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ABSTRACT

The separation power of a machine learning model refers to its ability to distinguish
between different inputs and is often used as a proxy for its expressivity. Indeed,
knowing the separation power of a family of models is a necessary condition to ob-
tain fine-grained universality results. In this paper, we analyze the separation power
of equivariant neural networks, such as convolutional and permutation-invariant
networks. We first present a complete characterization of inputs indistinguish-
able by models derived by a given architecture. From this results, we derive how
separability is influenced by hyperparameters and architectural choices—such as
activation functions, depth, hidden layer width, and representation types. Notably,
all non-polynomial activations, including ReLU and sigmoid, are equivalent in ex-
pressivity and reach maximum separation power. Depth improves separation power
up to a threshold, after which further increases have no effect. Adding invariant
features to hidden representations does not impact separation power. Finally, block
decomposition of hidden representations affects separability, with minimal com-
ponents forming a hierarchy in separation power that provides a straightforward
method for comparing the separation power of models.

1 INTRODUCTION

Alongside the proliferation and success of equivariant models (Wood & Shawe-Taylor, 1996; Cohen,
2021; Maron et al., 2018), there has been a growing interest in understanding the fundamental reasons
behind their performances, and in assessing their expressive power (Maron et al., 2019a; Yarotsky,
2018). For traditional deep learning approaches, this expressive power is usually quantified in terms
of universality (E, 2019), or their ability to approximate any element of a given class of functions
to arbitrary precision. However, universality is not directly applicable to neural networks that
incorporates invariances of the data (Bronstein et al., 2021), since they necessarily act by identifying
pairs of inputs that are equivalent under the given set of transformations. This feature creates
a complex interaction between the network’s ability to discriminate different input data, and the
invariant or equivariant structure that they are trying to preserve. Assessing expressivity thus requires
first a fine-grained analysis of the separation power of these families of neural networks, namely their
capacity of distinguishing distinct inputs, which is a necessary condition for the universality of the
models (Joshi et al., 2023).

In the graph learning community, which is a paramount domain where invariant and equivariant
models are studied (Maron et al., 2018; Puny et al., 2023; Bevilacqua et al., 2022), networks
are required to be invariant or equivariant under the group of permutations of the graph’s nodes.
In this domain, the primary methods for comparing separation power are the Weisfeiler-Leman
(WL) isomorphism test (Weisfeiler & Leman, 1968) and homomorphism counting (Lovász, 2012).
Significant attention has been devoted to studying this property for graph learning models such as
Graph Neural Networks (GNNs) (Scarselli et al., 2009; Gori et al., 2005; Kipf & Welling, 2017),
Invariant Graph Networks (IGNs) (Maron et al., 2018; 2020), and subgraph GNNs (Alsentzer et al.,
2020; Bevilacqua et al., 2022). However, the WL test and homomorphism counting, along with their
variants, have severe limitations imposed by their combinatorial nature. In particular, recent research
(Joshi et al., 2023) has highlighted the necessity of developing expressivity measures applicable to
models that process data beyond relational structures, such as geometric graphs.

1



Published as a conference paper at ICLR 2025

In this paper we contribute to this effort by studying the separation power of a more general class
of equivariant neural networks, which are not covered by previous results but are of significant
practical interest. Namely, we focus on the family of neural networks with regular convolutions
(Cohen & Welling, 2016a), i.e., networks with non-polynomial continuous point-wise activations,
finite-dimensional representations, and equivariance with respect to the action of finite groups acting
on representations as permutations. This class is rich enough to comprise many models of common
interest, such as IGNs (Maron et al., 2018), Circular Convolutional Neural Networks (Circular CNNs)
(Ravanbakhsh, 2020), and Icosahedral CNNs (Cohen et al., 2019), even if the proposed approach is not
able to address some relevant equivariant models such as Clebsh-Gordan or polynomial approaches
(Kondor et al., 2018; Puny et al., 2023).

Specifically, we precisely describe the set of input pairs identified by relevant families of neural
networks. In contrast, other approaches, limited to IGNs and graph processing, provide only upper
bounds on expressiveness (Geerts, 2020) or lower bounds that require networks with large hidden
feature widths (Maron et al., 2019a). Additionally, we show how hyperparameter and architectural
choices impact the separation power of equivariant neural network models, both in general settings
and in specific cases of practical interest.

To study the separation power of relevant classes of equivariant networks, we show that the set of
identified points corresponds to the set of common zeros of a modified set of networks (Section 5.1).
We characterize the set of input pairs identified by these families of neural networks by introducing
an explicit formula which, remarkably, is recursive over the networks depth (Section 5.2). This
result provides important insights into how different hyperparameters and architectural choices
impact the design of practical equivariant neural network models. In particular, we prove that any
non-polynomial activation is equivalent in separation power, achieving the maximum separability for
networks with a fixed architecture (Section 5.3). We show that increasing depth enhances separation
up to a certain depth, where separation power stabilizes (Section 5.4). Furthermore, we prove that the
multiplicity of the blocks in hidden representations or, equivalently, the width of invariant hidden
features does not affect the separation power of the networks (Section 5.5). We demonstrate that the
separation power of different block types forms a hierarchy, corresponding to the partial ordering of
sub-groups of the symmetry group with respect to which the model is equivariant (Section 5.6). We
illustrate how these general results apply to practical models (Section 6). Specifically, we strengthen
existing results by showing that a much broader class of IGNs matches the separation power of WL
(Section 6.1). Then, we demonstrate that the separation power of circular CNNs depends on the filter
size (Section 6.2).

All proofs are provided in the Appendix.

Contributions. Our contributions can be summarized as follows: (i) We address the separation
power of equivariant neural networks by fully characterizing the set of points identified by networks
with a fixed architecture (Proposition 2 and Theorem 1). (ii) We prove that any continuous, real,
element-wise, non-polynomial activation is equivalent in separation power, achieving the maximum
separability for networks with a fixed architecture (Theorem 2). (iii) We show that increasing depth
enhances separation power up to a specific threshold, beyond which it stabilizes (Theorem 3). (iv) We
illustrate how block decomposition of layers influences separability (Theorem 4) and how separation
power is independent of invariant hidden features (Remark 1). Notably, this result implies that any
k-IGN matches the separation power of k-WL, improving upon previous results that required IGNs
to have large hidden feature widths Maron et al. (2019a). (v) Finally, we show that the minimal
components from this decomposition form a hierarchy in separation power (Theorem 5).

2 RELATED WORK

Recently, equivariant deep learning models have gained popularity (Cohen & Welling, 2014; 2016a;b),
being successful in diverse fields such as computer graphics (Qi et al., 2017), galaxy morphology
prediction (Dieleman et al., 2015), computational biology (Joshi et al., 2024), and computational
chemistry (Chanussot et al., 2021). In the case of permutation equivariance, often required in graph
learning, the WL test has been adopted as the fundamental tool to measure the expressivity of GNNs
(Xu et al., 2019; Morris et al., 2019) and has been used to derive upper bounds (Geerts et al., 2021)
and lower bounds (Maron et al., 2019a) on the expressiveness of IGNs and GNNs (Geerts & Reutter,
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2022). Recently, homomorphism counting has been proposed as a more fine-grained measure of
expressivity for GNNs (Zhang et al., 2024), capable of assessing the separation power of subgraph
GNNs and their variants (Alsentzer et al., 2020; Frasca et al., 2022; Bevilacqua et al., 2022). Other
works that are related to the study of neural network separability include specific universality results
for equivariant networks (Maron et al., 2019b; Yarotsky, 2018; Zhou, 2020; Ravanbakhsh, 2020;
Keriven & Peyré, 2019; Dym & Maron, 2020). Instead, Joshi et al. (2023) addresses the problem
of separability by generalizing the WL test from combinatorial structures to geometric graphs. In
this paper, we shift from graph and relational domains to the continuous domain, where WL-based
approaches are inapplicable, and extend the study of separation power to a broader class of equivariant
neural networks not explored in previous research but essential for practical applications. Specifically,
we examine neural networks utilizing regular G-convolutions (Cohen & Welling, 2016a). This
class encompasses several widely used models, such as IGNs (Maron et al., 2018), Circular CNNs
(Ravanbakhsh, 2020), and Icosahedral CNNs (Cohen et al., 2019).

3 THE RELEVANCE OF SEPARABILITY

3.1 SEPARATION-CONSTRAINED UNIVERSALITY

The universality property of neural networks enables them to approximate any continuous function
with arbitrary precision, meaning there exists a sequence of networks that converges pointwise to
each continuous function. Equivariant neural networks are designed to handle target functions with
specific structures, represented by transformations that recognize equivalent inputs. However, this
characteristic necessitates a deeper examination of their separation power. The separation power
ρ(N ) of a subset N ⊆ C(X,Y ) of continuous functions between topological spaces X and Y is
defined as follows.
Definition 1. A function f : X → Y is said to separate two points α, β ∈ X if f(α) ̸= f(β). A
family of functions N from X to Y separates α, β ∈ X if there exists a function f ∈ N that separates
α and β. If a function or a family of functions fails to separate two points, we say that it identifies
them. The set of pairs of points that are identified by N define on an equivalence relation

ρ(N ) = {(α, β) ∈ X ×X | f(α) = f(β) for each f ∈ N}. (1)

When working with spaces of neural networks, which we refer to as neural spaces for brevity, their
separation power transfers to the class of functions they can approximate, as shown by the following
fact.
Fact. Let (fn)n∈N be a sequence of functions in N that converges pointwise to f . If α, β ∈ X such
that fn(α) = fn(β) for all n ∈ N, then f(α) = f(β).

In particular, N cannot approximate with arbitrary precision functions beyond ones respecting ρ(N ),
namely, Cρ(N )(X,Y ) = {f ∈ C(X,Y ) | f(α) = f(β) ∀(α, β) ∈ ρ(N )}. Understanding however
if the entire set Cρ(N )(X,Y ) can be approximated leads to the study of separation-constrained
universality.

Notably, Maron et al. (2019b) and Ravanbakhsh (2020) illustrate this phenomenon in the context of
equivariant neural networks, which are proven to approximate any continuous equivariant function.
However, their constructions involve intermediate representations of impractically large dimensions.
In contrast, Geerts (2020) and Maron et al. (2019a) show that permutation equivariant networks
commonly used in practice can approximate continuous permutation equivariant functions whose
separation power is equivalent to the WL test.

In this work, we address the problem of characterizing ρ(N ) for relevant families of equivariant
neural networks, as it is necessary, though not sufficient, to understand separation-constrained
universality. Specifically, we focus on how hyperparameter and architecture choices influence
separability, as we will discuss in Section 3.2.

3.2 THE EFFECT OF HYPERPARAMETERS ON SEPARABILITY AND UNIVERSALITY

From a practical viewpoint it is fundamental to understand the hyperparameters and architecture
choices that affect the separation or approximation power of families of neural networks. For example,
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IGN’s separation and approximation power are influenced by two hyperparameters (k,w), where k
represents the network’s relational order and w denotes the width of the final multi-layer perceptron.
Informally, Maron et al. (2019b) showed that IGN = ∪k,wk-IGNw is universal for continuous
equivariant functions, while Geerts (2020) proved that k-IGN = ∪wk-IGNw is universal only within
the class of equivariant functions in Ck-WL(X,Y ), the set of continuous equivariant functions with
the same separation power as k-WL. This example highlights that, in a general equivariant setting,
two types of hyperparameters and architecture choices may exist: (i) those like k, which regulate the
separation power and, hence, have a huge impact on approximation power, but also have a significant
impact on the required computational resources, and (ii) hyperparameters like w, which do not affect
separability but may impact separation-constrained approximation, often with a limited impact on
computational resources. In our work, we aim to identify which hyperparameters and architecture
choices control separation power, determining which belong to the first category and which may fall
into the second.

4 PRELIMINARIES

4.1 GROUPS AND EQUIVARIANCE

We aim to define functions that are symmetric with respect to specific transformations. Groups,
which are particularly useful for computation and technical manipulation, consist of transformations
that fulfill certain criteria: the elements can be combined, each element has an inverse, and there is
a neutral element with respect to composition. While group theory efficiently studies symmetries
and transformations from a purely algebraic perspective, it needs to be adapted to the linear algebra
framework required for defining neural networks. Representation theory acts as a dictionary for
translating between these two languages, showing how abstract groups can be mapped to sets of
matrices that themselves form groups. For an overview, see Appendix A or Fulton & Harris (2004) for
a more complete reference. We will primarily focus on permutation representations. Before defining
them, we need to introduce additional notation. Let X be a finite set and G a finite group acting on
it. Let RX denote the set of real-valued functions defined on X . For each x ∈ X , let ex ∈ RX be
the function that takes the value 1 at x and 0 everywhere else, and note that the set {ex}x∈X forms a
basis for RX . A permutation representation of G is a linear action of G on V = RX such that for
each g ∈ G and x ∈ X , we have g(ex) = egx. Letting V and W be permutation representations
of G, we say that a function ϕ : V → W is G-equivariant if ϕ(gv) = gϕ(v) for each v ∈ V and
g ∈ G. We denote by Hom(V,W ) the set of linear maps between V and W , and by HomG(V,W )
the subset of G-equivariant linear maps. Similarly, we refer to the set of affine maps between V and
W as Aff(V,W ), and the set of G-equivariant affine maps as AffG(V,W ). Note that Hom(V,W ),
Aff(V,W ), and their equivariant counterparts are real vector spaces with respect to addition and
scalar multiplication. Moreover, Pacini et al. (2024) prove that a map f ∈ Aff(V,W ) can be uniquely
decomposed as τv ◦ϕ for some v ∈ V and ϕ ∈ Hom(V,W ) and it is equivariant if and only if its
linear part ϕ is equivariant and v ∈WG = {v ∈W | gv = v ∀g ∈ G}, the set of G-invariant vectors
in W . Thus, we have relevant linear morphisms λ : AffG(V,W ) → HomG(V,W ), which projects
an affine map onto its linear part, and τ : AffG(V,W ) →WG, which projects an affine map onto its
translational part.

4.2 EQUIVARIANT NEURAL NETWORKS

With all the necessary definitions in place, we can now introduce the notion of equivariant neural
network. Our study will focus on neural networks that are equivariant with respect to finite groups,
have arbitrary point-wise continuous activation functions, and whose representations are permutation
representations.

Definition 2 (Point-wise Activation). Let RX be a permutation representation of a group G, and
let σ : R → R. We define the point-wise activation induced by σ as the function σ̃ : RX → RX
such that σ̃(

∑
x∈X αxex) =

∑
x∈X σ(αx)ex. We will often abuse notation and refer to σ as the

activation function as well.

Definition 3 (Neural Networks and Neural Spaces). Let G be a group and V0, . . . , Vd be permutation
representations of G, and let Mi be subsets of AffG(Vi−1, Vi) for i = 1, . . . , d. Given d ≥ 2, the
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neural space with layers in M1, . . . ,Md and activation σ is the recursively defined set

N σ(M1, . . . ,Md) =
{
ϕd ◦ σ̃ ◦ ηd−1 | ϕd ∈Md, η

d−1 ∈ N σ(M1, . . . ,Md−1)
}
,

where N σ(M1) = M1. A neural network with layers M1, . . . ,Md and activation σ is an element
ηd ∈ N σ(M1, . . . ,Md). When Mi = AffG(Vi−1, Vi) for each i = 1, . . . , d, we simply write
N σ(V0, . . . , Vd) instead of N σ(M1, . . . ,Md).

In Definition 3, we do not impose any additional structure on Mi beyond it being a subset of
AffG(Vi−1, Vi), although we will primarily consider Mi to be a vector subspace.

We now provide examples of relevant models that align with Definition 3.
Example 1 (Equivariant Neural Networks). Let G be a group, Vi = RXi be permutation repre-
sentations of G, and Mi = AffG(Vi−1, Vi) the full space of equivariant affine maps from Vi−1 to
Vi for each i = 1, . . . , d. The neural space N σ(M1, . . . ,Md), or equivalently N σ(V0, . . . , Vd), is
the usual space of equivariant neural networks with depth d and representation spaces Vi for each
i = 0, . . . , d.

As discussed in Section 4.1, equivariant affine maps AffG(V,W ) can be decomposed into a linear
part in HomG(V,W ) and a translational part in the invariant subspace WG, the set of G-invariant
vectors of W . In our setting, the symmetry group G is finite, and W is a permutation representation,
with its invariant part WG characterized by the following result.
Proposition 1. Let RX be a permutation representation ofG with orbit decompositionX1⊔· · ·⊔Xn

(see Definition 7 in Appendix A.3), let Y ⊆ X . Define 1Y =
∑
y∈Y ey ∈ RX . The invariant

subspace of RX = RX1 ⊕ · · · ⊕ RXn , consisting of vectors fixed by the action of G, is generated by
the basis 1X1 , . . . ,1Xn .

With this further characterization, we present detailed examples of equivariant affine maps and neural
spaces relevant to machine learning applications, showing how common models can be expressed
within this formalism. Furthermore, we will revisit these neural spaces in Section 6, highlighting
specific properties related to their separation power.
Example 2 (Invariant Graph Networks). Invariant Graph Networks of order 2 (2-IGNs) (Maron
et al., 2018) are neural network models that ensure equivariance with respect to node ordering,
making them particularly effective for graph processing tasks. They process graphs encoded as
adjacency matrices A in Rn×n×f , where the first two dimensions encode the relational structure,
and the third dimension corresponds to the features. In our setting, these matrices are defined as
elements in RX ⊗ Rf where X = [n] × [n] and Rf is the invariant feature space. Each element
σ ∈ G = Sn acts on X as σ(i, j) = (σ(i), σ(j)) for each (i, j) ∈ X and trivially on Rf . To achieve
permutation equivariance, the layers of 2-IGNs are maps in AffSn

(RX⊗Rfi−1 ,RX⊗Rfi), and thus
their associated neural spaces are N σ(RX ⊗ Rf0 , . . . ,RX ⊗ Rfd). Proposition 10 in Appendix A.4
implies that understanding the structure of AffSn(RX ⊗Rfi−1 ,RX ⊗Rfi) reduces to understanding
the structure of AffSn(RX ,RX), which is completely characterized in Maron et al. (2018) and
Pearce-Crump (2023), which states that dimHomSn(RX ,RX) = 15 for n > 3 and, in accordance
with Proposition 1, bias terms can be described by noting that X = [n]× [n] splits into two orbits,
X1 = {(i, i) | i ∈ [n]} and X2 = {(i, j) | i ̸= j}. Identifying R[n]×[n] = Rn ⊗ Rn ∼= Rn×n,
elements in RX1 correspond to diagonal matrices in Rn×n, while elements in RX2 are off-diagonal
matrices. In particular, invariant vectors in RX1 are linear combinations of

1X1 =

[
1 0 0
0 1 0
0 0 1

]
and 1X2 =

[
0 1 1
1 0 1
1 1 0

]
.

Then,

AffSn
(RX ,RX) =

{
A 7→

15∑
i=1

xiϕ
i(A) + y11X1

+ y21X2
| x1, . . . , x15, y1, y2 ∈ R

}
,

where ϕ1, . . . , ϕ15 forms a basis of HomSn
(RX ,RX). Furthermore, Maron et al. (2019b) show that

2-IGNs can be generalized to k-IGNs, which employ hidden representation of high order, namely
elements in R[n]k ⊗ Rfi .
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Example 3 (Circular Convolutional Neural Networks). Circular convolutional filters can be described
in the context of permutation representations, as we will demonstrate using the 1-dimensional case
for simplicity. Let X = [n] with the cyclic group G = Zn acting on it in the standard way, and
identify R[n] = Rn. Linear maps in HomZn

(Rn,Rn) are circulant matrices C(x) associated with a
vector x = (x1, . . . , xn) ∈ Rn (Davis, 1979). Hence, the linear part and the translational part of a
map in AffZn(Rn,Rn) are written as follows:

C(x) =


x1 xn xn−1 · · · x2
x2 x1 xn · · · x3
x3 x2 x1 · · · x4
...

...
...

. . .
...

xn xn−1 xn−2 · · · x1

 and y1X = y1[n] = y

1...
1

 .
Note that C(x) =

∑n
i=1 xiC(ei), where e1, . . . , en is the canonical basis of Rn. Therefore, since

convolutional filters with limited support are more commonly used in practice, it is appropriate to
restrict our choice of layers to maps within

Mk =

{
v 7→

k∑
i=1

xiC(ei)v + y1[n] | x1, . . . , xk, y ∈ R

}
,

which are the 1-dimensional counterpart of the k×k 2D convolutional filters widely used in computer
vision. In this case, the corresponding neural space will be N σ(M

k1 , . . . ,Mkd) for appropriate
choices of filter sizes 1 ≤ k1, . . . , kd ≤ n.

To generalize previous examples, we now assume that the layer spaces M , which are subspaces of
AffG(V,RX), can be written as

M =

{
v 7→

k∑
i=1

xiϕ
i(v) +

∑
P∈P

yP1P | x1, . . . , xk, yP ∈ R for all P ∈ P
}
,

where ϕ1, . . . , ϕk generate a subspace of HomG(V,RX), and P is a partition of X , that may either
combine several orbits from the orbit partitionX = X1⊔· · ·⊔Xn into larger subsets, or coincide with
the orbit partition itself. For further technical details, we refer the interested reader to Definition 12
in Appendix B.1.

Now that we have described the structure of layer spaces in detail and explained why neural spaces
constructed from these layer spaces more accurately reflect specific architectures used in practice, we
can proceed to study the separation power of these neural spaces.

5 MAIN RESULTS

We begin by describing and formulating the twin network trick in Section 5.1, which serves as the
primary tool for converting a separation problem into a zero locus problem, to be addressed informally
in Section 5.2. In the subsequent sections, we will explore the implications of this result and how it
can be applied to effectively compare the separation power of different neural spaces.

5.1 THE TWIN NETWORK TRICK

In this section, we introduce the twin network trick, which transforms a network separation problem
into a zero locus problem for neural networks. This allows us to apply the recursive techniques for
solving zero locus problems developed in Section 5.2. Specifically, a zero locus problem involves
identifying all points that are mapped to zero by all networks within a given neural space.

More precisely, the identification equivalence relation in (1) can be reformulated as the following
zero locus problem: (α, β) ∈ ρ(N σ(M1, . . . ,Md)) if and only if

η(α)− η(β) = 0 ∀η ∈ N σ(M1, . . . ,Md). (2)
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α

β

η −

Figure 1: The twin network trick illustrated. Eval-
uating two copies of η on α and β, and subtracting
the resulting outputs, is equivalent to evaluating
the twin network η on (α, β).

We observe that (2) reduces to a zero locus prob-
lem involving twin networks. The twin network
η : V ⊕V →W , where η(α, β) = η(α)−η(β),
is itself a neural network with the same depth
as η but with a different architecture. Namely,
η ∈ N σ(M1, . . . ,Md−1,M

′
d) where we define

M ′
d = {(α, β) 7→ ϕ(α)− ϕ(β) |ϕ ∈Md} and

M i =
{
ϕ : (α, β) 7→ (ϕ(α), ϕ(β))

∣∣ϕ ∈Mi

}
.

Thanks to the definition of the twin network,
we can restate the identification problem in
Equation 2 as an equivalent zero locus problem,
where we aim to find all β in V ⊕ V that satisfy
η(β) = 0 ∀η ∈ N σ(M1, . . . ,Md−1,M

′
d).

In summary, these observations can be synthe-
sized into the following proposition, which di-
rectly links the identification relation to a zero
locus.
Proposition 2. For a family F of functions between a set V and a vector space W , let

I(F) = {β ∈ V | η(β) = 0∀η ∈ F}.
be the zero locus of F . Then, for any neural space N σ(M1, . . . ,Md), we have

ρ(N σ(M1, . . . ,Md)) = I(N σ(M1, . . . ,Md−1,M
′
d)).

Our task, then, is to determine the zero locus corresponding to the neural space of twin networks.

5.2 THE CHARACTERIZATION THEOREM

In the previous sections, thanks to Proposition 2, we have translated the problem of comput-
ing the identification relation ρ(N σ(M1, . . . ,Md)) into the problem of computing the zero locus
I(N σ(M1, . . . ,Md−1,M

′
d)). More generally, this zero locus can be determined using the recursive

formula proposed in Theorem 1. For brevity, we provide an informal version here, and refer the
interested reader to Theorem 7 in Appendix B.1 for the complete version.

We begin by recalling and defining the necessary notation to state Theorem 1. Let Mi be vector
subspaces of AffG(RXi−1 ,RXi) for i = 1, . . . , d. Recall that λ(Md) denotes the linear part of Md,
and let ϕd,1, . . . , ϕd,sd be linear maps spanning λ(Md), and recall that τ(Md) = ⟨1P ⟩P∈P for some
partition P of Xd. Let Q be another partition of Xd; if Q is finer than P we indicate this relationship
as Q ≤ P . Furthermore, for each h = 1, . . . , sd and k ∈ Xd define the family of partitions of Xd

Ψh,k =

{
Q ≤ P |

∑
i∈P

ϕd,hki = 0, ∀P ∈ Q
}
.

Let πi : RXd−1 → R denote the projection onto the i-th component of RXd−1 for each i in Xd−1. For
each i, j ∈ Xd−1, define the set (Md−1)ij = {ϕ′ : x 7→ πiϕ(x)−πjϕ(x) |ϕ ∈M} which represents
scalar-valued layers obtained as the differences between the i-th and j-th part of the (d− 1)-th layer.
Theorem 1 (Informal). Using the notation defined above, if σ is a non-polynomial continuous
activation function, the following formula, recursive with respect to the depth d, holds

I(N σ(M1, . . . ,Md)) =
⋂
h,k

⋃
Q∈Ψh,k

⋂
P∈Q
i,j∈P

I(N σ(M1, . . . ,Md−2, (Md−1)ij)). (3)

The theorem shows that the zero locus of a neural space of depth d can be recursively computed as a
combination of unions and intersections of the zero loci of neural spaces of depth d− 1. At depth 1,
the neural space reduces to a subspace of affine maps, and finding its zero locus corresponds to solving
a system of linear equations. Although the actual execution of Formula 3 requires superpolynomial
time, this recursive approach is particularly useful for deriving key properties of the identification
relation, such as the role of activations, depth, and hidden features on the separation power, as detailed
in the following sections.
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5.3 THE ROLE OF ACTIVATIONS

The following result shows that the choice of the activation function–and its properties, such as
injectivity or monotonicity–is irrelevant to separability, as long as the activation is non-polynomial.

Theorem 2. Let σ and τ be two continuous activation functions, with σ being non-polynomial. Then

ρ(N σ(M1, . . . ,Md)) ⊆ ρ(N τ (M1, . . . ,Md)).

If τ is also non-polynomial, equality holds. Thus, non-polynomial activations not only yield equivalent
separability but also achieve maximal separation power.

Proof outline. The inclusion follows by reconstructing the steps of in the proof of Theorem 1 and
applying the first part of Theorem 9. To prove the equality in the case τ is also non-polynomial,
we reduce to solve the equivalent zero-locus problem thanks to Proposition 2. We proceed by
induction on d to show that non-polynomial activation functions do not affect the zero-locus. For
the base case d = 1, we have I(N σ(M1)) = I(M1), which is independent of σ. Now, assume
as the inductive hypothesis that I(N σ(M1, . . . ,Md−1)) is independent of σ for any sequence
M1, . . . ,Md−1. Additionally, by definition, h, k and Ψh,k are also independent of σ, which proves
that none of the terms in the right-hand side of (3) depend on σ, thereby completing the proof.

While non-polynomiality is sufficient for maximal separation, some polynomial activations may
also achieve maximal separation power. Identifying these polynomials–or simply some of their
properties, such as their degree–remains a complex mathematical problem. For more details, see Kiss
& Laczkovich (2014).

5.4 THE ROLE OF DEPTH

Depth is a key hyperparameter influencing the separation power of neural spaces. Theorem 3 shows
that, while adding layers of the same type can initially enhance separation power, this effect stabilizes
after a finite number of layers.

Theorem 3. LetMi be a subspace of AffG(Vi−1, Vi) for each i = 1, . . . , d. Suppose that Vh−1 = Vh
for some integer 1 ≤ h ≤ d and that idVh

∈ Mh. If σ is a continuous non-polynomial activation
function, then for m ≤ n,

ρ(N σ(M1, . . . ,Mh−1,Mh, . . . ,Mh︸ ︷︷ ︸
n times

,Mh+1, . . . ,Md)) ⊆

⊆ ρ(N σ(M1, . . . ,Mh−1,Mh, . . . ,Mh︸ ︷︷ ︸
m times

,Mh+1, . . . ,Md)),

but there exists a repetition threshold R such that for all n,m ≥ R the inclusion becomes an equality.

Proof outline. To prove the first part of the statement, it suffices to show the inclusion for n = 1
and m = 2. Moreover, Theorem 2 implies that it is sufficient to prove this inclusion for a sin-
gle non-polynomial σ. Therefore, let σ be the ReLU activation function, noting that in this case
σ ◦ σ = σ; equivalently σ̃ = σ̃ ◦ σ̃ = σ̃ ◦ idRXi ◦ σ̃. Thus, each neural network ϕd ◦ σ̃ ◦ · · · ◦ σ̃ ◦ ϕ1
in N σ(M1, . . . ,Mh, . . . ,Md) can be written as ϕd ◦ · · · ◦ σ̃ ◦ idRXi ◦ σ̃ ◦ · · · ◦ σ̃ ◦ ϕ1, which is an ele-
ment of N σ(M1, . . . ,Mh,Mh, . . . ,Md), thereby proving the desired inclusion by applying Lemma 5.
The stabilization property can be proved by reducing to the equivalent zero-locus problem and ob-
serving that descending sequences of finite intersections and unions of a finite number of sets, as
given by Theorem 1, stabilize thanks to Lemma 2.

The repetition threshold may vary depending on the model and representation. For example, k-IGNs,
being equivalent to k-WL, have a repetition threshold proportional to that of k-WL itself (Maron
et al., 2019a; Geerts, 2020). In contrast, the following proposition shows an example of stabilization
after just one repetition.

Proposition 3. When the hidden representation spaces are regular representations, stabilization
occurs after one layer repetition. Namely, ρ(N σ(V,RG, . . . ,RG,RG/H)) = ρ(N σ(V,RG,RG/H)).
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5.5 THE ROLE OF INTERMEDIATE REPRESENTATIONS

In this section, we show that if a representation, V can be decomposed as V ′⊕V ′′, then the separation
power of neural spaces with hidden representation V reduces to the combined separation power
of two distinct neural spaces with hidden representations V ′ and V ′′. In this section, we present
Theorem 4, an additional application of Theorem 1, which demonstrates that the identification
equivalence relation for neural spaces defined on V is the intersection of those for neural spaces
defined on V ′ and V ′′. This implies that by decomposing each hidden representation V into a sum
of minimal factors, the study of the separation power of general neural spaces can be reduced to
analyzing those defined on minimal representations, as will be explored in Section 5.6.
Theorem 4. Let σ : R → R be a continuous non-polynomial activation function, and let V0, . . . , Vd
be permutation representations with Vi = V ′

i ⊕ V ′′
i for some 0 ≤ i ≤ d. Then,

ρ(N σ(V0, . . . , Vd)) = ρ(N σ(V0, . . . , V
′
i , . . . , Vd)) ∩ ρ(N σ(V0, . . . , V

′′
i , . . . , Vd)).

Remark 1. Note that if V ′
i = V ′′

i , we have

ρ(N σ(V0, . . . , V
′
i ⊕ V ′′

i , . . . , Vd)) = ρ(N σ(V0, . . . , V
′
i , . . . , Vd)). (4)

As a result,
ρ(N σ(V0, . . . , Vi ⊗ Rf , . . . , Vd)) = ρ(N σ(V0, . . . , Vi, . . . , Vd)),

since Vi ⊗ Rf ∼= V ⊕f
i . Thus, the separability is independent of multiplicity and invariant features in

intermediate representations.

5.6 THE ROLE OF REPRESENTATION TYPE

Thanks to Theorem 4, we can focus on studying the separation power of neural spaces defined on
minimal representations. These minimal representations are of the form RX , where the group G
acts transitively on X . That is, for any pair of points x, y ∈ X , there exists an element g ∈ G such
that gx = y. Basic group theory (Fulton & Harris, 2004) shows that a set with a transitive action is
in bijective correspondence with right cosets G/H for some subgroup H < G, see Definition 6 in
Appendix A.2. Informally, the following theorem allows us to compare representations induced by
transitive actions arising from certain subgroups.
Theorem 5. Let K < H < G be finite groups. We have

ρ(N σ(V, . . . ,RG/K , . . . ,W )) ⊆ ρ(N σ(V, . . . ,RG/H , . . . ,W )).

Proof outline. The proof consists in showing that RG/H is a sub-representation of RG/K , and prov-
ing that this induces an embedding of N σ(V, . . . ,RG/H , . . . ,W ) into N σ(V, . . . ,RG/K , . . . ,W ).
Consequently, the result follows directly from Lemma 5.

Theorem 5 implies that neural spaces with minimal representations in one layer, namely
{N σ(V, . . . ,RG/H , . . . ,W )}H<G, form a separation power hierarchy corresponding to the hier-
archy of subgroups of G. In particular, if H = G, the corresponding representation RG/G has
minimal separation power. Furthermore, notice that RG/G ∼= R is the trivial representation, and this
means that invariant layers have the lowest separation power. On the other hand, if H = {e} is the
group containing only the identity element, the corresponding representation RG/{e} has maximal
separation power, since {e} is contained in every subgroup of G. As RG/{e} ∼= RG is the regular
representation, this implies that the regular representation achieves the maximum separation power. In
general, if K < H , then dimRG/H < dimRG/K . Hence, improving separability requires working
in a larger space, which, aside from ad-hoc optimizations, leads to additional computational cost. In
particular, by applying Theorem 1, we can prove the following proposition.

Proposition 4. The neural space N σ(V,RG,RG/H) of equivariant shallow networks with regular
hidden representations identifies inputs if and only if they belong to the same H-orbit, i.e., (β, β′) ∈
ρ(N σ(V,RG,RG/H)) if and only if there exists some h ∈ H such that hβ = β′.

This is consistent with the results in Ravanbakhsh et al., which demonstrate that shallow networks
with hidden representation blocks isomorphic to RG are universal. This universality implies maximal
separation power, as stated in Theorem 16 of Joshi et al. (2023).
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6 IMPLICATIONS ON PRACTICAL MODELS

6.1 INVARIANT GRAPH NETWORKS

Theorem 1 in (Maron et al., 2019a) and Theorem 2 in (Geerts, 2020) together imply the following
fundamental result for the theory of IGNs.
Proposition 5. There exist d > 0 and a large F > 0 such that for hidden feature dimensions
f1, . . . , fd > F , the neural space N σ((Rn)⊗2⊗Rf0 , (Rn)⊗k⊗Rf1 , . . . , (Rn)⊗k⊗Rfd ,R) matches
the separation power of k-WL.

However, Remark 1 shows that the dimension of hidden invariant features does not affect separation
power, strengthening Proposition 5 in the following corollary.
Corollary 1. There exist d > 0 such that for any hidden feature dimensions f1, . . . , fd > 0, the
neural space N σ((Rn)⊗2 ⊗ Rf0 , (Rn)⊗k ⊗ Rf1 , . . . , (Rn)⊗k ⊗ Rfd ,R) matches the separation
power of k-WL.

6.2 CONVOLUTIONAL NEURAL NETWORKS

The separation power of circular CNNs is influenced by the width of the filter’s support.
Proposition 6. Let Mk be the layer space for circular convolutions with filter size k, as defined
in Example 3. Consider the neural space k-CNN = N σ(M

k,AffZn
(Rn,R)). This is the space

associated with shallow convolutional networks, where the first layer consists of one filter of size k
followed by an output invariant layer. For n > 2, we have:

ρ(n-CNN) ⊊ ρ(1-CNN), and ρ(n-CNN) ⊆ · · · ⊆ ρ(2-CNN) ⊆ ρ(1-CNN).

7 LIMITATIONS

The primary limitations of the proposed framework lie within its initial assumptions. Specifically, it
only applies to permutation representations and cannot extend to other important equivariant models,
such as Clebsch-Gordan or polynomial approaches (Kondor et al., 2018; Puny et al., 2023). While
the techniques used to prove Theorem 1 could be applied, the functional equation (12) necessary for
the proof is substantially different, and no actionable solution is known up to our knowledge. Solving
these equations would improve our understanding of the separation power in these models. The
second key assumption is that we consider only intermediate layers with bias, which is standard in
many practical models. In cases where bias terms are absent, such as in some GNN models, our model
can only provide a bound on the separation power. Indeed, these models can be reformulated as IGNs
(Maron et al., 2018), which belong to a broader neural space with bias terms, allowing us to analyze
their separation power. Our final assumption involves the use of non-polynomial activation functions,
commonly employed with examples like ReLU, tanh, and sigmoid. While non-polynomiality is
sufficient for separation, some polynomial activations may also achieve maximal separation power.
However, identifying these specific polynomials presents a complex mathematical challenge. For
further details, we refer readers to (Kiss & Laczkovich, 2014).

8 CONCLUSIONS

The proposed results enhance our understanding of which target functions can be approximated
with arbitrary precision by functions in neural network spaces relevant to practical applications. In
particular, these target functions must satisfy the identification relation of neural networks spaces,
which can now be computed using Theorem 1. This result helps us classify hyperparameters and
architectural choices into two categories: those that directly influence separation power, significantly
impacting both approximation ability and computational cost, and those that do not affect separation
power but may influence approximation in a separation-constrained setting, potentially with minimal
computational cost. Specifically, we prove that all non-polynomial activations provide maximum
separation power, depth enhances separation up to a stabilization point, and hidden feature width has
no effect on separation power. Lastly, we show how these insights can be applied to practical models,
such as IGNs and standard CNNs.
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A PRELIMINARIES

A.1 SPACES OF AFFINE TRANSFORMATIONS

Let V and W be vector spaces, we denote by Hom(V,W ) the set of linear maps between V and W ,
and Aff(V,W ) the set of affine maps between V and W . Note that both Hom(V,W ) and Aff(V,W )
are real vector spaces with respect to addition and scalar multiplication. For each v ∈ W define
τv : W → W such as τv(w) = w + v for each w in W . Each affine map f : V → W has a
unique decomposition ϕ = τv ◦ϕ, where ϕ is a linear map and τv is a translation by a vector v ∈W .
Previous observations imply that the map

θ :
Hom(V,W )⊕W → Aff(V,W )

(ϕ, v) 7→ τvϕ

is an isomorphism of vector spaces. Define TW = {τv | v ∈W}, as clearly TW ∼=W , we will often
abuse notation identifying TW with W . Then, we can define the maps

λ :
Aff(V,W ) → Hom(V,W )

f 7→ f − f(0)
and τ :

Aff(V,W ) →W

f 7→ f(0).

We call λ(f) the linear part of f for each f ∈ Aff(V,W ) and τ(f) the translational part of f for
each affine map.
Proposition 7. Maps λ and τ are linear and surjective.

Proof. The projection on the linear part λ is linear since for each α, β ∈ R and f, g ∈ Aff(V,W )

λ(αf + βg) = (αf + βg)− (αf + βg)(0) = αf + βg − αf(0)− βg(0) =

α(f − f(0))− β(g − g(0)) = αλ(f) + βλ(g).

Furthermore, λ is surjective since for each ϕ ∈ Hom(V,W ), we have that λ(ϕ) = ϕ − ϕ(0) = ϕ.
The projection on the translational part τ is linear since for each α, β ∈ R and f, g ∈ Aff(V,W )

τ(αf + βg) = (αf + βg)(0) = αf(0) + βg(0) = ατ(f) + βτ(g).

Map τ is also surjective since fix f ∈ Hom(V,W ) and notice that τ(τvf) = v and τvf ∈ Aff(V,W )
for each v ∈W .

In general, we will be interested in vector sub-spaces M of Aff(V,W ). A simple way to construct
M is to identify sub-spaces of interest L in Hom(V,W ) and subspaces T of TW ∼= W and define
M = θ(L ⊕ T ). We will be interested only is sub-spaces which are possible to construct in this
way. Nevertheless, it is worth noticing there exist sub-spaces of Aff(V,W ) that are not isomorphic
through θ to directed sums of linear and translation parts. An example is given by the space
M = {ταv ◦αϕ | α ∈ R}. Notice that λ(M) = {αϕ | α ∈ R}, τ(M) = {αv | α ∈ R},
and dimM = λ(M) = τ(M) = 1. If M = θ(λ(M) ⊕ τ(M)), we should have 1 = dimM =
dimλ(M)+dim τ(M) = 2, which is not possible. Spaces that can be decomposed asM = θ(L⊕T )
have the following useful property.
Proposition 8. Let M be a subspace of Aff(V,W ), where there exist a subspace L of Hom(V,W )
and a subspace T of W such that M = θ(L⊕ T ). Let ϕ1, . . . , ϕs be a basis for L and v1, . . . , vn a
basis for T . Then, each f in M can be written as

f : β 7→
s∑
i=1

xiϕi(β) +

n∑
j=1

yjvj ,

for unique parameters xi and yj for each i = 1, . . . , s and j = 1, . . . , n.

A.2 GROUP THEORY

Definition 4. A group is a pair (G, ·) where G is a set and · : G×G→ G is a function satisfying
the following axioms.

• Associativity: for each g, h, k ∈ G we have(g · h) · k = g · (h · k).
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• Identity: there exists an element e ∈ G such that g · e = e · g = g for each g ∈ G.

• Inverse Element: for each element g ∈ G, there exists an element g−1 ∈ G such that
g · g−1 = g−1 · g = e.

A group is finite if it contains a finite number of elements. A group is abelian or commutative if
gh = hg for each g, h ∈ G.

Example 4. Here we present some fundamental examples of groups.

• Let X be a set and define the set of permutation of X as

SX = {f : X → X | f is bijective}.
With the composition operation form the symmetric group or the permutation group of
X . Particular attention is devoted to the case X = [n], we write Sn = SX and it called
symmetric group or the permutation group of n elements.

• Let Zn be the group of integers modulo n with the addition operation, they are called finite
cyclic groups of order n.

• Given two groups G and H , the direct product G×H of them is still a group. The set of the
elements is the Cartesian product of G and H while the sum is defined as

(g1, h1) ·G×H (g2, h2) = (g1 ·G g2, h1 ·H h2).

Now, we introduce the notion of group homomorphism, a transformation between groups which
preserves the operation.

Definition 5. A group homomorphism is a map

ϕ : G→ H

between G and H groups such that, for each g, h ∈ G

ϕ(g · h) = ϕ(g) · ϕ(h).
Definition 6 (Cosets). Let G be a group and H be a subgroup of G. The set of left cosets of
G by H is the set G/H = {gH | g ∈ G}, where gH = {gh | h ∈ H} are the left cosets of
H . Similarly, we define the set of right cosets as H\G = {Hg | g ∈ G}. Let K be a second
subgroup of G, we define the double coset of H and K with respect to an element g ∈ G as the set
HgK = {hgk | h ∈ H, k ∈ K}. The set of double cosets is denoted as H\G/K.

Example 5. Relevant examples of left cosets include the following:

1. Consider G = Z and the subgroup H = nZ of integers multiples of n. The quotient G/H
is a group and is isomorphic to the cyclic group of n elements, Zn.

2. Consider G = S3, the symmetric group on three elements, and the subgroup H =
{(1), (12)}. The quotient G/H is a group and is isomorphic to S2, symmetric group
on two elements.

3. Consider G = Sn, the symmetric group on n elements, and the subgroup H = An, the
alternating group on n elements. The quotient G/H is a group and is isomorphic to Z2.

A.3 GROUP ACTIONS AND EQUIVARIANT MAPS

Let G be a group and X be a set. An action of the group G on the set X is a function

Φ : G×X → X,

usually written as ϕg(x) = Φ(g, x) for each g in G and x in X , such that:

• For the identity element e in G, the identity condition ϕe = idX holds.

• For all g, h ∈ G, the compatibility condition ϕg ◦ϕh = ϕgh holds.
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In this context, we often write g · x or simply gx instead of ϕg(x). A G-set is a set X equipped with
a group action of G. This means that there is a well-defined action · : G×X → X satisfying the
properties of a group action as described above. Throughout the following sections, it will often be
convenient to decompose G-sets into a disjoint union of subsets, each minimal (in a sense specified
in Definition 7) and equipped with a compatible G-action.
Definition 7. Let G be a group acting on a set X . An orbit in X is a subset Y ⊆ X such that for
each x ∈ Y , we have Y = {g · x | g ∈ G}. The set X can be decomposed into a disjoint union
of orbits under the action of G. This is called the orbit decomposition of X , and if X is finite, the
decomposition can be written as

X = X1 ⊔ · · · ⊔Xn,

where X1, . . . , Xn are the distinct orbits of X .

Another fundamental concept for our treatment is that of a function between G-sets that preserves
actions, which is more formally specified in Definition 8.
Definition 8. Let X and Y be two G-sets, a map f : X → Y is G-equivariant if

g · f(x) = f(g · x)
for each x in X .

A.4 GROUP REPRESENTATIONS AND EQUIVARIANT AFFINE TRANSFORMATIONS

Let G be a group and V be a vector space over a field R. A G-action Φ : G × V → V on V is
G-representation if ϕg is linear for each g in G. Or equivalently,

ϕ :
G→ GL(V )

g 7→ ϕg

where GL(V ) is the general linear group of V , consisting of all invertible linear transformations on
V . We will usually identify the entire Φ : G× V → V action with V itself and write gv = Φ(g, v).

Let V and W be two G-representations, we will indicate the set of equivariant linear maps be-
tween V and W as HomG(V,W ) and as AffG(V,W ) the set of equivariant affine maps. Note that
HomG(V,W ) is a vector space. Indeed, 0 ∈ HomG(V,W ) and for each f, g ∈ HomG(V,W ) and
each α, β ∈ R, αf + βg ∈ HomG(V,W ). The same is true for AffG(V,W ).

Let V be a G-representation, we define the set of invariant vectors V G = {v ∈ V | gv = v ∀g ∈ G}.

In Section A.1 we studied the properties of vector subspaces of affine transformations between vector
spaces. Here we are now interested in studying subspaces of equivariant affine transformations. To
better understand the structure of such spaces it is necessary to remind Theorem 8 in Pacini et al.
(2024).
Theorem 6. An map ϕ = τw ◦ f belongs to AffG(V,W ) if and if f ∈ HomG(V,W ) and v is
invariant.

We can define restrictions of maps θG, λG, and τG as follows

θG :
HomG(V,W )⊕WG → AffG(V,W )

(ϕ, v) 7→ τvϕ

λG :
AffG(V,W ) → HomG(V,W )

f 7→ f − f(0)
and τG :

AffG(V,W ) →WG

f 7→ f(0).

Theorem 6 implies that θG is an isomorphism and a similar proof to the one of Proposition 7 shows
that both λG and τG are linear, equivariant, and surjective. When it will be clear we are working in
the equivariant setting, we will drop the subscript and just write θ, λ, and τ .

In the main text we will often use the following results.
Proposition 9. Let V1, V2, and V be G-representations. Then,

HomG(V1 ⊕ V2, V ) = HomG(V1, V )⊕HomG(V2, V )

and
HomG(V, V1 ⊕ V2) = HomG(V, V1)⊕HomG(V, V2).
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Proposition 10. Let V and W be G-representations, and let G act trivially on Rn and Rm. Then,

HomG(V ⊗ Rn,W ⊗ Rm) ∼= HomG(V,W )⊗Hom(Rn,Rm),

and
(V ⊗ Rn)G ∼= V G ⊗ Rn.

In other words, recalling that AffG(V,W ) ∼= HomG(V,W ) ⊕WG and since Hom(Rn,Rm) ∼=
Rn×m is the set of n×m matrices over R, understanding the structure of AffG(V ⊗ Rn,W ⊗ Rm)
reduces to understanding the structure of AffG(V,W ).

A.5 ON PERMUTATION REPRESENTATIONS

The followings are easy and known results from the theory of permutation representations.

We recall the definition of permutation representations as stated in Section 4.1.
Definition 9. Let X be a finite set and G a finite group acting on it. A permutation representation of
G is a representation of G on RX such that g(ex) = egx for each g ∈ G and x ∈ X .

Proposition 11. Let X and Y be two G-sets. We have the two following G-representations isomor-
phisms

RX⊔Y ∼= RX ⊕ RY and RX×Y ∼= RX ⊗ RY ,
where X ⊔ Y indicate the disjoint union of the sets X and Y .

Example 6. Let S = [n] and let Sn act on S in the standard way and note that RS ∼= Rn as
representations. From Proposition 11, we obtain that tensors of order 2 are Rn ⊗ Rn = RS×S =
Rn×n. Let ∆ = {(i, i) | i ∈ S} and ∆ = {(i, j) ∈ S | i ̸= j}, note that S × S = ∆ ⊔∆ and that
Sn acts transitively on both ∆ and ∆. Therefore, Rn ⊗ Rn ∼= RS×S ∼= R∆ ⊕ R∆.

We say that a group G acts transitively on a set X if this action has only one orbit, namely Gx = X
for each x ∈ X . IfX = X1⊔· · ·⊔Xn is the orbit decomposition ofX , then RX ∼= RX1⊕· · ·⊕RXn .

As the bias terms of equivariant layers are vectors invariant under the action of permutation repre-
sentations, it is important to characterize the invariant part of a permutation representation. Before
proceeding, it is necessary to state the following result.
Proposition 12. IfG is a finite group acting transitively on a finite setX , then there exists a subgroup
H < G and a G-set bijection between X and G/H .

Proposition 12 implies that we can restrict our study to representations of the form RG/H for some
subgroup H of G. With this result, we can now proceed to prove Proposition 1. Let G be a group and
X be a finite set with action of G. For Y ⊆ X , recall that 1Y =

∑
y∈Y ey .

Proof of Proposition 1. The Reynolds operator

R :

V −→ V G

v 7→
∑
g∈G

gv

projects each G-representation V on its invariant subspace V G. In the case V = RG/H , ekH is an
element of the canonical base of RG/H ,

R(ekH) =
∑
g∈G

gekH =
∑
g∈G

egkH = |H|
∑

gH∈G/H

egH = |H|1G/H .

The final observation follows from Proposition 11.

Propositions 11 and 9 together imply that characterizing equivariant maps between permutation
representations reduces to characterizing equivariant maps between representations induced by
transitive actions on finite sets, or equivalently, left cosets by Proposition 12. We address this in
Proposition 14. To prove this result, we first define the concept of right multiplication in Definition 10
and then prove Proposition 13, which characterizes equivariant maps between regular representations.
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Definition 10. For each g ∈ G define the right-multiplication

Rg :
RG −→ RG

eh 7→ ehg−1 .

Proposition 13. Right actions are a basis for the space of equivariant endomorphisms of the regular
representation. In other words, {Rg}g∈G is a basis for HomG(RG,RG).

Proof. Each linear application ϕ ∈ Hom(RG,RG) is defined by the values ϕ(eg) for each g ∈ G
by linear extension. If ϕ is G-equivariant, it is defined just by its value on ee. Indeed, ϕ(eg) =
ϕ(gee) = gϕ(ee) for each g ∈ G. Note that Rg is linear as the right action of g on RG is linear
and Rg(eh) = ehg−1 = ehg

−1. It is also equivariant, indeed Rg(hv) = hvg−1 = hRg(v) for each
v ∈ RG and h ∈ G. Furthermore, Rg−1(ee) = eg for each g ∈ G and therefore they generate
HomG(RG,RG).

Suppose that there exist values ag ∈ R for each g ∈ G such that
∑
g∈G agRg = 0, then

0 =
∑
g∈G

agRg(ee) =
∑
g∈G

ageg−1 .

Since elements eg are linearly independent, ag = 0 for each g ∈ G. Hence, Rg are linearly
independent and form a basis for HomG(RG,RG).

Now we would like to have a result similar to Proposition 13 but for morphisms between G/K and
G/H . To do this we need to define the following injection

ιG/H :

RG/H → RG

egH 7→ 1

|H|
∑
h∈H

egh,

and projection

πG/H :
RG → RG/H

eg 7→ egH .

For an arbitrary representation V , we define two surjective maps

ι∗G/K :
HomG(RG, V ) ↠ HomG(RG/K , V )

ϕ 7→ ϕ ◦ ιG/K ,

and

πG/H∗ :
HomG(V,RG) ↠ HomG(V,RG/H)

ϕ 7→ πG/H ◦ϕ.

We can now generalize the concept of right multiplication to the general case of transitive actions, a
concept necessary for stating Proposition 14, which we will then prove by following the approach
used in the proof of Proposition 13.

Definition 11. Define RHgK = αRg where the map α = πG/H∗ ◦ ι∗G/K is defined from
HomG(RG,RG) to HomG(RG/K ,RG/H).

Proposition 14. The map RHgK is well-defined and the set {RHgK}HgK∈H\G/K is a basis for
HomG(RG/K ,RG/H). Finally,

(
RHgK(ekK)

)
sH

=

{
1

|K| if sH ⊆ kKg−1H,

0 otherwise.
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Proof. To prove that RHgK is well-defined, we need to prove that αRg = αRhgk for each h ∈ H
and k ∈ K. Indeed,

πG/H Rhgk ιG/K(esK) =
1

|K|
∑
t∈K

estk−1g−1h−1H =

1

|K|
∑
t∈K

estk−1g−1h−1H =
1

|K|
∑
t∈K

estg−1H = πG/H Rg ιG/K(esK),

where the penultimate equality is true because h−1H = H and variable change t 7→ tk−1 in the sum.

By Proposition 13 the set {Rg}g∈G is a basis for HomG(RG,RG). By the previous observation
we have shown that the image of {Rg}g∈G under α is {RHgK}HgK∈H\G/K . As α is a surjection,
{RHgK}HgK∈H\G/K generates HomG(RG/K ,RG/H).

Proving linear independence is similar to the proof of linear independence in Proposition 13. Indeed,
let aHgK ∈ R for each HgK ∈ H\G/K such that∑

HgK∈H\G/K

aHgK RHgK = 0.

Hence,

0 =
∑

HgK∈H\G/K

aHgK RHgK(eK) =
∑

HgK∈H\G/K

1

|K|aHgK
∑
t∈K

etg−1H .

Note that sets {tg−1H}t∈K are pairwise disjoint with g varying between representatives of HgK.
This means that the respective vectors

∑
t∈K etg−1H are linearly independent, hence each aHgK = 0.

This proves that the maps RHgK are linearly independent. Finally, observing that

RHgK(ekK) =
1

|K|
∑
t∈K

ektg−1H ,

it is clear that (
RHgK(ekK)

)
sH

=

{
1

|K| if sH ⊆ kKg−1H,

0 otherwise.

Remark 2. In our case of interest, in which G is a finite group, the map v 7→ v · w is equivalent at
convolving v by w. Proposition 14 is just a restatement and integration of Theorem 1 in Kondor &
Trivedi (2018) in the restricted case of homogeneous spaces of finite groups.

B MAIN RESULTS

B.1 THE CHARACTERIZATION THEOREM

To formally state and prove Theorem 1, we need to understand how bias terms in neural spaces
transform under the twin network trick. Note that, in general, we have τ(AffG(V,W )) ⊊
τ(AffG(V ⊕ V,W ⊕W )), as illustrated by the following Example 7.
Example 7 (Twin Layers in 2-IGNs). Let us consider IGN layers. In this case, V =W = RX . The
twin layer takes and has values in RX ⊕RX ∼= RX⊔X′

where X ′ is a disjoint copy of X . Hence, the
twin IGN layer is an affine function RX⊔X′ → RX⊔X′

defined as follows:
(A,B) 7→ (L(A), L(B)) + y11X1 + y21X2 + y11X′

1
+ y21X′

2
, (5)

where X ′
1 and X ′

2 are the copies of X1 and X2 in X ′, respectively. Note that they share
the same parameter for 1X1 and 1X′

1
and for 1X2 and 1X′

2
, while the translational part of

AffSn
(RX⊔X′

,RX⊔X′
) is y11X1

+ y21X2
+ y′11X′

1
+ y′21X′

2
. Alternatively, we have

dim τ(AffSn(RX ,RX)) = 2 and dim τ(AffSn(RX⊔X′
,RX⊔X′

)) = 4.

Hence,
τ
(
AffSn

(RX ,RX)
)
⊊ τ

(
AffSn

(RX⊔X′
,RX⊔X′

)
)
.
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Example 7 shows that we need a definition of bias that can describe the bias terms in (5). This will be
provided in Definition 12.
Definition 12 (Complete Bias). We say that the subspace M of AffG(V,RX) has complete bias if
λ(M) ⊕ τ(M) ∼= M through θ and τ(M) = ⟨1P ⟩P∈P , where P is a partition of X . In this case,
we say that the bias of M is subordinate to the partition P . In the opposite case, we say that M has
incomplete bias. In particular, we say that M has null bias if its translational part τ(M) is zero; in
other words, M is simply a subspace of HomG(V,RX) and M = λ(M).

The following observations are necessary to justify this definition.
Remark 3. Note that each subspace M of AffG(V,RX) such that M = λ(M)⊕ τ(M) and τ(M) =
τ(AffG(V,RX)) has complete bias. Indeed, in this case we have P = {X1, . . . , Xn}, the G-orbit
decomposition of X and

τ(M) = ⟨1Xi
⟩Xi∈P

as proven in Proposition 1. Therefore, all examples in Section 4.2 have complete bias.
Remark 4. Note that each subspace M of AffG(V,RX) has complete bias if and only if there exist
ϕ1, . . . , ϕs in HomG(V,RX) and a partition P of X such that each map in M can be written as

β 7→ x1ϕ1(β) + · · ·+ xsϕs(β) +
∑
Y ∈P

yP1Y (6)

where xi and yP are real parameters for each i = 1, . . . , s and each P in P .
Proposition 15. LetM1, . . . ,Md−1 be subspaces with complete bias, then the space of twin networks

N σ(M1, . . . ,Md−1,M
′
d)

has intermediate layers with complete bias and output layer with null bias.

The proof of Proposition 15 relies on Proposition 16 and Lemma 1 which will be stated shortly.
Definition 13. Let X be a finite set, we define the duplicate set of X as the set X ⊔X ′ where X ′

is a disjoint copy of X . Let P be a partition of X , we define the duplicate partition of P as the
partition P ′ of the duplicate of X such that P ′ = {Y ⊔ Y ′ | Y ∈ P}. For each y ∈ Y , we will
usually indicate the respective element in Y ′ as y′, although when it will be clear from the context we
may abuse notation and call both y.
Proposition 16. If M is a sub-vector space of AffG(V,RX) with complete bias subordinate to parti-
tion P then the twin space M is a subspace of AffG(V ⊕V,RX⊕RX) ∼= AffG(V ⊕V,RX⊔X′

) and
has complete bias subordinate to the duplicate partition of P . In particular, dim τ(M) = dim τ(M)

and dim τ(AffG(V ⊕ V,RX ⊕ RX)) = 2 dim τ(AffG(V,RX)) = 2 dim τ(AffG(V,RX)).

Proof. Trivially, if M = λ(M)⊕ τ(M), then M = λ
(
M
)
⊕ τ

(
M
)
. Noticing that ζ : RX ⊕RX ∼=

RX⊔X′
such that ζ((ex, 0)) = ex and ζ((0, ex)) = ex′ is an isomorphism. First we show that that

AffG(V ⊕ V,RX ⊕ RX) ∼= AffG(V ⊕ V,RX⊔X′
). If M has complete bias subordinate to P then

τ(M) = ⟨1Y ⟩Y ∈P and each v ∈ τ(M) can be written as v =
∑
Y ∈P aY 1Y for some (aY )Y ∈ RP .

Remember that τ(M) = {ϕ(0) | ϕ ∈M}, then

τ(M) = {(ϕ(0), ϕ(0)) | ϕ ∈M} = {(v, v) | v ∈ τ(M)} ={
(
∑
Y ∈P

aY 1Y ,
∑
Y ∈P

aY 1Y ) | (aY )Y ∈ RP

}
.

By the isomorphism ζ : RX ⊕ RX ∼= RX⊔X′
, we can write ζ(

∑
Y ∈P aY 1Y ,

∑
Y ∈P aY 1Y ) =∑

Y ∈P aY 1Y ⊔Y ′ .

Lemma 1. The output space of a twin network M ′ always has null bias, independently of the bias
space τ(M).

Proof. Let ϕ : v 7→ f(v) + y be an affine map in M < AffG(V,W ). Then the output layer of the
twin network is

ϕ′(v, w) = ϕ(v)− ϕ(w) = f(v) + y − f(w)− y = f(v)− f(w),

which is always a linear map in AffG(V ⊕ V,W ). Equivalently, τ(M ′) = 0.
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Proof of Proposition 15. Apply Proposition 16 to M1, . . . ,Md−1 and Lemma 1 to Md.

Together Remark 3 and Proposition 15 show that we only need to solve zero locus problems for
networks with complete bias in the intermediate layers and null bias in the final layer. We are now
able to give the complete and formal statement and proof of Theorem 1.
Theorem 7. Let M1, . . . ,Md−1 have complete bias and let Md have null bias. Let ϕd,1, . . . , ϕd,sd
be a set of generators of Md < AffG(RXd ,RXd+1), and let the bias of Md−1 be subordinate to the
partition P . Furthermore, for each h = 1, . . . , sd and each k ∈ Xd+1 define

Ψh,k =

{
Q ≤ P |

∑
i∈P

ϕd,hki = 0, ∀P ∈ Q
}
.

If σ is a non-polynomial activation function, then we have the following recursive formula with
respect to network depth

I(N σ(M1, . . . ,Md)) =
⋂
h,k

⋃
Q∈Ψh,k

⋂
P∈Q
i,j∈P

I(N σ(M1, . . . ,Md−2, (Md−1)ij)),

where (Md−1)ij = {ϕ′ : x 7→ πiϕ(x)− πjϕ(x) |ϕ ∈ λ(Md−1)}, πi : RX → R is the projection on
the i-th component of RX for each i in X , and λ(Md−1) is the linear part of Md−1.

Proof. Denote Fd = {ϕd,1, . . . , ϕd,sd}. We can restrict to compute I(N σ(M1, . . . ,Md−1,Fd))
since, by Lemma 7, we know

I(N σ(M1, . . . ,Md)) = I(N σ(M1, . . . ,Md−1,Fd)).

Each d-layer neural network ηd,h in N σ(M1, . . . ,Md−1,Fd) can be written, for each input β, as

ηd,h(β) = ϕd,hσ̃(ηd−1(β) + y) (∀h = 1, . . . , sd) (7)

where

• The map ϕd,h is the h-th element in Fd and is linear since Md has null bias.

• The the map ηd−1 is (d− 1)-layer network belonging to N σ(M1, . . . ,Md−2, λ(Md−1)).

• The vector y is a bias term in the translational part of Md−1, namely the invariant sub-space
of RXd , and has complete bias subordinate to a partition Q. Hence,

y =
∑
P∈Q

yP1P . (8)

In a similar fashion, define ηd−1,t in N (M1, . . . ,Md−1, λ(Md−2)) for each t = 1, . . . , sd−1 and
some sd−1 ≥ 1. Note that, due to Remark 4,

ηd−1 =

sd−1∑
t=1

xtη
d−1,t (9)

for some x1, . . . , xsd−1
∈ R. Therefore, by substituting both (8) and (9) into (7), we get

ηd,h(β) = ϕd,hσ̃

(
sd−1∑
t=1

xtη
d−1,t(β) + y

)
. (10)

Recall that ϕd,h is a linear map from RXd to RXd+1 , defined by the elements ϕd,hki = ϕd,hk (ei) for
each input entry i ∈ Xd and output entry k ∈ Xd+1.

With this notation, we can express (10) in coordinates as follows

ηd,hk (β) =
∑
i∈Xd

ϕd,hki σ

(
sd−1∑
t=1

xtη
d−1,t
i (β) + yi

)
. (11)
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For each i ∈ Xd, let P be the unique element in Q containing i. Then yi = yP , where yi is the
coefficient defined in (11), and yP is the one defined in (8).

Hence, we can write (11) as follows

ηd,hk (β) =
∑
P∈Q
i∈P

ϕd,hki σ

(
sd−1∑
t=1

xtη
d−1,t
i (β) + yP

)

for each output entry k in RXd+1 .

Thus, an element β belongs to I(N σ(M1, . . . ,Md−1,Fd)) if and only if∑
P∈Q
i∈P

ϕd,hki σ

(
sd−1∑
t=1

xtη
d−1,t
i (β) + yP

)
= 0 (12)

for each xt, yP , h, k, and ηd−1,t.

Assuming that σ is non-polynomial and setting ai = ϕd,hki and bi = (ηd−1,t
i (β))t, the second part of

Theorem 9 implies that (ηd−1,t
i (β))i,t solves (12) for specific h and k if and only if

(ηd−1,t
i (β))i ∈

⋃
Q∈Ψh,k

⋂
P∈Q
i,j∈P

{
(ηd−1,t
i (γ))i | ηd−1,t

i (γ)− ηd−1,t
j (γ) = 0

}
.

Note that β satisfies (12) for specific h and k if and only if (ηd−1,t(β))i,t satisfies it. Hence,

β ∈
⋃

Q∈Ψh,k

⋂
P∈Q
i,j∈P

{
γ | ηd−1,t

i (γ)− ηd−1,t
j (γ) = 0 ∀t

}
. (13)

By the definition of (Md−1)ij , we get

I(N σ(M1, . . . ,Md−2, (Md−1)ij)) = {β | ηd−1,t
i (β)− ηd−1,t

j (β) = 0}.
Therefore, β satisfies (12) for specific h and k if and only if

β ∈
⋃

Q∈Ψh,k

⋂
P∈Q
i,j∈P

I(N σ(M1, . . . ,Md−2, (Md−1)ij)).

Since β has to satisfy (12) for each h and k, we finally get

I(N σ(M1, . . . ,Md)) =
⋂
h,k

⋃
Q∈Ψh,k

⋂
P∈Q
i,j∈P

I(N σ(M1, . . . ,Md−2, (Md−1)ij)).

Remark 5. Theorem 1 could actually be stated with different activation functions for each layer, as
long as they are all non-polynomial. However, for readability and simplicity, we have presented the
results using a single activation function.
Remark 6. Here, we demonstrate that the complete bias assumption is necessary for all non-
polynomial activations to achieve maximal separation power. Specifically, let us examine the
separation power of the set of shallow neural networks where all representation spaces are one-
dimensional and the hidden layer has a null, and therefore incomplete, bias term. The main concern
is the separability of opposite inputs β and −β. This reduces to study the identification equation

yσ(βx) = yσ(−βx)
for each x, y ∈ R. Any even function σ, including non-polynomial ones, solves this equation but
does not achieve maximal separation power, which could be reached by adding a bias term, as shown
in Theorem 2.
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B.2 THE ROLE OF ACTIVATIONS

Proof of Theorem 2. We prove that non-polynomial activation functions have equivalent separation
power by induction on d.

If d = 1 then I(N σ(M1)) = I(M1) which does not depend on σ.

Now suppose that I(N σ(M1, . . . ,Md−1)) does not depend on σ for each sequence M1, . . . ,Md−1.
Then, observing (3)

I(N σ(M1, . . . ,Md)) =
⋂
h,k

⋃
P∈Ψh,k

⋂
P∈P
i,j∈P

I(N σ(M1, . . . ,Md−2, (Md−1)ij)),

we note that I(N σ(M1, . . . ,Md)) is independent of σ as indices such as h, k and i, j are independent
of σ, as well as I(N σ(M1, . . . ,Md−2, (Md−1)ij)) is by inductive hypothesis.

Finally, the first part of Theorem 2 follows directly from the proof of Theorem 1 and the last part of
Theorem 9.

B.3 THE ROLE OF DEPTH

Proof of Theorem 3. To prove the first part of the statement, by Lemma 5, it suffices to show that

N σ(M1, . . . ,Mi, . . . ,Md) ⊆ N σ(M1, . . . ,Mi, . . . ,Mi︸ ︷︷ ︸
n-times

, . . . ,Md). (14)

for each n ≥ 1.

Moreover, Theorem 2 implies that is enough to prove this inclusion for a fixed non-polynomial σ;
then Theorem 3 will hold for any other non-polynomial activation as well. Therefore, let σ be the
ReLU activation function, noting that in this case σ ◦ σ = σ.

In particular,
σ̃ = σ̃ ◦ σ̃ ◦ · · · ◦ σ̃︸ ︷︷ ︸

n-times

= σ̃ ◦ idRXi ◦ σ̃ ◦ · · · ◦ σ̃ ◦ idRXi︸ ︷︷ ︸
n-times

,

for each n ≥ 1.

Thus, each neural network ϕd ◦ σ̃ ◦ · · · ◦ σ̃ ◦ ϕ1 in N σ(M1, . . . ,Mi, . . . ,Md) can be written as

ϕd ◦ σ̃ ◦ · · · ◦ σ̃ ◦ ϕi+1 ◦ σ̃ ◦ idRXi ◦ σ̃ ◦ · · · ◦ σ̃ ◦ idRXi︸ ︷︷ ︸
n-times

◦ σ̃ ◦ ϕi−1 ◦ · · · ◦ σ̃ ◦ϕ1

which is an element of N σ(M1, . . . ,Mi, . . . ,Mi︸ ︷︷ ︸
n-times

, . . . ,Md), thereby proving (14).

The final step is to prove the stabilization property. This is achieved by recalling that, by Proposition 2
and Theorem 1,

I(N σ(M1, . . . ,Md−1,M
′
d)) =

⋂
h,k

⋃
P∈Ψh,k

⋂
P∈P
i,j∈P

I(N σ(M1, . . . ,Md−2, (Md−1)ij)). (15)

Define
Cn = I(N σ(M1, . . . ,M i, . . . ,M i︸ ︷︷ ︸

n times

, . . . ,M ′
d))

for each n ∈ N. Recursively applying (15), both Cn and Cm can be represented as unions and
intersections of elements in the finite set

C = {I(N σ(M1, . . . ,M i−1, (M i)hk))}h,k∈Xi
.

We can reformulate the descending sequence (14) as follows

· · · ⊆ Cn ⊆ Cn−1 ⊆ · · · ⊆ C1

which stabilizes due to Lemma 2.
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Lemma 2. Let C = {C1, . . . , Cd} be a finite collection of sets. The following statements are true:

• Let C∪ = {Ci1 ∪ · · · ∪ Cir | 1 ≤ i1, . . . , ir ≤ d, r ∈ N} be the collection of unions of a
finite number of sets in C. Then C∪ is finite.

• Let C∩ = {Ci1 ∩ · · · ∩ Cir | 1 ≤ i1, . . . , ir ≤ d, r ∈ N} be the collection of intersections
of a finite number of sets in C. Then C∩ is finite.

• Let C̃ the smaller collection containing C which is closed by intersection and union. Then
C̃ = (C∩)∪ = (C∪)∩ and, in particular, is finite.

In particular, ascending and descending sequences of inclusions in C̃ stabilize.

Proof. To prove the first point, it is sufficient to note that duplicates in the expression Ci1 ∪ · · · ∪Cir
can be removed. Therefore, the cardinality of C∪ is bounded by the number of possible tuples
i1, . . . , ir which are 2d. The proof of the second point is analogous.

By the distributive property of intersections with respect to unions we obtain that each element in C̃
can be written as

(Ci1,1 ∩ · · · ∩ Ci1,d1 ) ∪ · · · ∪ (Cir,1 ∩ · · · ∩ Cir,dr ).
Hence, C̃ = (C∩)∪. Similarly, using the distributive property of unions with respect to intersections,
we get C̃ = (C∪)∩. In particular, C̃ is finite as C∪ and, hence, (C∪)∩ are finite.

The repetition threshold may vary depending on the model and representation. For example, k-IGNs,
being equivalent to k-WL, have a repetition threshold proportional to that of k-WL itself (Maron
et al., 2019a; Geerts, 2020). In contrast, the Proposition 3 demonstrates an example of stabilization
after just one repetition.

Proof of Proposition 3. From previous observations, we know that

ρ(N σ(V,RG, . . . ,RG,RG/H)) ⊆ ρ(N σ(V,RG,RG/H)). (16)

Note that the family of equivariant continuous functions CG(V,RG/H) cannot separate H-orbits in V .
Indeed, for each f ∈ CG(V,RG/H), f(hv) = hf(v) = f(v) for each h ∈ H . Hence, Proposition 4
implies that N σ(V,RG,RG/H) has the finer separation power between families of functions in
CG(V,RG/H). This implies equality in (16), concluding the proof.

B.4 THE ROLE OF INTERMEDIATE REPRESENTATIONS

For now, we focus on developing the notation necessary to state and prove Theorem 4. The structure
of our network of interest is as follows:

η : V
ϕ1−→ V1

σ̃−→ · · · ϕi−→ V ′
i ⊕ V ′′

i
σ̃−→ V ′

i ⊕ V ′′
i

ϕi+1−−−→ · · · σ̃−→ Vd
ϕd+1−−−→W

with η ∈ N σ(M1, . . . ,Md).

To formulate the identification equivalence relation of these networks in terms of the identification
relations of simpler architectures with only V ′ and V ′′ as intermediate representations, we need to
define the projection map π′ : V ′ ⊕ V ′′ → V ′ and the immersion map ι′ : V ′ → V ′ ⊕ V ′′. Similarly,
we can define π′′ and ι′′. Furthermore, for any G-representation W , we define

π′
∗ :

AffG(W,V
′ ⊕ V ′′) → AffG(W,V

′)

f 7→ π′ ◦ f
and ι′∗ :

AffG(V
′ ⊕ V ′′,W ) → AffG(V

′,W )

f 7→ f ◦ ι′
.

Similarly, we define π′′
∗ and ι′′∗. Let M be a subspace of AffG(W,V

′ ⊕ V ′′), its image π′
∗(M) is a

subspace of AffG(W,V
′) and

M = π′
∗(M) + π′′

∗ (M).

Indeed, each f ∈ M can be expressed as f = π′f + π′′f = π′
∗(f) + π′′

∗ (f)f , identifying V ′ and
V ′′ as subspaces of V . Similarly, for M subspace of AffG(V

′ ⊕ V ′′,W ),

M = ι′∗(M) + ι′′∗(M)
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Hence, we can write

N σ(M1, . . . ,Md) = N σ(M1, . . . , π
′
∗(Mi) + π′′

∗ (Mi), ι
′∗(Mi+1) + ι′′∗(Mi+1), . . . ,Md),

and the problem informally stated above reduces to determining the separation power of the
entire family N σ(M1, . . . ,Md) by understanding the separation power of the smaller families
N σ(M1, . . . , π

′Mi, ι
′∗(Mi+1), . . . ,Md) and N σ(M1, . . . , π

′′Mi, ι
′′∗(Mi+1), . . . ,Md). This is

achieved by the following theorem.
Theorem 8. With the notation defined above, we have

ρ(N σ(M1, . . . ,Md)) =

ρ(N σ(M1, . . . , π
′
∗(Mi), ι

′∗(Mi+1), . . . ,Md))∩ ρ(N σ(M1, . . . , π
′′
∗ (Mi), ι

′′∗(Mi+1), . . . ,Md)).

Proof. Note that ψ ◦ ϕ = ψ ◦ ϕ. Indeed, ψ ◦ ϕ = (ϕ, ϕ) ◦ (ψ, ϕ) = (ϕ ◦ ψ, ϕ ◦ ψ) = ϕ ◦ ψ, and
σ̃ι′ = ι′σ̃ and σ̃π′ = π′σ̃. Similarly, for π′′ and ι′′.
Furthermore, (ι′ + ι′′) ◦ (π′ + π′′) = (ι′ + ι′′) ◦ (π′ + π′′) since

(ι′ + ι′′) ◦ (π′ + π′′) = idV ′
i ⊕V ′′

i
=
(
idV ′

i
⊕ 0V ′′

i

)
+
(
0V ′

i
⊕ idV ′′

i

)
=
(
ι′ ◦ π′

)
+
(
ι′′ ◦ π′′

)
=
(
ι′ ◦ π′

)
+
(
ι′′ ◦ π′′

)
=
(
ι′ + ι′′

)
◦
(
π′ + π′′

)
.

We now need to prove that

(ψι′ + ψι′′) σ̃ (π′ϕ+ π′′ϕ) = (ψι′ + ψι′′) σ̃ (π′ϕ+ π′′ϕ). (17)

Indeed,

(ψι′ + ψι′′) σ̃ (π′ϕ+ π′′ϕ) = ψ ◦ (ι′ + ι′′)σ̃(π′ + π′′) ◦ ϕ
= ψ ◦ (ι′ + ι′′)(π′ + π′′) ◦ σ̃ϕ = ψ ◦ (ι′ + ι′′)(π′ + π′′) ◦ σ̃ϕ
= ψ ◦ (ι′ + ι′′)σ̃(π′ + π′′)ϕ = (ψι′ + ψι′′) σ̃ (π′ϕ+ π′′ϕ).

Hence, thanks to (17),

N σ(M1, . . . ,Md−1,M
′
d) =

N σ(M1, . . . , π′
∗(Mi) + π′′

∗ (Mi), ι′∗(Mi+1) + ι′′∗(Mi+1), . . . ,Md−1,M
′
d) =

N σ(M1, . . . , π′
∗(Mi) + π′′

∗ (Mi), ι′∗(Mi+1) + ι′′∗(Mi+1), . . . ,Md−1,M
′
d).

By Theorem 1 and the previous observations, we can limit to study spaces of the type

N σ(M1, . . . , π′
∗(Mi) + π′′

∗ (Mi), (ι′∗(Mi+1) + ι′′∗(Mi+1))uv) =

N σ(M1, . . . , π′
∗(Mi) + π′′

∗ (Mi), (ι′∗(Mi+1))uv)+

N σ(M1, . . . , π′
∗(Mi) + π′′

∗ (Mi), (ι′′∗(Mi+1))uv)

thanks to the linearity of the map ϕ 7→ (ϕ)uv . Note that

N σ(M1, . . . , π′
∗(Mi) + π′′

∗ (Mi), (ι′∗(Mi+1))uv) = N σ(M1, . . . , π′
∗(Mi), (ι′∗(Mi+1))uv)

as π′ ◦ ι′′ = 0 and both projections and immersions commute with activations. From Lemma 6 we get

I(N σ(M1, . . . , π′
∗(Mi) + π′′

∗ (Mi), (ι′∗(Mi+1) + ι′′∗(Mi+1))uv)) =

= I(N σ(M1, . . . , π′
∗(Mi), (ι′∗(Mi+1))uv) ∩ I(N σ(M1, . . . , π′′

∗ (Mi), (ι′′∗(Mi+1))uv).

Combining all the above results, we conclude the proof of the theorem.

Proof of Theorem 4. Theorem 4 is a consequence of Theorem 8 in the case where Mi is the full set
AffG(Vi−1, Vi). Note that

π′
∗ AffG(Vi, V

′
i ⊕ V ′′

i ) = AffG(Vi−1, V
′
i )

and
ι′∗ AffG(V

′
i ⊕ V ′′

i , Vi+1) = AffG(V
′
i , Vi+1).

Similarly, for π′′
∗ and ι′′∗.
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B.5 THE ROLE OF REPRESENTATION TYPE

Proof of Theorem 5. Write H/K = {h1K, . . . , hsK}, we have the following injection

ι :

RG/H −→ RG/K

egH 7→ 1

s

s∑
i=1

eghiK

(18)

and projection

π :
RG/K −→ RG/H

egK 7→ egH .
(19)

Note that πι = idRG/H , indeed,

πι(egH) =
1

s

s∑
i=1

π(eghiK) =
1

s

s∑
i=1

eghiH = egH ,

as ghiH = gH for each i = 1, . . . , s.

Consider the following diagram

η : V −−→ · · · ϕ−−→ RG/H σH−−→ RG/H ψ−−→ · · · −−→W

η′ : V −−→ · · · ϕ′

−−→ RG/K
σ′
H−−→ RG/K ψ′

−−→ · · · −−→W.

ι ιπ π

From the network η in N σ(V, . . . ,RG/H , . . . ,W ) composed by ϕ, ψ, and σ we want construct a
new representation η′ defined as follows. Let ϕ′ = ι ◦ϕ, ψ′ = ψ ◦ π, and σ̃′ = ι ◦ σ̃ ◦ π and note that
ψ′ ◦ σ̃′ ◦ϕ′ = ψ ◦ π ◦ ι ◦ σ̃ ◦ π ◦ ι ◦ϕ = ψ ◦ σ̃ ◦ϕ. Hence, substituting ψ ◦ σ̃ ◦ϕ with ψ′ ◦ σ̃′ ◦ϕ′ inside
the definition of η do not change the function, and embeds it into a parameter space with intermediate
representation RG/K instead of RG/H . But to prove that η is a neural network, we need to prove that
σ̃′ is a point-wise activation function for some real-valued function σ′.

If σ̃ is a point-wise activation associated to σ : R → R defined on RG/H we have that

σ̃(
∑

gH∈G/H

agHegH) =
∑

gH∈G/H

σ(agH)egH .

On the other hand, we have

σ̃′(
∑

gK∈G/K

agKegK) = ι ◦ σ̃ ◦ π(
∑

gK∈G/K

agKegK) =

ι ◦ σ̃(
∑

gH∈G/H
ghK∈gH/K

aghKegH) = ι
∑

gH∈G/H

σ(
∑

ghK∈gH/K

aghK)egH =

1

s

∑
gH∈G/H

σ(
∑

ghK∈gH/K

aghK)
∑

hK∈H/K

eghK =

1

s

∑
gK∈G/K

σ(
∑

hK∈H/K

aghK)egK .

Note that the map
α :

∑
gK∈G/K

agKegK 7→
∑

hK∈H/K

aghKegK

is linear and G-equivariant. In particular, note that σ̃′ = σ̃K ◦α
s , where we denote the

standard point-wise activation induced by σ on RG/K as σ̃K , to distinguish it from σ̃, the
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point-wise activation induced by σ but defined on RG/H . Hence, substituting ψ ◦ σ̃ ◦ϕ with
ψ′ ◦ σ̃′ ◦ϕ′ = ψ′ ◦ σ̃K ◦α

s
◦ϕ′, we obtain an immersion of η in N σ(V, . . . ,RG/K , . . . ,W ). Hence

N σ(V, . . . ,RG/H , . . . ,W ) ⊆ N σ(V, . . . ,RG/K , . . . ,W ) and ρ(N σ(V, . . . ,RG/K , . . . ,W )) ⊆
ρ(N σ(V, . . . ,RG/H , . . . ,W ))

We are now going to develop the tools to prove Proposition 4.
Lemma 3. Let M = AffG(V,RG), then I(Mu,v) = I(Mv−1u,e) = I(Muv−1,e). Moreover,
(β, β′) ∈ I(Mg,e) if and only if gβ = β′.

Proof. Let V = V1 ⊕ · · · ⊕ Vs where Vi = RG/Ki for each i = 1, . . . , s. By Proposition 14 and
setting H = {e}, we know that HomG(V,RG) = HomG(RG/K1 ,RG) ⊕ · · · ⊕ (RG/Ks ,RG) is
generated by functions RgiKi πG/Ki

for each giKi ∈ G/Ki for each i = 1, . . . , s, and πG/Ki
is the

projection of V onto Vi = RG/Ki . Moreover,(
RgiKi

πG/Ki
(β)
)
u
=
(
RgiKi

πG/Ki

( ∑
kKi∈G/Ki

βkKi
ekKi

))
u
=

1

|Ki|
βugiKi

.

For each g ∈ G, we have that

I(Mu,v) ={
(β, β′) |

(
RgiKi

πG/Ki
(β)
)
u
−
(
RgiKi

πG/Ki
(β′)

)
v
= 0 ∀i∀giKi ∈ G/Ki

}
={

(β, β′) | βugiKi
− β′

vgiKi
= 0 ∀i∀giKi ∈ G/Ki

}
={

(β, β′) | v−1uβ = β′} .
In particular, we have that I(Mu,v) = I(Mv−1u,e). Hence, (β, β′) ∈ I(Mg,e) if and only if
gβ = β′.

Finally, in a similar way, we are able to observe that I(Mu,v) = I(Muv−1,e).

Proof of Proposition 4. In what follows we have to consider G ⊔G, to distinguish the two distinct
copies of G, we denote G′ as the second copy of G and, and when g is an element of G, we will
indicate as g′ the analogous element in G′.

DefineM = AffG(V,RG) andN = AffG(RG,RG/H)′ < HomG(RG⊕RG′
,RG/H). Proposition 2

implies
ρ(N σ(V,RG,R)) = I(N σ(M,N)).

Note that N = ⟨RHg −RH′g⟩Hg∈H\G where functions RHg are defined as(
RHg(ek)

)
sH

=

{
1 if s ∈ kg−1H,

0 otherwise.

An element Q in ΨHg,sH is a partition of G⊔G′, where for each P ∈ Q the intersection P ∩ sHg ⊔
sH ′g have the same number of elements in sHg and sH ′g. Due to Remark 8, we can just consider
Ψ′
Hg,sH containing the partitions of G ⊔ G′ whose only parts are P = {u, v} for u ∈ sHg and

v ∈ sH ′g, otherwise P is a singleton not containing elements in sHg or sH ′g.

Hence, by Theorem 1,

I(N σ(M,N)) =
⋂

Hg,sH

⋃
Q∈Ψ′

Hg,sH

⋂
{u,v}∈Q

I(Mu,v). (20)

If we prove that for each Hg and sH⋃
Q∈Ψ′

Hg,sH

⋂
{u,v}∈Q

I(Mu,v) =
⋃
h∈H

I(Mh,e). (21)
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then we are done. Indeed, thanks to Lemma 3, (β, β′) ∈ ⋃h∈H I(Mh,e) if and only if there exists
some h ∈ H such that hβ = β′. Moreover, (21) does not depend on Hg and sH then the outer
intersection in (20) is trivial.

Now to prove (21), we first show that⋃
Q∈Ψ′

Hg,sH

⋂
{u,v}∈Q

I(Mu,v) ⊆
⋃
h∈H

I(Mh,e).

Note that if {u, v} ∈ Q and u, v ∈ sHg, then, by Lemma 3,

I(Mu,v) = I(Mshg,sh′g) = I(Mhh′−1,e).

Therefore, ⋂
{u,v}∈Q

I(Mu,v) ⊆ I(Mu,v) ⊆
⋃
h∈H

I(Mh,e).

The right-hand side is independent of Q then the union on each Q in Ψ′
Hg,sH of sets on the left-hand

side proves the searched inclusion.

To prove the opposite inclusion, for each h define Ph ∈ Ψ′
Hg,sH as the partition containing the sets

{ghts, gts} for each t ∈ H and the remaining singletons. Then, note that, by Lemma 3,⋂
{ghts,gts}∈Ph

I(Mghts,gts) = I(Mh,e).

Hence, ⋃
h∈H

I(Mh,e) =
⋃
h∈H

⋂
{ghts,gts}∈Ph

I(Mghts,gts) ⊆
⋃

Q∈Ψ′
Hg,sH

⋂
{u,v}∈Q

I(Mu,v).

This concludes the proof.

C IMPLICATIONS ON PRACTICAL MODELS

Lemma 4. An element (α, β) ∈ ρ(1-CNN) if and only if there exist a permutation of σ ∈ Sn such
that αi = βσ(i) for each i = 1, . . . , n.

Proof. Write [n] ⊔ [n]′ = {1, . . . , n, 1′, . . . , n′}, and notice that AffZn
(Rn,R)′ = ⟨1[n] − 1[n]′⟩,

hence Ψ′ as defined in Remark 8 is composed by partitions Q of [n] ⊔ [n]′ such that

Q = {{i, j′} | i ∈ [n], j ∈ [n]′}.
Recall M1 = ⟨idRn⊕Rn′ ⟩. Note that (α, β) ∈ I(M1

i,j′) = ⟨idRn⊕Rn′ ⟩ if and only if αi = βj .
Moreover, for a given Q in Ψ′, we have (α, β) ∈ ⋂i,j′∈Q I(M1

i,j′) if and only if, given the bijection
σ : [n] → [n]′ associating i to j′, αi = βσ(i) for each i = 1, . . . , n.

Notice that, by Theorem 1,

(α, β) ∈ ρ(N σ(M
1,AffZn

(Rn,R)) =
⋃
Q∈Ψ

⋂
i,j′∈Q

I(M1
i,j′),

which is equivalent at saying that there exist a permutation of σ ∈ Sn such that αi = βσ(i) for each
i = 1, . . . , n.

Proof of Proposition 6. Note that ρ(1-CNN) is characterized by Lemma 4 as follows: (α, β) ∈
ρ(1-CNN) if and only if there exists a permutation σ ∈ Sn such that αi = βσ(i) for each i = 1, . . . , n.
In contrast, Proposition 4 shows that (α, β) ∈ ρ(N σ(M

n,AffZn(Rn,R))) if and only if there exists
an element g ∈ Zn such that αi = βi+g (mod n) for each i = 1, . . . , n. Notice that for n > 1,
Zn ⪇ Sn, hence ρ(n-CNN) ⊊ ρ(1-CNN), as desired. The proof of the chain of inclusions

ρ(n-CNN) ⊆ · · · ⊆ ρ(2-CNN) ⊆ ρ(1-CNN)

is a direct consequence of Lemma 5 since: 1-CNN ⊆ 2-CNN ⊆ · · · ⊆ n-CNN.
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D FUNCTIONAL EQUATIONS

In this section, we introduce key results from the theory of functional equations that are necessary to
prove Theorem 1. A functional equation, by definition, is an identity involving unknown functions
as variables, and common examples include differential and integral equations (Kannappan, 2009).
Here, we are particularly interested in the class of linear functional equations, which we explore in
greater detail in the following section.

D.1 LINEAR FUNCTIONAL EQUATIONS

Linear functions equations are functional equations which, for given ai ∈ R and bi ∈ Rd, are defined
by

n∑
i=1

aiσ(bix) = 0 (∀x ∈ Rd).

In particular, Theorem 9 is a fundamental tool in the proof of Theorem 1, since it characterizes the
set of parameters b1, . . . , bn for which the specific case of linear functional equation in (22) is always
satisfied for a non-polynomial σ and arbitrary a1, . . . , an ∈ R.
Theorem 9. Let σ : R → R be a non-polynomial continuous function and a1, . . . , an ∈ R. Let P be
a partition of [n] and define

Ψ = {Q ≤ P |
∑
i∈P

ai = 0 ∀P ∈ Q}.

The set B of elements b = (b1, . . . , bn) ∈ Rn×m which satisfy∑
P∈P

∑
i∈P

aiσ
(
bi · x+ yP

)
= 0

(
∀x ∈ Rm∀y = (yP )P∈P ∈ RP) (22)

is ⋃
Q∈Ψ

{(b1, . . . , bn) | bi1 = · · · = bik ∀{i1, . . . , ik} ∈ Q}. (23)

Equivalently,
B =

⋃
Q∈Ψ

⋂
P∈Q
i,j∈P

{(b1, . . . , bn) | bi − bj = 0}.

For arbitrary continuous functions σ, it is only true that the set defined in (23) is contained in B.

To prove Theorem 9, we first need to prove some auxiliary results. Theorem 10, stated below, is a
reformulation of Theorem 2.27 in Kiss & Laczkovich (2014) adapted here to the context of continuous
real functions for convenience. For further discussion, refer to Appendix D.2.
Theorem 10. Let a1, . . . , an non-null real values, and let b1, . . . , bn ∈ Rm be distinct real vectors.
Continuous solutions σ : R → R of∑

i

aiσ
(
bi · x+ y

)
= 0 (∀x ∈ Rm∀y ∈ R) (24)

are polynomial.

Moreover, to prove Theorem 9, the following notions and auxiliary results are required.
Definition 14. Let b = (b1, . . . , bn) ∈ Rn×m, the identity pattern of b is the coarser partition P of
[n] such that bi = bj for each i, j ∈ P and P ∈ P .
Theorem 11. Let σ : R → R be a non-polynomial continuous function, and a1, . . . , an ∈ R. Then
b = (b1, . . . , bn) ∈ Rn×m satisfies

n∑
i=1

aiσ
(
bi · x+ y

)
= 0 (∀x ∈ Rm∀y ∈ R) (25)

if and only if
∑
i∈P ai = 0 for each P in the identity pattern of b.
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Proof. Let P1, . . . , Pq be the parts in the identity pattern of b such that
∑
i∈Pj

ai ̸= 0, define
a′j =

∑
i∈Pj

ai then we can rewrite the equation in (25) as

q∑
j=1

a′jσ
(
b′j · x+ y

)
= 0,

where, for each j = 1, . . . , q, the value of b′j is set to the value of the bis for i ∈ Pj , which are
all equal to each other. Since the a′j are non-null and b′j are distinct, by Theorem 10, σ have to be
polynomial which is impossible. To prove the opposite implication, let P be the identity pattern of b
and write

n∑
i=1

aiσ
(
bi · x+ y

)
=
∑
P∈P

∑
i∈P

aiσ
(
bi · x+ y

)
=
∑
P∈P

(∑
i∈P

ai

)
σ
(
bi · x+ y

)
,

where the last equality is possible because bi = bj for each i, j ∈ P .

Remark 7. Note that the second implication of Theorem 11 holds for any σ, including polynomial
functions.

This theorem gives the following corollary, which is the one actually needed to prove Theorem 9.
Corollary 2. Let σ : R → R be a non-polynomial continuous function and a1, . . . , an ∈ R. Let Pn
be the set of all partition of [n] and define

Φ = {P ∈ Pn |
∑
i∈P

ai = 0 ∀P ∈ P}.

The set B of elements b = (b1, . . . , bn) ∈ Rn×m satisfying (25) is⋃
P∈Φ

{(b1, . . . , bn) | bi1 = · · · = bik ∀{i1, . . . , ik} ∈ P}. (26)

Or equivalently,
B =

⋃
P∈Φ

⋂
P∈P
i,j∈P

{(b1, . . . , bn) | bi − bj = 0}.

For arbitrary continuous functions σ, it is only true that the set defined in (26) is contained in B.

Proof. Define

B′ =
⋃
P∈Φ

{(b1, . . . , bn) | bi1 = · · · = bik ∀{i1, . . . , ik} ∈ P}.

By Theorem 11, b satisfies (25) if and only if
∑
i∈P ai = 0 for each P in the identity pattern of

b. Thus, B ⊆ B′. To prove the opposite inclusion, note that if b = (b1, . . . , bn) ∈ B′ then there
exist P ∈ Φ such that b has identity pattern P , then, as

∑
i∈P ai = 0 for each P ∈ P , (25) is

verified. Finally, note that this implication holds for any σ by Remark 7, proving the last claim in
Corollary 2.

Proof of Theorem 9. Notice that the problem∑
P∈P

∑
i∈P

aiσ
(
bi · x+ yP

)
= 0

(
∀x ∈ Rm∀y = (yP )P∈P ∈ RP) (27)

is equivalent to ∑
P∈P

∑
i∈P

aiσ
(
bi · x+ yP + ŷ

)
= 0

(
∀x ∈ Rm∀y ∈ RP∀ŷ ∈ R

)
through the change of variables yP 7→ yP + ŷ for each P ∈ P . This problem is in turn equivalent to

n∑
i=1

aiσ
(
b̂i · x̂+ ŷ

)
= 0

(
∀x̂ ∈ Rm ⊕ RP∀ŷ ∈ R

)
(28)
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due to the following change of variables

b̂i 7→
(
bi
eP

)
for i ∈ P , and x̂ 7→

(
x

yP eP

)
,

where {eP }P∈P is the canonical base of RP . Corollary 2 implies that the solution to (28) is⋃
Q∈Φ

{(b̂1, . . . , b̂n) | b̂i1 = · · · = b̂ik ∀{i1, . . . , ik} ∈ Q}. (29)

Note that b̂i1 = · · · = b̂ik if and only if bi1 = · · · = bik and {i1, . . . , ik} ⊆ P for some P ∈ P if
and only if bi1 = · · · = bik and {i1, . . . , ik} ∈ Q for some Q ≤ P .

Recall the definitions

Φ = {Q ∈ Pn |
∑
i∈P

ai = 0 ∀P ∈ Q} and Ψ = {Q ≤ P |
∑
i∈P

ai = 0 ∀P ∈ Q}.

Noting that Ψ = {Q ∈ Φ | Q ≤ P}, equation (29) implies that the solutions of (27) are⋃
Q∈Ψ

{(b1, . . . , bn) | bi1 = · · · = bik ∀{i1, . . . , ik} ∈ Q}.

The final claim follows directly from the concluding statement in Corollary 2.

Remark 8. In Theorem 9 the union⋃
Q∈Ψ

{(b1, . . . , bn) | bi1 = · · · = bik ∀{i1, . . . , ik} ∈ Q} (30)

has redundancies. Indeed, {(b1, . . . , bn) | bi1 = · · · = bik ∀{i1, . . . , ik} ∈ Q} is contained in
{(b1, . . . , bn) | bi1 = · · · = bik ∀{i1, . . . , ik} ∈ R} for each Q ≤ R finer partitions of P . Hence,
the set defined by (30) is the same as⋃

Q∈Ψ′

{(b1, . . . , bn) | bi1 = · · · = bik ∀{i1, . . . , ik} ∈ Q}

where Ψ′ is the subset of Ψ containing only the minimal partitions with respect to the refinement
ordering.

D.2 GENERALIZED POLYNOMIALS IN THE CONTINUOUS CASE

In Appendix D.1, we employ Theorem 10, a reformulation of Theorem 2.27 in Kiss & Laczkovich
(2014), adapted here for convenience to the context of continuous real functions. In particular, the
original version of this theorem proves that arbitrary complex functions satisfying (24) are generalized
polynomials, defined as follows.
Definition 15. A function σ : C → C is a generalized monomial function if there exist a symmetric
function F : Cn → C additive in each of its variables, such that σ(x) = F (x, . . . , x) for each x ∈ C.
A function σ : C → C is a generalized polynomial if it is a finite sum of generalized monomials,
we say that a generalized polynomial σ is real if σ is real and there exists a symmetric function
F : Cn → R additive in each of its variables, such that σ(x) = F (x, . . . , x) for each x ∈ R.

Trivially, since complex functions satisfying (24) are generalized polynomials, any real solutions are
real generalized polynomials.

To conclude the proof of Theorem 10, it remains to show that continuous real generalized polynomials
are simply real polynomial functions, as shown by Proposition 17.
Proposition 17. A real continuous generalized polynomial is a real polynomial function.

Proof. The proof of Theorem 17 will be analogous to the proof of the classical proof that any
continuous real additive function is linear, see Theorem 1.1 in Kannappan (2009).

First, we show that real generalized monomials are monomial functions on rational numbers.
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Indeed, suppose first that f is a real generalized monomial and let F : Rn → R be the symmetric
function additive in each variable and such that f(x) = F (x, . . . , x) for each x ∈ R. Note that for
each r ∈ N,

F (x1, . . . , rxi, . . . , xn) = F (x1, . . . , xi + · · ·+ xi, . . . , xn) =

F (x1, . . . , xi, . . . , xn) + · · ·+ F (x1, . . . , xi, . . . , xn) = rF (x1, . . . , xi, . . . , xn). (31)

Note that F (x1, . . . , xi−1, 0, xi+1, . . . , xn) = 0, indeed

F (x1, . . . , xi−1, 0, xi+1, . . . , xn) =

F (x1, . . . , xi−1, 0 + 0, xi+1, . . . , xn) =

F (x1, . . . , xi−1, 0, xi+1, . . . , xn) + F (x1, . . . , xi−1, 0, xi+1, . . . , xn)

(32)

Eliminating a term F (x1, . . . , xi−1, 0, xi+1, . . . , xn) from both the sides of (32), we get the required
result.

Furthermore, F (x1, . . . , xi, . . . , xn) = −F (x1, . . . ,−xi, . . . , xn). Indeed,

F (x1, . . . , xi, . . . , xn) + F (x1, . . . ,−xi, . . . , xn) = F (x1, . . . , xi − xi, . . . , xn) = 0. (33)

Equations (31) and (33) yields

F (x1, . . . , rxi, . . . , xn) = rF (x1, . . . , xi, . . . , xn) (34)

for each r ∈ Z. Note that by substituting rxi = yi, we obtain

F (x1, . . . , yi, . . . , xn) = rF (x1, . . . ,
1

r
yi, . . . , xn)

Equivalently,

F (x1, . . . ,
1

r
yi, . . . , xn) =

1

r
F (x1, . . . , yi, . . . , xn) (35)

Equations (34) and (35) prove

F (x, . . . , rx, . . . , x) = rF (x, . . . , x) (36)

for each r ∈ Q. Hence,

f(rx) = F (rx, . . . , rx) = rnF (x, . . . , x) = rnf(x).

for each r ∈ Q. In particular set x = 1 and f(1) = c ∈ R,

f(r) = rnf(1) = crn.

Hence, a real generalized monomial is a monomial on Q.

Finally, we can prove the general case where f is a real generalized polynomial. Recalling that real
generalized polynomials are sums of real generalized monomials, they are sums of real monomial
functions on Q, namely polynomial functions on Q.

We conclude by noting that, since f is continuous, it extends as a polynomial function on R due to
continuity.

E TECHNICAL LEMMAS

In what follows, let C, D and F be families of functions in C(X,V ), where X is a topological space
and V a real vector space.

Lemma 5. If C ⊆ D, then ρ(D) ⊆ ρ(C).
Lemma 6. Let C and D be two families of real-valued functions such that each of them contains
at least a constant function. The equivalence relations induced by their identification condition are
linked by the following conditions ρ(C+D) = ρ(C ∪D) = ρ(C) ∩ ρ(D).
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Proof. Let us prove the first equality. Let c be the constant function in D. Hence ρ(C+D) ⊆
ρ(C+c) = ρ(C) ⊆ ρ(C) ∪ ρ(D). To prove the inverse inclusion, suppose there exists a function f
either in C or D separating x and y. Without loss of generality, suppose f ∈ C, f + c ∈ C+D would
be separating x and y. This conclude the proof of the first equality. The proof of the second equality
follows from the definition of ρ. Indeed,

ρ(C ∪D) = {(x, y) ∈ X ×X | f(x) = f(y)∀f ∈ C ∪D} =

{(x, y) ∈ X ×X | f(x) = f(y)∀f ∈ C} ∩ {(x, y) ∈ X ×X | f(x) = f(y)∀f ∈ D} =

ρ(C) ∩ ρ(D).

Remark 9. Note that, with slight modifications to the proofs, analogous results to all previous lemmas
can be derived by substituting ρ with I.
Lemma 7. If Fd is a set spanning a null-bias space Md, then

I(N σ(M1, . . . ,Md)) = I(N σ(M1, . . . ,Md−1,Fd)).

Proof. Trivially,
N σ(M1, . . . ,Md−1,Fd)) ⊆ N σ(M1, . . . ,Md)).

For the zero-locus analogous of Lemma 5,

I(N σ(M1, . . . ,Md)) ⊆ I(N σ(M1, . . . ,Md−1,Fd)).

To prove the opposite inclusion, write Fd = {ϕ1, . . . , ϕs} and note that each neural network ηd in
N σ(M1, . . . ,Md) can be written as

ηd = (x1ϕ1 + · · ·+ xsϕs) ◦ σ̃ ◦ ηd−1 = x1(ϕ1 ◦ σ̃ ◦ ηd−1) + · · ·+ xs(ϕs ◦ σ̃ ◦ ηd−1),

for some x1, . . . , xs ∈ R and ηd−1 ∈ N σ(M1, . . . ,Md−1).

Moreover, note that
ϕi ◦ σ̃ ◦ ηd−1 ∈ N σ(M1, . . . ,Md−1,Fd),

for each i = 1, . . . , s.

If β ∈ I(N σ(M1, . . . ,Md−1,Fd)), then

ηd(β) = x1(ϕ1 ◦ σ̃ ◦ ηd−1) + · · ·+ xs(ϕs ◦ σ̃ ◦ ηd−1) = 0.

Thus,
I(N σ(M1, . . . ,Md−1,Fd)) ⊆ I(N σ(M1, . . . ,Md)),

completing the proof.
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