales, and Tao Xiang. Learning to generate novel
683 domains for domain generalization. In *European conference on computer vision*, pp. 561–578.
684 Springer, 2020.

685

A UNSUPERVISED METHODS

686

687 **SEMANTIC ENTROPY** Semantic entropy relies on assessing the consistency over multiple genera-
688 tions to a given reply. This is estimates uncertainty by measuring entropy of a semantic represen-
689 tation (might be wrong way to phrase it) across multiple sampled output For a single prompt p we
690 generate S different responses c_1, \dots, c_S . Semantic entropy clusters these responses into semantic
691 equivalent clusters through the use of a Natural language inference model. Then using the semantic
692 clusters we can compute semantic entropy by: formula

693

694 **SINDEX** Similar to semantic entropy, Sindex also utilizes multiple generations, however instead
695 of a NLI model to form clusters sindex uses sentence embeddings combined with a hierarchical
696 clustering algorithm. Then an adjusted entropy is calculated by: ...

697

698 **PTRUE** PTrue is an LLM as a judge approach that queries the generating LLM on whether a given
699 statement is True or False, this is done by appending a question to the statement and measuring the
700 generated token probability of the *true* token. Following Kadavath et al. (2022) we use a variation of
701 PTrue where we pass in multiple candidate generations in the prompt as well as the main response
702 (for which we score correctness). Additionally, for hallucination detection we actually need the
703 probability inverse (1-pTrue) score, which we call pFalse.

702 **GNLL** GNLL is a likelihood-based score designed to estimate aleatoric uncertainty. Aichberger
703 et al. (2024) show that under a 0-1 loss, the negative log-likelihood of the Maximum A Posterior
704 completion is a good estimate (check this) of the aleatoric uncertainty. While this quantity is hard to
705 identify due to computational intractability of the LLM generating space (find a citation for this) we
706 can approximate this using either beam search decoding or greedy decoding. For this work we use
707 the NLL of the greedy decoded sequence as GNLL.

708

709 B EVALUATION METRICS

710

711 **Threshold-Agnostic Metrics** Prior works on UQ and hallucination detection primarily evaluate
712 performance using Area Under Receiver Operating Curve (AUROC) (Liu et al. (2024); Aichberger
713 et al. (2024); Farquhar et al. (2024)). AUROC measures how well a score differentiates positive and
714 negative examples. In our casem the score is either a UQ metric or the probability score generated by
715 a supervised hallucination detector. As a threshold-agnostic metric, AUROC evaluates performance
716 across all decision thresholds. Other options in this category are Area Under Precision Recall Curve
717 (AUPRC) and Area Under Accuracy-Reject Curve (AUARC), but we primarily report performance
718 using AUROC to keep consistent with previous work.

719 **Threshold-Aware Metrics** Many unsupervised metric-based methods output unbounded scores,
720 this is the case for 3 out of 4 methods, SE, Sindex and GNLL. For them to be used practically we
721 have to set thresholds for determining what are hallucinated responses. With these thresholds set,
722 we can evaluate standard classification metrics such as accuracy, precision and recall. For this work,
723 in order to optimize the threshold we use maximize F1-score on a separate validation set. To ensure
724 fairness in comparison, we optimize thresholds for unsupervised methods on the training set, while
725 for supervised detectors we rely on a separate validation subset.

726

727 C LLM AS A JUDGE

728

729

730 Here we give more details about the LLM-as-a-Judge Procedure. Broadly, we first evaluated GPT-4
731 as a judge model and found that its assessments were well aligned with human annotations, though
732 on a relatively small sample. Given the cost of using GPT-4 at scale, we sought an open-source
733 alternative with similar reliability. Among several candidates, we identified Qwen3-14B Yang
734 et al. (2025), which exhibited the highest inter-annotator agreement with GPT-4. We therefore adopt
735 Qwen3-14B as our primary judge model in this work (see Appendix X for details).

736

737 C.1 LABELING

738 To generate labels for hallucination detection, we use a 3 class system:

739

- 740 • **0 - Non-Hallucinations** For generated responses deemed correct by the LLM judge
- 741 • **1 - Hallucinations** For generated responses deemed in-correct by the LLM judge
- 742 • **2 - Non Responses** For generated responses deemed as non-response by the LLM judge

743

744 We construct a small human-labeled set of 25 examples across datasets and model family, including
745 brief annotations of why they are labeled the way they are. These examples are used in a few-shot
746 prompt (25-shot) to guide the LLM judge in labeling the full set of responses, this prompt is given
747 in Figure 7.

748

749 C.2 OPEN-SOURCE MODELS

750

751 Our initial efforts used mainly `gpt-4o` as a judge, but we found this prohibitively expensive for
752 the number of experiments we wanted to do, thus we sought an open-source alternative that would
753 perform as well. We mainly tested models from the Qwen3 family, named the 14B transformer and
754 the 30B MoE model. We found Cohen’s Kappa to be higher for the 14B transformer as shown in
755 Table ???. We also annotate by hand a sample of a 100 model completions and compare that with
our models, which is shown in Table 3, for this sample GPT-4o and Qwen3-14B perform nearly

756
757

LLM-as-a-Judge Prompt

758
759

You are an expert evaluator for question-answering systems. You will be assessing the quality of answers to a given question.

760
761

Task: Determine if the candidate answer contains the correct factual information to answer the question.

762
763
764
765
766
767
768

Rules: - Respond with 0 if the candidate answer is equivalent in meaning to any reference answer (synonyms/context OK), or if it contains the specific correct answer. - Respond with 1 if the candidate contains wrong facts, repeats the question, provides no answer, has the wrong entity, or differs from all reference answers. - Respond with 2 if the model does not give an answer, asks a clarifying question, or refuses to answer. - Accept additional context around correct answers. - Accept geographic or temporal equivalents. - Reject if the core answer is missing or incorrect.

769
770

Instructions: Reference answers may be in a numbered list. Score 0 if the candidate matches any reference answer.

Evaluation Examples:

771
772
773
774
775
776
777
778
779
780
781
782
783

- Q: What movie starred Tom Cruise? Ref: Top Gun Candidate: "Top Gun starring Tom Cruise" → 0
- Q: What movie starred Tom Cruise? Ref: Top Gun Candidate: "Brad Pitt was in Top Gun" → 1
- Q: What's the name of Mob's brother's Spanish VA in Mob Psycho 100? Ref: Javier Olguín Candidate: "I do not have information on the Spanish voice actor..." → 2
- Q: What is the major difficulty in carrying out the plan? Ref: Improving the relationship between Taiwan and the mainland Candidate: "I'd be happy to help you identify potential difficulties..." → 2

784
785
786

Figure 7: LLM-as-a-Judge prompt used for labeling responses from different datasets. Only 4 few-shot examples are shown here due to space constraints, but for actual applications we use a 25-shot example

787
788
789
790
791
792

Model	Cohen's Kappa v Human	Accuracy vs Human
GPT-4o	0.84	92%
Qwen3-14B	0.85	93%

793
794
795
796

Table 3: Inter-annotator agreement between LLM-as-a-judge models and human raters.

797
798
799
800
801
802
803
804
805
806
807
808
809

Model	Cohen's Kappa v GPT-4o	Accuracy vs GPT-4o
GPT-4o	1.00	100%
Qwen3-14B	0.756	85.4%
GPT-4o-Mini	0.808	89.4%
Qwen3-A3B30B	0.659	82.2%

Table 4: Inter-annotator agreement between LLM-as-a-judge models and human raters.

810
811
812 Table 5: Models evaluated in our study.
813
814
815
816
817
818
819
820
821
822
823

Hugging Face Model name	Model family	Size	Training stage
meta-llama/Llama-3.1-8B-Instruct	Llama-3.1	8B	Instruct
allenai/Llama-3.1-Tulu-3-8B-SFT	Llama-3.1	8B	SFT
allenai/Llama-3.1-Tulu-3-8B	Llama-3.1	8B	Instruct
princeton-nlp/Llama-3-Base-8B-SFT	Llama-3	8B	SFT
princeton-nlp/Llama-3-Base-8B-SFT-DPO	Llama-3	8B	SFT + DPO
allenai/OLMo-2-1124-7B-Instruct	OLMo-2	7B	Instruct
allenai/OLMo-2-1124-7B-SFT	OLMo-2	7B	SFT
Qwen/Qwen2.5-7B-Instruct	Qwen2.5	7B	Instruct
normster/RealGuardrails-Qwen2.5-7B-SFT-DPO	Qwen2.5	7B	SFT + DPO
allenai/OLMo-2-0325-32B-Instruct	OLMo-2	32B	Instruct

824
825 **D LLMs TESTED**
826

827 **E SUPERVISED TRAINING DETAILS**
828

829 Here we furnish addition details on the training procedure and model use.
830

831 **E.1 DATASET**
832

833 Table 6 gives additional information on dataset sizes and the splits to create the train test and validation sets per evaluation benchmark.
834

835
836 Table 6: Benchmarking Datasets used in our study.
837

Benchmark	Domain	Total Size	Train Size	Test Size
TriviaQA	Encyclopedic	100K	10k	10k
NQ	Encyclopedic	120K	10k	10k
bioASQ	Biology	50K	10k	10k
CoQA	Conversational	120K	10k	10k
DROP	Reasoning-heavy	96K	10k	10k
HotpotQA	Encyclopedic	113K	10k	10k
MedQuAD	Medical	50K	10k	10k
NewsQA	News	120K	10k	10k
SimpleQA	KB QA	100K	10k	10k
SQuAD	Encyclopedic	100K	10k	10k
WebQuestions	KB QA	6K	10k	10k
OpenLLM	Various	22K	10k	10k

851
852 **E.2 SUPERVISED HALLUCINATION CLASSIFIER**
853

854 The supervised learning model used as the classifier is a Random Forest (Breiman, 2001). We did
855 not do extensive hyperparameter tuning per generating LLM and dataset due to compute constraints,
856 instead opting for a setting of 100 trees and with remaining settings being the default in scikit-learn.
857 We also included an additional dimensionality reduction step since for many of our experiments we
858 have the case where the dimensionality of the features exceeded the number of training examples.
859 This dimensionality reduction is carried out using Singular Value Decomposition (SVD), for which
860 we use the implementation in scikit-learn. We set a fix dimensionality of 300 after SVD, which is
861 then used in the Random Forest. Lastly as a pre-processing step before SVD we apply standard
862 scaling to the raw features.

863 **Features** Following Liu et al. (2024) we use activations from the middle and last layer of the
model. For each of these layers we take the activation value corresponding to both the last token and

864 the prompt, this creates a large feature space as we take a total of 4 activations per input, for example
 865 if the model’s hidden size is 4096 then the size of the features corresponding to this activation is
 866 16384 (4*4096). In addition we explored the use of several probability based features but find that
 867 they did not impact performance much and omitted them.
 868

869 F RQ1 ADDITIONAL FIGURES 870

887 Figure 8: In-domains evaluations of "Llama-3.1-Instruct" across 11 different datasets. Supervised
 888 methods plotted along with 4 unsupervised methods and one random classifier baseline. Top Row:
 889 AUROC, Botom Row: F1-Score
 890

901 Figure 9: In-domains evaluations for various models macro-averaged across 11 different datasets. In
 902 order to benchmark supervised methods against unsupervised methods we pick the top performing
 903 unsupervised method for macro-averaging. Top Row: AUROC, Bottom Row: F1-Score
 904

905 G RQ2 ADDITIONAL FIGURES 906

907 H DOMAIN SPECIFICITY OF VARIOUS CLASSIFIERS

911 H.1 DOMAIN SHIFT AND ERROR DECOMPOSITION

913 Here we provide further analysis on the different behaviors of GE, TS and GE+TS based halluci-
 914 nation detectors. We first consider the hypothetical error decomposition under domain shift (Ben-
 915 David et al., 2010; Mansour et al., 2009). Let D_s and D_t denote the source and target distributions.
 916 Then where $\epsilon_t(h)$ denotes the target error of hypothesis $h \in \mathcal{H}$, we have:

$$\epsilon_t(h) \leq \epsilon_s(h) + \frac{1}{2}d_{\mathcal{H}\Delta\mathcal{H}}(D_s, D_t) + \lambda \quad (2)$$

Figure 10: Difference plots comparing unsupervised methods to supervised methods. Heights of marker correspond to the performance difference between supervised methods and unsupervised methods. Top: AUROC, Bottom: F1-Score. Positive values indicate that supervised methods performance better than unsupervised method. Circles represent in-domain and squares represent out-of-domain. Error Bars correspond to $1.96 * \text{Standard Error}$ calculated over scores from aggregated source-target pairs.

The first term $\epsilon_s(h)$ denotes the error on the source domain. $\frac{1}{2}d_{\mathcal{H}\Delta\mathcal{H}}(D_s, D_t)$ is a divergence term that measures how different source and target distributions are in the feature space induced by h . The third term λ is a hypothesis mismatch term which captures aggregate performance of the best hypothesis $h^* \in \mathcal{H}$ in both source and target domain. Interpreting our three training regimes TS, GE and GE+TS within this framework we hypothesize that:

- **TS Trained Classifiers** minimize $\epsilon_s(h)$, but have high divergence $d_{\mathcal{H}\Delta\mathcal{H}}(D_s, D_t)$ due to the encoding or use of domain-specific features.
- **GE Trained Classifiers** trained on heterogeneous datasets in contrast, should create a feature representation that reduces $d_{\mathcal{H}\Delta\mathcal{H}}(D_s, D_t)$, although at the cost of increasing source specific error $\epsilon_s(h)$ on any specific dataset.
- **GE+TS Trained Classifiers** are likely to have a favorable balance of both terms.

We have seen that TS trained hallucination detectors generally have much higher performance than GE trained variants, validating that these models have a lower source specific error. To explain why TS trained classifiers tend to fail out of domain, we seek to validate whether they indeed rely more heavily on domain-specific features.

H.2 DOMAIN CLASSIFICATION PROBES AND EXPERIMENTAL SETUP

To obtain a proxy that is compatible with the discrete feature sets used in our random forest classifiers, we exploit the Gini importance based feature ranking produced during training to train domain classification probes. Our hypothesis is that classifiers trained on task-specific data will utilize features that better encode domain-specific artifacts, resulting in better performance on the domain identification task over GE and GE+TS feature sets.

For each training regime (TS, GE, GE+TS) we extract the top 10% of features in the hallucination detector model. We then train a downstream classifier whose goal is not to detect hallucinations, but

Figure 11: Difference plots comparing the performance of (a) Supervised-GE, (b) Supervised-GE+TS, and (c) Supervised-TS against all other methods.

rather to predict from which data set a sample came from. This is done by training a binary domain classification probe for every task-specific dataset D_{TS} , where we set the positive class as samples

1026 from D_{TS} and the negative class as samples from D_{GE} . To evaluate we look at the F1-score relative
1027 to the F1-score obtained by a domain classifier trained on all available features.
1028

1029 H.3 RESULTS 1030

1031 Figure 12 displays the relative F1-Score for 5 task-specific datasets bioASQ, MedQUAD, Sim-
1032 pleQA, CoQA and NewsQA, the GE set chosen is the 'encyclopedic-wiki' set which consists of
1033 datasets with encyclopedic like content (Table 1). The aggregated results show that **TS trained**
1034 **classifiers tend to prioritize features which are domain specific**, generally achieving higher rel-
1035 ative F1-Score over GE and GE+TS selected feature sets. Figure 13 displays the same results but
1036 disaggregated to their individual LLMs. We see that the trend is consistent, hPTolding for almost all
1037 tested datasets in 10 of the 12 models.

1038 These results provide empirical evidence explaining the domain shift problem under TS regime, and
1039 why GE and GE+TS training helps mitigate this. TS-only models may have low bias on source
1040 domain, but experience large domain shifts. In contrast GE only models may have higher bias as
1041 they miss task-specific nuances experience a smaller domain shift effect. Lastly we have seen that
1042 GE+TS balances both the bias and domain shift term.

1057 Figure 12: Relative F1-score of domain classification probes trained under 3 feature sets, TS, GE,
1058 GE+TS, scores are aggregated across 12 LLMs
1059

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

Figure 13: Relative F1-score of domain classification probes trained under 3 feature sets, TS, GE, GE+TS, each plot shows results for one of 12 tested LLMs

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133