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Abstract

Ensembling multiple models has always been001
an effective approach to push the limits of ex-002
isting performance and is widely used in classi-003
fication tasks by simply averaging the classifi-004
cation probability vectors from multiple classi-005
fiers to achieve better accuracy. However, in the006
thriving open-source Large Language Model007
(LLM) community, ensembling methods are008
rare and typically limited to ensembling the full-009
text outputs of LLMs, such as selecting the best010
output using a ranker, which leads to underuti-011
lization of token-level probability information.012
In this paper, we treat the Generation of each013
token by LLMs as a Classification (GAC) for014
ensembling. This approach fully exploits the015
probability information at each generation step016
and better prevents LLMs from producing early017
incorrect tokens that lead to snowballing errors.018
In experiments, we ensemble state-of-the-art019
LLMs on several benchmarks, including exams,020
mathematics and reasoning, and observe that021
our method breaks the existing community per-022
formance ceiling. Furthermore, we observed023
that most of the tokens in the answer are simple024
and do not affect the correctness of the final025
answer. Therefore, we also experimented with026
ensembling only key tokens, and the results027
showed better performance with lower latency028
across benchmarks.029

1 Introduction030

Large Language Models (LLMs) have demon-031

strated remarkable capabilities in a wide range of032

natural language processing tasks (Achiam et al.,033

2023; Touvron et al., 2023). Over time, new and034

more powerful LLMs are continually being re-035

leased, pushing the boundaries of the LLM com-036

munity (Meta, 2024; Alibaba, 2024). Due to the037

diversity of data sources, architectures and train-038

ing methods, different LLMs have strengths and039

weaknesses in different tasks and contexts (Jiang040

et al., 2023). In addition to investing significant041
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Figure 1: Motivation of GAC. The upper part shows CV
classification ensemble, while the lower part illustrates
ensemble at one text generation step.

resources in training a superior LLM, ensembling 042

multiple existing models is another effective way to 043

break through the community performance ceiling 044

(Huang et al., 2016), especially given the current 045

trend in the open source LLM community to con- 046

tribute only model weights rather than training data 047

and procedures (AllenAI, 2024). 048

Taking computer vision (CV) classification as 049

an example, it is common to ensemble the output 050

probability vectors of multiple models (e.g. by aver- 051

aging) to achieve superior results (Krizhevsky et al., 052

2017). This approach remains effective even with 053
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CV Models on ImageNet Acc [%] ECE

EfficientNet-B1 78.55 0.072
RepGhostNet 78.81 0.053
PVTv2-B1 78.71 0.119

Ensembled CV Models (Averaged)

EfficientNet-B1 + PVTv2-B1 80.20↑1.49 -
EfficientNet-B1 + RepGhostNet 80.06↑1.25 -
EfficientNet-B1 + RepGhostNet

+ PVTv2-B1 80.62↑1.81 -

LLMs on MMLU Acc [%] ECE

Llama-3-70b-Instruct 79.68 0.095
Qwen1.5-72b-chat 77.79 0.089
Yi-34B-Chat 72.75 0.090

Table 1: Performance of various CV models on Ima-
geNet and LLMs on MMLU. ↑ indicates improvement
over a single model.

recent CV models. As shown in Tab.1, we selected054

several common CV models (Chen et al., 2022; Tan055

and Le, 2019; Wang et al., 2022) for ensembling056

and observed better accuracy on ImageNet (Deng057

et al., 2009) compared to using a single model.058

Similarly, the popular decoder-only LLM architec-059

ture generates text by producing tokens one by one,060

with each generation step resulting in a probability061

vector of the length of the vocabulary. Inspired062

by CV, we propose to treat each generation step063

as a classification task, and by ensembling mul-064

tiple models, we can achieve higher accuracy, as065

shown in Fig.1. There is already work that sim-066

plifies problems into binary tasks, exploiting the067

collective wisdom of LLMs and achieving better068

results (Schoenegger et al., 2024), demonstrating069

the feasibility of this approach.070

Another advantage is that early errors in LLMs071

often snowball into later errors (Zhang et al.,072

2023). Ensembling during generation helps pre-073

vent the generation of inaccurate tokens at each074

step, thereby reducing misleading cues for sub-075

sequent token generation. In this paper, we con-076

ducted experiments at several points in time be-077

tween November 2023 and June 2024, ensembling078

available state-of-the-art (SOTA) LLMs up to each079

of these points. We found that this approach signif-080

icantly outperformed any single model available at081

those times on five popular benchmarks involving082

subject examination, mathematics, reasoning, and083

knowledge-based QA.084

In addition, we found that for text generation085

it seemed unnecessary to ensemble every token.086

For example, for the question "What Andean ani-087

mal has banana-shaped ears?" shown in Fig.1, the 088

most critical part is for the LLM to generate the 089

key token "llama". The initial part of the answer 090

"It should be _" or "The animal is _" do not sig- 091

nificantly affect the correctness of the final answer. 092

Ideally, the step that produces the token "llama" is 093

the one we want to ensemble. 094

Studies in CV classification have also shown 095

that most samples are "simple" and can be cor- 096

rectly classified by most models (Wang et al., 097

2017), including cost-efficient ones, making the 098

use of expensive models wasteful. To address this, 099

CV classification used cascade inference (Jazbec 100

et al., 2024; Enomoro and Eda, 2021), where a 101

gate model passes a sample to a more powerful 102

model only if its confidence falls below a thresh- 103

old, thereby improving efficiency. Obviously, it is 104

very important for cascading that the confidence 105

of the gate model accurately reflects the accuracy. 106

To ensure that LLMs are also suitable as gate mod- 107

els, we measured the Expected Calibration Error 108

(ECE) (Guo et al., 2017) of CV models and LLMs 109

on ImageNet and MMLU (Hendrycks et al., 2020), 110

as shown in Tab.1. ECE is a metric that reflects the 111

difference between a model’s confidence and its ac- 112

curacy. We found that the ECE of CV models and 113

LLMs were close. Therefore, in this paper, we also 114

applied the cascade inference to LLMs by ensem- 115

bling only the "key" tokens to speed up generation. 116

Our experiments showed that this approach con- 117

sistently achieved better performance with lower 118

latency across different benchmarks. 119

2 Analysis and Prior Work 120

In this chapter, we review previous LLM ensemble 121

studies and their features, as well as the problems 122

our approach addresses. Previous studies can be 123

categorized as follows: 124

Output-level ensemble methods select multiple 125

candidate models and use their complete outputs 126

for ensembling. Jiang et al. (2023) trained an ad- 127

ditional ranking model (PairRanker) to score each 128

candidate output and select the best one. Lu et al. 129

(2023) and Shnitzer et al. (2023) trained a router to 130

select the most appropriate candidate model given 131

a question. However, these methods are limited to 132

the existing candidate outputs and become ineffec- 133

tive if all the outputs are incorrect. Other studies 134

have trained a fusion model to blend the outputs 135

(Jiang et al., 2023; Wang et al., 2023b), overcoming 136

the limitation of selecting only existing candidate 137
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outputs and often achieving superior results. How-138

ever, the generalization of the fusion model is a139

major challenge, and they cannot fully exploit the140

probability information from each generation step.141

Weight-level ensemble methods merge the142

weights of multiple models and are primarily used143

in multi-task learning (Yadav et al., 2024). The144

expectation is that the merged model will inherit145

capabilities across multiple tasks. However, a limi-146

tation is that the architectures of the models to be147

merged must be homologous, which limits the use148

of the capabilities of the LLM community. And it is149

rare to observe that the merged model outperforms150

the original models (Yu et al., 2023).151

Training-level ensemble like FuseLLM (Wan152

et al., 2024) uses the output probability vectors153

of multiple models during training to ensemble as154

labels, rather than one-hot labels. In effect, this155

is a specific form of distillation that allows the156

model being trained to gain more information from157

the probability outputs of the ensembled (teacher)158

models. However, distillation is mainly used to159

improve small models, making it difficult to further160

improve the SOTA LLMs.161

Our work can overcome the above limitations162

by ensembling at each generation step, allowing163

the output not to be confined to the original can-164

didate output space and homologous architectures,165

while fully exploiting the probability information166

at each step. Our experiments in Sec.4 will also167

show that the ensemble consistently outperforms168

any single model, even SOTA LLMs. The main169

challenge, however, is that different LLMs typically170

have inconsistent vocabularies, leading to different171

dimensions in the probability vectors produced by172

different models. The most intuitive solution is to173

take the union of the vocabularies of the ensembled174

LLMs, denoted V U , which includes all tokens from175

the participating models. Then, at each generation176

step, the output is first mapped to this union space177

R|V U | before ensembling.178

A potential problem with this approach is that179

different models may tokenize the same word dif-180

ferently, leading to conflicts. However, most main-181

stream LLMs use BPE or BBPE (Sennrich et al.,182

2015; Wang et al., 2020) to train tokenizers on sam-183

pled corpora, which tend to have similar sources184

(e.g. CommonCrawl) and distributions. This re-185

sults in consistent tokenization for common words.186

For example, both Qwen1.5 and Llama3 (Bai et al.,187

2023; Meta, 2024) tokenize the word " alphabeti-188

cally" into ["Ġalphabet", "ically"]. If both models189
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Figure 2: The rate of identical tokenization for Oxford
5000 common words between different LLMs.

intend to output this word, they will assign a higher 190

probability to "Ġalphabet" first. We selected sev- 191

eral popular LLMs (Young et al., 2024; Databricks, 192

2024; Almazrouei et al., 2023) and tokenized 5,000 193

commonly used English words (Oxford, 2018), and 194

then calculated the proportion of identical tokeniza- 195

tion results between each pair of LLMs, as shown 196

in Fig.2. The proportion is above 90% for all pairs, 197

indicating that such conflicts can be ignored in most 198

cases. 199

3 Proposed Method 200

In this section, we will first introduce the overall 201

ensemble process of our GAC framework, and then 202

explain the details in the following subsections. 203

3.1 Overall Process of GAC 204

When generating text, LLMs output a probability 205

vector of the same dimension as their vocabulary. 206

Given n LLMs to be ensembled, we first take the 207

union of their vocabularies and create a mapping 208

matrix that can project the probability vectors to 209

the union dimensions (Sec.3.2). At each generation 210

step, all LLMs produce outputs that are mapped to 211

the union vocabulary dimensions and ensembled to 212

sample the next token. The tokenizer of each LLM 213

then converts the sampled token into token IDs for 214

the next step (Sec.3.3). As mentioned in Sec.1, not 215

all tokens have the necessity for ensembling, so 216

we also try to ensemble only certain key tokens 217

(Sec.3.4). 218
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Figure 3: Overview of GAC. The left side shows the creation of the mapping matrix, and the right side shows the
ensembling during text generation with two LLMs.

3.2 Creating the Union Mapping219

Given {LLM1,LLM2, . . . ,LLMn} to ensemble,220

with their respective vocabularies {V 1, V 2, . . . ,221

V n}, we first take the union of the vocabularies:222

V U =
n⋃

i=1

V i. (1)223

During this process, we record the positions of224

tokens from V i in V U and create corresponding225

mapping matrices Mi ∈ R|V i|×|V U |.226

3.3 GAC Ensembling227

At the start of text generation, we convert the input228

prompt into token ID sequences for each LLM.229

We denote the tokenizer of LLMi as T i : text →230

(τ1, τ2, . . . , τm), which converts the input text into231

a sequence of token IDs. We calculate:232

I i = T i(prompt) for i = 1, . . . , n (2)233

where I i is the input token ID sequence for LLMi.234

For each generation step, we input I i into LLMi235

to obtain pi(· | I i) ∈ R|V i|, which represents the236

probability vector for the next token. These vectors237

are then mapped to the union vocabulary dimen-238

sions and averaged:239

q(·) = 1

n

n∑
i=1

pi(· | I i) ·Mi, (3)240

where q(·) is the ensemble probability vector. In241

Sec.4.3, we experimented with different ensemble242

weights and decided to use the average. We then243

sample a token x ∼ q(·) as the result of this step.244

Finally, the sampled token is converted back into245

token IDs for each LLM and appended to I i:246

I i ← I i⌢T i(x) for i = 1, . . . , n (4)247

We repeat (3) and (4) until the stopping criteria 248

are met, such as outputting an end-of-sentence to- 249

ken or reaching the maximum length, as shown in 250

Fig.3. In our implementation, different LLMs run 251

in parallel on different GPUs, so the duration of 252

each step is equal to the time taken by the slow- 253

est LLM. Since we have not modified a complete 254

forward pass, our approach is compatible with tech- 255

niques such as vLLM, DeepSpeed, quantization, 256

and hardware optimizations (Kwon et al., 2023; 257

Rasley et al., 2020). 258

3.4 Ensembling Key Tokens with Threshold 259

As mentioned in the last part of Sec.1, most tokens 260

do not significantly affect the correctness of the re- 261

sponse. From Tab.1, we can see that LLMs and CV 262

models have similar ECE levels, suggesting that 263

the confidence scores of LLMs may reflect accu- 264

racy to some extent. Therefore, we also experiment 265

with ensembling only the tokens with confidence 266

below a threshold t. We choose a model as the gate, 267

denoted LLMg, and use its maximum probability 268

at each step as the confidence score. During the 269

ensemble, we replace the original (3) with: 270

q(·) =

{
1
n

∑
i p

i(· | I i) ·Mi if max(pg(· | I g)) ≤ t

pg(· | I g) ·Mg otherwise.
(5) 271

Note that apart from LLMg, the other LLMs are 272

not computed at every step, so their KV caches 273

become stale. While there has been research using 274

partial KV caches (Barad et al., 2023), for simplic- 275

ity our work disables the KV caches of all LLMs 276

except LLMg. This is an area for improvement and 277

is listed in our future work. 278
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4 Experiments279

4.1 Overview280

In this section, we first present the experimental281

setup, including the benchmarks and hardware used282

(Sec.4.2). We then test the effects of different en-283

semble weights for GAC (Sec.4.3) and compare it284

with other methods (Sec.4.4). We also select SOTA285

LLMs available at different times for ensembling to286

explore the performance ceiling at each time period287

(Sec.4.5). Finally, we experiment with thresholded288

ensembling to explore variations in latency and289

performance (Sec.4.6).290

4.2 Experimental Settings291

Benchmarks. GAC is not limited to specific tasks,292

so we tested it as broadly as possible. We selected293

a total of five benchmarks. For general capabilities,294

we chose MMLU (Hendrycks et al., 2020). For295

maths, we utilized GSM8K (Cobbe et al., 2021).296

For reasoning, we employed BBH (Suzgun et al.,297

2023). For knowledge capabilities, we included298

TriviaQA (Joshi et al., 2017) and NaturalQues-299

tions (NQ) (Kwiatkowski et al., 2019). Note that300

all scores, including those for individual models,301

were computed locally under the same environment302

to ensure fairness1, using lm-evaluation-harness2303

v0.4.1 (Gao et al., 2023).304

Hardware and Latency. Each LLM was loaded305

on 1(n) A100 GPU(s) according to its memory re-306

quirements3, using naive model parallelism (Hug-307

gingFace, 2024) without optimization for inference.308

During ensembling, different LLMs were loaded309

on separate GPU(s) and executed in parallel, man-310

aged and communicated via Ray (Moritz et al.,311

2018). We also recorded the latency (ms/token).312

Each model performs a "dry run" after being loaded313

onto the GPU, generating 1024 tokens to warm up314

CUDA before experimentation, following the prac-315

tice of Mehta et al. (2024).316

4.3 Different Ensemble Weights317

Before proceeding with further experiments, we318

tested different ensemble weights for GAC. We319

used a simple averaging of the probabilities from320

each model in Eq.3. We now replace Eq.3 by321
1∑
i w

i

∑
iw

ipi(· | I i)Mi, where wi is the ensem-322

ble weight for LLMi. We set wi separately to each323

1Please see Appendix.A for more benchmarks details.
2https://github.com/EleutherAI/lm-evaluation-harness
3We listed each model and its hardware in Appendix.B.

Model Acc [%] ECE

OpenChat-3.5-0106 64.53 0.0833
Qwen1.5-14B-Chat 67.20 0.1312
SOLAR-10.7B-Instruct-v1.0 64.48 0.2884

Yi-34B-Chat 72.75 0.0903
Qwen1.5-32B-Chat 75.12 0.1003
Nous-Hermes-2-Mixtral-8x7B-DPO 72.65 0.0789

Table 2: Two sets of LLMs of different sizes on MMLU.
Smaller models on top, larger models on bottom.

Ensemble weights:

Ensemble weights:

(a) Ensemble results for small models

(b) Ensemble results for large models

Figure 4: Results of GAC ensemble with different
weights for models from Tab.2. Smaller models ensem-
bles on top, larger ones on bottom. The x-axis shows
names participating in the ensemble (abbreviated).

LLM’s score on MMLU, the MMLU score minus 324

the ECE and 1 (i.e. averaging). We selected two 325

sets of LLMs (Wang et al., 2023a; Kim et al., 2023; 326

Young et al., 2024; Bai et al., 2023; NousResearch, 327

2024a) listed in Tab.2 with different sizes for GAC 328

ensemble. The results on MMLU are shown in 329

Fig.4. We observed no significant differences be- 330

tween the different weights, so for simplicity we 331

decided to use averaging. 332

4.4 Comparison with Other Methods 333

Baselines. We compared GAC with existing meth- 334

ods. First, we considered LLM Blender (Jiang 335

et al., 2023), which employs PairRanker to rank the 336

outputs of candidate LLMs and GenFuser to fuse 337

these outputs. However, we found that GenFuser 338

refused to answer a significant proportion of the 339

questions in our chosen benchmarks. We therefore 340

only used PairRanker to ensure fairness. We also 341

5
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Id Models MMLU GSM8K BBH TriviaQA NQ Avg. Latency

1 openchat_3.5 63.87 68.46 47.96 68.12 29.75 55.63 28.01ms/token
2 Nous-Hermes-2-SOLAR-10.7B 64.88 72.86 49.92 71.33 32.21 58.24 50.89ms/token

Ensemble Results for the Above Two Models (openchat and SOLAR)

3 LLM Blender (PairRanker) 64.23 74.07 50.18 70.55 32.55 58.32 57.86ms/token
4 OAssistRM 64.87 72.93 49.02 70.06 31.64 57.70 55.62ms/token

5 UltraRM 64.94 75.51 50.65 71.23 32.03 58.87 74.51ms/token

6 GAC (ours) 66.51 74.30 51.19 72.50 33.82 59.66 51.32ms/token

7 FuseLLM 63.94 65.50 46.32 64.57 29.06 53.88 28.31ms/token

8 GACt=0.5
7.68% (ours) 65.14 73.18 50.32 69.68 31.75 58.01 31.34ms/token

9 Mixtral-8x7B-Instruct-v0.1 70.89 66.82 49.84 76.54 34.35 59.69 96.64ms/token
10 Yi-34B-Chat 72.75 68.76 50.88 70.01 29.81 58.44 67.96ms/token

Ensemble Results for the Above Two Models (Mixtral and Yi)

11 LLM Blender (PairRanker) 72.69 69.59 51.70 72.37 32.24 59.72 105.21ms/token
12 OAssistRM 73.34 70.15 51.91 72.79 30.69 59.78 99.75ms/token
13 UltraRM 69.49 71.09 52.27 73.82 32.36 59.81 114.57ms/token

14 GAC (ours) 74.83 71.21 52.64 75.60 33.52 61.56 98.13ms/token

Table 3: Results of comparison with other methods. Upper and lower halves represent different ensemble com-
binations. Blue indicates the best result for each ensemble. For id 8, GAC bottom right shows ensembled token
proportion, top right shows threshold.

included other rankers, such as OAssistRM4 (Köpf342

et al., 2024) and UltraRM (Cui et al., 2023), which343

we ran in parallel on the GPUs hosting the ensem-344

ble LLMs to ensure low latency. These rankers345

scored the outputs and selected the best answers.346

Furthermore, we included the FuseLLM (Wan et al.,347

2024) (OpenChat-3.5-7B-Solar5), which uses prob-348

ability information from multiple models during349

training for distillation.350

Models for Ensemble. We chose two sets of351

models of different sizes. The smaller models in-352

cluded openchat-3.5 (Wang et al., 2023a) and Nous-353

Hermes-2-SOLAR-10.7B (NousResearch, 2024b)354

(teacher models for OpenChat-3.5-7B-Solar dis-355

tillation). Larger models included Mixtral-8x7B-356

Instruct-v0.1 and Yi-34B-Chat (Jiang et al., 2024;357

Young et al., 2024).358

Experimental Results. We ensemble the above359

two sets of LLMs using both our and baseline meth-360

ods, and present the results in Tab.3. Our method361

showed superior performance with the lowest la-362

tency for both combinations (row ids 6 and 14).363

For row id 8, we used openchat-3.5 as the gate364

model with a threshold of 0.5 (Eq.5), resulting365

in only 7.68% of tokens being ensembled. This366

slightly increased the latency from 28.01 to 31.34367

ms/token, but achieved a performance close to368

4https://huggingface.co/OpenAssistant/reward-model
5https://huggingface.co/FuseAI/OpenChat-3.5-7B-Solar
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Figure 5: Ensemble results of CV models with different
accuracy gaps on ImageNet. Models’ accuracies are
next to their names. Each cell shows the ensemble
accuracy, with the improvement over the best single
model in parentheses.

that of SOLAR-10.7B (average score of 58.01 vs. 369

58.24), whose latency is 50.89 ms/token, further 370

demonstrating the effectiveness of our method. 371

4.5 Breaking the Ceiling 372

In this experiment, we aimed to break the perfor- 373

mance ceiling of the open source LLM community 374

at different times. We chose the SOTA LLMs re- 375

leased between November 2023 and June 2024, as 376

listed in the upper part of Tab.4, excluding mod- 377

els with more than 100 billion parameters due to 378

hardware limitations. We then ensemble the SOTA 379

LLMs available at different times, as shown in row 380

ids 6-10, and observe an improvement of 3.13% 381

to 4.47% over the best single model at each time. 382

An exception is 2024/04/18, when Llama-3-70B- 383

Instruct was released and significantly improved 384

performance over the previous SOTA LLMs (aver- 385
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Id Models MMLU GSM8K BBH TriviaQA NQ Avg. Date Latency

1 Yi-34B-Chat 72.75 68.76 50.88 70.01 29.81 58.44 2023/11/08 67.96ms/token
2 Mixtral-8x7B-Instruct-v0.1 70.89 66.82 49.84 76.54 34.35 59.69 2023/12/11 96.64ms/token
3 Qwen1.5-72B-Chat 77.79 83.33 48.94 65.69 27.02 60.55 2024/02/04 102.11ms/token
4 Llama-3-70B-Instruct 79.68 90.00 57.13 79.12 35.57 68.30 2024/04/18 150.32ms/token
5 Qwen2-72B-Instruct 82.30 89.70 62.57 73.58 33.11 68.25 2024/06/07 113.91ms/token

Ensemble the Above Models with GAC

6 Yi + Mixtral 74.83 71.21 52.64 75.60 33.52 61.56↑3.13% ~2023/12/11 98.13ms/token
7 Qwen1.5-72B + Yi 79.83 77.27 52.05 70.88 33.80 62.77↑3.65% ~2024/02/04 103.69ms/token
8 Qwen1.5-72B + Mixtral 79.55 75.76 54.19 75.71 31.09 63.26↑4.47% ~2024/02/04 112.83ms/token
9 Llama-3 + Qwen1.5-72B 81.49 87.06 56.73 78.60 36.01 67.98↓0.47% ~2024/04/18 153.96ms/token
10 Qwen2-72B + Llama-3 83.54 90.91 63.99 79.29 37.65 71.08↑4.06% ~2024/06/07 151.56ms/token

Task-specific Top-2 Model Ensemble with GAC

11 Top-2 (~2024/04/18) 81.49 87.96 58.64 80.84 37.95 69.38↑1.58% ~2024/04/18 -
12 Top-2 (~2024/06/07) 83.54 90.91 63.99 80.84 37.95 71.45↑4.61% ~2024/06/07 -

Table 4: Ensemble of available SOTA LLMs from different periods. The top part lists the individual models, while
the bottom part shows the ensemble results (model names abbreviated). ↑ indicates the percentage improvement
over the individual models.

age score increased from 60.55 of Qwen1.5-72B-386

Chat to 68.30), resulting in a drop in performance387

after ensemble due to the large gap.388

However, with the release of Qwen2-72B-389

Instruct, which showed comparable performance390

to Llama-3-70B-Instruct, the ensemble again led to391

significant improvements (row id 10). In rows 11392

and 12, we ensemble the top two best-performing393

models for each benchmark at the two most re-394

cent times, including the challenging time of395

2024/04/18, and observe performance gains with396

this task-specific top-two ensemble even on 04/18397

(row id 11). Finally, row id 12 shows the best re-398

sults available for the open source community on399

2024/06/07. By pushing the boundaries of the com-400

munity, we can narrow the gap with proprietary401

models and promote the democratization of LLMs.402

Since ensembling models with large perfor-403

mance differences could lead to performance degra-404

dation (row id 9 in Tab.4), we also tested this hy-405

pothesis with CV models. We ensemble PVTv2-B1406

(Wang et al., 2022) with different sizes of Effi-407

cientNet (Tan and Le, 2019) on ImageNet (Deng408

et al., 2009) by averaging their outputs, as shown409

in Fig.5. We observed that as the accuracy gap410

between the two models increased, the ensemble411

gains decreased and eventually became negative.412

This suggests that it is advisable to ensemble mod-413

els with similar levels of performance.414

4.6 Ensemble with Threshold415

In this experiment, we used the thresholded ensem-416

ble (Sec.3.4) to explore variations in latency and417

performance. We selected models of different sizes 418

(Abdin et al., 2024; Meta, 2024; Bai et al., 2023), 419

listed in the upper part of Tab.5, pairing a smaller 420

model with a larger model and using the smaller 421

model as the gate model for the ensemble. We 422

aimed to match the performance (average score) 423

of Qwen1.5-72B-chat and Qwen1.5-32B-chat with 424

our ensemble, but with lower latency, and the re- 425

sults are shown in row ids 6-9. Interestingly, even 426

when combining the two Qwen models themselves 427

with a threshold of 0.5 (row id 7), where 6.31% of 428

the tokens were ensembled, we observed slightly 429

higher performance than Qwen1.5-72B-chat (aver- 430

age score increased from 60.55 to 60.96) and lower 431

latency (102.11 to 77.86 ms/token). We believe 432

this is a promising new way to speed up inference. 433

We also observed lower latency in row ids 6, 8 434

and 9 of Tab.5 with comparable performance to 435

Qwen1.5-72B-chat or Qwen1.5-32B-chat. In addi- 436

tion, similar trends were observed in the MT-Bench 437

(Zheng et al., 2023) using LLM as judge (GPT- 438

4-0613) in Tab.6, with scores calculated using 439

FastChat6 in our local environment. For the com- 440

binations of Llama-3-8B-Instruct or Phi-3-mini- 441

4k-instruct with Llama-3-70B-Instruct, we directly 442

adopted the output of the larger model if the proba- 443

bility of the smaller model was below the threshold. 444

This is based on our observations in Fig.5, where 445

ensembling models with large performance gaps 446

resulted in reduced performance. 447

6https://github.com/lm-sys/FastChat
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Id Models Threshold MMLU GSM8K BBH TriviaQA NQ Avg. Latency

1 Llama-3-70B-Instruct - 79.68 90.00 57.13 79.12 35.57 68.30 150.32ms/token
2 Llama-3-8B-Instruct - 65.08 76.26 44.72 67.67 26.48 56.04 34.30ms/token
3 Phi-3-mini-4k-instruct - 67.11 79.00 47.26 55.78 17.98 53.43 31.82ms/token
4 Qwen1.5-72B-chat - 77.79 83.33 48.94 65.69 27.02 60.55 102.11ms/token
5 Qwen1.5-32B-Chat - 75.12 75.97 53.89 62.57 22.96 58.10 59.01ms/token

Ensemble with threshold to match Qwen1.5-72B-Chat performance (avg. 60.55)

6 Llama-3-8B + Llama-3-70B9.30% 0.5 69.51 82.86 47.65 74.35 33.74 61.62 68.97ms/token
7 Qwen1.5-32B + Qwen1.5-72B6.31% 0.5 75.53 81.82 55.87 63.91 27.69 60.96 77.86ms/token

Ensemble with threshold to match Qwen1.5-32B-Chat performance (avg. 58.10)

8 Llama-3-8B + Llama-3-70B6.98% 0.45 68.06 81.79 46.66 73.43 33.74 60.74 58.99ms/token
9 Phi-3 + Llama-3-70B7.59% 0.5 68.46 78.57 50.34 69.08 29.51 59.19 51.61ms/token

Table 5: Thresholded ensemble results. The top lists individual models, while the bottom shows ensemble
combinations (model names abbreviated). The percentage in the bottom right of the combination names represents
the proportion of tokens ensembled.

Models ThresholdMT-Bench Latency

Llama-3-8b-Instruct - 8.03 33.75ms/token
Llama-3-70b-Instruct - 8.80 128.50ms/token

Qwen1.5-72b-chat - 8.33 87.39ms/token
GAC (Llama-3-8b +
Llama-3-70b)10.10%

0.55 8.34 69.28ms/token

Qwen1.5-32b-chat - 8.12 58.49ms/token
GAC (Llama-3-8b +
Llama-3-70b)7.24%

0.5 8.16 57.28ms/token

Table 6: Thresholded ensemble on MT-Bench. GAC
shows the ensemble combinations (model names abbre-
viated), with the proportion of tokens ensembled shown
at the bottom right.

5 Conclusion448

In this paper, we present a token-level ensembling449

framework called GAC, which fully exploits the450

probability information at each generation step. In451

our experiments, we have surpassed the perfor-452

mance ceiling of open-source SOTA LLMs avail-453

able at different time periods (Sec.4.5), further nar-454

rowing the gap between open-source and propri-455

etary models. This progress promotes the democra-456

tization of LLMs and provides new motivations for457

future research, enabling better exploitation of col-458

lective intelligence. In addition, we experimented459

with ensembling just a few tokens and found that460

this approach can achieve better performance with461

lower latency (Sec.4.6), opening up new avenues462

for accelerating inference.463

Contemporaneous Works464

We have noticed several contemporaneous works465

related to our research, all of which aim to address466

the vocabulary discrepancy between different mod- 467

els. Xu et al. (2024) proposed EVA, which trains 468

a projection matrix between each pair of LLMs, 469

using the overlapping tokens from their vocabu- 470

laries as a bridge. DEEPEN (Huang et al., 2024) 471

converts the output probabilities to a relative repre- 472

sentation using anchor tokens before ensembling, 473

and then inverts back to the original model’s vocab- 474

ulary space using gradient descent, which requires 475

an additional 7% to 29% of time per generation 476

step. In contrast, our method requires no additional 477

training and only a single matrix multiplication and 478

tokenization for each model during ensembling, 479

with minimal time cost. 480

Limitation 481

Like other ensemble methods, the approach pro- 482

posed in this paper requires more computational 483

resources. Although different models can be run 484

in parallel on separate GPUs, so that latency only 485

depends on the slowest model, the overall compu- 486

tational load is additive, raising the threshold for 487

use. 488
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A Benchmarks748

This paper uses the lm-evaluation-harness v0.4.1.749

The task names in the repo corresponding to each750

of the benchmarks we used are as follows:751

MMLU: mmlu_flan_n_shot_generative, 5-shots752

GSM8K: gsm8k, 5-shots.753

BBH: bbh_fewshot, 3-shots.754

TriviaQA: triviaqa, 5-shots.755

NQ: nq_open, 5-shots.756

B Hardware Specifications 757

Models Hardware

Phi-3-mini-4k-instruct 1x A100
Llama-3-8B-Instruct 1x A100
openchat_3.5 1x A100
OpenChat-3.5-0106 1x A100
Qwen1.5-14B-Chat 1x A100
SOLAR-10.7B-Instruct-v1.0 1x A100
Nous-Hermes-2-SOLAR-10.7B 1x A100
Yi-34B-Chat 1x A100
Qwen1.5-32B-Chat 1x A100
Nous-Hermes-2-Mixtral-8x7B-DPO 2x A100
Mixtral-8x7B-Instruct-v0.1 2x A100
Llama-3-70B-Instruct 2x A100
Qwen1.5-72B-Chat 3x A100
Qwen2-72B-Instruct 3x A100

Table 7: Models and Hardware
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