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Abstract

Self-Supervised Learning (SSL) has become a powerful solution to extract rich
representations from unlabeled data. Yet, SSL research is mostly focused on
clean, curated and high-quality datasets. As a result, applying SSL on noisy data
remains a challenge, despite being crucial to applications such as astrophysics,
medical imaging, geophysics or finance. In this work, we present a fully self-
supervised framework that enables noise-robust representation learning without
requiring a denoiser at inference or downstream fine-tuning. Our method first
trains an SSL denoiser on noisy data, then uses it to construct a denoised-to-
noisy data curriculum (i.e., training first on denoised, then noisy samples) for
pretraining a SSL backbone (e.g., DINOv2), combined with a teacher-guided
regularization that anchors noisy embeddings to their denoised counterparts. This
process encourages the model to internalize noise robustness. Notably, the denoiser
can be discarded after pretraining, simplifying deployment. On ImageNet-1k with
ViT-B under extreme Gaussian noise (¢ = 255, SNR = 0.72 dB), our method
improves linear probing accuracy by 4.8% over DINOv2, demonstrating that
denoiser-free robustness can emerge from noise-aware pretraining. The code is
available at https://github. com/wenquanlu/noisy_dinov2.

1 Introduction

Self-supervised methods like DINOv2 [31} [7, [16} 9] have demonstrated remarkable success by
leveraging unlabeled data to learn visual representations able to solve many tasks in zero or few
shot manners [3]. However, the performances of those methods heavily rely on the availability
of clean and high-quality datasets. As a result, some prior works have focused on building data
curation pipelines for self-supervised learning (SSL) [37, [1]. But data curation disregards samples
and introduces additional design questions and thus begs the following question:

Can we enable off-the-shelf SSL models like DINOV2 to learn from highly corrupted data?

In real-world scenarios, datasets often contain noise that can severely degrade the performance
of learned representations, and clean references required for supervised denoising are typically
unavailable due to sensor limitations, privacy constraints, or acquisition costs.

This is especially common in medical imaging [28| 43|, [27]], astrophysics [30], geological rock
imaging [6], remote sensing [17] and finance [29]. For example, the earth radar images taken by ESA
Sentinel-1 [14] comes with speckle noise, and the clean data for supervised denoising is difficult to
acquire since it requires better sensor and atmospheric conditions. As another example, Sloan Digital
Sky Survey (SDSS) imaging in the COSMOS region contains significant sky noise [30] which can
obscure faint celestial objects. Despite advancements in SSL, methods like DINOvV2, as shown in
Figure [3] still yield significant reduction in performance when trained directly on corrupted datasets.

To address the challenges outlined above, a trivial baseline is a denoiser-preprocessed pipeline, which
trains a self-supervised denoiser on the noisy data first, then trains the SSL models on the denoised
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Figure 1: Comparison of downstream pipelines with (left) and without (right) denoisers. The denoiser-
free pipeline shows numerous advantages in efficiency, simplicity and robustness.

images. In downstream tasks, the SSL denoiser always serves as a preprocessor because the SSL
model is only trained on denoised data thus cannot handle noisy inputs. While effective, this pipeline
adds substantial inference latency, fine-tuning overhead, and deployment complexity (Figure|[T} left).
Instead, we explore training strategies that enable an off-the-shelf SSL backbone (e.g., DINOv2) to
ingest noisy inputs directly, thereby ditching the denoiser during downstream use (Figure [T] right). To
the best of our knowledge, this problem has little-to-no prior work in the existing literature. We take
a first step by corrupting ImageNet [[12]] with synthetic noise that mirrors real-world degradations,
providing a controlled yet challenging testbed for systematic evaluation and benchmarking.

In this paper, we propose a novel, fully self-supervised approach to learn noise-robust representations.
Our approach begins similarly as the denoising pipeline baseline: train a SSL denoiser to create a
denoised version of the dataset. We then employ a curriculum [5] to train DINOvV2 on this denoised
dataset for robust feature learning and subsequently restart training on the original noisy dataset to
adapt the model to real-world noise. At inference time or downstream task finetuning, the denoiser
can be discarded as the SSL model has learned to extract useful representations directly from noisy
inputs—without relying on external denoising. In addition, We further introduce a regularization
loss using a denoised teacher to guide the student during noisy training, encouraging alignment
between noisy and denoised embeddings and improving robustness under extreme noise. Extensive
experiments show that our method significantly improves classification and instance recognition
performance over DINOv?2 trained directly on noisy data. Remarkably, our framework achieves
results comparable to, and sometimes exceeding, those obtained by the denoising pipeline baseline.
In summary, we make the following contributions:

1. We propose a thorough sensitivity analysis of the latest SOTA SSL method (DINOv2) to noise
being present in its pretraining data, a previously unexplored aspect in the literature. We identify that
the method is sensitive to its pretraining data quality, especially in low-resource regimes (e.g., short
training schedules or smaller datasets).

2. We find that, under mild noise levels, increasing training duration and data size can substantially
mitigate performance degradation, but never fully recover the clean-data baseline. This offers
actionable guidance for practitioners to deal with noisy data during pretraining.

3. We introduce a new training paradigm for enabling models like DINOV2 to learn robust represen-
tations directly from noisy pretraining data. By combining noise curriculum learning with a novel
denoised regularization loss, our method achieves fully denoiser-free downstream fine-tuning and
inference while maintaining strong performance across tasks. As shown in Figure 2] our methods,
DINOv2 w/ NC and DINOv2 w/ NCT improve significantly over the DINOv2 baseline, and closely
matches the denoiser-preprocessed pipeline N2N + DINOv2.

2 Related Work

Self-Supervised Learning for Images. A large body of work has focused on learning visual
representations using self-supervised methods [[15} 46} 33| 9} [10]. Among them, joint-embedding
methods have emerged as state-of-the-art, training models to produce similar embeddings for different
views of the same image. These methods rely on architectural and loss regularizations to prevent
representation collapse, such as enforcing cross-correlation constraints [44] or using momentum
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Figure 2: Linear probing accuracies and noise examples on ImageNet-100 dataset. The denoiser-
preprocessed baseline N2N + DINOv2 and our denoiser-free methods DINOv2 w/ NC and NCT
significantly improve over the DINOv2 baseline. Note that DINOv2 w/ NC and N2N + DINOv2
overlap at moderate noise levels, and DINOv2 w/ NCT is only evaluated at Gaussian o = 255.

Linear Probing Accuracy

encoders [[16} 7,47, [11]]. DINOv2 [31]}, used in this work, is a joint-embedding method that achieves
state-of-the-art performance on ImageNet classification and many evaluation benchmarks.

Self-Supervised Image Denoising learns to denoise noisy images without access to noisy-clean
pairs. Noise2Noise [26] uses aligned noisy-noisy pairs derived from the same clean image to train a
U-Net [35] model. However, obtaining such pairs is not always practical. Neighbor2Neighbor [20], as
used in this paper, mitigates such issue by sampling two subimages from a noisy image which serve as
a noisy-noisy pair [32]]. It achieves competitive performance on a range of denoising benchmarks [45]].
Another line of work uses blind-spot networks (BSN) [24} [8] to learn denoise without clean-image
supervision. BSN uses the same noisy image as its inputs to supervise its outputs. It either applies
masks in inputs [21} 4] or masks in network structure [22,[42] to prevent model collapse.

Self-Supervised Representation Learning for Noisy Data. There is very limited work on learning
noise-robust features for image data. Most of the past works concern noisy time-series data, such as
speech 2 and EEG data [48]. demonstrates applying time series SSL methods on
noisy datasets yields poor performance, and proposes denoiser-driven contrastive learning by using
a conventional denoiser to create noised-conditioned positive and negative pairs. This approach of
leveraging a denoiser to learn noise-robust representation shares similar motivations as our method.

3 Noise Robust Self-Supervised Learning

In this section, we introduce our self-supervised method for robust representation learning on noisy
image data. We start with a two-stage baseline, then moving towards fully self-supervised, denoiser-
free noise robustness through curriculum learning and regularization.

3.1 Preliminary: Curriculum Learning Background and Denoiser-Preprocessed Baseline

Curriculum learning refers to a training scheme that trains a machine learning model from easier to
harder data that imitates the learning order in human curricula. This often leads to faster convergence
and better performance. The seminal work [5] formally defines a curriculum as a sequence of
training distributions (Q1, ..., Qt, ..., Q). Each distribution @, is a reweighting of the target training
distribution P(z): Q¢(z) x Wi(2)P(z) Vz : [Qi(z)dz = 1 such that following conditions
are satisfied: (1) the entropy of distributions increase over time, i.e., H(Q:) < H(Q:+1). This
implies that the model sees more diverse or complex examples as training progresses. A rising
entropy indicates reduced certainty and increased difficulty. (2) Unnormalized weighting for any
example increases over time, i.e., Wy (z) < Wy11(2) Vz. (3) Final distribution equals the target, i.e.,
Qr(z) = P(z). In practice, the first condition is most widely preserved, while the latter two are
often relaxed to allow more flexible curricula [38]. In this work, we adopt this perspective and design
our training schedule to follow an entropy-based curriculum from easy to hard examples.

N2N + DINOv2: Joint Self-Supervised Denoising and Representation Learning. As a starting
point, we consider a denoiser-preprocessed baseline, an upper bound that combines a self-supervised
denoiser with a joint-embedding SSL model. Given a noisy dataset X, we first train a denoiser fp on
X and generate a denoised set Xgenoisea = fo(X ). This is used to train a self-supervised learner gy,
such as DINOv2. While effective, this pipeline requires an explicit denoiser in all downstream tasks.
We use Neighbor2Neighbor [20] as the denoiser for its robustness across noise levels, but emphasize
that the pipeline is denoiser-agnostic, a key benefit also shared by our later proposed methods. In
practice, the denoiser should be selected based on the domain-specific noise characteristics.
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Figure 3: Overview of DINOv2 w/ NC which comprises SSL denoising, SSL representation learning
and downstream tasks. A SSL denoiser is trained to denoise the data [28]]. Then, DINOv?2 is trained
on the denoised data for early epochs followed by restarting training on noisy data. Lastly, after some
fine-tuning, downstream tasks are performed directly on noisy inputs with an added prediction head.

3.2 DINOv2 w/ NC (Noise Curriculum): Curriculum Learning for Self-Supervised
Representation Learning

Ideally, instead of relying on a separate denoiser, the representation model should develop robustness
to noise on its own, enabling an end-to-end training setup in downstream tasks. Figure [3|outlines
our curriculum learning approach to achieve this. Following the definition in Section 3.1} we design
a curriculum (Q1, Q<) that satisfies the key requirement H(Q)1) < H(Q2). Here, Q; corresponds
to the distribution over denoised images Xgenoised, Which lies in a more structured, lower-entropy
subspace. Q2 corresponds to the distribution over the original noisy images X, which has higher
entropy due to the injected stochastic corruption that expands the support of the data distribution.

Such a curriculum is further motivated by the following toy example. We consider a simple MLP
with 1 hidden layer trained on MNIST [23]] using ReLLU activation, and optimize the following
self-supervised joint embedding loss Equation (T)) that applies a soft identity constraint on empirical
covariance matrix, which is a canonical formulation that aligns embeddings of different augmented
views while preventing representational collapse:

. 1« 9 . 2
w5 3 En v lmo(ra(o:)) = mofra@)l + A [£0 = 4 M
where 3 = LS (2= 2) (2 — 2) T, 2 = mg(7(x;)), m is the MLP and 7 is the augmentation.

Under Gaussian noise (o = 0.4 - 255), we observed that: Training and linear probing on the clean
train set (50 epochs each) yields 91.21 + 0.36% (1-sigma) accuracy on the clean test set. Training
and linear probing on the noisy train set (50 epochs each) yields 64.55 + 3.47% on the noisy test set.
Surprisingly, curriculum learning (training 30 epochs on clean, then 20 on noisy), followed by 50
epochs of linear probing on noisy, recovers performance to 83.05 &+ 0.45% on the noisy test set. This
shows that the model can adapt to the noisy data without forgetting what it learned from the clean
phase. The significant recovery in performance (see Appendix Figure[6)), even with a simple MLP
and vector data, suggests that curriculum learning encourages the model to internalize noise-robust
features. We now build on this intuition to scale our method to complex vision models like DINOv2:

Denoised Pretraining: We start with an initialized self-supervised model gy (DINOv2) for rep-
resentation learning. We train gg on the denoised set Xgenoised fOr k epochs to establish a stable
initialization that captures the underlying structure of the data while reducing the impact of noise.
Noise Curriculum Transition: Using the weights learned in the first k epochs, we restart training on
the original noisy set X until convergence. Here ‘restart’ means re-initializing all training dynamics
such as learning rate and weight decay scheduling. This enables the model to better adapt to the noisy
dataset, learning noise-robust representations from the stable features learned on the denoised data.
Denoiser-free Downstream Tasks and Inference: For downstream tasks involving noisy images,
such as classification, the representations learned by gy can be directly utilized with a prediction
head hy for task-specific learning. Further fine-tuning can be performed directly on the noisy data z
without requiring a denoising module, since the training strategy internalizes noise-robust features
into the learned representations. This enables the entire model, both backbone gy and head hy, to
be optimized end-to-end on the downstream objective and deployed without any preprocessing at
inference time as shown in Equation (2):
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This highlights a key advantage of the proposed DINOv2 w/ NC as it enables fully denoiser-free
downstream fine-tuning and inference. In contrast, the two-stage baseline N2N + DINOV2 requires a
separate self-supervised denoiser trained and applied not only during pretraining but also downstream
task fine-tuning and inference. This external dependency adds computational overhead and pipeline
complexity, risks transferring the denoiser’s bias to the SSL model, and deviates from our goal of
learning noise-robust representations directly from corrupted data.

3.3 DINOvV2 w/ NCT (Noise Curriculum Teacher): Anchored Curriculum Learning for
Improved Self-Supervised Representation Learning

Under high or extreme noise levels, a good initialization from denoised training may not be sufficient,
because strong noise may destabilize and disturb the prior learned representations during the noisy
training. Thus, we propose to utilize the embeddings of the denoised images as anchors to regularize
the training on noisy data. Let the teacher backbone of DINOvV2 be 7', and the student backbone be S.
The original DINOvV2 loss can be expressed as

Lainov2 = Laino&ibot (T(Tt (.Z‘)), S(Ts (l‘))) + Lioleo 3
Where Li,leo is the Koleo Regularization, 7; is the augmentation for teacher input, and 7 is the
augmentation for student input. Lginogibot 1S the combined DINO and iBOT loss that minimizes
the cross-entropy of image-level and patch-level output scores between teacher {p™¢, pP**"} and
student {pi™&, pPatch} Here the backbones T and S include ‘heads’ that output vector scores.

T(ri(z)) = {pt"*, ™"} S(rs(w)) = {78, P2} @)
Ldino&ibot = - Zpimg log pismg — Zp?amh log plsbatch (5)

Before restarting the noisy training, we first extract the weights of the teacher backbone Ty, that
was trained on denoised data and freeze it. As shown in Figure 4} the architecture of the model now
contains three components: teacher 7', student .S and frozen denoised teacher Ty,. When restarting
the training, given a noisy image x and its denoised version x4, = fy(x), we apply exactly identical
augmentations (i.e., same crops, blur, flip...) to x and x4,, so their embeddings are aligned. In
addition to the original DINOv2 loss, we encourage the output scores of the student to be close to
that of the denoised teacher. This prevents the training from deviating significantly from its cleaner
initialization. So the denoised-regularized loss is given as:

L= Ldin0v2 + )\Ldino&ibot (Tdn (Tt (Idn)) I} S(Ts (IE))) (6)

Where A is a parameter that controls the strength

of the regularization. It is worth noting that the

weights of T" and T}, are identical at the start of Tt Frozen 2%
the training. Also, the technique presented is not _ Teacher
restricted to only denoised settings. When clean
images are available, such method can be used to
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Figure 4: Structure of the denoised regulariza-
tion loss. In addition to the original DINOv2 loss
Ldinove, a regularization loss term Lgino&ibot 18
introduced by comparing the output scores be-
tween the student and the frozen teacher. The
frozen teacher takes in denoised inputs that un-
dergo identical augmentations 7; as the noisy
inputs of the trainable teacher.

Denoised Lginogibot

4

It is important to emphasize that this regulariza- Noisy Tt
tion technique is specifically designed to comple-
ment our curriculum training pipeline. For the
regularization to be effective, the frozen teacher
T4n and the trainable teacher 7" must have align-
ment in their output embeddings at the beginning
of the restart training. This is accomplished by
assigning them identical weights. Using a differ-
ent frozen teacher, even if trained on the same
denoised dataset, would not provide meaningful
regularization due to misalignments, as shown in

Appendix Figure[9] Like NC, NCT is also denoiser-free at downstream fine-tuning and inference.



4 Experiments

4.1 Practical and Challenging Experimental Settings

Datasets. We conduct experiments on both ImageNet-100 and ImageNet- 1k to evaluate the robustness
of SSL methods under noise. ImageNet-100 comprises 100 classes as defined in Mini-ImageNet [36].
The training set includes the first 500 images per class, totaling 50k training and 5k validation images.
For large-scale evaluation, we experiment on ImageNet-1k [12]] using the full training and validation
splits. For instance recognition evaluation, we use the Oxford and Paris dataset [34].

Noise Addition. We follow ImageNet-C [19] to introduce three types of noise: Gaussian, Shot
(Poisson), and Speckle noise, as these are among the most commonly encountered noise types in
natural imaging. For the ImageNet-100 experiments, we use Gaussian noise (¢ = 50, 100, 255; SNR:
8.73 dB, 3.98 dB, 0.31 dB), Shot noise (A = 10, 3, 1; SNR: 8.49 dB, 4.11 dB, 0.52 dB), and Speckle
noise (¢ = 102,178.5,255; SNR: 9.15 dB, 5.58 dB, 3.98 dB). For the ImageNet-1k experiments,
we tested Gaussian noise at ¢ = 100 and o = 255, with corresponding SNRs of 4.36 dB and 0.72
dB respectively. These SNRs are common values reported in real noisy medical imaging [41]. The
example visualizations for each noise level are provided in Section The noises are added to
raw images before preprocessing (e.g., resizing) to better reflect practical scenarios such as device
or environmental noise. Consequently, while the initial noise level is fixed, the preprocessing steps
introduce variations in actual noise levels that challenge the model’s ability to adapt effectively.
Notably, we generate the noise dataset once prior to training and do not apply noise on-the-fly during
data loading, which closely simulate real-world scenarios where one starts with a fixed noisy dataset.

Implementation Details. In ImageNet-100 experiments, we use ViT-S/16 as the base architecture
for DINOv2, and unless otherwise mentioned, train it for 200 epochs with a batch size of 40 using
the AdamW optimizer. The base learning rate is 7.9 x 10~# (scaled by the square root of batch size).
The denoiser is trained for 100 epochs with a batch size of 4 using Adam. The linear probe uses a
batch size of 128 and is trained for 12.5k steps. In ImageNet-1k, we adopt ViT-B/16 as the backbone
and train DINOv?2 for 100 epochs with a batch size of 512 and drop path rate of 0.1. The learning
rate is 2.8 x 1073. The denoiser is trained on a 100k subset with a batch size of 8 for 50 epochs (for
Gaussian o = 255) and 90 epochs (for Gaussian o = 100). The linear probe uses batch size 1024 for
25k steps. Each training is done on a single RTX 4090 (~8h) or 4 xL.40S GPUs (~65h). The strength
parameters are determined via light parameter sweeps with the details provided in Section[A.2]

4.2 Linear Probing Reveals Superior Noise Adaptation
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Table 1: Performance comparison of different methods when scaling training duration and data size.

Noise Type = Method 200 Ep. 500 Ep. 1000 Ep.
Clean DINOV2 74.1 80.3 81.4
. N2N + DINOv2 71.8 76.9 78.2 - 0
Gaussian-50 Gaussian-100 Gaussian-255
SNR: 8.73 dB DINOvV2 w/NC 72.8 76.9 78.1 Method Clean SNR: 4.36 dB SNR: 0.72 dB
DINOv2 65.0 74.5 76.5
N2N + DINOv2 - 73.1 57.2
. N2N + DINOv2 69.0 73.2 74.4
Gaussian-100 DINOv2 w/ NCT - 72.1 55.8
DINOV2 w/ NC  68.1 72.7 73.6
SNR: 3.98 dB DINOv2 w/NC - 70.9 53.5
DINOv2 55.4 68.4 71.6
N2N+DINOVZ 5707 59.67  60.5 DINOVZ om0 o
. . : SimCLR 60.1 48.0 34.2

Gaussian-255 DINOv2 w/ NCT 54.6 57.67  59.6*
SNR: 0.31 dB DINOV2 w/NC 479 547  59.0
DINOV2 358 527 568

(b) Linear probing classification accuracy on
ImageNet-1k under Gaussian noise using a 100-epoch
training schedule. DINOv2 w/ NCT and DINOv2 w/
NC show substantial improvements over the DINOv2
baseline, particularly at high noise levels (o = 255).
SimCLR is included here as a reference baseline.

(a) Evolution of linear probing accuracies on
ImageNet-100 under extended training durations. Rel-
ative ranking among methods remain consistent
across epochs. See visualization in Figure

method on the four most noisy scenarios (lowest SNRs), i.e., Gaussian noise (0=255, 0=100), Shot
noise (A=1), and Speckle noise (6=255). (4) DINOv2: train the backbone on noisy images for 200
epochs, and evaluate the model on noisy images. Additionally, we train and evaluate the model on
original clean images, referred to as Clean. Figure [3]illustrates the classification accuracy curves.

As shown in Figure[5] our proposed method (green) significantly outperforms the backbone trained
solely on noisy images (red) across all noise types and noise levels. At moderate noise levels, i.e., the
first two columns, the accuracy of our method closely matches and even exceeds the backbone that
is trained and evaluated on explicitly denoised data (shown in orange lines). Only at extreme noise
levels, i.e., the last column, the gap between DINOv2 w/ NC and N2N + DINOv2 widens, primarily
due to the significant loss of the original image signal. For instance, as shown in Section[D.2] with
Gaussian noise at ¢ = 255, many images become virtually unrecognizable to the naked eye. Hence,
regularization is introduced to guide the model in these extremely noisy scenarios. As illustrated in
Figure 3] regularization DINOv2 w/ NCT improves the model’s performance at all four scenarios.
The improvement amplifies as the gap between N2N + DINOv2 and DINOv2 w/ NC widens, with a
substantial improvement of 6.7% over NC achieved at Gaussian noise with 0 = 255. However, when
N2N + DINOV2 is on par with DINOv2 w/ NC, the regularization provides diminishing benefit,
as demonstrated with Gaussian noise at o = 100. This is expected since the guidance becomes
redundant when its representation quality is comparable to or lower than that of the original model.

4.3 Scaling Improves Performance Across Datasets

Next, we scale both training and data size to evaluate performance in more resource-rich settings.
Longer Training Duration. We further improve the performance of our methods by extending the
training on ImageNet-100 to longer epochs. For 500-epoch configuration, we restart the training
from the 200-epoch denoised checkpoint (i.e., N2N + DINOv2) as described in Section .2} for
the 1000-epoch configuration, we restart the training from the 500-epoch denoised checkpoint. As
shown in Table [Ta] and Figure [2] accuracies increase as epoch increases and the relative ranking
among methods remains consistent across training durations: N2N + DINOv2 achieves the highest
accuracy, followed closely by DINOv2 w/ NC or NCT, while the baseline DINOv2 remains the
lowest. This demonstrates the scalability of the proposed methods. Interestingly, we observe that
DINOv2 w/ NCT consistently converges to or outperforms its anchor’s accuracy, as indicated by
1 and 1 in Table[la] demonstrating that the regularization objective successfully guides the model
toward robust representations. Notably, the performance gap between DINOv2 and the other methods
narrows as training progresses, suggesting that DINOv?2 is sensitive to noise and benefits significantly
from longer training. In contrast, our noise curriculum and regularization approach greatly accelerates
convergence, achieving similar or better performance in roughly half the training time.

Larger Dataset. In our controlled ImageNet-1k experiment, we constrain the DINOv2 backbone to
undergo a total of 100 training epochs to enable fair comparison across methods. DINOv2 w/ NC:
train the backbone on denoised images for 30 epochs followed by 70 epochs of training on noisy
images. DINOv2 w/ NCT: While we find that restarting at 30 epochs yields the best performance for
DINOv2 w/ NC, the denoised teacher at this early stage lacks sufficiently strong representations to
serve as an effective regularizer. To address this, we continue training the denoised teacher to 100
epochs, then freeze it for regularizing the DINOv2 backbone for 70 epochs of noisy training. Since



Table 2: Comparison of linear probing accura- Table 3: Linear evaluation performance of ap-
cies on clean and noisy validation sets for models  plying noise curriculum (NC) to other SSL
trained on noisy ImageNet-1k and ImageNet-100  models on ImageNet-100. Performance is im-
datasets. Surprisingly, our DINOv2 w/ NC or proved for all tested models, highlighting the
NCT method outperforms the two-stage N2N + broader applicability of our approach. The
DINOV2 on clean validation sets, demonstrating  accuracy curve over epochs are visualized in

more accurate and generalizable representations.  Figure[I2]in Section[B.5]

Dataset Training Noise Method Clean Noisy SSL Model Architecture Method Accuracy

N2N + DINOv2 75.8 73.1 N2N + SimCLR ~ 64.3

Gaussian-100  DINOv2 w/ NCT 75.2 72.1 SimCLR  ResNet50 SimCLR w/ NC 61.1

SNR: 4.36 dB  DINOv2 w/NC 743 70.9 SimCLR 59.0

ImageNet-1k DINOvV2 74.1 70.7 N2N +MoCo v3  60.4

(100 epochs) N2N + DINOv2 64.1 57.2 MoCo v3 VIiT-S MoCo v3w/NC 553

Gaussian-255 DINOv2 w/ NCT 65.6 55.8 MoCo v3 52.2

SNR:0.72dB DINOv2 w/NC 63.7 535 N2N + SimSiam  68.4

DINOv2 61.6 51.0 SimSiam  ResNet50  SimSiam w/NC  65.7

Gaussian-50 N2N + DINOv2 785 78.2 SimSiam 64.8

SNR: 8.73 dB DINOv2 w/NC 794 78.1 N2N +iBOT 61.9

DINOv2 78.8 76.5 iBOT ViT-S iBOT w/ NC 62.7

Gaussian-100 N2N + DINOv2 76.0 74.4 iBOT 56.9

ImageNet-100 SNR: 3.98 dB DINOv2 w/NC 76.7 73.6 N2N + DINO 62.5

(1000 epochs) - DINOv2 746 71.6 DINO ViT-S DINO w/ NC 62.1

N2N + DINOv2 56.7 60.5 DINO 57.9

Gaussian-255 DINOv2 w/ NCT 59.4 59.6 N2N + DINOv2  69.0

SNR:0.31dB DINOv2 w/NC 579 59.0 DINOvV2  ViT-S DINOV2 w/ NC 68.1

DINOv2 58.8 56.8 DINOV2 554

the frozen teacher and the DINOv2 backbone are derived from the same training run and pass through
the same 30-epoch state, alignment is preserved. This allows us to meet the 100-epoch constraint
while still leveraging a stronger teacher. Table [1bfshows that DINOv2 w/ NCT improves over the
DINOV2 baseline with substantial absolute gains of 1.4% and 4.8% at noise levels o = 100 and
o = 255, respectively. DINOv2 w/ NC also achieves a strong improvement of 2.5% under the more
challenging o = 255 setting. The relatively smaller gain of DINOv2 w/ NC at o = 100 is due to the
fact that, in large-scale settings with moderate noise, longer training alone significantly improves
DINOV2’s robustness. Since DINOv2 w/ NC allocates a portion of the training budget to denoised
pretraining, it shortens the noisy training phase, slightly limiting its benefit. Overall, while scaling
training on large datasets improves DINOv2’s noise adaptation under moderate noise, denoised
pretraining and regularization remain essential under high noise to maintain strong performance. As
an additional baseline, we also evaluate DINOv2 trained exclusively on clean images and directly
tested on noisy inputs. The results presented in Section confirm that clean-pretrained model
suffers severe accuracy drop, which underscores the importance of our noise-aware training.

4.4 Probing on Clean Test Set Highlights Better Representation Quality

In previous sections, linear classification accuracies were measured on validation sets that had the
same noise distribution as the training set. To further assess representation quality, we evaluate
performance on the clean, original ImageNet validation set. Note that N2N + DINOV?2 is evaluated
without the denoiser because the clean images are already noise-free. Performance on this clean
validation set serves as a strong indicator of how well a model captures representations of the "noise-
free" real world. Surprisingly, as highlighted by bold numbers in Table[2, DINOv2 w/ NC or NCT
outperforms N2N + DINOVvV2 in most cases, strongly suggesting that our denoiser-free approach
learns more robust and generalizable representations than the two-stage denoising pipeline. This
can be attributed to the fact that explicit denoising in the two-stage approach inevitably loses some
useful information, leading to a degradation in representation quality in the second stage. This finding
has important real-world implications: in scenarios where large-scale noisy data is readily available
for pretraining, but only a limited amount of clean data is available for specific downstream tasks,
DINOvV2 w/ NC and NCT offer more effective solutions for learning transferable representations.

4.5 Instance Recognition Validates Versatility

To further validate the versatility of our method, we extend the evaluation to another downstream task.
Here, we examine the instance-level recognition task on noisy images using the embeddings output by
the backbone. The approach is non-parametric as the images’ embeddings are ranked based on their



Table 4: Mean Average Precision (mAP) on instance-level recognition tasks using Oxford and Paris
datasets. DINOv2 w/ NC consistently outperforms DINOv2 and closely matches N2N + DINOv2
across benchmarks, with notable gains in extreme noise scenarios using regularization. This validates
the broader applicability of our approach to tasks beyond classification.

Noise =~ Method Oxford Paris Noise Method Oxford Paris Noise Method Oxford Paris
Gaussian NN +DINOV2 - 20.89 3862  N2N+DINOV2 2136 40.00 ¢ NON+DINOV2 2201 4047
Tso "DINOV2w/NC 2130 40.94 1'% DINOV2w/NC 2194 4220 °POV€ DINOV2w/NC 2240 41.28
7= DINOv2 19.15 40.04 “~ DINOv2 2113 3973 777 DINOv2 20.33 39.04
Gaussian NZN+DINOV2 - 21.83 3904 N2N+DINOv2 2140 40.39 NON+DINOv2 2131 3931
oo DINOV2wW/NC  20.13 40.14 110" DINOV2w/NC 2241 39.12 “PEEES DINOV2 w/NC 2121 3874
7= DINOv2 1639 3254 “~° DINOv2 1859 3565 7 ' DINOv2 18.63 37.06

N2N + DINOv2  15.67 33.68 N2N + DINOv2  18.96 37.22 N2N + DINOv2  20.11 39.19
Gaussian DINOv2 w/ NCT 17.07 33.73 Shot DINOv2 w/NCT 20.66 36.57  Speckle DINOv2 w/NCT 20.81 39.31
0=255 DINOv2w/NC 14.81 2997 A=l DINOv2w/NC 19.25 36.67 o0=255 DINOv2w/NC 21.10 38.59

DINOv2 737 18.51 DINOv2 16.37 32.60 DINOv2 20.11 35.63

(a) Gaussian Noise (b) Shot Noise (c) Speckle Noise

cosine similarity with a query image’s embedding. The results are based on the medium difficulty
evaluation setup in the Oxford and Paris datasets, where both easy and hard images are treated as
positive images. We measure mean average precision (mAP) and report results in Table[d We see
that the results closely align with Section[4.2] DINOv2 w/ NC greatly outperforms DINOV2 in all
comparisons. The mAP of DINOv2 w/ NC is on par with N2N + DINOv2, even at extreme noise
levels. For example, at Shot A = 1 and Speckle o = 255, the mAP of DINOv2 w/ NC surpasses
that of N2N + DINOv2 on the Oxford dataset. DINOv2 w/ NCT outperforms all other methods the
majority of the time in high noise settings, again validating its effectiveness.

4.6 DINOv2 w/ NC is Applicable to Diverse SSL Models

To test the applicability of DINOv2 w/ NC beyond DINOvV2, we extend the DINOv2 w/ NC to
various other SSL models on ImageNet-100, including SimCLR [9], MoCo v3 [[L1]], SimSiam [10],
iBOT [47], and DINO [7]. These models encompass both contrastive and non-contrastive approaches,
as well as ViT-based [13] and CNN-based architectures [[18]. All experiments are conducted with
Gaussian (0=100) noise without denoised regularization. As shown in Table [3] DINOv2 w/ NC
improves over the noisy baseline across all models. The improvement is modest or minor for the first
three models, i.e., SImCLR, MoCo v3, and SimSiam. The variation in contrastivity and backbone
architecture among these models suggests that neither factor is critical to the method’s effectiveness.
In contrast, iBOT and DINO (both are precursors to DINOv2) show substantial gains, similar to
the improvements observed in DINOv2, where the SSL. Model w/ NC closely matches N2N + SSL
Model. This indicates that DINOv2 w/ NC has broad applicability, with more pronounced benefits
for models sharing architectural and loss-function similarities with DINOv2. We also benchmark the
performance of these models on the instance recognition task in Table [§]of Section [B.5] which shows
exactly identical trends as the linear evaluation, further reaffirming the generality of our approach.
Detailed training configurations are provided in the Section

5 Limitations, Conclusion and Future Work

In this work, we proposed a fully self-supervised framework for learning noise-robust visual rep-
resentations. Leveraging an SSL denoiser and the curriculum training strategy enables DINOvV2 to
improve significantly upon the noisy baseline. While our benchmark focuses on synthetic noise due
to the scarcity of large-scale labeled noisy datasets that allows for standard downstream evaluation,
this choice enables controlled, reproducible assessment across noise types. One limitation is the
assumption that self-supervised denoiser can denoise reasonably well; while it is a fair assumption
as we show in Section [B.6]that even a very weak denoiser (1 training epoch) can still substantially
improve accuracy, it remains an open dependency that could affect performance in more challenging
settings. Another key direction for future research is to develop automated, adaptive strategies for
curriculum schedule, as the current design requires tuning to determine when to shift from denoised to
noisy samples during pretraining. More broadly, our methodology can be extended to other modalities
like time series data, including noisy audio, EEG signals and financial data; we aim to establish a
unified SSL approach for robust representation learning.
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— Section Details of Toy Experiment in Section [3.2]
Section[A.2} Regularization Strength Details and Ablation
Section[A.3} Training Details for Main DINOv2 Experiments
Section[A.4} Training Details for Other SSL Models in Section[4.6|
Section Noise Addition Formula

Section[A.6} Signal-to-Noise Ratio Details

Section Bl Ablation Studies
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Section[B.2} Critical Roles of Alignment and Initialization
Section[B.3} Restart at Different Epochs

Section[B.4} Enduring Effectiveness in Mixed Noisy-Clean Data
Section Further Results for Other SSL Models

Section [B.6} Robustness to Denoiser Quality
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- Section|[C.2} Baseline Performance on Mixed Noisy—Denoised Data
Section D} Visualizations
— Section[D.I} Training Loss Visualization
— Section[D.2} Noisy Images Visualization
— Section[D.3t PCA Visualization

A Technical Details about Experiments

A1 Details of Toy Experiment in Section3.2]

In both pretraining and linear probing evaluation, we use Adam optimizer, batch size 256, and a
constant learning rate of 1.0 x 10~%. The augmentation includes random resized crop and random
affine, as shown in Listing[I] The strength X for soft identity constraint is set to 0.5.

The results over 17 runs are visualized in Figure[6] We observe that adopting a noise curriculum not
only significantly improves accuracy, but also substantially stabilizes performance, as evidenced
by the narrower green box compared to the wider orange box. This highlights the dual benefits of
curriculum learning in enhancing both robustness and consistency.

transforms.Compose ([
transforms.RandomResizedCrop(28, scale=(0.8, 1.0)),
transforms.RandomAffine (
degrees=15,
translate=(0.1, 0.1),
scale=(0.95, 1.05),
shear=10
))
1

Listing 1: Data augmentation used in pretraining for the simple MLP with 1 hidden-layer in the toy
experiment.

A.2 Regularization Strength Details and Ablation
For results in Figure[5] we select optimal regularization strength based on light sweeps visualized in

Figure Specifically, A is set to 1.1, 5.0, 2.0 and 4.0 for Gaussian ¢ = 255, Shot A = 1, Speckle
o = 255 and Gaussian o = 100 respectively. Notably, Figure[7]shows that increasing the strength
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Figure 6: Box plots of toy experiments accuracies over 17 runs. "Clean" for MLP trained and tested
on clean. "Noisy" for MLP trained and tested on noisy. "Curriculum" for MLP w/ NC tested on noisy.
Using noise curriculum not only significantly improves accuracy, but also stablizes performance,
as shown by the narrower green box compared to the wider orange box.

results in a sharp increase in accuracy followed by fluctuatons around a higher plateau, demonstrating
the effectiveness of NCT.

In scaling epoch experiment for ImageNet-100 (Table [Ta)), X is set to 1.1, 0.5 and 0.2 for 200,
500 and 1000 epochs respectively. We find longer training duration requires smaller regularization
strength. This agrees with our main finding that scaling training can partially mitigate the performance
degradation, thus requires less guidance from denoised teacher. In ImageNet-1k experiment (Table[Ib)),
Ais set to 2.0 and 1.6 for Gaussian o = 100 and Gaussian o = 255.

For evaluation on clean set (Table[2), the strengths are set to the same value as their noisy counterparts
detailed in the preceding paragraph.

In instance recognition experiments (Table[d), A = 0.2 for all settings as we find it generally yields
better results. For mixed noise-clean data evaluation shown later in Section Adssetto 1.1.

A.3 Training Details for Main DINOv2 Experiments

Training Details for Sectiond.2] For curriculum-based training, although the model is trained on
denoised images for only 140 epochs, the training dynamics in the first stage, such as learning rate
scheduling, are configured based on the total training duration of 200 epochs. In the second stage of
training on noisy images, the training dynamics are configured for a total duration of 60 epochs to
ensure smooth convergence.

Training Details for Section[4.3] In ImageNet- 1k experiments (Table[Tb), the training configuration
for DINOv2 and N2N + DINOV?2 are set as default, consistent with its original implementation. In
the noisy-stage training of DINOv2 w/ NC and DINOv2 w/ NCT, we reduce the linear learning
rate warm-up epochs from 10 to 5, and the teacher temperature warm-up epochs from 30 to 15 to
accommodate the reduced training duration for noisy adaptation under the constraint of 100 epochs.
Intuitively, less warm-up is needed because denoised pre-training provides a good initialization.

Training Details for SimCLR Baseline in Table@ Consistent with DINOv2, we set batch size to
512 and train for 100 epochs during pre-training. We use the open-source PyTorch implementation
from AndrewAtanov/simclr-pytorchl Since SimCLR typically requires more epochs during linear
evaluation compared to DINOv2, we train the linear head for 90 epochs (112.59k steps) with a batch
size of 1024 to ensure fair comparison.

Details of Linear Probing. Consistent with the original DINOv2 paper, when performing linear
probing, a light grid search is conducted over hyperparameters, i.e., learning rate, output layer, and
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Figure 7: Regularization strength ablation to determine optimal strength for DINOv2 w/ NCT in
Figure 5] Most plots show a rapid increase in linear probing accuracy followed by fluctuations
around a higher plateau as strength increases. Due to computational constraints, the sweep was
not performed with uniform resolution across all settings and may vary across noise types.

whether concatenating average-pooled tokens. The highest accuracy value is reported which is a
common practice.

A.4 Training Details for Other SSL Models in Section [4.6]

The linear evaluations of all models train the linear head for 50 epochs.

SimCLR. During training, we use a batch size of 100 and LARS optimizer. After square root

scaling, the base learning rate is set to 0.075 x /100 = 0.75. During linear evaluation, we use
a batch size of 200 and SGD optimizer. After square root scaling, the base learning rate is set to

1.6 x 1/200/4096 = 0.35.

MoCo v3. During training, we use a batch size of 128 and AdamW optimizer. After square root
scaling, the base learning rate is set to 4 x 10~% x 1/128/1024 = 1.414 x 10~%. During linear
evaluation, we use a batch size of 200 and SGD optimizer. After linear scaling, the base learning rate
is set to 0.2 x (200/256) = 0.15625.

SimSiam. During training, we use a batch size of 100 and SGD optimizer. After square root scaling,
the base learning rate is set to 0.15 x 1/100/256 = 0.09375. During linear evaluation, we use a
batch size of 200 and LARS optimizer. We found the learning rate provided in SimSiam’s codebase
is too small for effectively training the linear head. After some experimentation, we set the base
learning rate to 2.34375 after the linear scaling 3.0 x (200/256).

iBOT. During training, we use a batch size of 80 and AdamW optimizer. After square root scaling,

the base learning rate is set to 5 x 1074 x 1/80/256 = 2.795 x 10~*. During linear evaluation, we
use a batch size of 128. We also adopt the sweeping hyperparameter implementation in iBOT to
obtain the best linear evaluation value. This involves sweeping over a range of learning rates, and a
set of candidate optimizers including LARS and SGD.

DINO. During training, we use a batch size of 128 and AdamW optimizer. After square root scaling,

the base learning rate is set to 5 x 1074 x 1/128/256 = 3.54 x 10~%. During linear evaluation, we
use a batch size of 128 and SGD optimizer. After square root scaling, the base learning rate is set to

0.001 x 1/128/256 = 7.1 x 1074
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A.5 Noise Addition Formula

As stated in Section@ we follow ImageNet-C [19] to introduce Gaussian, Shot, and Speckle noises
to the images. Let original image be x, and normalized image be & = x/255.

Gaussian noise:
Tnoisy = 255 - clip (£ + N (0,¢%) ,0,1) 7

where ¢ = and o € {50, 100, 255}.

g
255°

Shot (Poisson) noise:

Poi D)
Tnoisy = 255 - clip (Olssoi(x) 0, 1> )
where A € {10,3,1}.
Speckle noise:
Tnoisy = 255 - clip (Z + Z - N(0,¢?),0,1) ©)

where ¢ = 5Zz, and o € {102,178.5,255}.

Note that the clipping is applied to the [0, 1] range in all noise types, which further increases the
difficulty of denoising at high noise levels. A significant portion of the noise signal may get clipped
and hence irreversibly distorted or lost.

A.6 Signal-to-Noise Ratio Details

All SNR values given are calculated from the raw noisy images without preprocessing, e.g., resizing,
crop. We report the average SNR between the training set and the validation set since they have no
significant difference. In the instance recognition, we report the average between the Oxford and
Paris datasets. Detailed per-set SNR values are provided in Table [5]and Table [6]

Table 5: SNR values of training and validation sets for Table 6: SNR values for Oxford and Paris

ImageNet-100 and ImageNet-1k datasets. datasets.

Dataset Noise Type Train SNR (dB) Val SNR (dB) Noise Type Oxford SNR (dB) Paris SNR (dB)
Gaussian o0 = 50 8.84 8.63 Gaussian 0 = 50 8.86 9.04
Gaussian o = 100 4.09 3.87 Gaussian o = 100 4.10 4.27
Gaussian 0 = 255 0.43 0.19 Gaussian 0 = 255 0.39 0.55
Shot A = 10 8.55 8.44 Shot A = 10 8.66 8.79

ImageNet-100 Shot A = 3 4.16 4.05 Shot A = 3 4.24 4.39
Shot A =1 0.58 0.47 Shot A =1 0.65 0.78
Speckle o = 102 9.17 9.14 Speckle o = 255 4.09 4.17
Speckle o = 178.5 5.59 5.56 Speckle o = 178.5 5.69 5.75
Speckle o = 255 4.00 3.96 Speckle o = 102 9.28 9.31
Gaussian 0 = 100 4.41 4.31

ImageNet-1k . cdian o — 255 0.78 0.67
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B Ablation Studies

B.1 Ablation Unveils Synergy in Curriculum Learning

We conduct ablation studies on ImageNet-100 to analyze the contribution of the two key components
of the curriculum learning method, specifically in the context of linear probing classification on
images with Gaussian noise (¢ = 100).

Only Denoised Pretraining. We train DINOv2 on denoised images for 140 epochs, then continues
to train it on noisy images for 60 epochs without resetting training dynamics.

Only Noisy Training with Restart. We train DINOv2 on noisy images for 140 epochs, then restart
training on the same noisy set for 60 epochs.

Figure [8]illustrates that denoised pretraining contributes nearly twice the accuracy improvement over
the noisy baseline compared to restarting training. Notably, their effects are not merely additive,
as our combined method outperforms the sum of their individual gains, highlighting a synergistic
interaction between the two techniques. The synergy arises because, while denoised pretraining
provides robust initial weights, the diminished learning rate in later stages limits adaptation to noisy
images. Restarting training resets the learning rate, allowing the model to fully adapt to noise and
leverage the learned representations effectively.
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(=2}
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Pretraining

(=
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Only Noisy Training
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5
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Figure 8: Comparison of curriculum learning ablations showing the contributions of denoised
pretraining and restarting noisy training to linear evaluation accuracy. “Only Denoised Pretraining"'
(purple) provides nearly double the improvement of “Only Noisy Training with Restart"
(brown) over the Noisy baseline (red).

B.2 Ciritical Roles of Alignment and Initialization

To evaluate the design choices of our regularization loss, we conduct ablation studies on ImageNet-
100 under extreme Gaussian noise (0 = 255), where the regularization loss has the most significant
impact. These studies provide insights into the importance of alignment and initialization in our
approach.

Unaligned Frozen Teacher. Instead of extracting the weights of the current teacher backbone
at the end of the denoised training phase, we retrain a separate backbone on the same denoised
dataset to extract teacher weights. This alternative frozen teacher is then used during the noisy
training phase. Unlike the original method, this introduces misaligned embeddings between the
frozen teacher, the trainable teacher, and the student. At regularization strength 0.2, as shown by
the brown line in Figure[9] this setup results in a marginal performance improvement of just 1.1%
over the green baseline, significantly lower than the aligned case depicted by the purple line. At
regularization strength 1.1, as shown in Figure[I0} the strong unaligned teacher instead destabilizes
training, dragging accuracy downward as learning proceeds, ultimately underperforming even the
DINOvV2 w/ NC. These results highlight the seamless integration between the regularization loss
and the curriculum training pipeline, where the first stage’s outputs are essential for effectively
regularizing the second stage.

Randomly Initialized Backbone. To further investigate the role of denoised pretraining, we replaced
the trainable teacher and student backbones with randomly initialized weights during the noisy
training phase while keeping the frozen teacher unchanged. At regularization strength 0.2, this
configuration yields extremely poor performance, with accuracy dropping below 20%, as shown
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Figure 9: Comparison of regularization ablations at strength = 0.2 showing the contribution of
alignment and initialization to linear evaluation accuracy. Aligned regularization (purple) significantly
outperforms unaligned regularization (brown) and random initialization (grey). This illustrates both
the alignment and the denoised pretraining contributes substantially to the effectiveness of the
regularization.
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Figure 10: Comparison of regularization ablations at strength = 1.1 showing the contribution of
alignment and initialization to linear evaluation accuracy. Aligned regularization (purple) signif-
icantly outperforms unaligned regularization (brown) and random initialization (grey). Random
initialization diverges after 30 epochs of training. Strong unaligned regularization drags the
accuracy down as training progresses.

by the gray line in Figure[9] Notably, at regularization strength 1.1, the training diverges after 30
epochs as the loss explodes, as shown by the discontinuous grey line in Figure[T0] These results
highlight the necessity of denoised pretraining, even in the presence of a regularization term, as it
provides a crucial foundation for the training process. Without it, the training fails to leverage the
frozen teacher’s guidance.

B.3 Restart at Different Epochs

We investigated the impact of restarting training on noisy data at different stages: (1) training on
denoised data for 140 epochs, followed by 60 epochs on noisy data (a common setting in this paper);
(2) 130 epochs on denoised data, then 70 epochs on noisy data; and (3) 120 epochs on denoised data,
then 80 epochs on noisy data. As shown in Figure [T} the performances across these variations are
similar, with no approach consistently outperforming the others. Thus, we decide to use 140 epochs
as the restart point.

B.4 Enduring Effectiveness in Mixed Noisy-Clean Data

In real-world scenarios, datasets often contain images of varying quality, posing challenges for SSL
methods. In this section, we investigate how different noise-clean distributions on ImageNet-100
affect the SSL model’s performance and the effectiveness of our method under these distributions.
We replace 2% (i.e., 0%, 2%, 10%) of noisy data with clean images. So in our noise curriculum,
the model is trained on a mix of (100 — x)% denoised and x% clean images in the first stage, then
on a mix of (100 — )% noisy and x% clean images in the second stage. The validation set is also
adjusted to follow the same distribution as the training set. From Table[7] we can see that generally
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Figure 11: Linear Probing Classification accuracy for different restarting epochs. We observe that
no approach consistently outperforms the others between restarts at 120, 130 and 140 epochs.

the linear evaluation accuracy decreases across all methods when more clean data is introduced but
noisy data remains the majority, which can be attributed to a reduced overall representation alignment
between noisy, denoised and actual clean data. On the other hand, through column-wise comparisons,
DINOvV2 w/ NC consistently outperforms DINOv2 and closely matches N2N + DINOv2; regularized
method DINOvV2 w/ NCT brings substantial improvement over unregularized method. It is clear that
our curriculum learning framework and denoised regularization are still effective despite the varying

training distributions.

Table 7: Mixed Noise-Clean Data Evaluation:
Impact of introducing varying percentages of
clean data (0%, 2%, 10%) on linear evaluation

Table 8: Mean Average Precision (mAP) on
instance-level recognition tasks for other SSL
models. The pattern is consistent with Table [3]
Noise curriculum (NC) improves performance
for all models.

accuracy. We observe that increasing the pro- SSL Model  Method Oxford-M__ Paris - M
portion of clean data generally reduces accuracy N2N + SimCLR 21.43 35.32
across all methods due to reduced representa- SimCLR SimCLR w/ NC 19.08 33.39
tion alignment. However, our DINOv2 w/ NC SimCLR 18.04 31.65
. . . . N2N + MoCo v3 15.34 29.52
and NCT are still effective despite the varying MoCo v3 MoCo v3 w/ NC 1379 30.05
training distributions. MoCo v3 12.95 27.72
Noise Type Method 0% Clean 2% Clean 10% Clean N2N + SimSiam 24.03 40.10
N2N + DINOv2 71.8 72.0 71.1 SimSiam SimSiam w/ NC 21.12 39.77
Gaussian-50 DINOv2 w/ NC  72.8 72.3 71.6 SimSiam 20.64 38.15
DINOV2 65.0 61.2 61.9 N2N +iBOT 12.26 25.52
N2N + DINOv2 69.0 67.8 67.7 iBOT iBOT w/ NC 14.60 29.79
Gaussian-100 DINOv2 w/ NC  68.1 66.6 67.0 iBOT 11.05 24.05
DINOv2 55.4 54.8 53.1 N2N + DINO 15.04 29.16
N2N + DINOv2 57.0 552 535 DINO DINO w/ NC 16.01 31.33
Gaussian-255 PINOV2 W/ NCT 54.6 53.8 51.7 DINO 12.73 27.70
DINOv2 w/NC  47.9 473 473 N2N + DINOv2 21.83 39.04
DINOV2 35.8 36.9 35.8 DINOV2 DINOV2 w/ NC 20.13 40.14
DINOV2 16.39 32.54
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B.5 Further Results for Other SSL Models

Figure[T2]shows the accuracy over epochs for SSL models tested in Section[4.6] Table[§|shows the
performance of the SSL models on the instance recognition task using the Oxford and Paris dataset.
Both results illustrate that the noise curriculum improves the performance of all SSL models on noisy
data, demonstrating the wide applicability of the method.
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Figure 12: Linear evaluation performance over epochs of applying DINOv2 w/ NC to other SSL
models on ImageNet-100. Noise curriculum (green) improves performance for all tested models,
with substantial gains observed in iBOT and DINO variants, showing similar trend as DINOv2.

B.6 Robustness to Denoiser Quality

To investigate the level of tolerance of DINOv2 w/ NC to the denoiser quality, we conduct ablation
studies on how the number of denoiser training epochs impacts the SSL model’s final performance.
We use the number of training epochs as a quantifiable proxy for denoiser effectiveness. The
evaluation follows our default setting: 200 epochs of DINOv2 ViT-S training with Gaussian-100
noisy data. The results are shown in Table[0] We observe that even training the N2N denoiser for
just 1 epoch leads to a substantial improvement of DINOv2 w/ NC over the DINOv2 baseline (i.e.,
10.7 increase), while being only 2 percent less than that of a well-trained denoiser (100 epochs).
Although the 1-epoch denoiser still produces many undesirable artifacts like a very weak denoiser,
the curriculum still yields substantial improvements in downstream performance. This highlights the
robustness of our curriculum, which has considerable tolerance to the denoiser’s quality. A denoiser
has to be unreasonably bad (e.g., training diverged or collapsed) to provide no return in performance.

Table 9: Performance of DINOv2 w/ NC on ImageNet-100 with the N2N denoiser trained for varying
epochs. Notably, even a weak denoiser trained for only 1 epoch substantially improves DINOv2 w/
NC over DINOv2.

Method Denoiser Training Epochs Accuracy
DINOvV2 / 554
DINOv2 w/ NC 1 epoch 66.1
DINOvV2 w/ NC 5 epochs 67.4
DINOv2 w/ NC 100 epochs 68.1
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Table 10: Performance of clean-pretrained DINOv2 models under different noise conditions. Linear
probes are fine-tuned either on clean or noisy data while keeping the backbone frozen. The clean-
pretrained DINOv2 suffers severe drop in performance when applied on the noisy test set.

Probe Tuned Probe Tuned

Training Dataset Architecture Eval Dataset Eval Noise

on Clean on Noisy

Gaussian-100 63.2 70.3

LVD-142M ViT-B/14 ImageNet-1k  Gaussian-255 8.9 29.0
Clean 84.5 /

Gaussian-100 49.2 61.0

LVD-142M ViT-S/14 ImageNet-1k  Gaussian-255 4.9 23.1
Clean 81.1 /

ImageNet-1k . Gauss%an-lOO 40.7 58.1

(100 epochs) ViT-B/16 ImageNet-1k  Gaussian-255 2.2 20.5
Clean 79.0 /

Gaussian-50 60.0 74.3

ImageNet-100 ViT-S/16 ImageNet-100 Gaussian-100 22.3 61.3

(1000 epochs) Gaussian-255 3.1 34.5
Clean 814 /

Table 11: Linear probing accuracy on noisy ImageNet-100 test set when training on mixed
noisy+denoised data. Mixing denoised images results in a 7.4 point drop compared to training
on noisy data alone.

Training Setting

100% Gaussian-100 55.4
50% Gaussian-100 + 50% Denoised 48.0

Accuracy

C Baseline Comparisons

C.1 Performance of Clean-Pretrained Model on Noisy Data

We evaluate the noise-robustness of a DINOv2 model trained exclusively on clean images, in order
to reinforce the necessity of noisy training. Two strategies are employed to cover complementary
baselines. (1) With the backbone frozen, we fine-tune a linear probe on noisy data drawn from the
same distribution as the test set, and then evaluate the full model on noisy data. (2) With the backbone
again frozen, we fine-tune a linear probe on clean data and subsequently evaluate the model on noisy
data. The first strategy simulates a common downstream scenario where a frozen feature extractor
is adapted to a new domain via task-specific heads, while the second serves as a more standard
adversarial benchmark that tests the model’s robustness to noise without ever exposing it to noise
during training. In addition to our own trained models, we also benchmark the officially released
DINOvV2 weights, which were pretrained on the LVD-142M dataset (142 million images). The results
in Table [10f show substantial performance drops (15-70 points) when applying clean-pretrained
DINOV2 to noisy test sets. The degradation is particularly severe on Gaussian-255 noise, where the
accuracy of ViT-B/14 drops from 84.5 to 29.0 (a 55.5-point decrease), even when the probe is tuned
on Gaussian-255 noisy data.

Notably, despite the smaller model size and significantly reduced training data, our DINOv2 w/ NCT
(Table surpasses the official ViT-B/14 weights trained on LVD-142M at both Gaussian-100 (72.1
vs. 70.3) and Gaussian-255 (55.8 vs. 29.0). These results emphasize that standard DINOvV2 is not
robust to input noise, underscoring the necessity of incorporating noisy images during pretraining to
achieve strong downstream performance in noisy settings.

C.2 Baseline Performance on Mixed Noisy—denoised Data

Another intuitive baseline is to investigate whether mixing denoised samples with noisy ones during
training can improve representation learning by increasing the diversity and expressiveness of inputs.
Table|11|shows the linear probing accuracies of DINOv2 ViT-S on the noisy ImageNet-100 test set,
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when trained for 200 epochs on 100% noisy data (from Table 1(a)) versus on 50% noisy + 50%
denoised data. We observe a significant drop of 7.4 points in accuracy when noisy and denoised data
are randomly mixed during training. As a result, mixing clean (denoised) and noisy images during
training leads to degraded performance, primarily due to reduced representation alignment between
noisy and denoised samples, which hinders the model’s ability to learn consistent features. This
shows naive mixing is suboptimal, and reinforces the necessity of using a staged curriculum learning
approach that separates noisy and denoised images.
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D Visualizations

D.1 Training Loss Visualization
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Figure 13: Comparison of training loss between DINOv2 and DINOv2 w/ NC. DINOv2 w/ NC can
descend to a lower loss due to its better initialization from the denoised pretraining.

Figure [T3] shows the comparison between training loss of DINOv2 and DINOv2 w/ NC on the
ImageNet-100 noisy data with Gaussian noise (o = 100). DINOv2 w/ NC loss (green) descends to a
lower value than DINOvV2 (red). The two curves are similar in shape which reflects the restarting
training technique in our noise curriculum learning.

.
3

Gaussian Noise o = 50 Gaussian Noise o = 50 Denoised

D.2 Noisy Images Visualization

Gaussian Noise o = 100 Gaussian Noise o = 100 Denoised

Gaussian Noise o = 255 Gaussian Noise o = 255 Denoised
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Shot Noise A = 10 Denoised

.
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’

Shot Noise A = 3 Shot Noise A = 3 Denoised

Shot Noise A = 1 Shot Noise A = 1 Denoised

Speckle Noise o = 102 Speckle Noise o = 102 Denoised

Speckle Noise o = 178.5 Speckle Noise 0 = 178.5 Denoised
Speckle Noise o = 255 Speckle Noise o = 255 Denoised

D.3 PCA Visualization

To visualize the dense features, we apply PCA to the feature space and map the first three principal
components to the RGB channels. We use the ViT-S 200-epoch Gaussian-255 checkpoints from
Table@ for visualization. As shown in , the DINOv2 visualizations (middle of each triplet) fail to
clearly separate salient objects from the background, and the resulting color patterns lack semantic
consistency across images, suggesting weaker representation quality. In contrast, the DINOv2 w/
NCT visualizations (right of each triplet) distinctly separate salient objects, and objects of the same
class are consistently represented with similar color patterns across different images, indicating
semantically aligned features. These results demonstrate that NCT yields a substantial improvement
in feature quality over the DINOv2 baseline.
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Noisy Input DINOV2 DINOV2 w/ NCT Noisy Input DINOvV2 DINOV2 w/ NCT

Figure 23: PCA visualizations: we visualize dense features of the models by performing PCA on
the feature space and mapping the top three principal components to RGB. In each triplet, the left
image is the noisy input with Gaussian noise at o = 255. The middle and right images are produced
by DINOvV2 and DINOv2 w/ NCT (ViT-S, 200 epochs) respectively.
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