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ABSTRACT

One of the core challenges when applying reinforcement learning to solve real
world problems is the violation of numerous safety, feasibility or physical con-
straints during training and deployment. We propose Bender’s Oracle Optimiza-
tion (BOO) that manages to achieve provable safety during both training and de-
ployment, under the assumption that one has access to a representation of the
feasible set, e.g., through a (possibly inaccurate) simulator or encoded rules. This
method is particularly useful for cases where a simple (deterministic) model of
the problem is available, but said model is too inaccurate or incomplete to solve
the problem directly. We showcase our method by applying it to a challenging
reward-maximizing stochastic job-shop scheduling problem, where we demon-
strate a 17% improvement, and a nonlinear, nonconvex packing problem where
we achieve close to globally optimal performance while improving the conver-
gence speed by a factor of 800.

1 INTRODUCTION

Reinforcement Learning (RL) is a powerful technique for solving challenging Markov Decision
Processes (MDPs) through interaction with an environment. This approach has recently shown
impressive results in a wide variety of planning and control problems, such as scheduling (Bayliss
et al., 2017), process planning (Floudas & Lin, 2005), robotics (oh Kang et al., 2023), and network
design (Menon et al., 2013), as well as being extended towards more general problem sets, such
as matrix factorization (Fawzi et al., 2022), quantum circuit optimization (Ruiz et al., 2024), or
algorithm discovery (Mankowitz et al., 2023). One major obstacle for these approaches is that they
need to guarantee that the solution to these planning problems is within a constrained subset of
possible plans to qualify as a solution. Such constraints are often necessary for safety (e.g., a cargo
ship should not be overloaded; the power grid should never produce a blackout, etc.) or feasibility
reasons (e.g., a scheduler should not double-book appointments; a robot should not get stuck with
an empty battery; a matrix factorization has to return the same matrix, etc.).

Classically, these constraints have been modeled using the framework of Constrained Markov De-
cision Processes (CMDP) (Altman, 1999), which introduce a cost function c(x) whose expected
cumulative (discounted) sum has to be below a threshold C:

max
π

T∑
i=0

γiR(xi)P (xi+1|xi, ai)π(ai|xi) (1a)

s.t.

T∑
i=0

γic(xi) ≤ C (1b)

While very popular, this modeling has some notable disadvantages, namely that hard constraints are
difficult to model: Assume there is a set of states XC that should never be reached. Theoretically, we
can model this in the above framework by placing ∀xc ∈ XC : c(xc) = ∞, but in practice such an
approach is not learnable if the illegal (or feasible) set is nontrivial. Feasible sets become nontrivial
if the question x ∈ XC by itself is already computationally hard: For instance, consider the case of
XC encoding an NP-complete problem such as a constraint satisfaction problems (CSP) or SAT. In
those cases finding a single x ∈ CSP is already NP-complete, which makes traditional black-box
reinforcement learning highly intractable. These types of hard constraints appear frequently in the
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𝜋 𝑎𝑡 𝑠𝑡 modifies
objective function

Solve while maintaining feasibility
and Submit to environment

Get feedback from
environment

Constrained World Model

Figure 1: Overview of our method. We assume the existence of a (potentially NP-hard) world model
over which we can optimize. Our policy π modifies the objective function of the world model to
give the desired behavior. The solution is given to the environment, which provides feedback (such
as a stochastic events) to the world model, which can then be re-solved with the added information

real world: Consider the problem of autonomous driving where the car has to always stay on the
road, or a program optimization tasks where the unoptimized and the optimized program have to
describe the same input-output relationship. Another example for these are scheduling problems
or routing problems where hard constraints (such as “no worker can do two jobs at once”, “every
item must be delivered in time”, “avoid a blackout”) have to be encoded to make sure that the result
produced by policy are even valid plans to begin with.

This effect is even more pronounced when such invariants have to be upheld during training since
the policy is not yet capable of controlling the state x enough to stay within simple feasible set.
In practice, upholding such guarantees during training promises to be very useful in the practical
application of RL since it makes online-training of such models feasible. However, to guarantee
absolute safety during training one has to make sure that the policy only affects the quality of a
solution, not the feasibility of it. In current deep learning literature this is usually solved using ad-hoc
reparametrizations (e.g., Fawzi et al. (2022); Bello et al. (2016)), which means such networks have
to be manually designed to uphold invariants. Further, it is unclear whether such a reparametrization
even exists for general NP-complete problems, such as CSPs1.

In this work we showcase a general method that can solve arbitrarily constrained problems under the
assumption that our policy has access to a constrained world model. By utilizing techniques from
mathematical programming we guarantee the agent stays within the feasible region during inference
and training, which allows for fully online training without loosing safety guarantees. We do this
by proposing a universal parameterization that replaces the existing action set (e.g., “schedule job
ABC in timeslot XYZ”) with a new set of actions that correspond to cutting-planes inspired from
the framework of the bender’s decomposition. Instead of sequentially placing actions in a CMDP
(Eq.1), this method sequentially modifies an optimization problem representing the set of “safe”
plans (see Figure 1) to find high value solutions. This way, we can generate safe trajectories over the
CMDP during training and inference, at the cost of needing an approximate world model. We also
remain scalable by moving the complexity of strict feasibility preservation into a dedicated solver
such as SCIP (Bestuzheva et al., 2021) without sacrificing the expressivity of our neural network. We
showcase our method by applying it to a challenging reward-maximizing stochastic job scheduling
problem, and a challenging nonconvex nonlinear discrete packing problem.

2 RELATED WORK

From the point of view of constrained reinforcement learning, prior work mostly considers the set-
ting of feasibility budgets where the constraint violations have to stay below a certain threshold

1If P ̸= NP then such a parametrization cannot exist for certain problems.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(see Eq. 1). Constrained Policy Optimization (CPO) (Achiam et al., 2017) extends the popular
PPO (Schulman et al., 2017) algorithm and supports constraints by descending inside the intersec-
tion of a trust region and the feasible set, using recovery steps when the policy is outside the feasible
set. This method does not have a guarantee to be safe during training and cannot natively handle
hard constraints. Chow et al. (2015) uses a primal-dual approach where the primal (policy) pa-
rameters are learned jointly with the Lagrangian-dual multipliers. They also consider cumulative
costs, rather than hard constraints, and use the conditional value at risk (CVaR) framework to keep
the learned policy within a set of low-risk policies. Another sometimes competitive approach is
penalizing constraint violations with large negative values inside the reward, such as Fixed Penalty
Optimization (FPO) (Achiam et al., 2017). Tessler et al. (2018) uses a more sophisticated version
of FPO by dynamically adjusting the penalty parameter λ during optimization. However, neither of
these models handle hard-constraints or even training-time constraints.

Perhaps the closest work to ours is Dalal et al. (2018). They consider exploration inside a continuous
space where safety is guaranteed by re-projecting any action into a feasible set of safe actions. While
they consider hard constraints, they can only operate in continuous action spaces. Continuous action
spaces are often significantly easier to solve from a safety point of view as one can smoothly route
around critical areas. This is in stark contrast to combinatorial problems, where one may need to
plan many steps ahead to be able to plan around dangerous actions. Similar to our method, they also
delegate their safety constraint to a classical solver (in their case a Quadratic Programming (QP)
solver) to compute the projection onto the feasible set. Our method has the advantage of not being
limited to QP-solvers and being able to deal with combinatorial settings.

From the point of view of combinatorial optimization and RL, one seminal work to mention is
from Bello et al. (2016), who consider both a solver for the travelling salesman problem (TSP)
and Knapsack problem that shows strong performance on solving both these classical problems.
However, they do not consider learning from a stochastic or nonlinear environments. Their method
also needs specialized parametrizations (i.e., so-called pointer networks (Vinyals et al., 2015)) for
every problem type which does not even exist for many problem types. For instance, Bello et al.
(2016) uses the fact that the TSP instances they consider live on a fully connected graph, meaning
that one can arbitrarily pick any order of nodes and will still get a possible (but perhaps very bad)
tour. If one had a sparsely connected graph, Bello et al. (2016)’s method would no longer work as
picking certain node orders can get the agent into a dead-end2.

3 BACKGROUND: BENDER’S DECOMPOSITION

We frame our solution around a classical optimization concept known as the “(generalized) Bender’s
decomposition” (Geoffrion, 1972). Consider the following optimization problem

min
x,y

f(x, y) (2)

s.t. g(x, y) ≤ 0 (3)
x ∈ X, y ∈ Y (4)

where we assume y to be vector of complicating variables. A complicating variable is a variable
that, if fixed, makes the rest of the optimization problem much easier. For instance the problem
minx,y(sin(y)− x)2 becomes trivial if we first fix y to any value.

Bender’s decomposition splits this optimization problem into a master problem and a subproblem.
The master problem proposes solutions to the problem in y, ignoring the impact of the choice of
x. The subproblem then uses the solution y from the master to solve for the remaining variables
x. Based on the value and feasibility of the subproblem we then add additional constraints into the
master problem and repeat the optimization with the additional constraint.

Specifically, we can distinguish feasibility constraints, which remove items from the master problem
that do not lead to a solvable subproblem, and optimizing constraints which manipulate the objective
function of the master problem to steer it towards better solutions. To control the objective function,
one classically adds an auxilliary variable φ that is lower bounded by cutting information from the

2In fact, it might be the case that such a tour does not exist which is an undetectable case for Bello et al.
(2016). Generally, deciding whether such a tour exists is already NP-complete (Held & Karp, 1965)
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subproblem. Schematically, the master problem looks like

min
y

f(y) + φ (5)

s.t. g(y) ≤ 0 (6)
φ ∈ O(x, y), y ∈ F(x), x ∈ X, y ∈ Y, (7)

where f(y) and g(y) are lower bounds in x to g(x, y) and f(x, y) respectively, and O,F are addi-
tional constraints that are generated by solving a subproblem (see Geoffrion (1972)). For the sake of
this work, we will only consider optimality constrains O(x, y). One can show that for many prob-
lems this process will yield the same result as the original problem3, but due to the decomposition
this model can usually be solved significantly faster.

4 BENDER’S ORACLE OPTIMIZATION

Ordinary optimality cuts have the form of

φ ≥ z(x∗) + λT∇xg(x
∗, y∗)(x− x∗), (8)

where z(·) is the result of the subproblem z(x∗) = min{dT y : g(x, y) ≤ 0, y ≥ 0} conditioned
on the solution x∗ of the master problem, λ is the optimal dual solution, y∗ is the solution to the
subproblem, and φ is a helper variable that is added to the objective max cTx + φ. This has a
nice interpretation of placing a lower bound based on the main problem on the linearization of the
subproblem (see, e.g. Geoffrion (1972)).

Instead of solving a subproblem, we propose a “Benders Decomposition Oracle” that directly learns
a scalar corresponding to the bias b = z(x∗) + λT∇xg(x

∗, y∗)x∗ ∈ R, and a vector corresponding
to the linear weight w = λT∇xg(x

∗, y∗) ∈ Rd without explicitly constructing and solving the un-
derlying optimization problem(s). Both of these values are learned end-to-end using reinforcement
learning from feedback by a simulator. This means that instead of creating a CMDP across the
“time” dimension where actions are iteratively unrolled, we create an MDP across a “cutting plane”
dimension which iteratively places more constraints on the model until a high-valued plan is found.
Specifically, we train a policy π(b, w|s) such that after applying a number of K cuts to the program,
the resulting solution x∗ performs better according to some stochastic, and possibly nonlinear ob-
jective. We call π(b, w|s) the “Bender’s Decomposition Oracle” (BDO) and the algorithm resulting
in the use of BDOs “Bender’s Oracle Optimization” (BOO).

Specifically our MDP (S,A, T ,R) has the state space S consisting of (a relevant subset of) the
original state and action space, as well as additional external features (see below), the action space
R×R|x∗| consisting of the vector w and the bias b, and the transition function given by some existing
solver like SCIP (Bestuzheva et al., 2023) or IPOPT (Wächter & Biegler, 2005) combined with
possibly a simulator injects stochastic information, and the reward function R given by some real-
world metric. Notice that the resulting MDP does not need constraints since they are automatically
parameterized into the solver. This parameterization is especially appealing if the action and state-
space coincide, such as in automatic planning or constraint satisfaction. Our agent π(b, w|s) predicts
the coefficients of a new cut ci:

ki : φ ≥ b+ wTx (9)
which is added to the optimization problem. The augmented model

max{cTx+ γ | Ax ≤ b, k0, k1, . . . }, (10)

is solved and the solution is passed back to π to add another cut.

We parameterize π as a Graph Neural Network (Kipf & Welling, 2016) connecting variable nodes
with constraint nodes. Every variable node contains its upper and lower bound, the value of the
variable in the current solution, as well as relevant additional information based on the task (for
instance a “job” variable for a scheduling problem may contain the type of job). The constraint
nodes contain the constraint bias and value of the constraint. For simplicity, we only consider linear
constraints in this work, but this is not a limitation of the technique, as we could replace our MILP

3The exact conditions under which the bender’s decomposition will give the same results as the original
problem can be quite technical and are not too relevant for our usecase (for details, see e.g. Geoffrion (1972))
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solver with a more general MINLP solver. The graph is built by connecting every variable to every
constraint that contains that variable. The edges between variables and constraints are weighted by
the coefficient of the variable in the constraint.

Modeling safe reinforcement learning this way has a couple of key advantages over both ordinary
reinforcement learning and ordinary stochastic optimization. Regarding the former, notice that we
can trivially uphold arbitrary safety and feasibility guarantees on the solution x∗ by explicitly con-
straining them in the master problem. This is particularly important in cases where guaranteeing
feasibility is highly nontrivial, or when learning during deployment. Further notice the scalability
advantages of this method: Since we can delegate feasibility constraints to highly advanced opti-
mizers, we can quickly solve highly constraint problems.

From the point of view of stochastic programming, we have the advantage that our method can
incorporate arbitrary (nonconvex) nonlinear and stochastic effects inside its cut-generating function:
Notice that the policies input state s ∈ S can include both information from the master solution x∗,
but also external information, which helps us to learn from the environment as in every other RL
problem. For instance, in the case of job scheduling, one can include the type of job, likelihood
of a person getting sick, expected time taken for the job, expected profit for the job, etc. into
the estimation of the cut. The impact of these features is generally hard to model classically or it
introduces a high degree of nonlinearity into the optimization. The RL framework we propose only
adds affine-linear constraints to the problem (Eq. 8), meaning that every linear program stays linear,
every convex problem stays convex, etc. This makes guaranteeing feasibility very fast since we can
take advantage of high quality specialized solvers for e.g. mixed-integer linear programming.

5 EXPERIMENTS

We benchmark our solver on two problems. First, we study learning a nonlinear and nonconvex
objective function over a nontrivial feasible set, but without considering stochasticity. Since we can
set this problem, we can compare against the global optimum as found by the SCIP global nonlinear
optimizer (Bestuzheva et al., 2023). We also utilize this problem to showcase an interesting, while
not unexpected property of our method: Our solver is capable of learning a parametrization of the
problem that is significantly faster to solve than the true parametrization.

Second, we consider a stochastic job scheduling problem, where the objective is to maximize the
profit of a set of jobs, each consisting of a set of operations that have to be completed in order,
within a limited time. A job only receives profit if all its operations are completed in the correct
order by the time of completion. We add stochasticity to the problem, by having a set of task-types
that determine how likely a job is delayed (forcing replanning) and how much profit is to be made
by completing the job. This means our agent has to learn a complex risk-reward tradeoff, while also
having to produce feasible job-scheduling plans.

5.1 NONCONVEX CONSTRAINED PROBLEM

To estimate the ability of our method to recover a nonlinear objective function over a constrained
set, we consider the following problem

max
x

xTAx+ bTx+ c (11a)

kTx ≤ p (11b)
x ∈ {0, 1} (11c)

where A is a random positive semidefinite matrix, b and k are random vectors, and k is a random
constant and c is an offset always set to c = 1. This type of problem is frequently found in economics
where many problems can be reduced to convex maximization over binary variables subject to linear
constraints (see Zwart (1974)). There are also applications to machine learning like, for instance,
non-negative sparse PCAs (Zass & Shashua, 2006) or feature selection (Mangasarian, 1996).

We use this model as input to the global optimizer in SCIP (Bestuzheva et al., 2023), but hide the
objective for our RL agent. The goal of our agent is to find optimizing cuts, such that the found
x maximizes the hidden xTAx + bTx + c while staying feasible. Notice that this problem is not
convex since we maximize over a convex function rather than minimize (see, e.g, Zwart (1974)).

5
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Figure 2: Validation performance of the pointer network baseline compared to ours. The x-axis is
normalized towards the number of problems since both methods use different numbers of steps per
problem (our method uses dramatically fewer steps).

The reason we choose to use a positive semidefinite (psd) matrix is because it allows us to give
the following two features: First, we give the diagonal value of ai,i ∈ A for every variable x.
Second we give the row/column sum

∑N
i=0 ai,j for every variable. This should allow the method

to estimate, for instance, the eccentricity of the corresponding metric. In addition to those two
features, we also supply the current solution xk and the instance parameters b, k, p. Generally, this
is insufficient to reconstruct the entire objective function. This means the problem is a constrained
Partially Observable Markov Decision Process (CPOMDP), where the model has to gather additional
information from the found solutions xk.

As a baseline, we utilize a variant of the pointer network (Vinyals et al., 2015) used in Bello et al.
(2016) with the difference that instead of a simple unstructured RNN (Schmidt, 2019), we use ex-
actly the same GNN backbone as in our method to make sure no method is disadvantaged by a
smaller/larger network or different data availability. To accomplish this, we use a softmax over all
GNN nodes that correspond to variables with the already chosen variables being masked out. Selec-
tion stops when either the constraint kTx ≤ p would be exceeded by the chosen action, or when the
model chooses to use a dedicated “stop selection” action.

We further compare against a naive baseline where we optimize Eq. 11a by linearizing the objective
around 0. This is comparable to what one would obtain if one directly tried to optimize the MIP
without knowing that it had nonlinear correlations in its objective. Notice that both this linearized
model and our BOO model can be efficiently optimized with LP-solvers, while the original objective
has to use much more complex MINLP solvers. As our reward we compare the quality of the solution
found by our policy against its linearization:

R =
xT
πAxπ + bTxπ + c

xT
b Axb + bTxb + c

, (12)

where xπ is the solution found by BOO, and xb is the result found by maximizing the linearized
objective. R > 1 means our model exceeds the naive baseline, while R < 1 implies the model
is worse than the linearized objective. This reward is used both for our method and the pointer
network baseline. We report both the reward and the percentage towards the global optimum by
both methods.

As we can see in Fig. 2, our method manages to reach almost the 100% of true objectives value
after roughly half the exploration budget has been reached. The pointer network quickly reaches a
saturation level of roughly 60% of the global maximum. It is worth noting that the x-axis of Fig. 2
is normalized based on the number of trials. This is necessary since pointer networks need 1 step
per placed item, while our method scales with the number of cuts K. To make sure both methods
have the same effective training budget, we fix the number of environment deployments, rather than
the number of steps (our method only needs 1% of the steps the pointer networks need).

Looking into Table 1, we can also see that our method tends to find solutions orders of magnitude
faster than the MINLP solver that knows the objective function with minimal loss in quality. This is

6
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not entirely unsurprising as Bender’s decomposition is fundamentally a way of speeding up MINLP
problems (see Section 3 or Geoffrion (1972)), but it is nevertheless interesting to see that this prop-
erty translates to black-box learning of objective functions. We also noticed that as our method
improves, it tends to learn policies that find optima faster (see Appendix A). This opens up an in-
teresting secondary usecase where such a policy is trained directly with the goal of quickly finding
high quality MINLP solutions.

One advantage of a properly constrained RL agent is that one can train during deployment without
having catastrophic failures in safety. Therefore we also report the regret (i.e., the area under the
performance curve in Fig. 2) one would expect when training this agent online in Table 1. As one
can see our agent outperforms the pointer network by close to 4×.

5.2 SCHEDULING PROBLEM

We use a model loosely based on the time-indexed scheduling problem (see e.g., Ku & Beck (2016)).
Specifically, we consider the problem of finding a schedule that maximizes returns within a fixed
timeframe. In our setup, we consider 3 different machine types, where each machine has M dupli-
cates. We sample J jobs that have a randomly sampled expected completion time for each machine.
The machines have to be worked on in order: First machine 1, second machine 2, third machine 3.
A job only pays out its profit, if all of its operations where completed in time and in the right order.

This gives us the following set of constraints on our policy: Let yj be a binary indicator of whether
job j = 1, . . . , J is worked to completion, xm,j,t be the binary indicator of whether job j is sched-
uled on machine m = 1, . . . ,M at timestep t = 1, . . . , T . The set of feasible schedules is given by:

T∑
t=1

xm,j,t ≤ 1 ∀m = 1 . . .M∀j = 1 . . . J (13a)

yj ≤
∑ T∑

t=1

xm,j,t ∀m = 1 . . .M∀j = 1 . . . J (13b)

T∑
t=0

(t+ jobtime(j))xm,j,t ≤ T ∀m = 1 . . .M∀j = 1 . . . J (13c)

J∑
j=1

t+1∑
t′=t−jobtime(j)+1

xm,j,t′ ≤ M ∀m = 1 . . .M∀t = 1 . . . T (13d)

T∑
t=0

(t+ o(j,m− 1))xm−1,j,t ≤
T∑

t=0

txm,j,t ∀m = 2 . . .M∀j = 1 . . . J (13e)

T∑
t=0

xm−1,j,t ≥
T∑

t=0

xm,j,t ∀m = 2 . . .M∀j = 1 . . . J (13f)

jobtime(j) =
M∑

m=1

o(j,m) (13g)

yj , xm,j,t ∈ {0, 1} (13h)

Table 1: Comparisons of pointer network and our method over our validation set. We showcase the
quality of the found solution as a percentage of the globally optimal value, and the time needed to
find that solution (the global MINLP time is for reference).

% global maximum time policy expected regret

ours 0.98 0.07s 0.11
pointer network 0.60 1.10s 0.43
global MINLP 1.0 60.19s 0.0

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 0.5 1 1.5

·105

1.7

1.8

1.9

2

training steps

R
ew

ar
d

Ours
MILP

Figure 3: Performance of our model compared to optimal solutions provided by a MILP solver. The
performance is shown over a unseen validation set

where T is the global timelimit, and o(j,m) is the time job j takes on machine m. Equation (13a)
makes sure every operation is only scheduled once, eq. (13b) sets the auxiliary variable yj denoting
whether a job j is completed in time, eq. (13c) makes sure that all scheduled operations complete
within the timelimit, eq. (13d) prevents two operations being scheduled on the same machine si-
multaneously, eq. (13e) makes sure that operation m of job j happens after operation m − 1, and
eq. (13f) makes sure that if machine m is scheduled, machine m− 1 also has to be scheduled. This
is a highly constrained MILP problem, meaning that randomly generating a plan xm,j,t is almost
always going to be infeasible according to the constraitns eq. (13).

Within this feasible set, every assignment of xm,j,t corresponds to a plan that is expected to be
feasible. After our solver decides on a plan, we apply that plan to our environment by simulating
from t = 0 to t = 12 months. During that time, we randomly extend the time taken for a scheduled
operation o(j,m) by between 1 and 3 months. The likelihood a job is delayed depends on the job
class C(j), which is randomly sampled and given to our policy as a feature.

After a job is delayed (and therefore the existing plan is violated), we re-schedule with the newly
added constraint. The profits are similarly hidden, but also depend on the job class C(j), such that a
riskier job obtains a higher payoff. This gives a highly complex risk-reward tradeoff where one has
to balance risky but high profit jobs against lower risk, but lower profit jobs. For our experiments
we choose T = 12, J = 200 and M = 4.

As a reference value, we solve this model as a baseline to max
∑J

j=1 yj , which can be seen as an
uninformative prior, where all stochastic and (nonlinear) profit functions are ignored, in favor of sim-
ply packing the schedule as tightly as possible. We do not use the true job-rewards as the objective
function since that would cause the MILP to plan all high reward, but also high-risk jobs (which is
highly suboptimal). In practice, a tight scheduling MILP like the one we use performs significantly
better than a job-reward maximizing MILP. We run both the baseline and our method and evaluate
them using the environment, re-planning when necessary. This corresponds to a classical solution
where the problem is modeled as a deterministic mixed-integer program.

Since, to our knowledge, no solver for this challenging stochastic planning problem exists, we com-
pare ourselves against a classical MIP formulation that plans optimally with the information it has,
and re-plans in the case of a stochastic event. This means the baseline plan is optimal up-to the
unknown information introduced by the stochasticity and unknown profit per completed job. We
also tried to apply the pointer network method to solve this problem, but the policy was unable to
learn anything that performs better than a random policy. This is mostly because the model is unable
to maintain temporal constraints on operation i+ 1 having to be scheduled after operation i.

Instead of comparing against the pointer network, we compare against the solution found by the
optimal MILP solution without considering stochastic effects and knowledge of the true value of

8
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Table 2: Comparison of our method against an optimal MILP solver (higher is better).

Reward@0.5× 105 Reward@1.0× 105 Reward@1.5× 105

Ours 1.80 1.87 2.03
MILP 1.73 1.73 1.73

each job. This means we compare our learning based method on a stochastic environment against
an optimal agent inside a deterministic environment. For our agent to beat the baseline, it has to
both be able to deal with stochastic effects, and has to learn the true value of completing a job. For
this, we set up the job values as the likelihood of a job being interrupted, i.e., if a job has probability
0.9 of being delayed at any specific point in time, the reward for completing it is 0.9. This gives a
natural risk-reward structure, where riskier jobs yield more reward.

The results for this can be found in Fig. 3 and Table 2. As we can see our method quickly exceeds
the performance of the greedy MILP solver. Since our method always returns a valid schedule,
this method can be used as a drop-in replacement for traditional MILP solvers when feedback from
the environment is available. Since our method can be trained during deployment, it makes sense
to also consider the advantage of our method against the baseline. Our method offers an expected
improvement over the training interval (Fig. 3) of

∫
ours(t)dt∫
base(t)dt

≈ 8.2%. Note that this metric depends
heavily on the training time since longer training times mean the model spends more time in the
RL-optimized region.

6 LIMITATIONS

The main limitation of this method is the need for a representation of the constraints and decision
variables. In general reinforcement learning these types of model may be hard to get, but we would
argue that in cases where hard constraints are demanded during training one generally has access to
such a model. This is because if one wants to have any hope of being absolutely safe during training,
one needs to have a notion of safety before a single step is taken. Therefore we would argue that
having access to a constrained model is not fully unrealistic in safety critical or high complexity
scenarios. One can also learn a model of the constraint set (like Eq. 13) from data, but as this is a
completely orthogonal problem from acting inside such a model, we do not discuss this here.

Learning a safe model can also be viewed as learning feasibility cuts (see Section 3), which we do
not explicitly cover in this work. However, extending our framework to this would be relatively
straight forward, as one can simply train a second policy πfeas that predicts feasibility cuts, rather
than optimality cuts. The reason we do not cover this here is because it is unclear how one should
assign credit for those cuts. This is especially an issue for stochastic environments where an instance
might be feasible in the realization of the random variables that was actually sampled, but might be
infeasible for almost all other instances. In those cases one has to answer the question of whether
such an instance should be judged as feasible or infeasible. For this reason, we leave the issue of
credit assignment for feasibility cuts for future work.

7 CONCLUSION

We propose a generalized method for enforcing arbitrary (known) constraints in highly constrained
reinforcement learning problems. Our method is able to enforce arbitrary hard constraints during
both training and inference, allowing for more flexible utilization of our reinforcement learning in
(safety)-constrained environments. Due to the utilization of affine-linear cuts, we can use highly
efficient solvers which allows us to scale to complex combinatorial problems which are usually out
of reach for reinforcement learning.

We showcase the abilities of our method in a synthetic combinatorial environment, and a job-
scheduling problem. Our method shows superior performance over both a MILP and neural-network
baseline, while offering drastically faster convergence compared to a MINLP solver, in cases where
an analytical expression exists. To our knowledge this is the first reinforcement learning method that
allows arbitrary constraints to be enforced during training and inference.

9
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Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1):
25–57, April 2005. ISSN 1436-4646. doi: 10.1007/s10107-004-0559-y. URL http://dx.
doi.org/10.1007/s10107-004-0559-y.

Ron Zass and Amnon Shashua. Nonnegative sparse pca. In B. Schölkopf, J. Platt, and T. Hoffman
(eds.), Advances in Neural Information Processing Systems, volume 19. MIT Press, 2006.

Philip B. Zwart. Global maximization of a convex function with linear inequality constraints. Op-
erations Research, 22(3):602–609, 1974. ISSN 0030364X, 15265463. URL http://www.
jstor.org/stable/169509.

A OPTIMIZATION SPEED OVER TIME

We find that BOO implicitly learns to find solutions more efficiently. We assume this is because
we impose a 60s time budget on finding solutions during training time, since this is the expected
solving time for our problem class. This might implicitly regularize found policies towards simpler
solutions as more complex solutions run the risk of not being solvable to global optimality within

11

http://dx.doi.org/10.1038/s41586-023-06004-9
https://api.semanticscholar.org/CorpusID:258960714
https://api.semanticscholar.org/CorpusID:258960714
https://api.semanticscholar.org/CorpusID:267782606
https://api.semanticscholar.org/CorpusID:209324034
https://api.semanticscholar.org/CorpusID:209324034
https://api.semanticscholar.org/CorpusID:44095973
https://api.semanticscholar.org/CorpusID:44095973
https://api.semanticscholar.org/CorpusID:5692837
http://dx.doi.org/10.1007/s10107-004-0559-y
http://dx.doi.org/10.1007/s10107-004-0559-y
http://www.jstor.org/stable/169509
http://www.jstor.org/stable/169509


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

0 0.2 0.4 0.6 0.8 1

0

5

10

15

training time

so
lv

er
tim

e
(s

)

Pointer Network
ours

Figure 4: Time taken to find a solution.

the time budget. We assume this effect could be increased by explicitly including training time in
the objective, but investigating this is left for further research.

The reason that the pointer network increases in time to find a solution is because the model learns
to take advantage of the existing budget given by kTx ≤ b, which means it can place more items
xi = 1 into the feasible set, which then implies that one has to roll out the RNN over more timesteps,
leading to slower inference.
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