
EpiCoder: Encompassing Diversity and Complexity in Code Generation

Yaoxiang Wang 1 2 * † Haoling Li 3 * † Xin Zhang 4 * Jie Wu 3 † Xiao Liu 4 Wenxiang Hu 4 Zhongxin Guo 4

Yangyu Huang 4 Ying Xin 4 Yujiu Yang 3 Jinsong Su 1 2 Qi Chen 4 Scarlett Li 4

Abstract
Existing methods for code generation use code
snippets as seed data, restricting the complexity
and diversity of the synthesized data. In this paper,
we introduce a novel feature tree-based synthesis
framework, which revolves around hierarchical
code features derived from high-level abstractions
of code. The feature tree is constructed from raw
data and refined iteratively to increase the quan-
tity and diversity of the extracted features, which
captures and recognizes more complex patterns
and relationships within the code. By adjusting
the depth and breadth of the sampled subtrees, our
framework provides precise control over the com-
plexity of the generated code, enabling functional-
ities that range from function-level operations to
multi-file scenarios. We fine-tuned widely-used
base models to obtain EpiCoder series, achieving
state-of-the-art performance on multiple bench-
marks at both the function and file levels. In
particular, empirical evidence indicates that our
approach shows significant potential in the syn-
thesizing of repository-level code data. Our code
and data are publicly available.1

1. Introduction
Large Language Models (LLMs) (OpenAI, 2023; Zhang
et al., 2022) have demonstrated significant potential in the
field of code understanding and generation, particularly

*Equal contribution †This work is done during their in-
ternships at Microsoft 1School of Informatics, Xiamen Uni-
versity 2Key Laboratory of Digital Protection and Intelli-
gent Processing of Intangible Cultural Heritage of Fujian
and Taiwan (Xiamen University), Ministry of Culture and
Tourism, China 3Tsinghua University 4Microsoft. Cor-
respondence to: Xin Zhang <xinzhang3@microsoft.com>,
Yujiu Yang <yang.yujiu@sz.tsinghua.edu.cn>, Jinsong Su
<jssu@xmu.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1https://github.com/microsoft/EpiCoder and https://
github.com/DeepLearnXMU/EpiCoder

Figure 1: Benchmark performance of EpiCoder-Qwen-7B
(fine-tuned on Qwen2.5-Coder-7B-Base) and its counter-
parts. XFileDep is file-level code generation benchmark, all
others are function-level.

through pre-training on large-scale code data (Sun et al.,
2024; Zhu et al., 2024). However, the latent code knowl-
edge in these models is often underutilized without fine-
tuning on high-quality instruction data. Instruction tuning
has emerged as a critical step in unlocking the full capa-
bilities of code LLMs (Wei et al., 2022), enabling a more
precise alignment with user intent and improving the usabil-
ity of the model in real-world scenarios.

Despite recent advances, most existing methods for synthe-
sizing high-quality instruction data rely on code snippets
as seed data (Chaudhary, 2023; Yu et al., 2023b; Wei et al.,
2024b; Muennighoff et al., 2023). While code snippets
demonstrate specific functionalities, they fail to capture the
full range of programming constructs, patterns, and interac-
tions that are common in real-world programming scenarios.

1

https://github.com/microsoft/EpiCoder
https://github.com/DeepLearnXMU/EpiCoder
https://github.com/DeepLearnXMU/EpiCoder

EpiCoder: Encompassing Diversity and Complexity in Code Generation

Additionally, due to the inherent rigidity of code snippets,
it is difficult to rearrange or recombine them to generate
new and diverse combinations. These limitations restrict
the overall complexity and diversity of the synthesized data,
highlighting the critical need for more structured representa-
tions as seed data to overcome these constraints and address
real-world programming challenges.

Inspired by Abstract Syntax Tree (AST), we propose a fea-
ture tree-based code data synthesis framework that revolves
around hierarchical code features derived from high-level
abstractions such as variable types function structures, and
control flow. While AST captures the syntactic structure of
code, our approach extends this idea by organizing features
into a tree structure that captures the semantic relationships
between code elements.

Specifically, we extract features from the seed data and use
hierarchical clustering to generate a tree structure demon-
stration, starting from a feature set and proceeding bottom-
up. This demonstration serves as a guideline for the LLM
to directly extract tree structures from raw code data. To
ensure comprehensive coverage of real-world scenarios, we
enhance the diversity of features by iteratively expanding
the tree structure both in breadth and in depth. Compared
to methods that evolve based on individual code snippets or
single instructions (Luo et al., 2023), our approach is more
efficient and achieves broader coverage, as the tree struc-
ture provides clear and organized directions for evolution.
The resulting feature tree is a large and hierarchical struc-
ture, from which we can sample subtrees to generate code
data. Our feature tree-based synthesis method offers two
advantages: (1) Controllable Complexity: Our framework
allows for adjusting the complexity of synthesized data by
modifying the depth and breadth of subtrees. This enables
the creation of code ranging from simple function-level
tasks to comprehensive, multi-file solutions. (2) Targeted
Learning: By adjusting the probability of sampling fea-
tures, we can prioritize specific knowledge areas that are
underrepresented, ensuring a more tailored and effective
learning process for the LLMs.

We conduct extensive experiments to validate our fea-
ture tree-based code data synthesis framework, training
Qwen2.5-Coder-7B-Base and DeepSeek-Coder-6.7B-Base
to derive the EpiCoder series model. Our EpiCoder-Qwen-
7B trained on 380k function-level and 53k file-level data,
respectively. Regarding the five function-level code gener-
ation benchmarks, it has achieved state-of-the-art (SOTA)
performance on average among models of similar scales.
Notably, in the completion tasks of BigCodeBench-Hard,
it outperforms Qwen2.5-Coder-7B-Instruct by a margin of
7.4%. Furthermore, on file-level benchmark XFileDep, Epi-
Coder exhibits superior performance, underscoring its ca-
pability to address programming problems of varying com-

plexity. Building on these results, our approach further
demonstrates strong potential in synthesizing highly com-
plex repository-level data, as illustrated in Figure 5. To
assess data complexity, we incorporated definitions from
software engineering principles and employed the LLM-as-
a-judge methodology. Moreover, we examined the diversity
of datasets from a feature-based perspective to underscore
the versatility and robustness of our framework.

Our contributions are summarized as follows:

• We propose a feature tree-based code synthesis frame-
work that enables controllable synthesis of diverse and
complex instruction data, ranging from function-level
to file-level tasks.

• We synthesize 433k instruction data and train EpiCoder.
Our EpiCoder-Qwen-7B achieves state-of-the-art per-
formance among comparably sized models in multiple
function-level and file-level benchmarks, demonstrat-
ing its capability to tackle programming problems of
varying complexity.

• By conducting further analysis, we showcase the ad-
vantages of our data in terms of complexity and diver-
sity, as well as its potential for synthesizing large-scale
repositories.

2. Methodology
In this section, we present our feature tree-based code gen-
eration framework, which consists of three key steps: (1)
Feature Tree Extraction (Section 2.1), where we construct
the tree demonstration and extract feature trees from seed
data; (2) Feature Tree Evolution (Section 2.2), where we
iteratively expand the feature tree to enhance diversity and
coverage; and (3) Feature Tree-Based Code Generation
(Section 2.3), where we use the evolved feature tree to gen-
erate diverse code instruction data with varying complexity.
An overview of the framework is illustrated in Figure 2.

2.1. Feature Tree Extraction

Inspired by Abstract Syntax Trees (AST), which represent
the syntactic relationships in code, we use the LLM to ex-
tract a hierarchical representation that organizes key ele-
ments of code into a tree structure to capture more funda-
mental semantic relationships.

Raw Code Collection To ensure data diversity and com-
prehensiveness, we obtain seed data from The Stack
v2 (Lozhkov et al., 2024), a publicly available large-scale
dataset widely used for pre-training code LLMs. Follow-
ing (Yu et al., 2023b), we apply the KCenterGreedy al-
gorithm (Sener & Savarese, 2018) to select a core set of

2

EpiCoder: Encompassing Diversity and Complexity in Code Generation

hierarchical

cluster

Feature Tree Extraction

… ,

Computation: {

Arithmetic operations: {

Addition: 21,

Multiplication: 20,

Subtraction: 13,

...

}, …

},

…

…

a d e

pre-extract

a

c d

a

merge

…

extract

A

…

a

bc

de

Code Generation

reweight

sample

generate

refine

task

Implementing an

application …

env

python

matplotlib

scikit-learn

…

code

Project/
|- README.md
|- src/

|- main.py
|- utils.py

 |- config/
 |- settings.json

|- tests/
|- test.py

C

…

code coreset

clustered feature

extracted feature

c Logical Operation

b Arithmetic Operation

a Computation

d XOR

LLM

e Division

……

Feature Tree Evolution

sample

… …

evolve merge

evolve in depth evolve in breadth

B

…

feature set tree demonstration

feature trees feature tree with frequency
…

Figure 2: Overview of our feature tree-based code generation framework, which consists of three steps: (a) Feature Tree
Extraction, where we first extract the feature set to construct the tree structure demonstration and then extract the feature
trees; (b) Feature Tree Evolution, where the feature tree is iteratively expanded in depth and breadth; and (c) Feature
Tree-Based Code Generation, where the evolved feature tree is used to generate diverse code instruction data. A detailed
example of feature evolution and code generation is shown in Appendix A.

diverse samples based on the code embeddings encoded by
roberta-large-v1 (Liu et al., 2019).

Tree Demonstration Construction To extract features
from the seed data, we leverage a powerful large language
model (LLM), specifically GPT-4o. 2 Since the initial
prompt provided to the LLM can significantly impact its
response, we therefore propose an iterative method to opti-
mize the demonstration tree structure within the prompt. As
shown in Figure 2 (a), the construction of the demonstration
consists of the following two steps:

1. Feature Pre-Extraction: With a draft version of the
prompt, the LLM is used to extract an initial set of
features from the seed data, producing a collection of
feature keywords.

2. Iterative Demonstration Generation: For each step,
we take a subset of the feature set and prompt the

2Unless otherwise specified, the strong LLM refers to GPT-4o.

LLM to perform hierarchical clustering, producing a
tree structure that represents the relationships among
the features. We iteratively refine the tree structure
demonstration by adjusting the clustering of features,
ensuring a well-organized hierarchical relationship.

Feature Tree Extraction Using the refined demonstration
of the tree structure, the LLM is tasked with extracting a
tree-structured feature representation for each code snippet.
These individual feature trees are then merged into a compre-
hensive structure that unifies the extracted features across all
code snippets. During this process, we record the frequency
of each node to reflect the distribution of features in the seed
data. Since the seed data is derived from the pre-training
data, this frequency can serve as an approximate measure
of the knowledge distribution within the pre-trained model.

2.2. Feature Tree Evolution

To overcome the limitations in both diversity and quantity of
features in the seed data, we expand the feature tree through

3

EpiCoder: Encompassing Diversity and Complexity in Code Generation

an evolutionary process. Compared to evolving directly
from the seed code or instructions, this approach ensures
broader feature coverage and improves efficiency by leverag-
ing the tree’s structured representation, which provides clear
and systematic directions for evolution. As illustrated in Fig-
ure 2 (b), at each iteration, a subtree is sampled from the full
feature tree. This subtree is then evolved by the LLM along
two dimensions, depth and breadth, by adding finer-grained
child nodes to existing nodes as well as sibling nodes at the
same hierarchical level. These newly evolved subtrees are
then merged back into the overall structure, significantly
enriching the feature space and facilitating the generation
of more diverse and complex code. An example of the
evolution of a single subtree is provided in Appendix A.3.

One key challenge in feature evolution is to estimate the
frequency of newly generated features. Unlike the feature
extraction stage, where frequencies are calculated directly,
the frequency of an evolved feature is estimated as the av-
erage frequency of its siblings. This approach reasonably
estimates the frequency of new features according to the
existing feature distribution, ensuring that evolved features
integrate seamlessly into the broader feature tree.

2.3. Feature Tree-Based Code Generation

Traditional code generation methods that rely solely on
code snippets often produce outputs that closely resemble
the original seed data, limiting diversity and complexity. We
mitigate this issue by generating code based on feature trees
and the process is outlined as follows.

Distribution Reweighting The previously recorded fea-
ture frequencies partially reflect the distribution of natural
data, helping to simulate real-world scenarios. However,
some high-frequency but easy features, such as config and
initialize, do not require strong focus during instruction
tuning. To address this issue, we adjust the probability
distribution of a node’s child features:

p′i =
exp(log pi/t)∑

j∈C exp(log pj/t)
(1)

where pi represents the normalized original frequency of the
child feature i and p′i is the adjusted probability. As detailed
in Algorithm 1, the summation applies to all child features
j in the set C, which denotes the set of child nodes for the
current parent node. A higher temperature value t leads to
a smoother distribution, allowing less dominant features a
higher probability of being selected. To further enhance
the diversity of the generated data, we employed multiple
temperature values during the data synthesis process for a
wider range of feature distributions.

Feature Sampling To generate diverse code instruction
data, we sample a subtree of candidate features from the

Algorithm 1 Feature Sampling for Task Generation

1: Input: Current root node R, frequency library F , tem-
perature t, sample size S

2: Output: Selected feature set
3: selected_set← ∅
4: for s = 1 to S do
5: C ← get_children(R)
6: if C = ∅ then
7: break
8: end if
9: fi ← F [i] for all i ∈ C

10: pi ← fi∑
j∈C fj

for all i ∈ C

11: Compute p′i using Equation (1) for all i ∈ C
12: cur_node← sample_node(C, [p′1, p

′
2, . . .])

13: selected_set.add(cur_node)
14: end for
15: Return selected_set

feature tree according to the adjusted probability distribution.
The sampling process is guided by a predefined shape of the
subtree to sample, where we recursively apply Algorithm 1
to get the subtree. The LLM then uses this sampled subtree
to generate code instruction data. By adjusting the depth
and breadth of the subtree to sample, we can flexibly create
tasks with varying complexity, thereby providing a broad
spectrum of coding challenges.

Content Generation Based on the sampled subtree, the
LLM proceeds to select a compatible subset and then gener-
ate a task and the corresponding code and execution envi-
ronment. The solution code can range from a single func-
tion to a comprehensive multi-file project, depending on
the task’s complexity. By supporting multi-file solutions,
this approach enables the generation of code that reflects
a realistic project structure and effectively captures cross-
file information for problems requiring interactions across
different components. As illustrated in Figure 6 of Ap-
pendix A.1, different files implement distinct functionalities
and collectively form an integrated system through their
interdependencies.

Iterative Refinement To improve the quality of the gener-
ated data, the solution code is accompanied by relevant test
files, which are also generated by the LLM. These tests are
executed in an isolated environment, allowing us to identify
and filter out incorrect solutions. Through an iterative de-
bugging process, information from the execution results is
used to guide the LLM to refine the solution, ensuring the
correctness of the generated code.

4

EpiCoder: Encompassing Diversity and Complexity in Code Generation

3. Experiment
In this section, we introduce the details of the synthetic
data (3.1) and evaluate the model’s performance in code
generation at different levels. Specifically, in Section 3.2,
we evaluate the model’s ability using five function-level
code generation benchmarks. In Section 3.3, we employ our
meticulously crafted XFileDep benchmark to evaluate the
model’s file-level code generation capabilities. We demon-
strate the potential ability to generate particularly complex
code repositories in Section 3.4.

3.1. Implementation Details

We utilized our pipeline to extract 5k features from the core
set of 150k Python language files in The Stack V2. These
features were then expanded through evolutionary meth-
ods to 140k features. Then we synthesized 380k function-
level data samples and 53k file-level data samples based on
the features. We choose DeepSeek-Coder-Base-6.7B (Guo
et al., 2024) and Qwen2.5-Coder-7B (Hui et al., 2024) as the
base LLMs and obtain the EpiCoder-DS-6.7B and EpiCoder-
Qwen-7B models after training. To ensure a fair comparison
with other baselines, we incorporated the evol-codealpaca-
v13 (applied the same filtering criteria as described in (Yu
et al., 2023b)) dataset into the training of only the DeepSeek-
Coder-Base-6.7B model. Additionally, for models trained
solely on file-level data, we employed additional notation.
We evaluated the models on benchmarks corresponding to
their respective training levels.

3.2. Function-level Generation

Many previous code LLMs have exhibited overfitting to
specific benchmarks after fine-tuning, which somewhat con-
strains their ability to generalize to other benchmarks. To
prevent this, we employed five benchmarks for evaluation,
with HumanEval (Chen et al., 2021), MBPP (Austin et al.,
2021), BigCodeBench (Zhuo et al., 2025), EvoEval (Xia
et al., 2024) and FullStackBench (Liu et al., 2024), ensur-
ing that they are generally broad, comprehensive, reliable,
and decontaminated. For further clarity, all benchmarks are
described in detail in Appendix B.1.

Table 1 and Figure 3 illustrate the performance of
our model in these programming tasks at the func-
tion level. Except for the results underlined, which
are sourced from their respective papers, all other re-
sults are obtained from the EvalPlus-Leaderboard4 and
BigCodeBench-Leaderboard5. Among models of the

3https://huggingface.co/datasets/theblackcat102/
evol-codealpaca-v1

4https://evalplus.github.io/leaderboard.html
5https://huggingface.co/spaces/bigcode/

bigcodebench-leaderboard

Figure 3: Model performance across domains of Python in
the English Subset of FullStackBench.

same size, EpiCoder-Qwen-7B achieves the state-of-the-art
(SOTA) average performance. The evaluation of the Epi-
Coder series models on these benchmarks highlights their
capability to solve challenge and complex programming
problems. Moreover, the results also demonstrate that the
feature tree-based code generation method can provide high-
quality and diverse synthetic data tailored to function-level
programming problems.

3.3. File-level Generation

Figure 4: Pass@1 (%) results of different LLMs on
XFileDep computed with greedy decoding.

XFileDep Benchmark Many existing code benchmarks
focus on function-level code generation and lack evalua-
tions of file-level generation capabilities. To address this
limitation, we have developed a Cross-File Dependency
Benchmark (XFileDep) specifically designed to assess the
file-level code generation capabilities of LLMs while con-
sidering cross-file dependencies. XFileDep provides a com-
prehensive framework by treating multiple interdependent
code files as context and testing the model’s ability to gen-
erate missing files. This benchmark not only measures the
model’s ability to generate isolated files, but also evaluates

5

https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1
https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1
https://evalplus.github.io/leaderboard.html
https://huggingface.co/spaces/bigcode/bigcodebench-leaderboard
https://huggingface.co/spaces/bigcode/bigcodebench-leaderboard

EpiCoder: Encompassing Diversity and Complexity in Code Generation

Table 1: Pass@1 (%) results of different LLMs on HumanEval (+), MBPP (+) and BigCodeBench computed with greedy
decoding. We conducted the evaluation on the Full and Hard subsets of BigCodeBench (BCB), including the Complete
(Comp.) and Instruct (Ins.) tasks.

Model Base HumanEval MBPP BCB-Full BCB-Hard EvoEval AverageBase Plus Base Plus Comp. Ins. Comp. Ins.

Closed-source Model

GPT-4-Turbo (April 2024) - 90.2 86.6 85.7 73.3 58.2 48.2 35.1 29.1 61.4 63.1
Claude-3.5-Sonnet (June 2024) - 87.2 81.7 89.4 74.3 58.6 46.8 33.1 25.7 - -

7B+ Scale

Qwen2.5-Coder-32B-Instruct - 92.1 87.2 90.5 77.0 58.0 49.0 33.8 27.7 67.6 64.8
OpenCoder-8B-Instruct - 81.7 77.4 82.0 71.4 50.9 43.2 18.9 18.2 49.2 54.8
DeepSeek-Coder-33B-instruct - 81.1 75.0 80.4 70.1 51.1 42.0 20.9 17.6 51.6 54.4
Codestral-22B-v0.1 - 79.9 73.8 72.5 61.9 52.5 41.8 24.3 16.9 57.2 53.4

∼ 7B Scale

DSCoder-6.7B-Base - 47.6 39.6 72.0 58.7 41.8 - 13.5 - 30.4 -
DeepSeekCoder-6.7b-Instruct 74.4 71.3 74.9 65.6 43.8 35.5 15.5 10.1 41.4 48.1
Magicoder-S-DS 76.8 71.3 79.4 69.0 47.6 36.2 12.8 13.5 44.6 50.1
WaveCoder-Ultra-6.7B 75.0 69.5 74.9 63.5 43.7 33.9 16.9 12.8 42.0 48.0
OpenCodeInterpreter-DS-6.7B 77.4 72.0 76.5 66.4 44.6 37.1 16.9 13.5 44.2 49.8
EpiCoder-DS-6.7B 80.5 76.8 81.5 68.3 50.6 37.9 19.6 12.8 50.0 53.1

Qwen2.5-Coder-7B-Base - 61.6 53.0 76.9 62.9 45.8 - 16.2 - 35.6 -
Qwen2.5-Coder-7B-Instruct 88.4 84.1 83.5 71.7 48.8 40.4 20.3 20.9 55.2 57.0
EpiCoder-Qwen-7B 89.0 82.3 84.1 71.4 51.9 43.8 27.7 22.3 58.8 59.0

its proficiency in understanding and managing cross-file
dependencies. The detailed process for constructing the
benchmark is described in Appendix B.2.

Evaluation Details The XFIleDep benchmark comprises
a total of 466 problems. For all problems, we employed
pass@1 as the evaluation metric, as we believe that only
code passing all test cases can be considered to be function-
ing correctly. To ensure stable evaluation, we used docker
to standardize the running environment for all problems.
During the testing of different models, we consistently ap-
plied their default prompts and greedy decoding, with a
maximum token length of 8192. All open-source models
were accelerated using vLLM (Kwon et al., 2023). Figure 4
shows the results of different LLMs on this benchmark. The
experimental results indicate that the EpiCoder, which have
been specifically trained on a dataset consisting of over 53k
multi-file code samples, significantly outperform the base-
line models. This demonstrates the EpiCoder’s exceptional
capability in generating file-level code while simultaneously
considering cross-file dependencies. Furthermore, it vali-
dates our approach’s advantage in synthesizing multi-file
code data of higher complexity.

3.4. Potential Repo-level Generation

Our approach benefits from a hierarchical structure of the
feature tree, enabling the synthesis of instructions and cor-
responding outputs of varying complexities. We further

explore its limit by attempting to synthesize much more
complex real-world code repository data than the file-level
data that contains only several files. Specifically, utilizing a
feature tree extracted from the popular open-source GitHub
repository LLaMA-Factory6, we successfully generate a
repository mirroring the structure with over 50 files. The
example files within this repository demonstrate the feasi-
bility and scalability of our approach, as illustrated in Fig-
ure 5. This example highlights the potential of feature-based
code generation to produce complex and structured reposi-
tories, offering a promising direction for future research in
repository-level code synthesis.

4. Further Analysis
In this section, we first analyze the complexity of the gener-
ated code (Section 4.1), and then we evaluate the diversity
of the code based on feature analysis (Section 4.2). Addi-
tionally, we investigate the scaling effect of code instruction
data and assess potential data leakage issues, which are
detailed in Appendix C.

4.1. Complexity Evaluation

We emphasize that our ability to generate more complex
code data stems from its hierarchical feature tree structure.
By flexibly adjusting the depth and width of the feature tree,

6https://github.com/hiyouga/LLaMA-Factory

6

https://github.com/hiyouga/LLaMA-Factory

EpiCoder: Encompassing Diversity and Complexity in Code Generation

config
docs
scripts
llmtune
data

dataloader.py

[…]
experiments
logging
models

preprocess.py

evaluator.py
exporter.py
trainer.py

[…]
server

api.py
chat_model.py

[…]
utils

[…]
tests

test_arguments.py

requirements.txt
setup.py

validator.py

LLaMA-Factory
assets
data
evaluation

src

data

loader.py

[…]
eval
model

collator.py

adaptor.py
loader.py

[…]
train

[…]

examples

requirements.txt
setup.py

[…] […]

scripts

llamafactory

api.py
train.py
webui.py

ui.py

chat

processors

accelerate
inference

LLMTune

[…] […]

llmtune/experiments/evaluate.py
import argparse
import logging
from llmtune.models.model_loader import load_model
from llmtune.data.data_loader import DataLoader
from llmtune.models.model_evaluator import ModelEvaluator

def parse_args() -> argparse.Namespace:
 """
 Parses command-line arguments.

 :return: Namespace of parsed arguments.
 ""“
 ...

def main():
 args = parse_args()
 logging.basicConfig(level=args.log_level.upper())

 # Load model
 logging.info(f"Loading model from {args.model_path}")
 model = load_model(args.model_path)

 # Load data
 logging.info(f"Loading evaluation data from {args.data_path}")
 dataloader = DataLoader(args.data_path)

 # Evaluate model
 evaluator = ModelEvaluator(model, dataloader)
 metrics = evaluator.evaluate()

 # Save evaluation results
 with open(args.output_path, 'w') as f:
 logging.info(f"Saving evaluation results to {args.output_path}")
 f.write(str(metrics))

 logging.info("Model evaluation completed successfully.")

if __name__ == '__main__':
 main()

Figure 5: An example of our repo-level code generation. The left part shows the original LLaMA-Factory repository
structure, the middle part presents the structure of LLMTune, which we generated based on the extracted feature tree, and
the right part illustrates an example file from the generated repository.

we can dynamically control the complexity of the synthetic
data, ensuring adaptability to diverse requirements. Code
complexity is evaluated through two approaches: 1) using
various software engineering principles; 2) leveraging an
external LLM judge to evaluate from multiple perspectives.

4.1.1. USING SOFTWARE ENGINEERING PRINCIPLES

We first adopt software engineering principles to compare
the complexity of our generated code (at both the function
and file levels) with existing code datasets. This compari-
son is based on three well-established software engineering
metrics: Halstead Complexity (Halstead, 1977), Strictness
Complexity (Ray et al., 2016), and Cyclomatic Complex-
ity (McCabe, 1976). Halstead measures logical complexity
via operands and operators, Strictness evaluates execution
path strictness, and Cyclomatic quantifies control flow com-
plexity through branching analysis.

Table 2 compares Halstead complexity, with detailed results
in Appendix C.3.1. Our function-level data outperforms
the runner-up by 2.55 and 20.99 for unique operators and
operands, and by 56.98 and 100.36 for total counts, nearly
doubling the baseline. File-level results further amplify this
trend, significantly exceeding function-level metrics.

Similarly, Table 12 in Appendix C.3.1 demonstrates that
our dataset exhibits greater strictness and cyclomatic com-
plexity at both the function and file levels. These analyses
collectively demonstrate that feature tree-based code syn-
thesis can create code that is both more complex and more
sophisticated than existing methods.

4.1.2. EVALUATING CODE COMPLEXITY USING LLMS

We evaluate complexity using GPT-4o as a judge, comparing
to existing codebases across four dimensions: Error Han-
dling, Modularity, Data Structure Complexity, and Third-

Table 2: Comparison of Halstead complexity between ours
and existing codebase. UO: Unique Operators, UP: Unique
Operands, TO: Total Operators, TP: Total Operands

Dataset UO UP TO TP

Code Alpaca 4.83 8.22 10.66 15.89
CodeFeedBack 8.11 20.42 30.98 50.05
Evol CodeAlpaca 7.94 18.97 29.91 46.70
OSS Instruct 7.44 20.99 28.05 47.55
Ours (func-level) 10.66 44.32 56.98 100.36
Ours (file-level) 11.64 72.87 100.24 179.98

7

EpiCoder: Encompassing Diversity and Complexity in Code Generation

Table 3: Distribution of unique features across different datasets.

Datasets Workflow Implementation
Style Functionality Resource

Usage
Computation

Operation Security User
Interaction

Data
Processing

Code Alpaca 994 6 393 7 282 8 82 221
CodeFeedback 2079 6 535 18 689 48 143 895
Evol CodeAlpaca 2163 11 591 21 783 60 134 1401
OSS-Instruct 2254 5 669 39 413 49 192 903
Ours (func-level) 2422 6 657 37 819 156 363 2533
Ours (file-level) 2475 11 812 43 536 103 800 2196

Datasets File
Operation

Error
Handling Logging Dependency

Relations Algorithm Data
Structures

Implementation
Logic

Advanced
Techniques Avg.

Code Alpaca 11 54 1 43 232 72 67 10 2.48
CodeFeedback 39 229 10 121 427 100 49 63 5.45
Evol CodeAlpaca 55 212 15 226 414 130 74 94 6.38
OSS-Instruct 102 211 62 238 150 140 82 26 5.54
Ours (func-level) 203 357 96 305 316 116 40 100 8.53
Ours (file-level) 387 311 218 447 293 140 69 110 8.95

Party Dependencies (criteria in Appendix C.3.2). Table 4
summarizes the average scores of 5k samples, consistently
showing significant improvements. Our function-level code
improves by 32.6% over OSS-Instruct, while file-level per-
formance surpasses it by 52.5%, demonstrating our ability
to synthesize more complex code.

Table 4: Comparison of complexity . EH: Error Handling,
MD: Modularity, DP: Dependency, DS: Data Structure.

Dataset EH MD DP DS Avg.

Code Alpaca 2.04 2.10 2.09 2.38 2.15
CodeFeedBack 2.71 3.47 2.23 3.75 3.04
Evol CodeAlpaca 2.53 3.32 2.66 3.58 3.02
OSS Instruct 2.74 3.79 2.78 3.92 3.31
Ours (func-level) 4.11 4.71 3.83 4.90 4.39
Ours (file-level) 4.23 5.94 4.62 5.41 5.05

4.2. Diversity Evaluation

To assess the feature diversity, we sample 1k instances from
ours, CodeFeedback, and other relevant datasets for compar-
ison. Features are extracted using GPT-4o (with the prompt
provided in Appendix C.4.1), and the number of unique
features in each dataset is reported.

Table 3 shows that our dataset surpasses others in feature
diversity, achieving an average of 8.53 unique features at
the function level and 8.95 at the file level, outperforming
the nearest competitor by 2.15 and 2.57, respectively.

Our function-level data significantly improves in areas like
data processing, error handling, dependency relations, and
user interaction, all 2-3 times higher than in existing code-
bases. Additionally, our data also surpasses existing code-
bases in total feature count, as detailed in Appendix C.4.2.

4.3. Comparison under Comparable Data Size

To further investigate the impact of data size and data qual-
ity on model performance, we conducted two additional
experiments comparing EpiCoder with existing baselines
under similar data size conditions.

Comparison with Magicoder and WaveCoder. We sam-
pled 75k function-level data from EpiCoder’s full dataset
and fine-tuned the DeepSeek-Coder-Base-6.7B model, re-
ferred to as EpiCoder-DS-6.7B-Sample75k. We then
compared it with Magicoder-DS (75k) and WaveCoder-
Ultra-6.7B (130k). As shown in Table 5, despite us-
ing the same or fewer data samples, EpiCoder-DS-6.7B-
Sample75k achieves higher average performance, demon-
strating a 5.4% and 3.0% improvement over Magicoder-
DS and WaveCoder-Ultra-6.7B, respectively.

Comparison with SelfCodeAlign. Following the setting
in (Wei et al., 2024a), we fine-tuned CodeQwen-7B using
a 74k subset of EpiCoder function-level data, denoted as
EpiCoder-CodeQwen-7B-Sample74k. The performance
is compared against SelfCodeAlign-CQ-7B (74k) in Ta-
ble 6. EpiCoder-CodeQwen-7B-Sample74k achieves a 4%
higher average score, indicating that the evolutionary data
enhancement strategy effectively improves data quality and
model generalization.

5. Related Work
5.1. Code LLMs

Following the success of general LLMs (Brown et al., 2020;
Chowdhery et al., 2023) , models like CodeX (Chen et al.,
2021) have catalyzed a new surge of research in code in-
telligence (Sun et al., 2024). The applications of code in-
telligence have gradually encompass broader real-world
scenarios (Wang et al., 2023b; Zhu et al., 2024; Shao et al.,
2025). Li et al. (2024) explore the use of LLMs for rewriting

8

EpiCoder: Encompassing Diversity and Complexity in Code Generation

Table 5: Comparison of EpiCoder-DS-6.7B-Sample75k with Magicoder-DS (75k) and WaveCoder-Ultra-6.7B (130k) on
function-level benchmarks. All values are Pass@1 (%).

Model Data Size HumanEval MBPP BCB-Full BCB-Hard EvoEval AverageBase Plus Base Plus Comp. Ins. Comp. Ins.

Magicoder-DS 75k 66.5 60.4 75.4 61.9 46.8 34.8 13.5 11.5 41.2 45.8
WaveCoder-Ultra-6.7B 130k 75.0 69.5 74.9 63.5 43.7 33.9 16.9 12.8 43.6 48.2
EpiCoder-DS-6.7B-75k 75k 78.0 73.2 79.4 68.8 48.2 35.6 18.4 12.8 46.2 51.2

Table 6: Comparison of EpiCoder-CodeQwen-7B-Sample74k with SelfCodeAlign-CQ-7B (74k) on function-level bench-
marks. All values represent Pass@1 (%).

Model Data Size EvoEval MBPP+ HumanEval+ Average

SelfCodeAlign-CQ-7B 74k 43.6 65.2 67.1 58.6
EpiCoder-CodeQwen-74k 74k 47.4 67.2 73.2 62.6

code to enhance code search performance, while Koziolek
et al. (2024) propose a retrieval-augmented method for con-
trolled code generation. Currently, code LLMs are typically
developed through continual pre-training (Roziere et al.,
2023) and supervised fine-tuning (Yu et al., 2023b) based
on general LLMs. Given that general LLMs have already
extensively utilized real-world data during their pre-training
phases, the construction of data for post-training stages re-
mains a critical issue that requires urgent attention (Ding
et al., 2024).

5.2. Data Synthesis for Code

Current research indicates that using LLMs to generate syn-
thetic instruction pairs is an effective strategy to address the
scarcity of instruction data (Wang et al., 2023a; Yu et al.,
2023a). WizardCoder (Luo et al., 2023) employs the Evol-
Instruct method to synthesize more complex and diverse in-
structional data. Similarly, Magicoder (Wei et al., 2024b) uti-
lizes code snippets to guide LLMs in generating high-quality
programming problems and solutions. WaveCoder (Yu et al.,
2023b) proposed a generator-discriminator framework based
on LLMs to produce diverse and high-quality instruction
data. OpenCodeInterpreter (Zheng et al., 2024) constructs
datasets through interactions of users, LLMs, and compilers,
aiming to meet specific criteria such as diversity, challenge,
and multi-turn dialogue structure. Genetic-Instruct (Majum-
dar et al., 2024) simulates the evolutionary processes of nat-
ural selection and genetic algorithms, employing crossover
and mutation operations to generate new instructional sam-
ples. SelfCodeAlign (Wei et al., 2024a) extracts code con-
cepts to generate new data. These methods collectively
demonstrate the efficacy of leveraging LLMs to synthesize
instruction data, significantly enhancing the coding capabil-
ities of language models.

6. Conclusion
In this work, we introduce a feature tree-based synthesis
framework for generating diverse and complex code instruc-
tion data. Inspired by Abstract Syntax Trees (AST), our
approach constructs hierarchical feature trees to capture
semantic relationships within code, enabling scalable syn-
thesis of instruction data with controllable complexity. The
experimental results demonstrate that our synthesized data
excels in both diversity and complexity, and the trained Epi-
Coder achieves outstanding performance in tasks of varying
complexity, from function-level to file-level benchmarks.
Moreover, our approach shows strong potential for scaling
to repository-level code synthesis and advancing the usabil-
ity of code LLMs in complex programming environments.

Acknowledgment
Yaoxiang Wang and Jinsong Su are supported by National
Natural Science Foundation of China (No. 62036004
and No. 62276219), Natural Science Foundation of Fu-
jian Province of China (No. 2024J011001), and the
Public Technology Service Platform Project of Xiamen
(No.3502Z20231043). Haoling Li, Jie Wu and Yujiu Yang
are supported by the Shenzhen Science and Technology Pro-
gram (JCYJ20220818101001004) and the research grant
No. CT20240905126002 of the Doubao Large Model Fund.
We also thank the reviewers for their insightful comments.

Impact Statement
In this work, we propose a feature tree-based code synthe-
sis framework that enables the generation of diverse and
complex code instruction data. Our approach improves the
performance of code LLMs across tasks of varying complex-
ity, enhancing their applicability in real-world programming
scenarios. This, in turn, has the potential to significantly

9

EpiCoder: Encompassing Diversity and Complexity in Code Generation

improve the efficiency of professionals working in software
development and related fields.

References
Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski,

H., Dohan, D., Jiang, E., Cai, C., Terry, M., Le, Q., et al.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:
1877–1901, 2020.

Chaudhary, S. Code alpaca: An instruction-following
llama model for code generation. https://github.com/
sahil280114/codealpaca, 2023.

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman,
G., et al. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374, 2021.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. Journal of Machine Learning Research,
24(240):1–113, 2023.

Ding, B., Qin, C., Zhao, R., Luo, T., Li, X., Chen, G., Xia,
W., Hu, J., Luu, A. T., and Joty, S. Data augmentation
using LLMs: Data perspectives, learning paradigms and
challenges. In Findings of the Association for Compu-
tational Linguistics: ACL 2024, pp. 1679–1705, August
2024.

Guo, D., Zhu, Q., Yang, D., Xie, Z., Dong, K.,
Zhang, W., Chen, G., Bi, X., Wu, Y., Li, Y., et al.
Deepseek-coder: When the large language model meets
programming–the rise of code intelligence. arXiv preprint
arXiv:2401.14196, 2024.

Halstead, M. H. Elements of Software Science (Operating
and programming systems series). Elsevier Science Inc.,
USA, 1977. ISBN 0444002057.

Hui, B., Yang, J., Cui, Z., Yang, J., Liu, D., Zhang, L.,
Liu, T., Zhang, J., Yu, B., Lu, K., et al. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186, 2024.

Koziolek, H., Grüner, S., Hark, R., Ashiwal, V., Linsbauer,
S., and Eskandani, N. Llm-based and retrieval-augmented
control code generation. In Proceedings of the 1st Inter-
national Workshop on Large Language Models for Code,
pp. 22–29, 2024.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J. E., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the ACM SIGOPS
29th Symposium on Operating Systems Principles, 2023.

Li, H., Zhou, X., and Shen, Z. Rewriting the code: A
simple method for large language model augmented code
search. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1:
Long Papers), pp. 1371–1389, 2024.

Liu, J., Xia, C. S., Wang, Y., and Zhang, L. Is your code
generated by chatGPT really correct? rigorous evaluation
of large language models for code generation. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023.

Liu, S., Zhu, H., Liu, J., Xin, S., Li, A., Long, R., Chen,
L., Yang, J., Xia, J., Peng, Z., et al. Fullstack bench:
Evaluating llms as full stack coder. arXiv preprint
arXiv:2412.00535, 2024.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach.
arXiv preprint arXiv:1907.11692, 2019.

Lozhkov, A., Li, R., Allal, L. B., Cassano, F., Lamy-Poirier,
J., Tazi, N., Tang, A., Pykhtar, D., Liu, J., Wei, Y., et al.
Starcoder 2 and the stack v2: The next generation. arXiv
preprint arXiv:2402.19173, 2024.

Luo, Z., Xu, C., Zhao, P., Sun, Q., Geng, X., Hu, W., Tao, C.,
Ma, J., Lin, Q., and Jiang, D. Wizardcoder: Empowering
code large language models with evol-instruct. arXiv
preprint arXiv:2306.08568, 2023.

Majumdar, S., Noroozi, V., Narenthiran, S., Ficek, A.,
Balam, J., and Ginsburg, B. Genetic instruct: Scaling up
synthetic generation of coding instructions for large lan-
guage models. arXiv preprint arXiv:2407.21077, 2024.

McCabe, T. J. A complexity measure. In Proceedings of the
2nd International Conference on Software Engineering,
ICSE ’76, pp. 407, Washington, DC, USA, 1976. IEEE
Computer Society Press.

Muennighoff, N., Liu, Q., Zebaze, A., Zheng, Q., Hui, B.,
Zhuo, T. Y., Singh, S., Tang, X., Von Werra, L., and
Longpre, S. Octopack: Instruction tuning code large lan-
guage models. In NeurIPS 2023 Workshop on Instruction
Tuning and Instruction Following, 2023.

OpenAI. GPT-4 Technical Report. arXiv e-prints, 2023.

Ray, B., Hellendoorn, V., Godhane, S., Tu, Z., Bacchelli,
A., and Devanbu, P. On the "naturalness" of buggy code.

10

https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca

EpiCoder: Encompassing Diversity and Complexity in Code Generation

In Proceedings of the 38th International Conference on
Software Engineering, ICSE ’16, pp. 428–439, New York,
NY, USA, 2016. Association for Computing Machinery.
ISBN 9781450339001.

Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I.,
Tan, X. E., Adi, Y., Liu, J., Remez, T., Rapin, J., et al.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950, 2023.

Sener, O. and Savarese, S. Active learning for convolutional
neural networks: A core-set approach. In International
Conference on Learning Representations (ICLR), 2018.

Shao, L., Yan, Y., Poshyvanyk, D., and Su, J. Unigencoder:
Merging seq2seq and seq2tree paradigms for unified code
generation. arXiv preprint arXiv:2502.12490, 2025.

Sun, Q., Chen, Z., Xu, F., Cheng, K., Ma, C., Yin, Z.,
Wang, J., Han, C., Zhu, R., Yuan, S., et al. A survey
of neural code intelligence: Paradigms, advances and
beyond. arXiv preprint arXiv:2403.14734, 2024.

Wang, Y., Kordi, Y., Mishra, S., Liu, A., Smith, N. A.,
Khashabi, D., and Hajishirzi, H. Self-instruct: Aligning
language models with self-generated instructions. In Pro-
ceedings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pp. 13484–13508, 2023a.

Wang, Z., He, X., Chen, K., Lin, C., and Su, J. Code-aware
cross-program transfer hyperparameter optimization. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 37, pp. 10297–10305, 2023b.

Wei, J., Bosma, M., Zhao, V., Guu, K., Yu, A. W., Lester,
B., Du, N., Dai, A. M., and Le, Q. V. Finetuned lan-
guage models are zero-shot learners. In International
Conference on Learning Representations, 2022.

Wei, Y., Cassano, F., Liu, J., Ding, Y., Jain, N., Mueller,
Z., de Vries, H., von Werra, L., Guha, A., and Zhang,
L. Selfcodealign: Self-alignment for code generation.
In Advances in Neural Information Processing Systems,
volume 37, pp. 62787–62874. Curran Associates, Inc.,
2024a.

Wei, Y., Wang, Z., Liu, J., Ding, Y., and Zhang, L. Magi-
coder: Empowering code generation with oss-instruct. In
Forty-first International Conference on Machine Learn-
ing, 2024b.

Xia, C. S., Deng, Y., and ZHANG, L. Top leaderboard rank-
ing = top coding proficiency, always? evoeval: Evolving
coding benchmarks via LLM. In First Conference on
Language Modeling, 2024.

Yu, L., Jiang, W., Shi, H., Yu, J., Liu, Z., Zhang, Y., Kwok,
J. T., Li, Z., Weller, A., and Liu, W. Metamath: Boot-
strap your own mathematical questions for large language
models. arXiv preprint arXiv:2309.12284, 2023a.

Yu, Z., Zhang, X., Shang, N., Huang, Y., Xu, C., Zhao,
Y., Hu, W., and Yin, Q. Wavecoder: Widespread and
versatile enhanced instruction tuning with refined data
generation. arXiv preprint arXiv:2312.14187, 2023b.

Zhang, S., Roller, S., Goyal, N., and Artetxe. OPT: Open
Pre-trained Transformer Language Models. arXiv e-
prints, 2022.

Zheng, T., Zhang, G., Shen, T., Liu, X., Lin, B. Y., Fu, J.,
Chen, W., and Yue, X. Opencodeinterpreter: Integrating
code generation with execution and refinement. In Find-
ings of the Association for Computational Linguistics:
ACL 2024, 2024.

Zhu, Q., Guo, D., Shao, Z., Yang, D., Wang, P., Xu, R.,
Wu, Y., Li, Y., Gao, H., Ma, S., et al. Deepseek-coder-
v2: Breaking the barrier of closed-source models in code
intelligence. arXiv preprint arXiv:2406.11931, 2024.

Zhuo, T. Y., Chien, V. M., Chim, J., Hu, H., Yu, W.,
Widyasari, R., Yusuf, I. N. B., Zhan, H., He, J., Paul,
I., Brunner, S., GONG, C., Hoang, J., Zebaze, A. R.,
Hong, X., Li, W.-D., Kaddour, J., Xu, M., Zhang, Z., Ya-
dav, P., Jain, N., Gu, A., Cheng, Z., Liu, J., Liu, Q., Wang,
Z., Lo, D., Hui, B., Muennighoff, N., Fried, D., Du, X.,
de Vries, H., and Werra, L. V. Bigcodebench: Bench-
marking code generation with diverse function calls and
complex instructions. In The Thirteenth International
Conference on Learning Representations, 2025.

11

EpiCoder: Encompassing Diversity and Complexity in Code Generation

A. Appendix of Data Synthesis Framework
In this section, we first present an example of a file-level code synthesized by our framework (Section A.1). Then, we provide
detailed implementations for several key components of the framework, including Feature Tree Extraction (Section A.2),
Feature Tree Evolution (Section A.3), Task Generation (Section A.4), and Code Generation (Section A.5).

A.1. Case of generated File-level Code

This is an example of the file-level code we generated.

Figure 6: An illustrative example of file-level code generation (including the corresponding test code file). Different files
contain distinct functional modules, with complex dependencies existing across multiple files.

A.2. Feature Tree Extraction

Here are our draft prompts for pre-extraction and the refined prompts for feature tree extraction. For brevity, only a portion
is shown here. The complete prompts can be found in our released code.

Draft Prompts for Pre-extraction

Extract high-level information from a code snippet using keywords separated by "##". For example:
1. Function Description: Describe the main functionality of the code. Use keywords such as list sorting ## input parsing
data storage ## image processing.
2. Algorithm Details: Describe the specific algorithm used and its characteristics. Use keywords such as dynamic programming
greedy algorithm ## divide and conquer ## backtracking ## graph traversal.
3. ...
Please use this code as input and extract as much of the specified information as possible based on the content of the code.
Input: {source_code}
Output: <your answer>

12

EpiCoder: Encompassing Diversity and Complexity in Code Generation

Algorithm 2 Feature Evolution with Frequency Estimation

1: Input: Feature tree T , frequency library F containing the frequency of each node in T , maximum steps N
2: Output: Updated frequency library F
3: for step = 1 to N do
4: t← sample(T) {Sample a subtree t from T}
5: expanded_t← LLM.evolve(t) {Evolve t along depth and breadth}
6: for each node ∈ expanded_t \ t do
7: S ← find_siblings(node, expanded_t) {Find siblings of node in expanded_t}
8: if S = ∅ then
9: S ← find_siblings(node, T) {If no siblings in expanded_t, find siblings in T}

10: end if
11: if S = ∅ then
12: F (node)← 1 {Still no siblings found}
13: else
14: F (node)← 1

|S|
∑

s∈S F (s) {Update frequency}
15: end if
16: end for
17: end for

Part of Refined Prompts for Feature Tree Extraction

Extract features from the provided code snippets, following the requirements for each category below, formatted in JSON
structure.
Categories to extract:
1. Programming Language: Note the specific programming language used. Example: ["Python", "Java"].
2. Workflow: Outline the main steps and operations the code performs. Example: ["data loading", "preprocessing",
"model training", "evaluation", "results saving"].
3. Implementation Style: What programming paradigm the code follows. Example: ["procedural", "object-oriented",
"functional"].
4. Functionality: Explain the function of the code. Example: ["data processing", "user interaction", "system
control"].
5. Resource Usage: Analyze how the code utilizes system resources. Example: ["CPU Cycles", "GPU ComputeOperations",
"Network Bandwidth"].
6. Data Processing: Describe how the data is processed. This category can include the following subcategories:

• 6.1 Data Preparation: Steps taken to prepare data for further processing. Example: ["validate units", "strip
whitespace"].

• 6.2 Data Retrieval: Methods for obtaining data. Example: ["fetching records", "retrieve top-level items"].

• 6.3 Data Transformation: Describe data transformation operations. Example: ["convert to numpy array",
"jsonschema"].

• Other relevant subcategories...

7. Computation Operation: What computation operations are used. This category can include the following subcategories:

• 7.1 Mathematical Operation: Specify mathematical computations, such as calculations involving statistics or algebra.
Example: ["standard deviation calculation", "compute power flow"].

• 7.2 Algorithmic Operation: Identify algorithm-based operations, such as those in optimization or data sorting. Example:
["simulated annealing", "Best-Fit Decreasing"].

• Other relevant subcategories...

8. More content is omitted here: The demonstration tree for extracting additional categories has been truncated for brevity. For
the full list of categories and detailed instructions, please refer to our code.
Input: {source_code}
Output: <your answer>

13

EpiCoder: Encompassing Diversity and Complexity in Code Generation

A.3. Feature Tree Evolution

Figure 7 presents an example of the feature evolution. In the experiment, after 9000 steps of evolution, the number of
features increased from 5000 to 1,40,000. The estimated frequencies of evolved features are calculated as Algorithm 2.

Figure 7: An example of feature evolution.

Prompts for Feature Evolution

Feature Tree Evolution Task: You are provided with a feature tree represented as a nested JSON structure. Each node in this
tree represents a feature or a sub-feature of a software system, with the leaves being the most specific features. Your task is to
expand this feature tree both in depth and breadth.
Depth expansion means adding more specific sub-features to existing leaves. Breadth expansion means adding more sibling
features at the current levels.
Here are some explanations of the features: {explanations}
The input feature tree will be provided in JSON format, and your output should be a JSON structure that represents the expanded
feature tree.
Output Format:
- Expanded Feature Tree: Provide the expanded feature tree as a JSON structure.
{example}
Constraints:
1. For breadth expansion, add at least 2 new sibling features to each existing node.
2. For deep expansion, add new sub-features to any leaf node that could have a more fine-grained feature.
3. Focus on generating new and innovative features that are not present in the provided examples.
Please follow the above constraints and expand the feature tree accordingly.
Input: {feature_tree}
Output: <begin>expanded feature tree<end>

14

EpiCoder: Encompassing Diversity and Complexity in Code Generation

A.4. Task Generation

To ensure that the language model (LLM) does not consistently default to familiar or common content, we introduced a
strategy to guide the selection of features. From the sampled optional features, certain features are designated as mandatory,
and the LLM is directed to incorporate them into the scenario and task. Below is an example of how this approach is applied.

Prompts for Task Generation

You are provided with a set of features/keywords, and a specific programming language. Your task is to use these inputs to
conceive a specific real-world application scenario that effectively integrates some of these features. Then, based on the scenario,
formulate a task or problem that needs to be addressed with code.

Procedures:

1. Receive Inputs: These can range from technical specifics like data processing to broader concepts like system interaction.

2. Select Features: Choose a combination of features from the provided set that can be realistically integrated into a cohesive
scenario.

3. Conceive a Scenario: Think of a practical application where the selected features play a critical role.

4. Formulate a Task Description: Based on the scenario, formulate a task that needs to be addressed with code. The task
should have a certain level of difficulty and test the programmer’s coding skills through logical reasoning. Specific details,
such as numerical values or environmental conditions, should be included to create a well-defined setting for the task,
ensuring the programmer doesn’t need to guess any missing information. The task description should not include any code
or detailed guidance on code implementation.

5. Generate an Instruction: Generate a high-level instruction one or two sentence that describes the overall goal or problem
to be solved, without diving into the specific implementation details.

Enclose the selected features with <f> and </f>. Enclose the scenario with <s> and </s>. Enclose the task with <t> and </t>.
Enclose the instruction with <i> and </i>.

Inputs:

• Optional Features: {optional_features}

• Mandatory Features: {mandatory_features}

Output:

• Features: <f>your answer</f>

• Scenario: <s>your answer</s>

• Task Description: <t>your answer</t>

• Instruction: <i>your answer</i>

Optional Features:

{
"dependency relations": {

"time": {
"time zones handling": []

},
"cv2": {

"cvtColor": []
}

},
"file operation": {

"read configuration file": [
"read YAML configuration file"

],
"write data to file": [

"write to CSV file"

15

EpiCoder: Encompassing Diversity and Complexity in Code Generation

]
},
"workflow": {

"data augmentation": [
"audio augmentation"

],
"validation": [

"check data integrity"
]

},
"programming language": "Python"

}

Mandatory Features:

["read YAML configuration file"]

Selected Features:

["read YAML configuration file, write to CSV file, check data integrity"]

Scenario: A company wants to automate the generation of a daily status report for its distributed servers. The configuration
for each server (such as IP address, location, and operational status) is stored in a YAML file. The system needs to read this
configuration file, validate the data to ensure there are no missing or malformed entries, and then write the validated data to
a CSV file that can be used for further analysis.

Task: Create a function in Python that reads server configuration data from a YAML file, validates the integrity of the data
(checking for missing or malformed entries), and writes the validated data to a CSV file. The YAML file will contain a list
of servers with their respective details such as IP address, location, and operational status. The function should ensure that
all required fields are present and correctly formatted before writing the data to the CSV file. The CSV file should have
columns for each server detail and only include entries that have passed validation.

Instruction: Develop a Python function that reads, validates, and exports server config data from a YAML to a CSV file.

A.5. Code Generation

To demonstrate the process of generating code based on the previously outlined task, we present the prompts used, the
generated code, its test cases, and the debugging process leading to the final implementation.

A.5.1. PROMPT FOR CODE GENERATION

The prompt provided specifies a detailed structure for code generation, including the expected outputs and format.

16

EpiCoder: Encompassing Diversity and Complexity in Code Generation

Code Generation Prompt

Now that you are a code expert, I have provided you with the QUESTION. Complete the problem with awesome code logic and
give a richly commented analysis in the code of your answer. Include the necessary packages and test cases.
- QUESTION
{task}
- Full code implementation with test cases
Enclose the python code with ```python and ``` and enclose the file name with <file> and </file>. For example:
<file>add.py</file>
```python

# add.py
# Code implementation here
def add(x, y):

return x + y

``` The test code should be in a single file.
<file>test.py</file>
Note that the following code will be executed directly, so only the test cases that can be executed directly need to be retained. You
only need to test some simple functions in the code. Tests that depend on external files cannot be executed because these files do
not exist.
```python

from add import add

def test():
assert add(3, 5) == 8
assert add(4, 6) == 10

test()

```

- File names in order and packages required
Answer file names and packages in JSON format, wrapped in <json> and </json> tags. For example:
<json>

{
"file_names": ["add.py", "test.py"],
"packages": ["package1", "package2"]

}

</json>

A.5.2. INITIAL CODE IMPLEMENTATION

server_config.py

import yaml
import csv
import re

def validate_ip(ip):
"""Validate the IP address format"""
pattern = re.compile(r"^(?:[0-9]{1,3}\.){3}[0-9]{1,3}$")
return pattern.match(ip) is not None

def validate_server_data(server):
"""Validate the server data"""
required_fields = [’ip_address’, ’location’, ’operational_status’]

Check for missing fields
for field in required_fields:

if field not in server:
return False

Validate IP address format
if not validate_ip(server[’ip_address’]):

17

EpiCoder: Encompassing Diversity and Complexity in Code Generation

return False

Check operational status (assuming it should be a string, non-empty)
if not isinstance(server[’operational_status’], str) or not server[’operational_status’].strip():

return False

return True

def read_and_validate_yaml(yaml_file):
"""Read and validate the YAML file"""
with open(yaml_file, ’r’) as file:

try:
data = yaml.safe_load(file)
if not isinstance(data, list):

raise ValueError("YAML file format is incorrect, expected a list of servers.")
valid_servers = [server for server in data if validate_server_data(server)]
return valid_servers

except yaml.YAMLError as exc:
print(f"Error in YAML file: {exc}")
return []

except ValueError as ve:
print(f"Validation error: {ve}")
return []

def export_to_csv(servers, csv_file):
"""Export validated server data to CSV"""
if not servers:

print("No valid server data to export.")
return

keys = servers[0].keys()
with open(csv_file, ’w’, newline=’’) as file:

writer = csv.DictWriter(file, fieldnames=keys)
writer.writeheader()
writer.writerows(servers)

def process_server_config(yaml_file, csv_file):
"""Main function to process server configuration from YAML to CSV"""
valid_servers = read_and_validate_yaml(yaml_file)
export_to_csv(valid_servers, csv_file)

File 1: server_config.py

test_server_config.py

import unittest
import os
from server_config import read_and_validate_yaml, export_to_csv, validate_ip

class TestServerConfig(unittest.TestCase):

def setUp(self):
"""Set up the test environment"""
self.valid_yaml_content = """
- ip_address: 192.168.1.1
location: Data Center 1
operational_status: operational

- ip_address: 10.0.0.2
location: Data Center 2
operational_status: maintenance

"""

self.invalid_yaml_content = """
- ip_address: 192.168.1.999
location: Data Center 1

18

EpiCoder: Encompassing Diversity and Complexity in Code Generation

operational_status: operational
- ip_address: 10.0.0.2
location: Data Center 2
operational_status:

"""

self.mixed_yaml_content = """
- ip_address: 192.168.1.1
location: Data Center 1
operational_status: operational

- ip_address: 10.0.0.999
location: Data Center 2
operational_status: maintenance

"""

with open(’valid_servers.yaml’, ’w’) as file:
file.write(self.valid_yaml_content)

with open(’invalid_servers.yaml’, ’w’) as file:
file.write(self.invalid_yaml_content)

with open(’mixed_servers.yaml’, ’w’) as file:
file.write(self.mixed_yaml_content)

def tearDown(self):
"""Clean up after tests"""
os.remove(’valid_servers.yaml’)
os.remove(’invalid_servers.yaml’)
os.remove(’mixed_servers.yaml’)
if os.path.exists(’output.csv’):

os.remove(’output.csv’)

def test_validate_ip(self):
"""Test IP validation function"""
self.assertTrue(validate_ip(’192.168.1.1’))
self.assertFalse(validate_ip(’192.168.1.999’))
self.assertFalse(validate_ip(’invalid_ip’))

def test_read_and_validate_yaml(self):
"""Test reading and validating YAML data"""
valid_servers = read_and_validate_yaml(’valid_servers.yaml’)
self.assertEqual(len(valid_servers), 2)

invalid_servers = read_and_validate_yaml(’invalid_servers.yaml’)
self.assertEqual(len(invalid_servers), 0)

mixed_servers = read_and_validate_yaml(’mixed_servers.yaml’)
self.assertEqual(len(mixed_servers), 1)

def test_export_to_csv(self):
"""Test exporting data to CSV"""
valid_servers = read_and_validate_yaml(’valid_servers.yaml’)
export_to_csv(valid_servers, ’output.csv’)

with open(’output.csv’, ’r’) as file:
content = file.read()
self.assertIn(’ip_address,location,operational_status’, content)
self.assertIn(’192.168.1.1,Data Center 1,operational’, content)
self.assertIn(’10.0.0.2,Data Center 2,maintenance’, content)

if __name__ == "__main__":
unittest.main()

File 2: test_server_config.py

19

EpiCoder: Encompassing Diversity and Complexity in Code Generation

A.5.3. DEBUGGING AND OPTIMIZATION

Initial execution of the tests revealed several issues:

• The IP validation function incorrectly accepted some invalid IP addresses, such as 192.168.1.999.

• Edge cases in operational status validation were not handled properly.

Given the error message and the original code, the LLM gives a corrected implementation.

server_config.py

import yaml
import csv
import re

def validate_ip(ip):
"""Validate the IP address format"""
pattern = re.compile(r"^(?:[0-9]{1,3}\.){3}[0-9]{1,3}$")
if not pattern.match(ip):

return False
parts = ip.split(’.’)
for part in parts:

if not 0 <= int(part) <= 255:
return False

return True

The rest remains unchanged

File 3: corrected server_config.py

20

EpiCoder: Encompassing Diversity and Complexity in Code Generation

B. Appendix of Evaluation
In this section, we introduce the function-level code benches and provide results on EvolEval and FullStackBench (sec-
tion B.1), then detail the construction of XFileDep (section B.2) and provide a case of file-level code generation (section B.3).

B.1. Function-level Code Generation Benchmark

We detail the individual function-level code generation benchmarks in this subsection, as well as more detailed results.

HumanEval and MBPP HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021) are popular benchmarks for
assessing code generation. Considering the limited test cases in these benchmarks, we followed previous work (Wei et al.,
2024b; Zheng et al., 2024) and utilized the EvalPlus (Liu et al., 2023) framework to evaluate model robustness across a
broader range of test cases. To ensure fair comparison, we used version 0.2.0 of MBPP+ provided by EvalPlus, which
removes some broken tasks (399→ 378 tasks). Table 1 shows the results of different LLMs on these benchmarks.

BigCodeBench BigCodeBench (Zhuo et al., 2025) is a comprehensive benchmark designed to assess a model’s ability to
handle real-world programming tasks, particularly its effectiveness in utilizing various function calls as tools. Our model’s
ability to adeptly manage these high-complexity scenarios underscores its suitability for BigCodeBench.

EvoEval Many benchmarks are prone to data leakage. To mitigate this, we comprehensively evaluate LLM coding
capabilities on EvoEval (Xia et al., 2024), constructed by evolving HumanEval to different target domains (Difficult,
Creative, Subtle, Combine, and Tool Use). Table 7 shows results of different LLMs. We obtained results from (Xia et al.,
2024) and, for models without reported results, conducted tests using their default prompts.

Table 7: Pass@1 (%) results of different LLMs on EvoEval computed with greedy decoding.

Model Difficult Creative Subtle Combine Tool Use Avg

Closed-source Model

GPT-4-Turbo 50.0 61.0 82.0 45.0 69.0 61.4
GPT-4 52.0 66.0 76.0 53.0 68.0 63.0
Claude-3 50.0 53.0 81.0 42.0 69.0 59.0
ChatGPT 33.0 42.0 70.0 33.0 64.0 48.4
Claude-3-haiku 40.0 47.0 65.0 17.0 56.0 45.0

7B+ Scale

Qwen2.5-Coder-32B-Instruct 57.0 58.0 90.0 58.0 75.0 67.6
Codestral-22B-v0.1 52.0 53.0 69.0 41.0 71.0 57.2
DeepSeekCoder-33b-Instruct 47.0 47.0 67.0 31.0 66.0 51.6
WizardCoder-33b-1.1 48.0 48.0 66.0 20.0 64.0 49.2
CodeLlama-70b-Instruct 31.0 41.0 65.0 18.0 65.0 44.0
OpenCoder-8B-Instruct 45.0 50.0 73.0 28.0 50.0 49.2

∼ 7B Scale

DeepSeek-Coder-6.7B-base 21.0 24.0 47.0 5.0 55.0 30.4
DeepSeekCoder-6.7b-Instruct 40.0 37.0 61.0 18.0 51.0 41.4
Magicoder-S-DS-6.7B 40.0 34.0 67.0 21.0 61.0 44.6
WaveCoder-Ultra-6.7B 38.0 42.0 71.0 24.0 35.0 42.0
OpenCodeInterpreter-DS-6.7B 43.0 37.0 65.0 25.0 51.0 44.2
EpiCoder-DS-6.7B 40.0 45.0 70.0 30.0 65.0 50.0

Qwen2.5-Coder-7B-Base 35.0 20.0 55.0 27.0 41.0 35.6
Qwen2.5-Coder-7B-Instruct 48.0 49.0 77.0 37.0 65.0 55.2
EpiCoder-Qwen-7B 53.0 48.0 78.0 47.0 68.0 58.8

FullStackBench Most existing code evaluation datasets cover only limited application areas, such as basic programming
and data analysis, lacking a comprehensive and rigorous assessment of code LLMs’ capabilities across broader and more
complex computer science domains. To convincingly demonstrate our model’s strong performance across a wide and diverse
range of areas, we utilize FullStackBench (Liu et al., 2024). This benchmark encompasses 16 programming languages and
various computer science domains, aiming to thoroughly and systematically evaluate the abilities of large models in diverse
real-world coding scenarios. Table 8 shows the results of different LLMs on the FullStackBench.

21

EpiCoder: Encompassing Diversity and Complexity in Code Generation

Table 8: Model performance across domains of Python in the English Subset of FullStackBench.

Model BP AP SE DP MA DW ML SC DB MM OS Others Overall

Close-Sourced API Model

OpenAI o1-preview 55.56 78.61 64.29 76.80 79.14 18.75 51.28 61.76 40.00 47.37 100.00 74.47 66.47
OpenAI o1-mini 72.22 75.62 50.00 76.00 80.58 28.75 56.41 56.62 40.00 57.89 100.00 72.34 66.23
Claude-35-Sonnet 50.00 75.62 71.43 76.00 76.26 13.75 51.28 61.76 50.00 63.16 100.00 78.72 65.52
GPT 4o-0806 72.22 72.14 53.57 78.40 76.98 21.25 66.67 55.15 40.00 68.42 100.00 72.34 65.05
Doubao-Coder-Preview 55.56 69.65 50.00 77.60 75.54 27.50 51.28 60.29 20.00 63.16 50.00 55.32 62.91
DeepSeek-v2.5 55.56 68.16 50.00 76.00 76.26 20.00 48.72 56.62 40.00 63.16 50.00 65.96 61.85
Qwen-Max 50.00 70.15 39.29 77.60 72.66 13.75 56.41 57.35 30.00 47.37 50.00 63.83 60.78
GLM-4-Plus 55.56 65.67 39.29 76.80 74.82 13.75 58.97 50.00 40.00 52.63 100.00 53.19 58.77

20B+ Instruction Tuned Coder

DeepSeekCoder-v2-Instruct 55.56 68.66 35.71 81.60 79.14 16.25 48.72 53.68 40.00 52.63 50.00 57.45 61.26
Qwen2.5-Coder-32B-Instruct 50.00 70.15 50.00 77.60 66.19 17.50 61.54 43.38 30.00 47.37 100.00 61.70 58.41
DeepSeekCoder-33B-Instruct 50.00 59.70 21.43 71.20 48.92 18.75 48.72 40.44 30.00 42.11 50.00 44.68 49.05
CodeLlama-34B-Instruct 5.56 22.89 14.29 40.00 17.27 16.25 15.38 18.38 30.00 26.32 0.00 23.40 22.27

13B+ Instruction Tuned Coder

Qwen2.5-Coder-14B-Instruct 55.56 62.69 32.14 76.00 70.50 18.75 53.85 38.97 30.00 57.89 100.00 55.32 55.57
DeepSeekCoder-v2-Lite-Instruct 50.00 64.68 32.14 64.00 56.12 26.25 43.59 33.82 60.00 21.05 50.00 53.19 50.47
StarCoder2-15B-Instruct-v0.1 61.11 44.28 32.14 63.20 36.69 31.25 53.85 28.68 60.00 36.84 50.00 53.19 43.01
CodeLlama-13B-Instruct 11.11 22.39 25.00 24.00 20.86 30.00 20.51 13.97 40.00 10.53 50.00 23.40 21.56

6B+ Instruction Tuned Coder

Qwen2.5-Coder-7B-Instruct 33.33 58.21 39.29 66.40 48.92 18.75 38.46 32.35 40.00 47.37 50.00 59.57 47.51
Yi-Coder-9B-Chat 61.11 50.25 32.14 66.40 46.76 26.25 43.59 36.76 50.00 36.84 50.00 48.94 46.56
DeepSeek-Coder-7B-Instruct-v1.5 50.00 51.74 25.00 64.80 37.41 25.00 30.77 34.56 20.00 52.63 50.00 48.94 43.60
OpenCoder-8B-Instruct 44.44 53.73 28.57 57.60 35.97 26.25 28.21 28.68 0.00 47.37 0.00 44.68 41.11
DeepSeek-Coder-6.7B-Instruct 61.11 49.75 28.57 65.60 38.13 18.75 38.46 22.79 30.00 31.58 50.00 42.55 40.88
CodeQwen1.5-7B-Chat 38.89 45.77 50.00 58.40 31.65 15.00 33.33 22.79 20.00 31.58 0.00 42.55 37.20
CodeLlama-7B-Instruct 27.78 23.88 25.00 28.00 20.86 23.75 10.26 11.76 50.00 10.53 0.00 21.28 21.33

EpiCoder-DS-6.7B 61.11 47.26 25.00 61.60 41.01 40.00 41.03 27.21 50.00 36.84 50.00 42.55 43.25
EpiCoder-Qwen-7B 44.44 61.19 17.86 72.80 61.15 28.75 51.28 27.94 20.00 47.37 50.00 40.43 50.24

B.2. Cross-File Dependency Benchmark

The Cross-File Dependency Benchmark (XFileDep) is a specialized benchmark designed to evaluate the performance of
code generation models in handling cross-file dependencies. In real-world programming scenarios, there exists a complex
web of dependencies between different code files. XFileDep provides a comprehensive framework that tests a model’s
ability to generate missing files by considering multiple interdependent files as context. This benchmark not only measures
the model’s capability to generate individual isolated files but also assesses its proficiency in understanding and managing
dependencies between files. As illustrated in Figure 8 , the constructing the XFileDep consists of following steps.

Step 1: Data Sample Selection. The construction of the XFileDep starts from carefully data selection. From the initial
cross-file dataset of 35,000 data samples constructed using our pipeline of synthetic data based on extracted features, we
carefully filtered out cross-file data samples with fewer than 5 interconnected files (excluding any test files), resulting in a
refined set of 3,435 high-quality samples. Figure 9 comprehensively displays the distribution of file counts, the average file
length for each data sample, and the overall structural characteristics of the dataset.

Step 2: Dependency File Selection. We utilized Abstract Syntax Trees (AST) to conduct dependency analysis and structural
identification of the Python code files. AST allows parsing of the syntactic structure of Python files, enabling extraction of
module import dependencies, function definitions, and class definitions. By parsing all code files within the data sample and
identifying the collaboration between classes and functions, we documented the details of defined functions and classes
along with the information on imported modules. With these capabilities, we were able to traverse the entire data sample,
analyze the dependency relationships between files, discern key files, and select a representative candidate file (to serve as
the target file for the code generation task) that has a substantial amount of cross-file dependencies. This approach allows
us to generate a structured data analysis report. The systematic nature of this analysis allows us to efficiently handle large
cross-file data, providing clear dependency graphs and detailed information on code structure. We also filtered out data
samples that lacked rich cross-file dependencies, retaining 2,934 samples that met the criteria.

22

EpiCoder: Encompassing Diversity and Complexity in Code Generation

Figure 8: The Sankey diagram for XFileDep benchmark creation, with numbers indicating the quantity of data samples.

Figure 9: the distribution of file quantities and the average file length for each data sample.

Step 3: Filtering. We analyzed the runtime environment, required libraries, and external files (such as .npy, .xlsx, .json,
.log) for each data sample. Based on this analysis, data samples that could not provide the necessary files or dependencies
were filtered out. We also excluded data samples that had long runtimes or required the generation of specific output files,
which made obtaining test results difficult. In addition, to increase the overall difficulty of the task and ensure that cross-file
code generation operates at an appropriate file-level length, we filtered out candidate files whose length was less than 300
characters. Finally, we obtained a total of 2,231 data samples.

Step 4: Test Case Augmentation. To enhance the test coverage of the code within each data sample, we utilized GPT-4o to
generate additional test cases. This process ensured that the core functional methods were robustly and comprehensively
tested. In Table 9, we have compiled the statistical data before and after the augmentation of the test cases. We conducted a

Table 9: Comparison of Test Functions and Test Cases before and after augmentation for 930 data samples.

Original Augmented

Test Functions

Total 3,837 7,933
Average per sample 4.13 8.53
Max in file 12 23

Test Cases

Total 6,010 14,305
Average per sample 6.46 15.38
Max in file 20 44

23

EpiCoder: Encompassing Diversity and Complexity in Code Generation

runtime check on the data after augmenting the test cases and obtained 611 samples that successfully passed the test cases.
The prompt for augmenting the test case with GPT-4o is illustrated below.

Prompts for Augmenting Test Cases

You are an expert in Python programming and test-driven development. I have a repository of Python code with corresponding
test files aimed at verifying the correctness of my code. However, I believe the current test cases are insufficient and I need more
comprehensive and robust test cases.

Requirements:

- The test cases should be written using a suitable testing framework (e.g., pytest, unittest).
- Maintain consistency with existing test structure and naming conventions.
- Ensure that all new test cases pass before finalizing.

Inputs:
- The file structure (including filenames) and contents of the Python code.
{python_code}

- The file structure (including filenames) and contents of the current test files.
{test_code}

Deliverables:
- Updated test files with additional test cases.
- Documentation or comments within the test files explaining each new test case.

Your output:
Returns code content only.

Prompts for Refining Test Code

You are an expert in Python programming and test-driven development. I have a repository of Python code with corresponding
test files aimed at verifying the correctness of my code. However, there are errors in the current test cases and test code that I
would like you to proofread and correct.

Requirements:
- The test cases should be written using a suitable testing framework (e.g., pytest, unittest).
- Maintain consistency with existing test structure and naming conventions.
- Ensure that all new test cases pass before finalizing.

Inputs:
- The file structure (including filenames) and contents of the Python code:
{python_code}

- The file structure (including filenames) and contents of the current test files:
{test_code}

- Program error messages caused by running the test file:
{error_messages}

Deliverables:
- Fully correct test code file.
- Documentation or comments within the test files explaining each new test case.
Your output:
Returns code content only.

Step 5: Iterative Test Code Refinement. For data samples that fail the test cases, the code content, test cases, and error
information are extracted. Based on these detailed input descriptions, we utilize GPT-4o for checking and modification, and
subsequently re-run the refined test code for validation. We performed a single iteration of modification on the test code,
resulting in 394 successful test cases out of 1620 samples. Finally we have a sample of 1,005 that pass the test cases. The
prompt for refining the test code with GPT-4o is shown above.

24

EpiCoder: Encompassing Diversity and Complexity in Code Generation

Step 6: Unsafe Filtering. To ensure the validity of our test cases, we constructed a unit test environment based on the
dependency requirements specified in each Python file. We then executed all test cases and filtered out any samples that
failed the tests or presented unsafe operations, such as kill, terminate, rmtree, rmdir, and rm. This approach ensures
that our canonical solution is absolutely correct. Finally, we retained 930 samples of cross-file data.

Step 7: Manual Checking and Verification To ensure the quality of the questions in the XFileDep, we manually review and
verify each question. The evaluation criteria require that the Python code in the Answer accurately reflect the functionalities
described in the question and produce correct outputs that meet the expected requirements. Any questions that do not meet
the criteria will be filtered. All manual reviews are conducted by individuals with at least 5 years of Python programming
experience and a master’s degree or higher. Additionally, these reviewers are currently employed as software engineers or in
similar roles at leading internet companies. After manual review and filtering, we obtained 466 questions.

Step 8: Annotation. We selected target files with extensive cross-file dependencies (either frequently invoked by other files
or frequently invoking other files). Using GPT-4o, we meticulously annotated all classes and methods in these files with
detailed documentation, emphasizing their purpose, functionality, and relationships with other components. The annotation
process did not alter the original code in any way, and the successful execution of the annotated files verified the correctness
of the ground truth. The full prompt for annotating the target file with GPT-4o is illustrated below.

Step 9: Benchmark Construction. To maintain a high level of difficulty in the benchmark construction, we extracted all
code blocks from the functions and classes within the target files, leaving only the import statements, FunctionDef,
ClassDef, and the corresponding docstrings. The instruction set provided the names and contents of all other files in the
cross-file data sample as context and included the target file’s name and skeleton structure for the completion task.

Prompts for Annotating Target File

Your task is to read through the provided Python code and add detailed docstrings that describe the purpose and functionality of
each class and function. Your additions should follow the PEP 257 conventions and should not alter the original code in any way.
The docstrings should provide enough detail to help other developers understand what each part of the code does and how to use
it appropriately.

Here is the Python code:

```python

{target_file_code}

```

Please add the necessary docstrings without changing the actual code. Ensure that output is enclosed with its corresponding tags:

```python

[Your code here]

```

25

EpiCoder: Encompassing Diversity and Complexity in Code Generation

B.3. Case of File-Level Code Generation

This section provides comprehensive details on file-level code generation using a generated case. The directory structure of
the example and the detailed contents of each file are as follows:

--example_root/

main.py
optimizer.py
parser.py
scraper.py
search.py
storage.py

--tests/
test_main.py

main.py
from scraper import Scraper
from parser import Parser
from storage import Storage
from search import Search
from optimizer import Optimizer

def main():
urls = [

’https://example.com/products’,
Add more URLs as needed

]

Step 1: Scrape Data
scraper = Scraper(urls)
html_data = scraper.fetch_data()

Step 2: Parse Data
parser = Parser()
parsed_data = parser.parse(html_data)

Step 3: Store Data
storage = Storage()
storage.store_data(parsed_data)

Optional: Save to JSON
storage.save_to_json(parsed_data)

Step 4: Optimize Code (Example usage)
code = """

def example_function():
result = 2 + 2
return result"""
optimized_code = Optimizer.optimize_code(code)

Step 5: Search Data
data = storage.fetch_data()
keyword = ’example’
search = Search()
results = search.breadth_first_search(data, keyword)
print(f"Search results: {results}")

if __name__ == ’__main__’:
main()

File 4: main.py

optimizer.py

26

EpiCoder: Encompassing Diversity and Complexity in Code Generation

import ast
import compileall

class Optimizer:
Example of constant folding optimization
@staticmethod
def constant_folding(code):

tree = ast.parse(code)
optimized_tree = ast.fix_missing_locations(tree)
return compile(optimized_tree, filename="<ast>", mode="exec")

@staticmethod
def optimize_code(code):

optimized_code = Optimizer.constant_folding(code)
compileall.compile_code(optimized_code)
return optimized_code

File 5: optimizer.py

parser.py
from bs4 import BeautifulSoup

class Parser:
@staticmethod
def parse(html_data):

parsed_data = []
for html in html_data:

soup = BeautifulSoup(html, ’html.parser’)
products = []
for product in soup.select(’.product’):

name = product.select_one(’.product-name’).text.strip()
price = product.select_one(’.product-price’).text.strip()
description = product.select_one(’.product-description’).text.strip()
products.append({

’name’: name,
’price’: price,
’description’: description

})
parsed_data.append(products)

return parsed_data

File 6: parser.py

scraper.py
import requests
from bs4 import BeautifulSoup

class Scraper:
def __init__(self, urls):

self.urls = urls

def fetch_data(self):
html_data = []
for url in self.urls:

try:
response = requests.get(url)
response.raise_for_status()
html_data.append(response.text)

except requests.RequestException as e:
print(f"Error fetching data from {url}: {e}")

return html_data

File 7: scraper.py

27

EpiCoder: Encompassing Diversity and Complexity in Code Generation

search.py
from collections import deque

class Search:
@staticmethod
def breadth_first_search(data, keyword):

queue = deque(data)
results = []
while queue:

item = queue.popleft()
if keyword.lower() in item[’name’].lower() or keyword.lower() in item[’description’].lower():

results.append(item)
return results

File 8: search.py

storage.py
import json
import sqlite3

class Storage:
def __init__(self, db_name=’data.db’):

self.conn = sqlite3.connect(db_name)
self.create_table()

def create_table(self):
with self.conn:

self.conn.execute(’’’
CREATE TABLE IF NOT EXISTS products (

id INTEGER PRIMARY KEY,
name TEXT,
price TEXT,
description TEXT

)’’’)

def store_data(self, data):
with self.conn:

for products in data:
for product in products:

self.conn.execute(’’’
INSERT INTO products (name, price, description)
VALUES (:name, :price, :description)’’’, product)

def fetch_data(self):
cursor = self.conn.cursor()
cursor.execute(’SELECT name, price, description FROM products’)
return cursor.fetchall()

def save_to_json(self, data, filename=’data.json’):
with open(filename, ’w’) as f:

json.dump(data, f, indent=4)

File 9: storage.py

tests/test_main.py
import unittest
from scraper import Scraper
from parser import Parser
from storage import Storage
from search import Search
from unittest.mock import patch

class TestWebScrapingApp(unittest.TestCase):
@patch(’requests.get’)
def test_scraper(self, mock_get):

28

EpiCoder: Encompassing Diversity and Complexity in Code Generation

mock_get.return_value.status_code = 200
mock_get.return_value.text = ’<html><div class="product">Test

Product$10Test
Description</div></html>’

scraper = Scraper([’https://example.com/products’])
html_data = scraper.fetch_data()
self.assertEqual(len(html_data), 1)

def test_parser(self):
html_data = [’<html><div class="product">Test Product<span

class="product-price">$10Test
Description</div></html>’]

parser = Parser()
parsed_data = parser.parse(html_data)
self.assertEqual(len(parsed_data), 1)
self.assertEqual(parsed_data[0][0][’name’], ’Test Product’)

def test_storage(self):
storage = Storage(’:memory:’)
data = [[{’name’: ’Test Product’, ’price’: ’$10’, ’description’: ’Test Description’}]]
storage.store_data(data)
fetched_data = storage.fetch_data()
self.assertEqual(len(fetched_data), 1)

def test_search(self):
data = [

{’name’: ’Test Product’, ’price’: ’$10’, ’description’: ’Test Description’},
{’name’: ’Another Product’, ’price’: ’$20’, ’description’: ’Another Description’}

]
search = Search()
results = search.breadth_first_search(data, ’Test’)
self.assertEqual(len(results), 1)
self.assertEqual(results[0][’name’], ’Test Product’)

if __name__ == ’__main__’:
unittest.main()

File 10: tests/test_main.py

29

EpiCoder: Encompassing Diversity and Complexity in Code Generation

C. Appendix of Analysis
In this section, we first present the scaling effect of code instruction data (section C.1), then discuss the data leakage issue
(section C.2), and provide detail analysis regarding complexity (section C.3) and diversity evaluation (section C.4).

C.1. Scaling of Code Instruction Data

82

83.9
85.1

81.7

79.6

84.2 83.9
84.8

85.7

75.8 75.5

78.9
77.7 78.1

79.0

76.9

78.4
77.8

75

80

85

HumanEval (Avg)
MBPP (Avg)

48

50.9
52.3

51.4
52.9 52.3 52.4 52.0

53.4

38.8 39.1 39.4 39.5
40.5

38.4

41.6 41.1

43.8

35

40

45

50

55

10k 40k 80k 120k 160k 200k 280k 320k 380k

BCB-Complete
BCB-Instruct

Pa
ss

@
1

Number of Training Samples

Figure 10: The scaling law of code instruction data. The results obtained from randomly sampled subsets of 380k data
points across the HumanEval, MBPP, and BigCodeBench benchmarks.

Although both the fields of mathematics and code are characterized by rigorous logic and precision, they exhibit different
phenomena in terms of the quantity of instruction data. Motivated by previous analyses of instruction data scaling laws
in the mathematical domain, we design experiments to understand the scaling laws in the code domain. We randomly
sample 380k data points and set a series of data quantities for our experiments. The results on the HumanEval, MBPP, and
BigCodeBench benchmarks are depicted in Figure 10. It is evident that with the increase in data volume, the performance
improves significantly. Moreover, even with the data size reaching 380k, there is still an upward trend, demonstrating that
our dataset possesses sufficient diversity to effectively combat overfitting.

30

EpiCoder: Encompassing Diversity and Complexity in Code Generation

C.2. Data Leakage

C.2.1. OVERALL RESULTS

Figure 11: The distribution of cosine similarity scores between various benchmarks HumanEval, MBPP, and BigCodeBench.

We investigate potential data leakage issues to ensure that our synthetic data are free from such risks. Specifically, we use
the jinaai/jina-embeddings-v3 embedding model to generate embeddings for the output segments of all training data,
including our synthetic data and other training datasets used for comparison. For the HumanEval, MBPP, and BigCodeBench
benchmarks, we encode their test datasets and compute the cosine similarity between each test instance and all training
samples. For each test instance in the benchmarks, we identify the training-test data pair with the highest similarity score
and plot the distribution of these scores in Figure 11. Furthermore, through a case-based analysis of similarity scores, we
define a threshold for potential leakage (Similarity Score=0.9), with detailed explanations provided in Appendix C.2.2.
Despite the large scale of our dataset, which puts it at a disadvantage when identifying the most similar sample for each test
instance, Figure 11 demonstrates that our 380k synthetic function-level data show minimal evidence of data leakage, even
for the HumanEval benchmark, where the risk of leakage is most pronounced. Further analysis of similarity scores across
other benchmarks supports the conclusion that our synthetic data are not strongly similar to the benchmark. This confirms
that our model’s performance gains are not due to overfitting to benchmarks but stem from data quality and diversity.

31

EpiCoder: Encompassing Diversity and Complexity in Code Generation

99%

95%

90%

85%

Figure 12: Cases from HumanEval (left) and evol-codealpaca-v1 (right) with varying similarity. Embeddings are
computed based on the "output" portions of the trainset and the "prompt + canonical_solution" from HumanEval data.

32

EpiCoder: Encompassing Diversity and Complexity in Code Generation

C.2.2. LEAKAGE THRESHOLD SETTING

We embedded multiple training datasets and different benchmark datasets and calculated the cosine similarity between them.
Additionally, we analyzed the most similar training data sample for each test data point to identify potential data leakage
issues. Using the evol-codealpaca-v1 dataset, which exhibited the most severe leakage, as a case study, we found that the
training data contained extremely serious data leakage. Figure 12 presents pairs of benchmark data (left) and training data
(right) with various similarity scores. The index of the data samples presented in the case study is provided in Table 10.
After observing and analyzing multiple samples, we manually selected a similarity score of 0.9 as the similarity threshold.

Table 10: The index of the data samples presented in the case study.

Similarity 99% 95% 90% 85%

HumanEval index 5 47 43 57
evol-codealpaca-v1 index 81260 45682 9508 51167

C.3. Complexity Evaluation

C.3.1. DETAILED METRICS FROM THE SOFTWARE ENGINEERING PERSPECTIVE.

Halstead-derived Principle. We supplement Halstead-derived metrics in Table 11, which are based on unique operators
(n1), unique operands (n2), total operators (N1), and total operands (N2). Among these recognized metrics, our data
consistently shows significant performance gains compared to the current codebase. For instance, we achieve notable
complexity advantages in program volume and program difficulty. The programming effort and estimated programming
time further confirm that our data requires more time and effort to achieve. While the increased complexity may suggest a
higher potential for bugs, we address this issue by incorporating test cases during the data systhesis.

Strictness and Cyclomatic Complexity Measures. Table 12 in demonstrates that our dataset exhibits greater strictness and
cyclomatic complexity at both the function and file levels. In Table 13, we break down cyclomatic complexity to observe
scores for specific operations, such as while, for, and boolean operations. Table 13 shows that our gains in Cyclomatic
complexity are mainly due to the higher occurrence of if, for, except, and return statements. This suggests that our program
handles more loops and incorporates a broader range of exception handling scenarios. We break down the code strictness
complexity scores. Table 14 shows that our data achieves a significantly improvement in Doc Strings, indicating a more

Table 11: Derived Halstead metrics. These metrics are derived from unique operators (n1), unique operands (n2), total
operators (N1), and total operands (N2).

Dataset Program Length (N) Vocabulary (n) Volume (V) Difficulty (D)
N = N1 +N2 n = n1 + n2 V = N × log2(n) D = n1

2 ×
N2

n2

Code Alpaca 26.55 13.05 108.39 5.07
Evol CodeAlpaca 76.61 26.91 381.45 10.76
CodeFeedBack 81.03 28.54 416.78 10.49
OSS Instruct 75.61 28.43 381.32 8.75
Ours (func-level) 157.34 54.97 932.78 12.34
Ours (file-level) 280.22 84.51 2035.63 13.64

Dataset Programming Effort (E) Estimated Time (T) Predicted Bugs (B)
E = D × V T = E

18 B = V
3000

Code Alpaca 1043.26 57.96 0.03
Evol CodeAlpaca 5954.64 330.81 0.09
CodeFeedBack 6204.38 344.69 0.09
OSS Instruct 4528.98 251.61 0.08
Ours (func-level) 13396.28 744.24 0.17
Ours (file-level) 67851.94 3769.55 0.28

33

EpiCoder: Encompassing Diversity and Complexity in Code Generation

Table 12: Comparison of Strictness complexity (left) and Cyclomatic complexity (right).

Dataset Mean Median Std

Code Alpaca 0.18 0.00 0.52
Evol CodeAlpaca 0.82 0.00 1.63
CodeFeedBack 0.97 0.00 2.09
OSS Instruct 1.50 1.00 2.19
Ours (func-level) 4.95 4.00 3.77
Ours (file-level) 5.41 4.00 3.85

Dataset Mean Median Std

Code Alpaca 2.10 1.00 1.66
Evol CodeAlpaca 3.76 3.00 3.48
CodeFeedBack 3.96 3.00 3.33
OSS Instruct 3.45 3.00 2.98
Ours (func-level) 5.14 5.00 3.01
Ours (file-level) 14.93 14.00 6.73

Table 13: Comparison of different control flow and logical operation frequencies.

Dataset if while for and or except return break continue bool_op

Code Alpaca 0.42 0.06 0.43 0.03 0.01 0.01 0.66 0.01 0.00 0.05
Evol CodeAlpaca 1.35 0.15 0.68 0.15 0.14 0.12 1.59 0.03 0.02 0.29
CodeFeedBack 1.59 0.14 0.76 0.19 0.14 0.08 1.62 0.05 0.02 0.33
OSS Instruct 1.38 0.07 0.59 0.16 0.08 0.07 1.58 0.04 0.01 0.24
Ours (func-level) 2.29 0.16 1.14 0.16 0.20 0.70 3.06 0.05 0.10 0.35
Ours (file-level) 3.60 0.38 1.77 0.25 0.21 1.11 5.24 0.08 0.10 0.45

Table 14: Detailed metrics of code strictness complexity

Dataset Type Parameter Value Exception Assertions Doc Return Value
Hints Validation Verification Handling Strings Validation

Code Alpaca 0.00 0.00 0.04 0.02 0.00 0.06 0.07
Evol CodeAlpaca 0.21 0.08 0.14 0.20 0.03 0.01 0.15
CodeFeedBack 0.42 0.09 0.16 0.10 0.01 0.05 0.14
OSS Instruct 0.94 0.09 0.12 0.10 0.02 0.08 0.15
Ours (func-level) 0.94 0.10 0.29 0.81 0.02 2.45 0.34
Ours (file-level) 0.43 0.28 0.40 1.76 0.01 1.74 0.80

comprehensive and rigorous consideration to code documentation. Additionally, we demonstrate clear advantages in
exception handling, return value validation, and type hints, suggesting that our data is more standardized and stringent.

These analyses upon Halstead complexity, strictness and cyclomatic complexity, collectively demonstrate that feature
tree-based code synthesis can create code that is both more complex and more sophisticated than current synthesis methods.

C.3.2. PROMPTS FOR EVALUATING CODE COMPLEXITY USING GPT-4O.

We adopt the LLM-as-a-judge methodology, using GPT-4o to comprehensively evaluate code complexity across four key
dimensions: Error Handling, Modularity, Data Structure Complexity, and Third-Party Dependencies. We define four distinct
levels of standards for each dimension and strategically leverage GPT-4o to assign a precise score to each sample based on
these well-defined criteria. Detailed evaluation criteria, corresponding prompts, and scoring methodology are shown below.

34

EpiCoder: Encompassing Diversity and Complexity in Code Generation

Prompts for Grading Data Structure Usage Complexity.

You are an expert in evaluating complexity levels of data structure implementations for given code. Please provide a single integer
score from 2 to 8.

Criteria:
Score 2 for case:
Basic data types only; Only use primitive types (int, string, etc.); Simple arrays or lists; No custom data structures.

Score 4 for case:
Basic data structures; Uses built-in collections (sets, maps); Simple combinations of basic structures; Basic object-oriented classes.

Score 6 for case:
Intermediate data structures; Custom data structures for specific needs; Efficient combination of multiple structures; Clear
interfaces for data access.

Score 8 for case:
Advanced data structures; Specialized tree/graph structures; Optimized for operation requirements; Well-designed structure
relationships

Inputs:
You are judging the following code:
Begin Code
{code}
End Code

Output Format:
Please provide your evaluation in the following format:
Grade: a single integer within 2, 4, 6, and 8

Prompts for Grading Modularity Implementation Complexity.

You are an expert in evaluating code architecture complexity, with a special focus on modularity implementation patterns. Please
provide a single integer score from 2 to 8.

Criteria:
Score 2 for case:
Code without any modular designs, all logic in a single file with no clear separation.

Score 4 for case:
Code with minimal modularization, basic separation of logic but with tight coupling.

Score 6 for case:
Code with reasonable modularization and logical separation (e.g., some decoupling and partial adherence to design patterns, but
limited scalability or reuse).

Score 8 for case:
Code implementation with clear and practical modularization (e.g., modules have distinct responsibilities, dependencies are
simple and direct, and logical layers such as database, business logic, and user interface are separated. The design is easy to read,
maintain, and extend for most real-world needs).

Inputs:
You are judging the following code:
Begin Code
{code}
End Code

Output Format:
Please provide your evaluation in the following format:
Grade: a single integer within 2, 4, 6, and 8

35

EpiCoder: Encompassing Diversity and Complexity in Code Generation

Prompts for Grading Third Party Dependency Complexity.

You are an expert in evaluating third-party dependency complexity of given code. Please evaluate the complexity of third-party
library usage and dependencies in the following code and provide a single integer score from 2 to 8.

Criteria:
Score 2 for case: No external library usage, only built-in modules (e.g., os, sys, json).
Score 4 for case: Uses single third-party library with basic function calls (e.g., pandas, scipy, numpy).
Score 6 for case: Uses 2-3 third-party libraries.
Score 8 for case: Uses at least three third-party libraries with some interaction between them.

Inputs:
You are judging the following code:
Begin Code
{code}
End Code

Output Format:
Please provide your evaluation in the following format:
Grade: a single integer within 2, 4, 6, and 8.

Prompts for Grading Error Handling Complexity.

You are an expert in evaluating error handling complexity of given code. Please provide a single integer score from 2 to 8.

Criteria:
Score 2 for case: Complete lack of error handling.
Score 4 for case: Basic error handling that prevents crashes.
Score 6 for case: Basic error handling that prevents crashes with informative logging info.
Score 8 for case: Error handling covers major scenarios.

Inputs:
You are judging the following code:
Begin Code
{code}
End Code

Output Format: Please provide your evaluation in the following format:
Grade: a single integer within 2, 4, 6, and 8.

Table 15: Distribution of total features across 1k samples.

Datasets Workflow Implementation
Style Functionality Resource

Usage
Computation

Operation Security User
Interaction

Data
Processing

Alpaca 1842 926 1005 324 525 8 181 331
CodeFeedback 3718 1018 1260 560 1432 50 379 1354
Evol-Alpaca 3550 1013 1305 598 1290 60 325 1838
OSS-Instruct 3106 1015 1192 421 585 49 278 1163
Ours (func-level) 4004 1050 1671 831 1213 227 542 3436
Ours (file-level) 4663 1244 2629 1183 778 123 1407 3160

Datasets File
Operation

Error
Handling Logging Dependency

Relations Algorithm Data
Structures

Implementation
Logic

Advanced
Techniques Avg.

Alpaca 18 77 1 166 365 1309 1143 17 8.24
CodeFeedback 46 421 13 453 719 1624 1770 81 14.90
Evol-Alpaca 85 354 15 811 579 1661 1480 135 15.10
OSS-Instruct 236 394 73 799 170 1804 1453 30 12.77
Ours (func-level) 567 887 205 2499 451 2297 1866 143 21.89
Ours (file-level) 1453 1029 548 4010 454 2565 2187 212 27.65

36

EpiCoder: Encompassing Diversity and Complexity in Code Generation

C.4. Diversity Evaluation

C.4.1. PROMPT FOR FEATURE EXTRACTION.

Prompts for feature extraction.

Extract features from the provided code snippets, following the requirements for each category below, formatted in JSON
structure.
Responses in the following categories should be concise and organized in a JSON format surrounded with <begin> and <end>.
Categories may include nested structures if applicable. Here is an example of the expected format:
<begin>{
"functionality": ["data processing"],
"computation operation": { "mathematical operation":["find common divisor", "base conversion", "prime factorization"],
"statistical calculations":["maximum"] },
"data processing": { "data transformation": ["drop rows"] },
"data structures": ["string", "list", "graph", "tree"],
"implementation logic":["conditional", "loop"]
}<end>

Categories to extract:
1. Programming Language: Note the programming language used. Example: ["Python", "Java"].
2. Workflow: Outline the main steps and operations the code performs. Example: ["data loading", "preprocessing", "model
training", "evaluation", "results saving"].
3. Implementation Style: What programming paradigm the code follows. Example: ["procedural", "object-oriented",
"functional"].
4. Functionality: Explain the function of the code. Example: ["data processing", "user interaction", "system control"].
... ...
16. Advanced Techniques: Specify any sophisticated algorithms or methods applied. Example: ["Machine Learning", "Linear
Regression", "Optimization Algorithms"].

Requirements:
1. If the code snippet contains fewer than three lines, only extract the most precise and relevant single feature.
2. For a function, provide no more than five features, prioritizing the most critical and distinctive aspects.
3. Only evaluate the code snippet; disregard any natural language descriptions or comments outside the code context.
4. Try not to let a feature appear in multiple categories at the same time.

Inputs:
{source_code}
Output Format:
<begin>
"workflow": ["your answer"],
"implementation style": ["your answer"],
"functionality": ["your answer"],
"resource usage": ["your answer"],
"computation operation": ["your answer"],
"security": ["your answer"],
"user interaction": ["your answer"],
"data processing": ["your answer"],
"file operation": ["your answer"],
"error handling": ["your answer"],
"logging": ["your answer"],
"dependency relations": ["your answer"],
"algorithm": ["your answer"],
"data structures": ["your answer"],
"advanced techniques": ["your answer"],
<end>
If the features of a category cannot be directly extracted from the code, please set it to an empty list [].

C.4.2. TOTAL FEATURE DIVERSITY COMPARISON.

We compared the number of features in each category, as shown in Table 15. On average, our function-level data contains
21.89 features per sample, while the file-level data includes 27.65 features per sample. This demonstrates that our dataset
not only leads in unique features but also significantly surpasses others in total feature count.

37

EpiCoder: Encompassing Diversity and Complexity in Code Generation

38

