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Abstract

Constrained generation methods have demon-001
strated their potential to improve LM’s ability002
to adhere to lexical constraints, which play an003
important role in Tool-Augmented Language004
Models (TALM), an emerging approach to aug-005
ment LMs’ capabilities with external tools, as006
TALM needs to cover the key information from007
tools in its response generation. However, the008
existing TALM pipeline relies on naive prompt-009
ing when converting the tool outputs to a coher-010
ent response, which brings no guarantee all the011
key information from tools are covered in the012
LM’s final answer. In this paper, we developed013
a diagnostic dataset to assess naive prompting014
TALMs’ ability to cover key information from015
tool outputs. We also examined whether con-016
strained generation methods can improve the017
accuracy of TALMs. Our experiments revealed018
the insufficiency of prompting and showed ex-019
isting constrained generation methods are able020
to improve key information coverage to differ-021
ent extents.022

1 Introduction023

LLMs have demonstrated their remarkable ability024

to excel in a variety of natural language genera-025

tion tasks. (OpenAI, 2023) (Dubey et al., 2024)026

However, to integrate language models to current027

developer workflows, it is essential to constrain028

their outputs to follow certain formats or standards029

(Liu et al., 2024). Among these constraints, lexi-030

cal constraints are ubiquitous in real-life use cases,031

such as filtering sensitive or profane words, en-032

forcing domain-specific terminology in machine033

translation, or ensuring the inclusion of relevant034

context information. However, LLMs often strug-035

gle with lexical constraints due to their natural lan-036

guage modeling nature (Lu et al., 2021a)(Lu et al.,037

2021b). Therefore, several constrained generation038

methods have been introduced to enhance their ef-039

fectiveness on lexically constrained tasks (Lin et al.,040

2020) (Bojar et al., 2017) (Zhang et al., 2020).041

User Query: I’m traveling from New York
to LA on Feb 15. Can you find some flights
for me? Retrieve the departure time, arrival
time, and price of economy class for me?
Tool Calls: find_tickets(
date = "2025-02-15",
departure = "New York",
arrival = "Los Angeles", . . . )

Tool Outputs: {
"flight_num": "UA 2679",
"departure_time": "10:00 am ET",
"departure_airport": "EWR",
"arrival_time": "01:00 pm PT",
"arrival_airport": "LAX",
"duration": "6h10m",
"prices": {"economy": 515, . . . }

}

Model Response: One flight I found is UA
2679, which departures at 10:00 am ET from
EWR and arrives at 1:00 pm PT at LAX.The
price for economy class is 515 USD.
Key Information: "10:00 am ET", "1:00
pm PT", "515"

Table 1: An example of our task. The language model
is given user query, tool calls, and tool outputs. In its
response, it must cover the key information to answer
the query effectively.

Meanwhile, Tool-Augmented Language Mod- 042

els (TALM), an emerging approach to augment 043

LMs with external tools, has demonstrated re- 044

markable performance on complex reasoning and 045

user-centered tasks. However, the existing TALM 046

paradigm uses naive prompting when converting 047

the tool outputs to a coherent response, with no 048

guarantee that all the key information from the 049

tools are accurately reflected in the final answer. 050

For instance, as shown in Figure 1, if a user re- 051

quests the language model agent to search for a 052

specific flight and book a ticket, the model must 053

accurately retrieve details such as the flight num- 054
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ber, date, time, and departure and arrival airports.055

The precision of TALM becomes even more critical056

when applied to high-stake domains like medical057

report generation or task-oriented chatbots.058

In this paper, we present a diagnostic dataset059

that features (1) Stable, Real-word, and Diverse060

tools: we leveraged the tool library in ToolEyes061

(Ye et al., 2024), consisting of stable and real-life062

tools on API platforms (RapidAPI, 2025)(SerpApi,063

2025) to closely reflect real-world TALM scenar-064

ios. (2) Multi-tool Questions: we include multi-065

tool questions in our dataset to asses LMs’ ability066

to compare and reason across multiple tools. (3)067

Human-Annotated and Verified Data: All the068

queries, target answers, and lexical constraints are069

manually annotated and verified. These features are070

highly important as reproducibility or complexity071

of the dataset are critical for TALM evaluation.072

We examined the performance of existing naive073

prompting TALM paradigm and observed it’s sus-074

ceptible to missing key information in the tool out-075

put when provided with complex queries or a large076

number of keywords. Moreover, we tested different077

lexically constrained text generation methods and078

found that most of them are able to improve key-079

word coverage significantly. Surprisingly, COLD080

decoding (Qin et al., 2022) underperforms naive081

prompting on this task, which conjecture is due to082

the misalignment between the design of COLD’s083

objective and the nature of this task.084

2 Related Works085

Tool Learning and Evaluation. Previous tool086

learning evaluation methods can be generally di-087

vided into 3 categories: (1) human evaluation meth-088

ods like (Tang et al., 2023) analyze tool learning089

step-by-step to locate the problems, yet incur high090

cost of human power; (2) comparing LLMs’ perfor-091

mance before and after using tools like (Jin et al.,092

2024) (Schick et al., 2023) (Zhuang et al., 2023),093

yet this family of methods cannot evaluate if the094

LM is using the tools accurately. (3) automated095

evaluation methods like (Ye et al., 2024), (Yang096

et al., 2023), (Li et al., 2023), and (Huang et al.,097

2024) use hard-coded metrics and calculate the098

scores automatically during evaluation, but previ-099

ous works did not focus on evaluating how accurate100

the LM is given the tool outputs. Our evaluation101

falls in the automated category, and we use lexical102

constraint coverage as a symbol of LM’s accuracy.103

Lexically Constrained Generation The goal of104

Lexically Constrained Generation is to enforce the 105

inclusion or exclusion of certain terms in the gener- 106

ated text. (Hokamp and Liu, 2017), (Pascual et al., 107

2021), (Lu et al., 2021a), and (Qin et al., 2022) 108

modify the decoding algorithm to incorporate the 109

constraints, (Padmakumar et al., 2023) refines the 110

generated text iteratively to improve constraints 111

coverage step-by-step. We borrowed the ideas from 112

these previous works when designing the methods 113

to test on our dataset. 114

3 Problem Setup 115

The task we want to focus on in this paper can be 116

formulated as follows: given a context X (which 117

includes the query, tool descriptions, tool calls, 118

and tool outputs) and a set of keywords K, we 119

expect the model to generate a coherent and use- 120

ful response y that contains all the keywords in K. 121

Specifically, our goal is: 122

∀ki ∈ K,∃j s.t yj:j+|ki|−1 = ki 123

where |ki| is the number of tokens in ki, and y 124

contains ki is defined as the existence of a substring 125

of y that matches ki exactly. 126

Figure 1: The data collection process of our dataset.
The blue human icon stands for the annotator, whereas
the red human icon is the verifier of the annotated data.
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4 Our Data127

Our dataset is created upon the Tool Library128

of ToolEyes (Ye et al., 2024), a collection of sta-129

ble APIs from real-life API platforms (RapidAPI,130

2025) (SerpApi, 2025). The library consists of 41131

categories, 95 sub-categories, and 663 tools. We132

annotated 200 test cases with diverse and cross-133

category tool combinations from the library. As134

shown in Figure 1, the data collection process can135

be divided into the following steps:136

(1) Select tools and annotate the query. We spec-137

ify the number of tools involved and randomly pick138

that number of tools from the library. The annotator139

decides whether the combination of tools forms a140

reasonable use case. If yes, the annotator annotates141

a user’s query and proceed; if not, the annotator142

randomly picks the tools again.143

(2) Craft tool calls. Based on the usage of the144

tools and the query, the annotator crafts reason-145

able tool calls and executes the calls through the146

API provider. If the execution is successful then147

proceed to the next step; otherwise the annotator148

rewrite the tool calls.149

(3) Annotate expected response. The annotator150

annotates the expected response given the query151

and the outputs of the tools.152

(4) Annotate necessary keywords. The annota-153

tor annotates the keywords that must appear in the154

model’s response in order to answer the query ef-155

fectively. Note the annotator should also annotate156

the variations of the keywords as the model may157

paraphrase the information from the tool outputs.158

For instance, the tool outputs may contain the key159

information "2024-10-14", whereas it’s rephrased160

by the LM as "October 14, 2024". In that case, we161

admit both variations as correct inclusion of the162

keyword.163

(5) Cross-validation by another annotator. Af-164

ter the annotation is finished, at least one another165

annotator validates the test case to see if: (a) the166

use case is reasonable; (b) the query explicitly asks167

the model to cover the keywords; (c) the possible168

variations of the keywords are included. If not, the169

annotator modifies the data accordingly.170

5 Experiments171

5.1 Methods172

We examined the performance of naive prompting173

as well as four constrained generation methods on174

our dataset:175

Naive Prompting. The prompt we provide to the 176

TALM incorporates user’s query, the descriptions 177

and parameters of the relevant tools, the tool calls 178

to be executed, and the execution results. We also 179

provide the keywords that the model must cover in 180

its response to answer the user’s query for a fair 181

comparison with constrained generation methods. 182

The detailed prompt can be found in Appendix A.1. 183

184Multi-turn Prompting. Inspired by Iterative Con- 185

trolled Extrapolation (ICE) (Padmakumar et al., 186

2023), we designed a multi-turn prompting method 187

to iteratively refine the model’s response. The first 188

generation uses the same prompt as naive prompt- 189

ing. If any keywords are missing, we replace the 190

prompt with a refinement prompt, including the 191

model’s previous answer and uncovered keywords, 192

and ask the model to rewrite its response. The re- 193

finement repeats until all keywords are covered or 194

the maximum refinement steps is reached. The re- 195

finement prompt can be found in Appendix A.2. 196

Copy. We designed a lookahead constrained gener- 197

ation method to enforce the coverage of keywords. 198

At every generation step, we compare the log like- 199

lihood of generating a token with greedy decoding 200

and that of generating a whole keyword at this step, 201

and pick the one with highest score. The mathe- 202

matical expression and algorithm can be found in 203

Appendix A.3. 204

Copy + Multi-turn Prompting. The copy method 205

brings high keyword coverage at the cost of flu- 206

ency. Therefore, we combined copy and multi-turn 207

prompting to exploit the strengths of both. For each 208

test case, we first apply the copy method to draft a 209

response, then prompt the model to refine the an- 210

swer to refine the response to ensure all keywords 211

are covered, repeat until all keywords are covered 212

or the maximum refinement steps is reached. 213

COLD Decoding. We also examined the per- 214

formance of Constrained Text Generation with 215

Langevin Dynamics (COLD)(Qin et al., 2022), a 216

SOTA constrained generation method with Energy- 217

Based Model. The generation process jointly 218

optimizes fluency, coherence with right context, 219

and n-gram similarity with the keywords to cover. 220

We adapted the COLD pipeline for Common- 221

Gen(Lin et al., 2020) by changing the base model 222

to Llama3.1-8b-Instruct and modifying the n-gram 223

objective to fit our task. 224

Other detailed experiment setups can be found in 225

Appendix A.4. For each method, we tested its key- 226
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Method Model coverage(%) ↑ full coverage(%) ↑ BLEU ↑ Perplexity ↓

Prompting
Llama3.1-8b-Instruct 94.44 86.98 0.2139 7.4518
Llama3.1-70b-Instruct 95.20 89.47 0.2828 4.2403
GPT-4o-mini 96.23 90.63 0.1555 2.2403

Copy Llama3.1-8b-Instruct 99.69 99.48 0.1520 22.814
Llama3.1-70b-Instruct 100.0 100.0 0.1671 10.294

Multi-turn Llama3.1-8b-Instruct 98.48 96.35 0.1753 3.0178
Llama3.1-70b-Instruct 99.55 98.46 0.2574 2.5180

Copy + Multi-turn Llama3.1-8b-Instruct 98.86 96.35 0.1855 1.8466
Llama3.1-70b-Instruct 100.0 100.0 0.2575 1.7762

COLD Decoding Llama3.1-8b-Instruct 94.23 81.58 0.1295 22.329

Table 2: The main table our experiment results. The first column standards for the method we test; the second
column is the base model we use for that method. The rest of the columns are the scores of the method and model
tested.

word coverage rate, full coverage rate, BLEU227

score, and perplexity on our dataset. The evalu-228

ation details can be found in Appendix A.5. The229

experiment results can be found in Table 2.230

5.2 Results and Discussion231

Naive prompting is susceptible to missing key232

information. We observed that naive prompting233

underperfroms copy and multi-turn prompting sig-234

nificantly in keyword coverage and full coverage235

when synthesizing tool outputs into a long-form236

response, and this holds true as we vary the model237

size.238

Copy and multi-turn prompting can improve239

keyword coverage significantly. Copy and multi-240

turn prompting methods all bring significant im-241

provement in keyword coverage and full cov-242

erage over naive prompting. Copy achieves243

near-perfect keyword coverage with Llama-3.1-8b-244

Instruct model and 100% coverage with Llama-245

3.1-70b-Instruct, at the cost of significantly higher246

perplexity and lower BLEU. Multi-turn prompting247

improves coverage less significantly but does not248

sacrifice BLEU and perplexity. Copy + Multi-turn249

prompting demonstrates the strengths of the two250

methods, achieving near-perfect coverage and high251

fluency ar the same time.252

Surprisingly, COLD Decoding underperforms253

naive prompting in both keyword coverage and254

fluency. We tested various combinations of hyper-255

parameters for COLD decoding, yet it still under-256

performs naive prompting in keyword coverage and257

results in lower BLEU and much higher perplex-258

ity. Given there has been little work on applying259

COLD decoding to long-context generation and we260

cannot prove rigorously why COLD decoding does261

not work, we put our conjectures in Appendix A.6.262

5.3 Error Analysis 263

After inspecting the error cases where the language 264

model fails to cover all the keywords, we observe 265

several correlations between the context we provide 266

to the LM and keyword coverage: (1) Language 267

Models are prone to losing keywords when there 268

are many keywords of the same type. For in- 269

stance, if the user requests the LM to find all rele- 270

vant movies about mafia and 10 are returned by the 271

tool outputs, the language model is prone to includ- 272

ing some of the entries in its response while leaving 273

out the others. This is probably because Llama3.1 274

and GPT-4o-mini are fine-tuned to generate com- 275

pact answers. (2) Language Models struggle with 276

following complex queries that contains many 277

constraints or involves reasoning We notice the 278

TALMs give partially correct response when there 279

are many constraints in user’s query, or completely 280

wrong response when the query involves reason- 281

ing. (3) Context length is not correlated with 282

keyword coverage. We set 16384 as the max input 283

token numbers for all of our models, and surpris- 284

ingly, the average keyword coverage for contexts 285

of different lengths do not vary significantly. The 286

figures and examples of our error case analysis can 287

be found in Appendix A.7. 288

6 Conclusion 289

In this work, we introduce a diagnostic dataset fea- 290

turing diverse and human-verified multi-tool ques- 291

tions. We integrated both naive prompting and 292

lexically constrained text generation methods into 293

the TALM pipeline and evaluated on our dataset. 294

Our findings reveal that naive prompting fails to 295

guarantee the accuracy of generated text, whereas 296

constrained methods can improve precision signifi- 297

cantly. Additionally, we observed that the number 298

of keywords as well as the complexity of query are 299

critical factors influencing TALM’s accuracy. 300
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Limitations301

There are several limitations of this work: 1. the302

dataset is annotated by our annotator from scratch303

and may suffer from small scale or biases. 2. we304

haven’t examined the performance of all the canon-305

ical constrained text generation methods due to306

time and computing limits, and we plan to examine307

more methods in our follow-up work.308
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A Appendix 418

A.1 Generation Prompt 419

<|start_header_id|>system <| end_header_id|>

You are a helpful assistant and capable of answering user 's
queries with a set of powerful functions. You have already called
the relevant tools to help you answer the user 's query and you
have access to the functions ' outputs in a dictionary form.
<|eot_id|><| start_header_id|>user <| end_header_id|>

Make use of the information in the function output to answer my
query. You will be given the name , description , and output of each
tool. Pay attention to the relevant keys and their corresponding
values. Articulate them in natural language to answer the my query
well. Besides , you will also be given the keywords that you must
include in your answer. Try your best to include these keywords.

Tools:

Tool name {i}: {name}

Tool description {i}: {description}

Tool output {i}: {output}

...

Keywords: {keywords}

Query: {query}

<|eot_id|><| start_header_id|>assistant <| end_header_id|>

Response:

420
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A.2 Refinement Prompt421

<|start_header_id|>system <| end_header_id|>

You are a helpful assistant and capable of answering user 's
queries with a set of powerful functions. You have already called
the relevant tools to help you answer the user 's query and you
have access to the functions ' outputs in a dictionary form.
<|eot_id|><| start_header_id|>user <| end_header_id|>

Make use of the information in the function output to answer my
query. You will be given the name , description , the output of each
tool , and the original response. You will also be given the
keywords you are supposed to include in your response but you
haven 't. REWRITE THE WHOLE ORIGINAL RESPONSE to include the
keywords. You don 't have to explicitly tell me which keywords you
have included.

Tools:

Tools:

Tool name {i}: {name}

Tool description {i}: {description}

Tool output {i}: {output}

...

Keywords: {keywords_not_included}

Query: {query}

Original: {original_response}

<|eot_id|><| start_header_id|>assistant <| end_header_id|>

Response:

422
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A.3 Copy Algorithm423

Our copy algorithm is implemented as follows:

Algorithm 1 Copy Algorithm

Require: input_ids, n = number_of_steps, K =
set of keywords, t = copy threshold, model

1: for step = 1 to n do
2: gen_ids← generate(input_ids)
3: gen_token← gen_ids \ input_ids
4: max_score ← log(model(gen_ids).logits)

+ t
5: for each k ∈ K if k /∈ input_ids) do
6: k_tokens← tokenize(k)
7: copy_ids ← concat(input_ids,

k_tokens)
8: copy_score← log(model(copy_ids).logits)

|k_tokens|
9: if copy_score > max_score then

10: max_score← copy_score
11: gen_token← k_tokens
12: end if
13: end for
14: input_ids ← concat(input_ids,

gen_token)
15: end for

424
where t is a hyperparameter to encourage natural425

generation over copy, which in practice improves426

the fluency of generation text.427

A.4 Experiment Setups428

In our experiments, we examined Llama3.1-429

8b-Instruct by Meta on all 5 methods, Llama3.1-430

70b-Instruct by Meta on prompting, multi-turn431

prompting, copy, and copy-multi-turn prompting,432

and GPT-4o-mini by OpenAI on prompting. For433

copy and copy-multi-turn prompting, we applied434

a threshold of 0.5, the best one we found after hy-435

per parameter tuning. For multi-turn prompting,436

we allow a maximum of 5 refinement steps. For437

COLD Decoding, we used Llama3.1-8b-Instruct as438

the base model, set the number of steps to 2000 and439

the step size to 10−3, noise standard deviation to440

0.1, 0.05, 0.01, 0.005 at 500, 1000, 1500, and 2000441

steps. This is the best setup in our hyperparameter442

tuning. We restrict all methods to generate no more443

than 300 tokens in the answers. All of our experi-444

ments were conducted on no more than 2 NVIDIA445

A100 or H100 GPUs.446

A.5 Metrics447

For each generation method, we evaluate its key-448

word coverage rate, full coverage rate, BLEU449

score, and perplexity. For keyword coverage, we 450

calculate the keyword coverage for each data sam- 451

ple, and take the macro average across all samples 452

as the final score of the method. Besides, given the 453

original keyword can be expressed in LM’s genera- 454

tion in a paraphrased form, we conducted massive 455

keyword normalization to ensure all paraphrasing 456

are counted as correct coverage; for full coverage, 457

we check in how many samples the method man- 458

ages to cover all the keywords, which implies the 459

model utilizes all the information provided by tools; 460

for BLEU score, we calculate the BLEU between 461

the answer generated by LMs and the ground truth 462

annotated by human; for perplexity, we calculate 463

the perplexity with Llama-3.1-70b-Instruct model. 464

A.6 Analysis of COLD 465

Despite the remarkable performance on Common- 466

Gen and several other constrained generation tasks 467

of COLD Decoding, it underperforms single-term 468

prompting on our dataset. To explain this phe- 469

nomenon, we have two conjectures: 470

(1) The n-gram similarity objective and future 471

token prediction objective do not suit our task 472

or are harder to optimize. In the vanilla COLD 473

Decoding for lexically constrained tasks, it jointly 474

optimizes left-to-right and right-to-left fluency, as 475

well as an n-gram similarity objective and a future 476

token prediction objective. In practice, they con- 477

catenate all the keywords and append it to the right 478

of the generated text, measure the log-likelihood of 479

the generated text given this right context, as well 480

as the 1-gram similarity between the LM prediction 481

and the concatenated string. 482

We modified the n-gram similarity objective as fol- 483

lows: for each of the keyword, assume its length 484

is l, we measure the l-gram similarity between the 485

generated text and the keyword, and take the mean 486

among all keywords as the n-gram objective. How- 487

ever, this still resulted in low keyword coverage 488

We inspected the error cases and noticed long key- 489

words are often corrupted during the generation 490

process, which means the n-gram objective may 491

not work for our task. 492

Moreover, the TALM use cases are more complex 493

and often involve reasoning, and simply appending 494

the tokens to the next and calculate the log likeli- 495

hood does not help the model generate fluent and 496

useful response. 497

(2) COLD Decoding provides a huge number 498

of hyperparameters for tuning and its perfor- 499
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mance is very sensitive to hyperparameters. We500

mainly tuned the step size, noise standard devia-501

tion and generation steps in our experiments, which502

was time-consuming due to the large overhead of503

COLD. Still, a large number of hyperparameters504

remain untuned, including the weights of different505

objectives, which makes it tedious when adapting506

COLD to a new task.507

A.7 Error Analysis508

The figure of the error analysis statistics is as fol-509

lows:

Figure 2: left: length of input context vs. keywords full
coverage in the LM generated answers; right: number
of keywords vs. keywords full coverage. The data is
collected from prompting method with Llama-3.1-8b-
Instruct.

510

With Llama-3.1-8b-Instruct tested and naive511

prompting, some examples of the error cases are512

shown in the next 3 pages.513
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Query:
What is the next closest public holiday? Tell me the one(s) closest to the current date only.
Tool Outputs:
"current_date": {

"Today is Wednesday, September 25, 2024."
},
"next_public_holidays": [
...
{
"date": "2024-09-02",
"name": "Labour Day"

},
{
"date": "2024-10-14",
"name": "Columbus Day"

},
{
"date": "2024-10-14",
"name": "Indigenous People’s Day"

}
...

]

Target:
The next closest public holiday is Columbus Day and Indigenous Peoples’ Day. They’re both on 2024-
10-14.
Prediction:
The next closest long weekend or public holiday is Labour Day on 2024-09-02.
Not Covered Keywords:
Columbus Day, Indigenous People’s Day, 2024-10-14

Table 3: Error Case 1: the model gives totally wrong answer when it’s prompted to do reasoning on dates.
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Query:
What kind of wine matches a piece of fine, lean steak? Tell me the description of this kind of wine in
general and fetch one specific product. Tell me the price of the product and the URL to buy it.
Tool Outputs:
"wine_pairing": {

"pairedWine": "pinot noir",
"wineDescription": ""Pinot Noir is a dry red wine which is light and fruity.",
"productMatches":
{
"title": "Skater Girl Limited Edition Pinot Noir",
"price": "$29.99",
"link": "https://www.amazon.com/2013-Skater-Girl-Limited-Pinot/dp/

B01EJZ30T4?tag=spoonacular-20",
}

}

Target:
The wine that matches the most with leaner steak is pinot noir, a dry red wine with light and fruity
flavors. The specific product that I found is called Skater Girl Limited Edition Pinot Noir. The price of
this product is 29.99 USD and you can buy it on https://www.amazon.com/2013-Skater-Girl-Limited-
Pinot/dp/B01EJZ30T4?tag=spoonacular-20.
Prediction:
For a piece of fine, lean steak, you can pair it with Pinot Noir, which is a dry red wine that is light and
fruity. A good product to try is the Skater Girl Limited Edition Pinot Noir. It has 5 out of 5 stars and
costs about 30 dollars. It has aromas of cherry pie, pomegranate, and lychee fruit, followed by vibrant
flavors of strawberry jam with hints of whipped cream, clove and cinnamon spice. It has a bright acid
and a food-friendly structure. You can buy it on Amazon for 29.99 dollars.
Not Covered Keywords:
https://www.amazon.com/2013-Skater-Girl-Limited-Pinot/dp/
B01EJZ30T4?tag=spoonacular-20

Table 4: Error Case 2: The model fails to adhere to all the instructions in the user’s query due to its complexity. The
user requests the retrieval of URL yet the model ignores that instruction.
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Query:
Search for the open collective ’webpack’. Report their yearly income and list the ADMIN members of
the collective (name and profile URL).
Tool Outputs: "get_members": [

{
"MemberId": 1766,
"role": "ADMIN",
"name": "Sean Larkin",
"profile": "https://opencollective.com/seanlarkin",

},
{
"MemberId": 1767,
"role": "ADMIN",
"name": "Tobias Koppers",
"profile": "https://opencollective.com/tobiaskoppers",

},
{
"MemberId": 1768,
"role": "ADMIN",
"name": "Johannes Ewald",
"profile": "https://opencollective.com/johannesewald",

}

Target:
According to the tool outputs, the yearly income of the ’webpack’ collective is $25,909,786. Some of
the ADMIN members of the collective are: Sean Larkin (Profile: https://opencollective.com/seanlarkin),
Tobias Koppers (Profile: https://opencollective.com/tobiaskoppers), and Johannes Ewald (Profile:
https://opencollective.com/johannesewald).
Prediction:
The open collective ’webpack’ has a yearly income of $25,909,786. Some of the ADMIN members of
the collective include Sean Larkin, whose profile can be found at https://opencollective.com/seanlarkin,
and Tobias Koppers, whose profile can be found at https://opencollective.com/tobiaskoppers.
Prediction

Table 5: Error Case 3: The model ignores some of the keywords when given many keywords of the same type. It
ignores one of the admins of webpack and does not retrieve his name and profile.
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