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ABSTRACT

Recent developments in large language models have shown advantages in reallo-
cating a notable share of computational resource from training time to inference
time. However, the principles behind inference time scaling are not well under-
stood. In this paper, we introduce an analytically tractable model of inference-time
scaling: Bayesian linear regression with a reward-weighted sampler. We study this
problem in the high-dimensional regime, where the deterministic equivalents dic-
tate a closed-form expression for the posterior predictive mean and variance. We
analyze the generalization error when training data are sampled from a teacher
model. We draw k inference-time samples and select via softmax at a tempera-
ture applied to a quadratic reward. When the reward is not too different from the
teacher, the generalization error decreases monotonically with increasing infer-
ence time samples k. However, the specific reward that optimizes inference-time
selection generally differs from the teacher. In contrast, substantial reward mis-
specification induces a finite optimal k£ beyond which more sampling can increase
the generalization error, consistent with recent empirical observations. Further-
more, for fixed k, there exists an optimal sampling temperature. In the “best-of-
k> limit with the teacher as reward, we prove that the generalization error decays
as ©(1/k?) and determine the leading coefficient via extreme value theory. These
formulas delineate domains where scaling inference-time computation is provably
preferable to collecting more data. Finally, we demonstrate that when task diffi-
culty increases, the previously mentioned advantage of inference-time compute
degrades.

1 INTRODUCTION

Across tasks, allowing models to ’think longer’ at inference by sampling multiple candidates, re-
ranking with a reward, or aggregating votes consistently improves precision and reliability (Wang
et al., 2023; Wu et al., 2024; Snell et al., 2025). Best-of-k (choose the highest-reward sample) and
majority voting (choose the consensus) have become standard inference-time tools (Brown et al.,
2024; Schaeffer et al., 2025b; Chen et al., 2024a). In parallel, scaling training compute via larger
models and more data also drives dramatic gains (Hestness et al., 2017; Kaplan et al., 2020; Hoff-
mann et al., 2022). Modern systems, therefore, have to balance two resources, training-time and
test-time compute, and practitioners use both.

Despite widespread adoption, key questions for inference-time computation lack crisp answers.
Which reward model should we use for inference? What is the appropriate inference-time sam-
pler, e. g., temperature settings? How large should £ be and when do more samples stop helping?
Most importantly, how should we allocate a fixed compute budget between training and inference
to minimize generalization error? We lack a simple, solvable model that gives us intuitions and
actionable prescriptions.

To fill this gap, we propose a minimal and analytically tractable setting: Bayesian regression based
on a teacher-student setting with a controlled reward and a temperature-dependent inference-time
sampler, in which best-of-k appears as limit. We theoretically study the generalization error § as a
function of the size of the training data set n, the dimension of the data d, the number of inference
time samples k, the sampling temperature 7" and the reward parameter w and demonstrate various
optimality conditions on these parameters.

Our contributions are the following:
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(a) T = 200> (b) T = 1002

Figure 1: In the plot the radial distance is the magnitude c of the vector wr — wp and the polar
variable is the angle 6 between wr — wp and wp. We see that as temperature 7" decreases the do-
main where generalization error § decreases monotonically with increase in inference-time samples
k shrinks. We have chosen S = 1,0 = 1074,y = 1073,d = 2,n = 10* and sampled teacher
weight wy = (ccosOr, csinfr) ~ N(0,2%I). We have parameterized the reward weight as fol-
lows: wgr = wr + (ccos(fr + 6), csin(6r + 0)),0 € [0, 27). See section 2 for details of notation
and conventions.

* We propose a solvable model for inference-time scaling: Bayesian regression where the
ground truth is given by the teacher model y = wr - x/ V/d and the reward function is

quadratic 7(y,x) = —(y — Wg - x/v/d)?. We generate k samples at inference and choose
using a softmax at temperature 7' over the reward. We present a formula for the general-
ization error § in the proportional limit: d — oo, n — oo with a = d/n fixed.

* We derive a series expansion for ¢ around large 7, making explicit its dependence on
n, k, and the alignment between wgr and wp. The analytical expansion shows a sharp
dependence on reward quality: when wg, is sufficiently close to wr, i.e., small |[wgr —
wr||/||wr||, increasing k& monotonically decreases §, and the reward wg that optimizes
inference-time selection generally differs from the data-generating teacher wr. In contrast,
when wg is poorly aligned, § is non-monotone in k, yielding an optimal finite k (see
Figure 1), echoing phenomena observed empirically in large language models (Snell et al.,
2025). Furthermore we show that at fixed k, there exists an optimal temperature T for the
rewarding process. Similar observation has been made in large language models (Du et al.,
2025).

* For T' = 0, using extreme value theory, we analytically prove that the expectation value of
J scales as ©(1/k?) at large k when we have access to the teacher, i.e, wp = wr. Based on
our theoretical analysis in best-of-k limit, we quantify the parametric region where scaling
inference-time compute is more beneficial compared to training compute. Finally we note
that when task difficulty increases, the previously mentioned advantage of inference-time
compute degrades.

Now we turn to survey the ideas in the literature related to our work.

1.1 RELATED WORKS

Method of deterministic equivalence. In the context of linear regression (Krogh & Hertz, 1992;
Dicker, 2016; Dobriban & Wager, 2018; Nakkiran, 2019; Advani et al., 2020; Hastie et al., 2022),
kernel regression (Sollich, 1998; Sollich & Halees, 2002; Bordelon et al., 2020; Canatar et al., 2021;
Spigler et al., 2020; Simon et al., 2023; Loureiro et al., 2021), and random feature models (Hastie
et al., 2022; Louart et al., 2018; Mei & Montanari, 2022; Adlam & Pennington, 2020; d’Ascoli
et al., 2020; d’Ascoli et al., 2020; Loureiro et al., 2021; Bahri et al., 2022; Zavatone-Veth & Pehle-
van, 2023a; Dhifallah & Lu, 2020; Hu & Lu, 2022; Maloney et al., 2022; Bach, 2024) method of
deterministic equivalence (Voiculescu et al., 1992; Zee, 1996) has been used extensively for discus-
sions of higher dimensional statistics (Misiakiewicz & Saeed, 2024; Atanasov et al., 2024). These
ideas have been used to discuss training time scaling laws in simple models (Spigler et al., 2020;
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Bordelon et al., 2020; Bahri et al., 2022; Maloney et al., 2022; Simon et al., 2021; Bordelon et al.,
2024; Zavatone-Veth & Pehlevan, 2023b; Paquette et al., 2024; Lin et al., 2024; Bordelon et al.,
2025). We use this technique to simplify the posterior probability distribution of the Bayesian re-
gression model.

Inference-time scaling. A growing body of work investigates how to allocate and exploit
inference-time compute to improve predictive performance, with empirical gains reported across
tasks and domains based on majority voting (Chen et al., 2024a; Snell et al., 2025; Setlur et al.,
2025; Arora & Zanette, 2025; Wu et al., 2024; Liu et al., 2025; Du et al., 2025) or a best-of-k strat-
egy (Wang et al., 2023; Yao et al., 2023a; Brown et al., 2024; Levi, 2024; Schaeffer et al., 2025a;
Huang et al., 2025; Chen et al., 2024b; Du et al., 2025). These procedures are often paired with
reasoning-oriented prompting and structured search that expand the candidate set before selection
(e.g., chain-of-thought and tree-of-thoughts) (Wei et al., 2022; Yao et al., 2023b). The work of Chen
et al. (2024a) presented a theoretical model for majority voting in the premise of classification prob-
lems. More close to our work is the theoretical model of Levi (2024) on best-of-k strategy. For a
given trained model, both these works explain some of the empirically observed patterns at infer-
ence. We study similar questions for the regression model and discuss trade-off between training
and inference time compute taking into account the quality of the reward and the sampling process.

2 PROBLEM SETUP: BAYESIAN REGRESSION WITH REWARD-WEIGHTED
SAMPLING

We start by introducing our solvable model.

2.1 TRAINING METHOD - PRIOR AND POSTERIOR DISTRIBUTION

We study a supervised regression setting with a linear teacher model that maps inputs to outputs and
then add observation noise. Throughout, let x € R denote an input vector drawn from a zero-mean
Gaussian with covariance X, written x ~ N(0,X). We assume Tr(X) = ©,4(d) so that the total
feature variance scales linearly with dimension; a canonical case is 3 = I. The teacher parameter
wr is taken to have norm ||wr||? = d, and the output is given by:

X
= W 7-’- 5 NNO,UZ. (])
y=wro oS (0,07)
Given a training set D = {(x"7 yi)?zl} sampled i.i.d. from the teacher, we adopt a Bayesian linear

regression perspective with an isotropic Gaussian prior on the weights, A/(0,+?I). Bayes’ rule
yields the posterior distribution over weights:

_ p(DIw)p(w)

Predictions for a new test input x are obtained by marginalizing the likelihood under this posterior,
producing the posterior predictive distribution:

2

p(ylx, D) = / dw p(w[D)p(ylx, w). 3

Next we state the standard result that makes predictive distribution explicit.

Lemma 1. Analytical formula for the posterior predictive is given by

X X T X
pyx, D) =N (;4 T A Qﬁ JrU2> @
1 n Xi 1 n Xi Xi T 1
=22 =5 +— )
p=— ;yﬁ 2T T
Proof. Consult Bishop (2013) for the proof. -

[OV)
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2.2 INFERENCE-TIME SAMPLING AND THE REWARD MODEL

Suppose that we have a reward model that evaluates our predictions, 7(y,x). We will use this to
generate an output with the following procedure:

Reward-Weighted Sampling

Require: input x, posterior predictive p(y | x, D), reward r, temperature 7', number of samples &
: fori < 1tokdo

sample y; ~ p(y | x,D)

w; « exp(r(y;,x)/T)

:qiewi/Z;?:le (iZl,...,k)

: Draw I ~ Categorical(qi, ..., qx)

return Yo < yr

A A

For simplicity, we will assume a reward given by
< \2
r(y,x) = — (y —WR- \/E) (6)

Note that wr # wy in general.

In this paper, we are interested in computing the generalization error of this model defined by

Zf:l (yi - MT(X))2 e—(yi—uR(X))/T

sk o~ (vi—nne) /T
j:

0=ExEy, 4

»Yk

(N
Here we use the notation pr(x) := wr - T ur(x) :=wg- *.

3 ANALYSIS OF THE GENERALIZATION ERROR

In this section we analyze the high-dimensional behavior of the Bayesian regression model intro-
duced above, with a particular focus on how inference-time sampling and the reward model shape
the error. In the high dimensional setting, deterministic-equivalents simplify the predictive mean
and variance by m and ¥ = s? as follows:

Theorem 1. In the limit of d,n — oo, with « = d/n fixed, the generalization error is given by

2?21 (yz - MT(X))2 e~ (yz—HR(X))/T

0= Ewa E i~ N (m(x),s(x)2),i=1,2,..., s 3
(039 By n Nl 50O 0= 2,k Z’? 16*(y.1*HR(x))/T
=
where the posterior predictive has a deterministic mean m(x) and variance $(x) = s(x)? as
follows
()= A ()2 =0 +7* = By ©)
m(x) = — wrp, s(x)*=0 — —.
Vd RWT v Nz R d
The matrices A g, Bg are given by
Ap:=%(Z+RD, Br:=R(E+RI)'=1-Ax (10)
and the renormalized ridge R is given by
- o? 1 1
R:R(l—amg(R)) =Sa, ms(R) = -THS(E+ R 7). (11
Y
Proof. See appendix B for more details. [
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In this paper we will focus on the simple setup where 3 = S2I. In this case we can explicitly solve
for the renormalized ridge as follows

1
N N\ 2 A\ 2
1 o(d R d R 4R
= — 4+ — — - - = — 12
R=35"| -+ -1+ (1 - 82> + 5 (12)
In addition in this case the matrices A p, Br are proportional to identity matrix
S? R

Ap=——1 Br = ——=L 13
BT Ry s27 BT R4 52 (13)

These expressions are going to be useful in the later sections to have close form expression of
generalization error ¢ in various parameter domains of interest.

) 1 2 3 4 5 [ 1

log(k) 2Iog(k)

(a) T = 200> b)) T = 1002

Figure 2: In the plot we have chosen S = 1,0 = 107%,v = 107%,n = 10*,d = 10" and
sampled teacher weight wr ~ N(0,22I). We have parameterized the reward weight as follows:
wgr = (14 cR/(R + S?))wr. Solid and dashed lines correspond to the experimental results and
the formula in Theorem 1 respectively.

Before we get into the details of further theoretical analysis, we summarize the empirical find-
ings in Figure 2 and compare with results of Theorem 1. When the reward is sufficiently accu-
rate—formally, when ||[wgr — wr||/||wz|| is small—the generalization error § decreases monotoni-
cally with the number of inference-time samples k. We denote by R (highlighted in red in Figure 1)
the region of reward weights exhibiting this monotonic behavior. Notably, within R the teacher re-
ward is not optimal for fixed (k, T); i.e., wg = w does not minimize § (see Figure 2a). Comparing
figures 2a-2b, we note that the set R shrinks as the temperature 1" decreases (see also Figure 1).
Outside this set, in its complement RC (blue in Figure 1), Figure 2 shows that § becomes non-
monotonic in k, with a finite k£ beyond which increasing k worsens error. Consequently, for a fixed
wg, lowering T' can induce a transition from R to RE; equivalently, at fixed k£ there may exist an
optimal temperature T that minimizes ¢ (confirmed in Figure 3c¢).

We now provide a theoretical account of these phenomena. Specifically, we analyze J in two com-
plementary regimes of the reward temperature: (i) a high-temperature (weak-reward) expansion,
where the selection reweighting is perturbative, and (ii) a low-temperature (“best-of-k”) regime,
where selection concentrates on high-reward samples and extreme-value effects dominate. The next
two results formalize these regimes.

Theorem 2 (High-T expansion). ForT >> s(x)? the expectation value of the error can be organized
as a perturbative series as follows

l
§ = Ex|Ar(x)? + s%(x) + Z?ﬂ(_l)l%:)(l) II (1 - %) + o(t(x)—‘l)} (14)
Where we have defined
Ci(x) = 2A7(x)AR(x) + s%(x) + (I — 1)Ar(x)? (15)
Ar(x) i= m(x) — pr(x), Ap(x) i= m(x) — pa(x), Hx) = % (16)

and all other quantities are as in Theorem 1.
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Proof. Let z denote the partition function over k i.i.d. draws from p(y|x, D) with quadratic reward,
expand EE log z around Ez via a controlled the cumulant expansion for ¢>>1. The 1/t,1/t? and 1/t3
terms produce the C;(x), C2(x) and C3(x) structure; substituting the deterministic equivalents for
m, 2 converts it to the form mentioned in the Theorem. See Appendix C for the details. O

In the limit of an ample amount of data d/n — 0 with a flat prior o/ — 0, the temperature scale
is controlled by s? ~ 2. Hence the Theorem above is valid in the high-temperature limit in that
sense.

Theorem 3 (Low-T1" best-of-k sampling). When we have access to the exact teacher weight wr =
wr = W, the leading order result for T — 0 followed by k — o< is given by

§ = LR, |:82(X) exp(AT(X)zﬂ (17)

52(x)

All the quantities are as in Theorem I and Theorem 2.

Proof. AtT = 0, the softmax reduces to a minimum of chi-squared random variables. This is gov-
erned by the Weibull distribution at large & according to extreme value theory. Finally, substituting
the deterministic equivalents for m, 3 and evaluating the expectation value gives the generalization
error mentioned in the Theorem. See Appendix 11 for details. O

Note that the low-temperature scaling of § with the number of inference time samples k is indepen-
dent of the amount of the amount of training data.

These theoretical results are compared with the experiment in Figure 4.
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Figure 3: In the plot we have chosen S = 1,0 = 1074,y = 1073,n = 10*,d = 10 and used the
following parameterization wgr = (1 + ¢R/(R + S?))wr and sampled wr ~ A(0, 2?I). (a) This
plot shows dependence of § on ¢ for various values of 7". In these graphs we have kept & = 50
fixed. We see that J is minimized at ¢ ~ T'/(20%) as expected from lemma 2. (b) We plot the scaled
value of § — 0, 000 = dp—100 as a function of % for various values of c. This shows existence of an
optimal value of k - theoretical prediction for it is denoted as k,; as given in lemma 3. In this plot
we have chosen a fixed temperature T = 20002 (c) This plot shows existence of an optimal value
of temperature 7" at fixed & = 50. For the optimal value, we find reasonable agreement with the
theoretical prediction in in lemma 4.

3.1 DOES THE TEACHER REPRESENT THE OPTIMAL REWARD?

Figure 3a compares the generalization error achieved when the reward weight equals the teacher
(wr = wr) versus when it differs, across different values of k£ and T'. The plot reveals a consistent
pattern: when wg, is close to wr, the error is lower when the reward weight is slightly shifted away
from the teacher. This additional shift required for the optimal reward grows systematically with the
temperature scale 7T'. This fact is explained by the following lemma:

Lemma 2. There exists an optimal reward weight that differs from the teacher weight by the follow-
ing formula

k
wgr(x) =wr + <Ht(x)) Brwr (18)
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This formula is valid in the domain stated in Theorem 2 as long as
[Wr(x) — wr||

<1 (19)
[wr|l

Proof. This is obtained by setting the first derivative of J, given in Theorem 2, with respect to wpr
to zero. O

The lemma also quantifies the empirically observed fact that as 7" increases, the optimal w moves
proportionally away from w.

3.2 IS THERE AN OPTIMAL VALUE FOR INFERENCE-TIME SAMPLES?

Figure 3b shows that when the reward weight w, is sufficiently misaligned from the teacher wr,
the test error as a function of the number of inference samples k is non-monotonic: it first decreases
(benefiting from a better draw among £ candidates) and then increases beyond an optimal value of
k.

We can get some more insight into this behavior by the following lemma:
Lemma 3. There exists an optimal value of inference samples k, when Theorem 2 is valid and

3C5(x)
t< —>=t,, CC >0, C. >0 20
Cl (X) 1 (X) 2 (X) ( )
In this case, as we increase k the error decreases until when we reach
2t
k ~ 21
P 21

and far beyond this, increase in k increases the error. For larger values of t, increase in k always
decreases error.

Proof. This is obtained by setting the first derivative of 4, given in Theorem 2, with respect to k to
ZEero. O

Note that above lemma only applies when ¢ > 1 and ¢t < 3C5/C}. But when wpg, is sufficiently
close to wp, Cy/C7 ~ 1. When wr, is sufficiently close to wr, increase in k decreases the error
0 since in this case above lemma does not apply. Whereas when wg is sufficiently far from w
(C5/C1 becomes larger since A g grows), above lemma shows existence of an optimal value for k.

3.3 IS THERE AN OPTIMAL TEMPERATURE?

Figure 3c examines generalization ¢ error as a function of temperature 7" at fixed number of infer-
ence time samples k. Empirically, the generalization error exhibits a clear local minimum around a
critical value of T', rather than decreasing or increasing monotonically. Interpreting this through the
high-T" expansion, the minimum corresponds to a particular balance between the first- and second-
order correction terms governed by C; and Cs. Temperature 7" controls how sharply the selection
favors high-reward samples among the k& candidates. At very high temperatures, selection is nearly
uniform and the benefits of the reward model are muted; at very low temperatures, selection be-
comes too aggressive and can over-amplify any mismatch between wr and wr, increasing error.
The optimal temperature thus trades off these effects. It scales linearly with ¥ and grows with mis-
specification via C3/Cy. The location of the optimal temperature for given k, wg is determined
from the theoretical result below:

Lemma 4. For a given number of inference-time samples k > 2, training dataset size n and reward
weight w g, there exists an optimal temperature for the rewarding process

t(x) =2 (1 - 2) gjg; Ci(x) >0, Cay(x)>0 (22)

This formula is valid in the domain stated in Theorem 2.

Proof. This is obtained by setting the first derivative of 4, given in Theorem 2, with respect to ¢ to
ZEero. O



Under review as a conference paper at ICLR 2026

—— Expt. at n=10000 Expt. at n=10000
—— Th. at n=10000 115 Th. at n=10000
—— Expt. at n=15000 —— Expt. at n=15000
—— Th. at n=15000 1.10 —— Th. at n=15000
Expt. at n=20000 Expt. at n=20000
Th. at n=20000 ~ Th. at n=20000
Expt. at n=25000 2105 \ Expt. at n=25000

0.0012

0.0010

0.0008

6/0%

0.0006 Th. at n=25000 Th. at n=25000

Expt. at n=30000
Expt. at n=30000 1.00 xpt. at n:

Th. at n=30000
0.0004 Th. at n=30000

0.0002

0.95 g

60 80 100 120 140 160 180 200 0 25 50 75 100 125 150 175 200
k

(@ (b)

Figure 4: In the plot we have chosen S = 1,0 = 107%, v = 1073,d = 10. (a) We plot the
theoretical (given in Theorem 3) and experimental value of 6 at 7 = 0 and find good agreement
for wp = wr ~ N(0,2%I). We see that in this domain scaling n higher is less useful compared
to scaling k. (b) We plot the theoretical (given in Theorem 2) and experimental value of ¢ and find
good agreement for wr = wr ~ AN(0,22I). We see that in this domain scaling n higher is more
useful compared to scaling k.

3.4 WHEN WE HAVE ACCESS TO THE TEACHER AS THE REWARD MODEL, HOW DOES
GENERALIZATION ERROR DECAY FOR THE BEST OF k SAMPLING - EXPONENTIALLY OR
AS A POWER LAW?

The low-T result in Theorem 3 shows an inverse—quadratic k~2 decay of the error when the reward
matches the teacher (wr = wr). Here we sharpen that statement by identifying a concrete, practi-
cally relevant parameter domain in which the leading-order constant in front of =2 can be written
in closed form. Explicit formula clarifies how dimensionality, sample size, noise, and prior scale
combine in the low-temperature limit.

Lemma 5. As a refinement of Theorem 3, consider the parameter regime
2
ETr(BRE) < o

In the low-temperature limit T' — 0 followed by k — oo, the leading-order generalization error for
WpR = W = W is given by

0 = — u:= Brw

Proof. In this domain the x-dependence of s?(x) is small relative to o2 and this allows us to reliably
set s2(x) ~ o2 in Theorem 3 to evaluate the expectation value. O

In the flat prior limit, i.e, v > o2, this regime corresponds to ample amount of data per dimension,
i.e., n > d. For the isotropic sample covariance X = S2I that we are analyzing in this paper, we
R

have u = 7"z w. In the limit of flat prior with ample amount of data, this further simplifies to

u =~ (1/5%)(02/4?)(d/n)w. The lemma above shows as task difficulty increases, i.e, o gets larger
keeping other parameters fixed, generalization error § and even the scaled generalization error § /0>
increases.

3.5 WHAT IS THE TRADE-OFF BETWEEN TRAINING AND INFERENCE-TIME COMPUTE?

In practice we often face a budget allocation decision: should additional compute be spent on train-
ing (e.g., acquiring/processing more samples n) or on inference-time (e.g., drawing more candidates
k and selecting via the reward)? When the reward is well aligned with the teacher and we operate in
the low-temperature regime, best-of-k style selection can substantially reduce error with relatively
modest inference cost. The question is how this compares with the addition of more data.
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Lemma 6. Given access to exact teacher weight, it is beneficial to scale inference-time compute
over adding more training samples in the following regime: consider T — 0 followed by k — oo

with
2

%Tr(BRE) <02 R<o? (23)
That is within this domain,
1 1 Oa(u'x 1 1
aog(s:_z Ologd _  «a (u'=u) 7 dlogé N dlogé o4
dlogk dlogn 02d —2uT3u dlogk dlogn
Proof. See Appendix E for details. O

In the flat prior, ie, 72 > o2, ample data limit, i.e., n >> d, the second condition in the lemma
quantifies prior quality - roughly speaking it dictates that when the prior -y is broad enough, inference
time compute is beneficial over training time compute. For the isotropic sample covariance 3 =
S?21, putting back explicit formula for u ~ R/S?*w =~ (1/5%)(c? /4?)(d/n)w shows that

2

N

dlogd N % 2224 25)
dlogn 1—oww L &of

In this case, under an even weaker condition R? < o2 already we see that scaling inference time
is beneficial over scaling training compute. If o increases keeping other parameters held fixed, the
magnitude of the derivative of log § w.r.t. log n increases. Hence as the task becomes more difficult
the advantage of inference time scaling degrades. Same statement holds true if v decreases while
other parameters are held fixed.

We empirically validate these results on advantages of inference-time scaling over training compute
in Figure 4a. It is clear from Figure 4a that fractional increase in k decreases generalization error
0 more compared to the same fractional increase in n within the domain of parameters considered
in the plot. However, inference-time scaling is not always advantageous over increasing training
compute - we explain this in Figure 4b. We conclude that when we have access to a good quality
reward model and the task is easy enough, the addition of inference time compute is beneficial over
additional training compute.
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A REVIEW OF EXTREME VALUE STATISTICS

A.1 LIMIT LAWS FOR MAXIMA

Here we note some of the useful results in extreme value theory from de Haan & Ferreira (2007).

Theorem 4 (Fisher-Tippett—-Gnedenko). Let X1, X5, ... be i.i.d. non-degenerate random variables
with distribution function F, i.e, F(z) = P(X < ), and let M,, = max{Xy,...,X,}. If there
exist normalising constants a,, > 0 and b,, € R and a non-degenerate distribution function H such

that
M, — by, Lo .
]P’( < x) —— H(x) (x € R continuity points of H),

an n—00

then H must be (up to affine change of variable) one of the three extreme value distributions:
0 <0,

Fréchet (a > 0) : P, (x) = {C;(p{—xo‘} >0

—( — « <
Weibull (o > 0) 1 U, (z) = {elzxp{ (@)}, i - 8
Gumbel :  A(z) = exp{—e™"}, L ER.

A.2 MAXIMUM DOMAINS OF ATTRACTION AND NORMING CONSTANTS

Definition 5 (Maximum domain of attraction). We say F belongs to the maximum domain of attrac-
tion of H (write F' € MDA(H)) if there exist constants a,, > 0, b,, € R such that

lim F"(apz +b,) = H(z) (x € R continuity points of H).

n— 00
Proposition 1 (Characterisation via exceedance rates). Let H be a (standard) extreme value distri-
bution. Then F € MDA (H ) with norming constants a,, > 0,b,, € R if and only if

lim n(1— F(a,z+by)) = —InH(z) (x € R).

n— oo
For later convenience we define right endpoint 2z := sup{z : F/(z) < 1}, complementary distri-
bution function F(z) := 1 — F(x) and quantile function F* (¢) = inf{x € R: F(z) > t}.
A.2.1 THE MAXIMUM DOMAIN OF ATTRACTION OF THE FRECHET DISTRIBUTION

Theorem 6 (MDA of Fréchet). Let F' have a finite right endpoint xtr = oo and and assume there
exists z < xp such that F is differentiable in (z, x ) The following statements are equivalent:

(i) F satisfies von Mises condition, i.e.,
. z F'(z
lim (z)

_ 2
Jm gy =e>0 (26)

(ii) F € MDA(®,,) with a possible choice of norming constants

b, =0, anF“(11>,
n

A.2.2 THE MAXIMUM DOMAIN OF ATTRACTION OF THE WEIBULL DISTRIBUTION

Theorem 7 (MDA of Weibull). Let F' have a finite right endpoint xr < oo and and assume there
exists z < xp such that F is differentiable in (z, x ) The following statements are equivalent:

(i) F satisfies von Mises condition, i.e.,

b @7 =) (@)

Jm gy =a>0 27)

(ii) F € MDA(V,,) with a possible choice of norming constants

1
b, = zp, an:xF—F‘_(l—),
n
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A.2.3 THE MAXIMUM DOMAIN OF ATTRACTION OF THE GUMBEL DISTRIBUTION

Theorem 8 (MDA of Gumbel). Let F' be a distribution with right endpoint xrp < oo, and assume
there exists z < xp such that F is at least twice differentiable in (z, x ). Define auxiliary function
a(x) = F(x)/F'(x). The following statements are equivalent:

(i) Fis a von Mises function, i.e.,

. 12 _
I_l)l;l}lr_a () =0

(ii) F € MDA(A) with a possible choice of norming constants
b, = F~(1—-1/n), an = a(by)

B PROOF OF THEOREM 1

Theorem 9 (Deterministic-equivalent predictive). In the limit of d,n — oo, with « = d/n fixed,

the posterior predictive in lemma 1 has a deterministic mean m(x) and variance (x) = s(x)? as
follows

x T x T b'¢
m(x) =m(x) = —= Agpwr, s(x)? =0’+7>"—= Bp—. 28
The matrices A g, Br are determined from
Agp:=3(Z+RI)™, Br:=R(Z+RI)"'=1-Ax. (29)
and the renormalized ridge is given by
A o2 1 1
k= R(l - ozmg(R)> =30, mu(R)= G B{S(2 4 R, (30)
Proof. Let the empirical covariance be S = % S xixﬁ, then
Q*o2a(§l+RI)_l R T 31)
= , =g

The mean of the predictive is given by

n n ; i T n ;
T X 1 xT ; X 1 xT x' x' 1 x T ; X
mx)=p —==——= Q =——= Q wr + - — Q
W =w' = O ey A v vt E v
x T I xT &K%
=— Q + Q —, (32)
\/&< 2 ) ’ ? d z:ln\/a

-1

A 1 X 1 x - x!
m(x) =(3(X+ RI) wrp, Q t— 33
00 = (B(E+ ) wr, )+ 5 T3 T o
Conditioned test data X = [x!,...,x"] and the test x, the vector >, ni\’;—% has zero mean with

x' x'

conditional covariance o2 S iV From now we restrict ourselves to the conditioned expec-
tation value over noise.

The variance of the predictive can be simplified to

52(x)*\/g QﬁJrJz:ﬁ [0’204(2+RI) }ﬁ+g2
2 X Tra, ~ A\ —1] X 2
= [R(+ RY) }ﬁﬂ-, (34)
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There exists a R > 0 as defined in the Theorem such that, for any vectors u, v with bounded norms,

UT{E\](EA] + Rl)il}v N uT[E(E +R)" v = uw' Agv, (35)
uT[z% (=+ 1%1)*1]@ 25 wT[R(Z+ RI)'|v = u'Bgo. (36)
Applying equation 35 to equation 33, yields
m(x) 2 iTARWT

Vd

Applying equation 36 to equation 34 withu = v = % yields
9 X T X
$2(x) L 0?2 +42
f f
This result is empirically verified in Figure ??.

C PROOF OF THEOREM 2

Theorem 10. For T >> s(x)? the expectation value of the error can be organized as a perturbative
series as follows

§ = Ex|Ar(x)? + s2(x) + =3 ZCZ o ﬁ( ) (t(x)—‘*)} (37)

i=1

Where we have defined
Ci(x) = 2A7(x)Ag(x) +5°(x) + (I - DAR(x) (38)

Ar(x) == m(x) — pr(x),  Agr(x):=m(x) —pr(x), Hx)= (39)

and all other quantities are as in Theorem 1.

Proof. Consider a random variable x and we are interested in concentration properties of the func-
tion f(x) = logx. Here we will discuss a controlled approximation technique to evaluate the
expectation value of f. Simplest approach is to Taylor expand f around the expectation value of

denoted by &
_ )4
! . :lwff+0(@xf)) (40)

flx) =logz + %(a:—;f) — 27@2@7577)2 n -

Taking expectation value of both sides of the equation above we get the following expression

E(z?) — E()? | E(*) - 3E(e)E(z) + 2E(x)® . (E((z — E(x))*)
E@E 3E(2)? “9( L )

E(logx) = logE(x) —

(41
This approximation scheme is only useful when higher order corrections are relatively small. Next
we use this to derive the result stated in the Theorem above.

It will be convenient to define partition function density given by

k
1 7 Bwp (0i)—Ji By (i) — X 2
Ezz: r(P2) 7P, Ew(P)—(P—W'ﬁ) (42)
The expectation value of z(J, p) when p; is sampled from the following distribution
pi~ N(m,2 =52, i=1,2,...k (43)
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gives disorder averaged, over k samples, partition function, with an additional chemical potential J,
of free particles at temperature 7T'. The error given in (7) can be expressed in terms of this quantity
as follows

0=FE (Z?—l EWT (pi)e_%EWR (Pi)—JiEwyp (p'i)>
? SF e FPun @) —TiBur ()

=—Ep > 0;,(log 2(J,p))l3=0

_Zaji<IOng(Z(J,p)) Ep (2, P> )~ )(z( p))?

Ep(2(J,
Ep(2(J,p)°) — 3Ep(2(J,P)*)Ep(2(J, p) + 2Ep (2(J, p))3>
3Ep(2(J,p))?

_|_

J=0
(44)

To go from the second to the third line we have made an approximation, we will present the domain
of validity of the approximation shortly. To this end we compute,
k
Ep(z(J,p)) ZE e~ T EBwp(0)— Ji Bz (p)) (45)

=1

The required expectation values can be expressed in terms of the following function

> (3mi(s] +s7) — mimysp)

1<ij#k<3 }

exp[—

(40)

D2 2 2)
h(ml,m27m3, 51752,53) =

The moments of z(J, p) are given by

=1
k
1 T WR"X Wr-X o p 1 T WR'X Wp-X o
]E J 79 7h< ) ) 9 y 9 ) 7h( 9 ) ; s 9
[( p)] kQ[jZIW J; m Vd Vd S99, T J; m Nz \/& 59
i#]
b T WR X Wr-X
+ m 7h(m7 d 9 L a82327 1.) 9 48)
; 4.; Vd vd 10 4J; (

1 WRX Wr-X
Ep[zu,mﬂw[ )3 677[ B G )

1<i<j<t<k

k
T WR'X Wr X o p 1 T WR-X Wr-X o
+ 3w h(mv ) S T >7T 7h(ma ) 78
;1 4J; vd ' Vd LN vd ' Vd
i#]
k T WR X Wp - X
R 17 49
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This leads to the following perturbative expansion in terms of ¢ = 55

. (1= ) ((m = 52 (20m — 22)) +2)

ﬁ t

=D (= 22) (2(m=2) + (n-22)) )

2 g (50)

Repeating this technique to higher order is straight forward but algebraically tedious. Here we quote
the result to one higher order

)2+52_

0(x)=(m—wr-

+

) = (m—wr T2t S (1) (1 ) (1_2)...(1—,i)tlzcl<x>+o(;)
(5D
= m—WR.X m_m S2X i Tn_W]:rX2
Cilo) =2 (m = FTE) (m = ) 4 826) + (1= om0 (52
O

D PROOF OF THEOREM 3

Theorem 11 (Low-T best-of-k sampling). When we have access to the exact teacher weight wg =
wr = W, the leading order result for T — 0 followed by k — o< is given by

= gl (27

All the quantities are as in Theorem I and Theorem 2.

Proof. In'T — 0 limit it is natural to approximate the softmax by the sample with highest reward,
ie.,

/ X ? / . X 2
0(%) = Ey,on(mz)i=1,k | | U6 — W - V) YT ANy gy \Y T WR
(54)

First note that the distribution of the penalty is a non-central chi-squared distribution with one degree

of freedom: ) ( e
_ 1 X 2 m- Wi 75
—U=S2<?J—WR'\/&> ~ X1 (A), /\:S—g (55
We focus on the situation of perfect reward wr = wo in the high reward regime. In this case,
§(x) = 8*E(—~Vmaz)s  Umaz = max_,, wy2(x) (V1,2 -, Vi) (56)

Since we are looking for the minimum of the chi-squared distributed variables the extreme value
statistics is more involved and the final distribution is different compared to the analysis for maxi-
mum.

Next we focus on k& — oo limit for analytical tractability. Probability distribution function ¢ and
cumulative distribution function F' of v < 0 is given by

o (Vo) U (YA Ve
‘P(U) = \/2—7_(_—\/_7“, F(’U) =1- 5 (erf <ﬁ> + erf <\/§>>

(57
Note that as k — oo the degenerate distribution concentrates near vy = 0. Given that v is finite,
the extreme distribution could be either of Weibull or Gumbel type. Next we show that it is not
Gumbel type. To see this we calculate the auxiliary function for the Gumbel type using
_1-F(v)

a(v) = F) vgrgF a'(v) #0 (58)
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This limit on right ensures it cannot be of Gumbel type. To identify the Weibull distribution

Uo(z)=e 2% forz <0, 1 otherwise (59)
We calculate ( VP ) )
. Vp — U )
=1 = 2 N 60
T T 1-F@@) 2 (60)
This ensures the cumulative distribution function of (vy,a. — di)/cx, is ¥, where
dk =V = 0
1 N 61)
Ck:'UF_F(;<1—k>:2k2€

The probability density for —v,,q. /¢ is

pmax(*vmaz/ck) = a(*vmam/Ck)ai167(71)7"”’/6’“)0, Vmaz < 0 (62)
This gives the following expression for the error in ¢ — 0, k — oo limit (taken in this order)
ms? I’
8(x) = s2etE(—vmaz/ck) = s, D(1 + 1/a) = e (63)

E PROOF OF LEMMA 6

Lemma 7. Given access to exact teacher weight, it is beneficial to scale inference-time compute
over adding more training samples in the following regime: consider T — 0 followed by k — oo

with
2

T T(BRE) < 02, R < o> (64)
That is within this domain,
dlogd dlogd a0y (u' Zu) dlog & dlog§ ©5)
dlogk 7 dlogn  o02d—2u’Xu’ dlogk dlogn

Proof. Our goal is to put upper bound on the magnitude of the derivative w.r.t. n. We proceed sys-
tematically by working in the eigen basis of sample variance. By the spectral Theorem for real sym-
metric matrices, there exists an orthogonal matrix @ € O(d) and a diagonal A = diag(\1,. .., Aq)
with \; > 0 such that

S =0AQT, Bp=0Qdi ( ) T
QAQ r=Qdiag(y—7)0Q
This immediately gives following inequalities
1 I N
= -T%(Z + RI)~ - : 1
mx(R) dr[ (Z+RD)7'] = d;A+R< (66)
1 1<
S(R) = —=TX(Z + RI)~ - <0 67
mx(R) = —-THiB(E + a2 A+R (67)
We are interested in putting upper bound on the following quantity
d
dR R2)\;
T / T _ i ~ 2 ~ AT
ad(u'Su) =aF'(R) =, F(R)=u Eu—;mwi, w=Q w

We will first derive an upper bound on F’(R) and an upper bound on dR To this goal we proceed
by noting that max > ﬁ = 5- + (attained at A = 2R) and we have

d

2 >\2 4 1
=3 o 0 < 2R ol = o d
=1

<.
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Next we focus on the deterministic equivalents equation
2

A . ofa
Differentiate both sides w.r.t. o
o2
((1 —amyz) — aRm’):) R = 2 + Rmsx(R).

Using the inequalities in equation (66)

2

. Z+Rms(R) L EtR_SR R
- R/R - R/IR YR R’
This gives us the desired upper bound
dR 8 V2 R?
T /
oW Bu) = aF/(R) = < —d(R+15-).
aly(u'Zu) =« (R)da < R+
Finally we aim for establishing a lower bound on 02d — 2w " 3 u. This is achieved by the following
observation ) ) )
R <R()\+R):R <R
(A+R)? = (A+R)? A+R —
Hence
- . R?A )
Therefore

o?d—2u"'Su > d(c% - 2R).
Putting both the results together, when R/0? < 1 we get

dlogé
Ologn

BARRT) 8 R 1R
d(c? —2R) 27 02 1-2R/o?
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F ADDITIONAL EXPERIMENTAL RESULTS

In this Appendix we present additional numerical results for a broader domain of parameters com-
pared to the main text. We see that the patterns explained in the main body of the paper is realized
in a broad domain of parameters.

14 3 o =0
s s
10 s 10 0
13
ety =25
16
12 w3 _
11 2
- 1
10 10
3 % LI w B 3 B3 LI w B : % ® ey

d) T = 2002 (e) T = 1002 HT=0

Figure 5: In the plot we have chosen S = 1,0 = 107%,7v = 107%,n = 10*,d = 10! and
sampled teacher weight wr ~ N(0,22I). We have parameterized the reward weight as follows:
wr = (1 + cR/(R + S%))wr. The plot shows asymmetry between ¢ > 0,c < 0 regions as
explained in the main text.
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Figure 6: In the plot we have chosen S = 1,0 = 1074,y = 10},n = 10,7 = 200? and
sampled teacher weight wp ~ A(0,22I). We have parameterized the reward weight as follows:
wgr = (1 + cR/(R + S?))wr. We see that for d > n generalization error shows different pattern
compared to d < n. For d < n we see features that are discussed in the main text. We note that
as d/n increases ¢ at fixed k generally increases. Nevertheless, even for d > n, an increase in k
decreases ¢ for a wide range of wg.
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(b) o/ =0.001
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Figure 7: In the plot we have chosen S = 1,0 = 107%,n = 102,d = 10,7 = 200? and
sampled teacher weight wr ~ N(0,22I). We have parameterized the reward weight as follows:
wr = (1 + cR/(R + S?))wr. We see that for large o/ generalization error shows different
pattern compared to small o /+. Plots show similarity with the plot of § vs d/n - in the language
of deterministic equivalence both of these are related to the similar change of the un-renormalized
ridge.
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Figure 8: In the plot we have chosen T = 2002,0 = 107%,v = 1072,n = 10%2,d = 10" and
sampled teacher weight wr ~ A(0,22I). We have parameterized the reward weight as follows:
wgr = (1 + cR/(R + S?))wr. The plot shows as S is lowered beyond a critical value we see a
sharp change of features.
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