
Under review as a conference paper at ICLR 2024

HARMONIZED LEARNING WITH CONCURRENT ARBI-
TRATION: A BRAIN-INSPIRED MOTION PLANNING
APPROACH

Anonymous authors
Paper under double-blind review

ABSTRACT

Motion planning, regarded as a sequential decision-making problem, poses a
challenge for robots in high-dimensional continuous environments due to inef-
ficient sampling. In contrast, humans inherently possess a distinctive advantage in
decision-making by leveraging limited information, primarily relying on the con-
current reasoning mechanism in the prefrontal cortex. Motivated by this, we pro-
pose a brain-inspired Deep Reinforcement Learning scheme for planning, called
Harmonized Learning with Concurrent Arbitration (HLCA). The approach effec-
tively mimics human capacity for concurrent inference tracks and the ability to
harmonize strategies. Specifically, in the planning process, a general Concurrent
Arbitration Module (CAM) is designed to balance the exploration-exploitation
dilemma simply and efficiently. Besides, the harmonized style facilitates robots
self-improving learning during the learning process, enabling the selection of ap-
propriate strategies to guide planning. Experimental results show that HLCA out-
performs the state-of-the-art benchmarks in terms of three representative metrics,
which confirms the potential of emulating human-like capabilities to enhance the
intelligence and efficiency of robotic planning.

1 INTRODUCTION

Fast and reliable motion planning in high-dimensional continuous environments is a crucial
component of robot operations (Janson et al., 2015; Strub & Gammell, 2020; Fishman et al.,
2023). Sampling-based methods have demonstrated impressive performance in addressing high-
dimensional continuous motion planning problems. However, sampling-based methods still grapple
with the exploration-exploitation trade-off dilemma (Hao et al., 2023). Traditional sampling-based
methods (Kavraki et al., 1996; Triche et al., 2022), typically employ uniform sampling of the space,
i.e., exploring the entire space indiscriminately to obtain new information, yet often failing to exploit
the inherent structural knowledge of the problem (Hausknecht & Stone, 2015). Heuristic sampling
methods (Rickert et al., 2008; Paxton et al., 2017), have been introduced to balance exploration-
exploitation. However, these hand-crafted heuristics may not generalize effectively when confronted
with new problems (Zhang et al., 2018). Previous work has primarily tackled this trade-off using
specific techniques, such as ε-greedy algorithms (Rodrigues Gomes & Kowalczyk, 2009) and Up-
per Confidence Bound (UCB) (Garivier & Moulines, 2011), which may not always promote ef-
fective balance. Furthermore, these methods address planning problems in isolation and lack of
full exploitation of prior experience and models (Kim et al., 2018). Considering these limitations,
developing an intelligent and efficient exploration-exploitation trade-off mechanism is pressing.

To further enhance sampling efficiency, learning-based sampling methods have emerged as a key ap-
proach for improving motion planning performance. These approaches typically treat motion plan-
ning as a sequential decision problem (Bivard et al., 2020), which can be naturally addressed through
reinforcement or imitation learning. For example, conditional variational autoencoders (Ichter et al.,
2018) and motion planning networks (Qureshi et al., 2020) apply imitation learning to collected
samples to guide subsequent sampling. NEXT (Chen et al., 2020) embeds a high-dimensional con-
tinuous state space into a low-dimensional representation and employs a gated path planning network
(Lee et al., 2018) to predict samples. In addition, Chen et al. (Yu & Gao, 2021) leverage graph neu-
ral networks and attentional mechanisms to accelerate the search for collision-free paths. Given the

1

Under review as a conference paper at ICLR 2024

inherent diversity of motion planning problems, training samples are often generated by experts or
other methods. However, current research frequently overlooks the optimization of training buffer
(Ott et al., 2022). Moreover, under high-dimensional continuous environments, guiding robots to-
wards optimal or near-optimal solutions using only a single strategy becomes particularly difficult
(Osband et al., 2018). Thus, a need exists for harmonizing multi-strategy capable of efficiently
adapting to complex environments.

Fortunately, owing to the gradual clarity of the decision-making capability of the brain, we can
draw inspiration from its processes. In recent years, brain-inspired research has presented promis-
ing results (Radulescu et al., 2021; Xing et al., 2021; Binz & Schulz, 2022). However, these efforts
have not studied the decision-making capability of the human brain nor considered harmonized
learning and concurrent inference. Human decision-making is distinguished by efficient use of
previous knowledge, flexible exploration based on task demands, and reduced susceptibility to ex-
ternal influences (Oaksford & Chater, 2009). The prefrontal cortex (PFC) plays a crucial role in
human decision-making, operating on two concurrent inference tracks (Donoso et al., 2014). Be-
sides, human working memory allows the brain to monitor and harmonize multiple strategies si-
multaneously (Cowan, 2005a), which enables humans to respond flexibly and efficiently to various
decision-making scenarios.

Inspired by the concurrent reasoning mechanism in the PFC, we propose Harmonized Learning
with Concurrent Arbitration (HLCA), a brain-inspired Deep Reinforcement Learning (DRL) al-
gorithm for motion planning. This work contains a general Concurrent Arbitration Module (CAM)
and a Harmonized Self-Improving Learning (HSIL) style. We demonstrate the effectiveness of our
work in high-dimensional continuous maze planning tasks. HLCA outperforms the state-of-the-art
in three different evaluation metrics, which indicates the potential of human-like learning to enhance
the capabilities of intelligent machines. We release our code and data in the supplementary material.
Our main contributions can be summarized as follows.

• The novel incorporation of the concurrent reasoning mechanism introduces innovative enhance-
ments to traditional decision-making models.

• When sampling during the planning process, the CAM employs a dynamic switching mechanism
to simultaneously evaluate exploration and exploitation options, effectively balancing the binary
choice dilemma.

• Throughout the training process, the HSIL style allows robots to improve themselves from his-
torical quality experience. HLCA mitigates the risk of falling into local optimal that often results
from relying on a single strategy.

2 PREFRONTAL FOUNDATIONS OF HUMAN REASONING

Theoretically, human decision-making can approximate Bayesian reasoning, effectively utilizing
limited information to make properly qualified decisions (Collins & Koechlin, 2012). This process
is intricately linked to the concurrent reasoning mechanism in PFC (Donoso et al., 2014; Cohen
et al., 2007; Domenech et al., 2020). The current experimental evidence from neuroscience us-
ing brain scans suggests that the concurrent reasoning mechanism in PFC includes two concurrent
inference tracks (Donoso et al., 2014), shown in Figure 1. Specifically, the first medial track con-
sists of ventromedial PFC (vmPFC), pregenual anterior cingulate cortex (pgACC), dorsomedial PFC
(dmPFC), and the striatum. Within this track, the vmPFC-pgACC performs reliability inference on
the ongoing strategy. When the ongoing strategy becomes unreliable, the dmPFC triggers explo-
ration by creating a probing strategy. Subsequently, the striatum confirms the new strategy once it
becomes reliable. The second lateral track involves the frontopolar cortex (FPC) and middle lat-
eral prefrontal cortex (mid-LPC). The FPC can infer the reliability of alternative strategies, and the
mid-LPC exploits the reliable alternative strategy and rejects the unreliable probing strategy.

Furthermore, the human brain exhibits a remarkable ability in this process is also related to moni-
toring and harmonizing multiple strategies (Donoso et al., 2014; Cowan, 2005a). However, due to
limitations in working memory capacity (Cowan, 2005b), the current experimental evidence from
neuroscience suggests that the most accurate decisions are made when the number of monitored
strategies is limited to four (Cowan, 2001). The brain mechanism of human decision-making rea-
soning upon which we draw in this study is confined to the outcomes that preceded our investigation.

2

Under review as a conference paper at ICLR 2024

3 PRELIMINARIES

3.1 SETTING FOR PLANNING

Assume given a planning problem Ui = (S,Sw,Sf , ss, sg), where S is the state space of the prob-
lem, i.e., the configuration of robots and its operation workspace, Sw is workspace operated by
robots, Sf = S \ So is the free space, So is the obstacles set. ss, sg ∈ S are the start state and
goal state, respectively. The purpose of planning problems is to find a collision-free path ξ in free
space Sf from the start state ss to the goal state sg . Tree Sampling Algorithms (TSA) start with
the ss as the root node of the search tree T . The search tree T is progressively expanded by
sampling new states in S, connecting these sampled states until a leaf node of T reaches sg . A path
ξ = {[si−1, si]}Ti=1 can be extracted based on the search tree T , where [si−1, si] ⊂ S with s0 = ss
and sT = sg . If these path segments are detected by the collision detection module to be free of ob-
stacles, ξ is a collision-free path. Let

∑T
i=1c({si−1, si}) denotes the path cost of the collision-free

path ξ.

3.2 NOTATIONS

In our work, the strategy set is denoted by Ω = {ω1, ω2, ω3, ωu}, which is similar to the long-term
memory. The inference buffer I = {ω1, ω2, ωu}, which is designed by imitating the inference
buffer of the concurrent reasoning model in PFC (Donoso et al., 2014). ωu is a learning-based
planner, whereas ω1, ω2, ω3 are are non-learning planners. The initialization of Ω and I are man-
ually designed. At episode(problem) t, given ht, the reliability of ωi in I involves two distinct
phases. See section 4.3.1 for a detailed description. ht is all possible histories before t-episodes,
i.e., ht = ([U0, T0, c0], . . . , [Ut−1, Tt−1, ct−1]), which are sampled from the training buffer D.

4 METHOD

4.1 MODELING REASONING PROCESS IN THE HUMAN PFC

A theoretical model of human decision-making reasoning is proposed to describe the concurrent
reasoning mechanism in the PFC, shown in Figure 1. We hypothesize that the inference buffer I
is limited to three or four (Collins & Koechlin, 2012), which contains the ongoing strategy ωk and
other alternative strategies ωi, ωj . The reliability of each monitored strategy in I i.e., λi, λj , λk is
inferred via Bayesian reasoning. The reasoning process can be summarized as follows.

• If λk is reliable, the ongoing strategy selects actions with maximal rewards.

• When the reliability of all strategies in I becomes unreliable, the robot would switch to the explo-
ration and then develop a probing strategy from long-term memory.

• The robot would return to exploitation in two cases: (i) any of the monitored strategies in I
becomes reliable, this monitored strategy is exploited and the probing strategy is rejected. (ii) The
probing strategy is reliable while other monitored strategies are unreliable, and then the probing
strategy is confirmed by storing it in I.

Moreover, if I reaches its maximal capacity, the strategy recently used is discarded from the infer-
ence buffer, while it is still stored in long-term memory.

4.2 NEURAL GUIDED CONCURRENT ARBITRATION

Motivated by concurrent inference tracks in the concurrent reasoning model (Donoso et al., 2014),
we propose a Concurrent Arbitration Module (CAM), shown in Figure 2. This module leverages a
neural-constrained observation function that incorporates priors, enabling simultaneous exploration
and exploitation. Thus, robots can explore new possibilities and advance to expansion more ef-
fectively. Suppose that ωu has the value function V (s;θ) and policy function π(a|s;θ)1, which are

1In the motion planning setting, s′ is the cascaded state from current state s after taking action a.

3

Under review as a conference paper at ICLR 2024

5

 ...

ltm.
inferential buffer

�� �� ��

��

reliability inference

�� �� �� max

(i) I is reliable

 ...

ltm.
inferential buffer

�� �� ��

��

reliability inference

�� �� ��

(ii) I is unreliable

��

temporary

Exploitation / Reject �� Developing ��

 ...

ltm.

inferential buffer
�� �� ��

��

reliability inference

Confirm ��

�� �� ��

 ...
ltm.inferential buffer I

Exploitation

�� �� ��

coordination

at-1

 ...
inferential buffer

Exploration

�� �� ��

coordination

at-1

 ...
inferential buffer

Exploitation

�� �� ��

coordination

at

��
 ...

inferential buffer

Exploration

�� �� ��

coordination

at

��

 reliable

or

 unreliable

or

 medial track
lateral track
inner pathway

�� is reliable I remains unreliable

(a) (b)

(c)

Figure 1: Concurrent reasoning. (a) Concurrent reasoning mechanism in PFC. (b) Modeling concur-
rent inference tracks. (c) Modeling multi-strategies harmonization. Green cubes represent existing
strategies stored in long-term memory (ltm), and the orange cube is the ongoing strategy. When all
strategies in I are unreliable(blue), the robot switches to exploration and develops a probing strat-
egy ωp from ltm. The exploration phase continues until the monitored strategy(purple) or a probing
strategy ωp is reliable(blue). Then ωp would be rejected (red) or confirmed (yellow) subsequently.

merged into a two-headed neural network with shared parameters θ. The former assesses the current
state as either good or bad, and the latter helps robots select actions.

Robots select a node as parent state sp from existing tree T and expand the new state snew in the
neighborhood sp as an infinite-armed bandit problem. Candidate states Scl are sampled guided by
the policy network π(s′|s;θ), Scl =

{
sc1, . . . , s

c
Nc

}
. As the algorithm proceeds, the number of

states gradually increases and their values become correlated, the traditional UCB algorithm is not
directly applicable to balance exploration and exploitation. To overcome this issue, we explicitly
model these correlations (Chen et al., 2020), which facilitates the exploration of unknown spaces.

σl(s) =

√
log

∑
s′∈S κ(s′)

κ(s)
, with κ(s) =

∑
s′∈S k (s′, s) (1)

where σl(s) is the variance estimator after l-times expansion. Kernel smoothing is used for σl(s)
and k (s′, s) is the kernel function. In addition, the generalized structure of problems can be cap-
tured more accurately by leveraging priors and environmental information. In particular, the final
expansion will be selected from candidates via the observation function ϕ(s), which is given by

ϕ(s) = (1− ε) · softmax (r̄l(s) + c · σl(s)) + ε · c([s′, sg]) (2)

where the noise parameter ε and c are constants less than 1. r̄l is the average reward after kernel

smoothing, i.e., r̄l(s) =
∑

s′∈S k(s′,s)r(s′)∑
s′∈S k(s′,s) , r(s) can be replaced by V (s;θ).

If the maximum observation of candidate states is better than a threshold β, then the candidate state
with the maximum observation will be expanded as snew. On the contrary, if all observations are
below β, the robot will be triggered to explore new possibilities. For this purpose, temporary probed
states Spl =

{
sp1, . . . , s

p
Nc

}
is guided by the policy of other strategies in I. There are two scenarios

4

Under review as a conference paper at ICLR 2024

in which the robot switches to exploitation, (i) when all exploration rounds are completed and no
eligible state is discovered, the robot will stop exploring and choose the state with the highest value
of ϕ(s) among all states that have been found so far. (ii) When the maximum observation of probed
states exceeds β, then this state will be expanded as snew and the robot switches to exploitation.

7

start

goal

start

goal

Problem Sampling Path

start

goal

∅ ≥ 𝛽

𝐦𝐚𝐱 ∅ < 𝛽

∅ ≥ 𝛽

...
ExploitationExploration

Arbitration

repeat

or

...
epoch n

or

𝜔∗

𝜔3

Reliability inference

...
Inference buffer

Reliability inference

...
Inference buffer

or

(ii) (i) 𝐦𝐚𝐱 𝝀 ≥ 𝝆 𝐦𝐚𝐱 𝝀 < 𝝆

𝜔𝑢𝜔2𝜔1 𝜔3𝜔𝑢𝜔2𝜔1

Harmonization

max(𝝀𝟏 𝝀𝟐 𝝀𝒖) max(𝝀𝟏 𝝀𝟐 𝝀𝒖)

𝜔3𝜔𝑢

attention

module

attention

module
stack

Conv

Sw

Conv

LSTM

cell

V(s)

𝜋(𝑎|𝑠)

Conv

repeat

dense

dense

dense

𝜔∗ guide to plan

Network structure of 𝝎𝒖

self-improving

add

CAM

start

goal

𝜔∗

max ∅

start

goal

𝜔3

max ∅

start

goal

start

goal

start

goal

start

goal

training buffer

...

sgall states

Dn

Dn

D1

Dn Dn-1

D2

add

Figure 2: Overall model architecture. For each problem, the harmonization module performs re-
liability inference for the strategies (green cubes) in I and then selects ω∗. Then ω∗ guides the
expansion by concurrently estimating the observations for exploration and exploitation based on the
CAM. These historical paths are stored in the D, which is used to self-improve the ωu (the pink
cube). This interactive learning is more beneficial for buffer collection.

4.3 HARMONIZED SELF-IMPROVING LEARNING

In this section, we introduce a novel Harmonized Self-Improving Learning (HSIL) approach, which
can optimize the collection of the training buffer. V (s;θ) and π(s′|s;θ) can be improved based on
prior successes. Before solving each problem, a desirable strategy among the inference buffer has
the highest reliability. Besides, the HLCA can effectively guide the planning in the test phase. The
training buffer D is a collection of solutions for planning path.

4.3.1 RELIABILITY INFERENCE

The first phase occurs before planning, i.e., the ex-ante reliability λi,t. The second phase takes
place after planning, i.e., the ex-post reliability µi,t. λi,t reflects the confidence level assigned to
each strategy in I before their execution. It provides an assessment of the expected reliability of
the strategies in guiding the robot’s planning process. In contrast, µi,t is determined by evaluating
the actual outcomes observed after execution. It takes into account the feedback received from
the environment and provides a measure of the reliability of the strategies based on their actual
performance. This dual estimation process enhances the robot’s ability to dynamically adjust its
strategies. The ex-ante and ex-post reliabilities are respectively expressed as:

λi,t =
F (ω | Ut, I)

[
(1− τ)µi,t−1 + τ

∑
j∈{1,...,NI} µj,t−1

]
Zλ
t

, (3)

with µi,t =
Pωi

(s′ | s) · (fcolli +
∑

c([s, s′])

Zµ
t

(4)

where F (ω | Ut, I) is a probability distribution function, which encodes the likelihood of selecting
each strategy in I. The parameter τ is perceived volatility, Zµ

t and Zλ
t are regularization factors.

5

Under review as a conference paper at ICLR 2024

Pωi
(s′ | s) is a state transition function following a strategy ωi. fcolli and

∑
c([s, s′] are collision

checks and path costs after standardization, respectively. Assume that the selection of any strategy
in I has an equal likelihood of occurring. Thus, F (ω | Ut, I) does not require calculation and can
be directly used as a constant.

4.3.2 SELF-IMPROVING LEARNING

The reliability inference function can harmonize multiple strategies to guide the planning process,
progressively optimizing the collection of the training buffer D. The value function V (s;θ) and
policy function π(s′|s;θ) can be learned as D expands. To be clear, in n-th epoch, the training
buffer is denoted by Dn. In the initialization epoch, the ωu is not prioritized for reliability inference
as V (s;θ) and π(s′|s;θ) are poorly trained. Hence, the local optimal strategy ω∗ is selected from
ω1, ω2 according to Equation 3. Then, the path generated by ω∗ is added to D0 for each planning
problem. Once m planning problems are solved, D1 will be used to train V (s;θ) and π(s′|s;θ).
In the n-th (n ̸= 0) training epoch, ωu will participate in reliability inference. If the reliability of
the most reliable strategy in I is higher than the predefined threshold ρ, it is selected as an optimal
strategy ω∗. The solution generated by the guidance of ω∗ is added toDn until m planning problems
are solved. Then Dn serves as the training sample to train V (s;θ) and π(s′|s;θ) according to the
objective function which is given by

ℓn =

n·m∑
i=1

(V (si;θ)− vi)
2 −

n·m∑
i=1

log π(si+1|si;θ) + α · ∥θ∥22 (5)

where the value vi is estimated from empirical paths in Dn, i.e., vi =
∑T

i c([si, si+1]). α is a
regular term. The parameters for V (s;θ) and π(s′|s;θ) are learned while the model continues to
accumulate experience. V (s;θ) and π(s′|s;θ) gradually learn from previous successes and improve
themselves as they encounter more problems and better solutions. This incremental expansion of
the training buffer allows for self-improving learning and adaptation of the model.

On the contrary, if the reliability of all strategies in I is below the threshold for several consecutive
times, a new strategy ω3 would be chosen from Ω. Then the solution generated by the guidance of
ω3 is added to Dn. The entire procedure is repeated in an epoch until all problems are solved.

5 EXPERIMENTS

5.1 GENERAL SETTINGS

Environment Datasets. We conduct a series of experiments to evaluate the performance of our
work in solving high-dimensional continuous maze planning tasks. Our experiments involve eight
distinct datasets 2 shown in Figure 3 and describe each of them in detail as follows.

(a) Maze2 contains Easy2 and Hard2, which involves a 2-degree of freedom (DoF) point robot
operating in a 2D workspace. The obstacle density of the Hard2 is set to a minimum of 46%,
ensuring that the distance from the start state to the goal is no less than 1.

(b) Maze3 involves a 3-DoF stick robot operating in a 2D workspace.

(c) UR5 comprises a 6-DoF robot operating in a 3D workspace. Some randomly generated objects,
namely two sets of boxes, poles, and pads, are generated in two different size ranges.

(d) Snake7 consists of a 7-DoF snake robot operating in a 2D workspace. The snake robot has five
sticks and its end position is 2-DOF. The 2D workspace is the same as Maze2D.

(e) Kuka7 features a 7-DoF robot operating in a 3D workspace. The robot is in a fixed base position.
In Kuka7, Kuka13, and Kuka14, all boxes are random in the workspace for each problem.

(f) Kuka13 comprises a 13-DoF robot operating in a 3D workspace.

2https://github.com/rainorangelemon/gnn-motion-planning/tree/main/maze_
files

6

https://github.com/rainorangelemon/gnn-motion-planning/tree/main/maze_files
https://github.com/rainorangelemon/gnn-motion-planning/tree/main/maze_files

Under review as a conference paper at ICLR 2024

(g) Kuka14 has a robot with two 7-DoF Kuka arms operating in a 3D workspace. Each arm must
successfully achieve its goal region while avoiding any potential collisions with its environment.

11

(a) Maze2 (b) Maze3 (c) UR5 (d) Snake7

(g) Kuka14(f) Kuka13(e) Kuka7
Figure 3: All environment datasets. The top line from left to right: (a) Maze2; (b) Maze3; (c) UR5;
(d) Snake7. The bottom line from left to right: (e) Kuka7; (f) Kuka13; (g) Kuka14.

Baselines. We select some motion planning methods known for their superior performance. These
methods include RRT* (Karaman & Frazzoli, 2011) with a target bias heuristic, informed-RRT*
(Gammell et al., 2014) with an informed search strategy, and the state-of-the-art batch-sampling
approach BIT* (Gammell et al., 2015). We also incorporate LazySP (Haghtalab et al., 2018), which
leverages manually designed heuristics to decrease the number of collision checks without relying
on specific problem information. Furthermore, we include NEXT (Chen et al., 2020), which inte-
grates neural priors into the reward function to boost sampling efficiency based on DRL. GNN and
GNN+smoother (Yu & Gao, 2021) employ graph neural networks (GNNs) for path exploration and
smoothing, thereby reducing collision checks.

Settings. There are 3000 different problems in each environment, with 2000 for training and 1000
for testing. For each one, the environment is randomly configured. The start and goal states are
sampled uniformly from Sf , and the workspace is generated randomly based on a fixed distribution.

5.2 OVERALL PERFORMANCE

To provide a thorough evaluation of our method, we perform multiple tests in each environment
leveraging 1000 test problems. The maximum number of samples for all algorithms is set to 1000
for consistency. We assess the performance with four key metrics. Namely, the success rate in
finding collision-free paths, the path cost, the collision checks, and the total running time. The
success rate represents the percentage of collision-free paths out of the total paths. The path cost is
determined by summing the Euclidean path length for each problem. The collision checks metric
is the number of times the planning process detects whether the robot collides with an obstacle or
not. The total running time is planning time to run 1000 test problems. Quantitative evaluation and
detailed results analysis are presented in the Appendix A.

Based on the record of the results presented in Figure 4, our method HLCA exhibits remarkable
performance across all test environments, achieving a 100% success rate. Notably, the HLCA sig-
nificantly reduces the number of collision checks, particularly in high-dimensional environments.
Although HLCA may not always achieve optimal path costs in all environments, our results con-
sistently demonstrate near-optimal performance. Moreover, in the case of high-dimensional envi-
ronments ranging from Kuka7 to Kuka14, HLCA exhibits minimum path cost. The results of the
visualization are in the Appendix F.

5.3 INFERENCE BUFFER CAPABILITY

Similar to human working memory, we hypothesize that there is a constraint on the working capacity
of the inference buffer in our method HLCA. To demonstrate this hypothesis, we select five different

7

Under review as a conference paper at ICLR 2024

easy2 hard2 Maze3 Ur5 Snake7 Kuka7 Kuka13 Kuka14
Environment

0.4

0.6

0.8

1

Su
cc

es
s

ra
te

easy2 hard2 Maze3 Ur5 Snake7 Kuka7 Kuka13 Kuka14
Environment

0

2

4

6

8

10

12

A
ve

ra
ge

 c
ol

lis
io

n
ch

ec
k(

x1
k)

easy2 hard2 Maze3 Ur5 Snake7 Kuka7 Kuka13 Kuka14
Environment

0

2

4

6

8

10

12

14

16

A
ve

ra
ge

 p
at

h
co

st

RRT* inform-RRT* BIT* LazySP
NEXT GNN GNN+smoother HLCA

(a) (b) (c)

Figure 4: Performance comparison in all environments. From left to right: (a) Success rate. (b)
Average collision checks. (c) Average path cost.

strategies, i.e., RRT*, BIT*, LazySP, NEXT, and GNN. The capacity of the inference buffer I is set
among NI = {2, 3, 4, 5}. Then we conduct experiments in five different environments, i.e., Hard2,
UR5, Kuka7, Kuka13, and Kuka14. The experimental results are shown in Figure 5.

2 3 4 5
Buffer capability

0.4

0.6

0.8

1

Su
cc

es
s

ra
te

2 3 4 5
Buffer capability

0

0.5

1

1.5

2

2.5

A
ve

ra
ge

 c
ol

lis
io

n
ch

ec
k(

x1
k)

2 3 4 5
Buffer capability

2

4

6

8

10

A
ve

ra
ge

 p
at

h
co

st

Hard2 UR5 Kuka7 Kuka13 Kuka14

（a） （b） （c）

Figure 5: Performance comparison with different buffer capability settings. (a) Success rate. (b)
Average collision checks. (c) Average path cost.

The best performances in terms of the number of collision checks and path costs are achieved when
the capacity of I is set to 3 or 4. Meanwhile, we observe a decline in the overall performance
across all five environments when the capacity increases to 5. The results suggest that I also has a
capacity limit, which may be related to the reliability of the inference function designed to imitate
human brain reasoning. Moreover, the complexity of the environment affects the buffer capacity
requirements. Specifically, our experiments demonstrate that the best performance is achieved in
relatively simple environments, such as Hard2, when the buffer capacity is set to 3. While in more
complex environments, such as UR5, the optimal buffer capacity is up to 4. It is important to note
that even when the buffer capacity remains constant, the choice of strategies within the buffer can
significantly impact the final results.

5.4 ABLATION STUDY

Ablation study I: concurrent guidance expansion. To validate the effectiveness of the CAM,
we integrate it into the NEXT algorithm. The remaining components of the NEXT algorithm are
unchanged. The results shown in Figure 6 demonstrate the effectiveness of the CAM in finding
better paths with fewer collision checks and higher success rates across all environments. Moreover,
the CAM optimizes the path cost in high-dimensional environments.

Ablation study II: harmonized self-improving learning. To demonstrate the efficiency of HSIL,
the inference buffer I = {RRT*, BIT*, NEXT}, where NEXT serves as ωu. These strategies in I

8

Under review as a conference paper at ICLR 2024

easy2 hard2 Maze3 Ur5 Snake7 Kuka7 Kuka13 Kuka14
Environment

0.2

0.4

0.6

0.8

1

Su
cc

es
s

ra
te

easy2 hard2 Maze3 Ur5 Snake7 Kuka7 Kuka13 Kuka14
Environment

0

2

4

6

8

10

A
ve

ra
ge

 c
ol

lis
io

n
ch

ec
k(

x1
k)

easy2 hard2 Maze3 Ur5 Snake7 Kuka7 Kuka13 Kuka14
Environment

0

2

4

6

8

10

12

A
ve

ra
ge

 p
at

h
co

st

NEXT NEXT+CAM

(a) (b) (c)

Figure 6: Performance comparison for the CAM. From left to right: (a) Success rate. (b) Average
collision checks. (c) Average path cost.

easy2 hard2 Maze3 Ur5 Snake7 Kuka7 Kuka13 Kuka14
Environment

0.4

0.6

0.8

1

Su
cc

es
s

ra
te

easy2 hard2 Maze3 Ur5 Snake7 Kuka7 Kuka13 Kuka14
Environment

0

2

4

6

8

10

A
ve

ra
ge

 c
ol

lis
io

n
ch

ec
k(

x1
k)

easy2 hard2 Maze3 Ur5 Snake7 Kuka7 Kuka13 Kuka14
Environment

0

2

4

6

8

10

12

A
ve

ra
ge

 p
at

h
co

st

NEXT NEXT+HSIL

(a) (b) (c)

Figure 7: Performance comparison for HSIL. From left to right: (a) Success rate. (b) Average
collision checks. (c) Average path cost.

are inferred through reliability λ. Harmonization is only used to optimize buffer collection during
the learning process. The results are presented in Figure 7, which demonstrate the effectiveness of
HSIL in finding collision-free paths with fewer collision checks and higher success rates across all
environments.

Ablation study III: varying the maximum sampling number. We perform experiments and
discuss the influence of the maximum sampling number in our methods. Detailed experimental
results and analysis are seen in the Appendix B.

6 CONCLUSION

In this paper, we present a brain-inspired DRL approach, Harmonized Learning with Concurrent
Arbitration (HLCA), inspired by the concurrent reasoning mechanism in the human PFC to enhance
planning performance in high-dimensional continuous spaces. Our method incorporates a general
Concurrent Arbitration Module (CAM) to address the exploration-exploitation dilemma. With the
proposed HLCA, the limitation of traditional single-strategy methods can be overcome. Experiment
results demonstrate the robustness and stability of HLCA in complex environments. Yet, we only
focus on motion planning in high-dimensional continuous spaces in this work. For future research,
we will extend the HLCA to other complex decision-making scenarios to evaluate its effectiveness
and adaptability. Furthermore, exploring the decision-making mechanisms in the human brain can
potentially contribute to the development of more advanced and reliable robotic systems, such as
emulating human cognitive capabilities.

9

Under review as a conference paper at ICLR 2024

AUTHOR CONTRIBUTIONS

ACKNOWLEDGMENTS

REFERENCES

Marcel Binz and Eric Schulz. Exploration with a finite brain. arXiv preprint arXiv:2201.11817,
2022.

Andrew Bivard, Leonid Churilov, and Mark Parsons. Artificial intelligence for decision support in
acute stroke—current roles and potential. Nature Reviews Neurology, 16(10):575–585, 2020.

Binghong Chen, Bo Dai, Qinjie Lin, Guo Ye, Han Liu, and Le Song. Learning to plan in high
dimensions via neural exploration-exploitation trees. International Conference on Learning Rep-
resentations, 2020.

Jonathan D Cohen, Samuel M McClure, and Angela J Yu. Should i stay or should i go? how the
human brain manages the trade-off between exploitation and exploration. Philosophical Trans-
actions of the Royal Society B: Biological Sciences, 362(1481):933–942, 2007.

Anne Collins and Etienne Koechlin. Reasoning, learning, and creativity: frontal lobe function and
human decision-making. PLoS biology, 10(3):e1001293, 2012.

Nelson Cowan. The magical number 4 in short-term memory: A reconsideration of mental storage
capacity. Behavioral and brain sciences, 24(1):87–114, 2001.

Nelson Cowan. Working memory capacity limits in a theoretical context. In Human learning
and memory: Advances in theory and application. The 4th Tsukuba international conference on
memory, pp. 155–175. Erlbaum Mahwah, NJ, 2005a.

Nelson Cowan. Working memory capacity limits in a theoretical context. In Human learning
and memory: Advances in theory and application. The 4th Tsukuba international conference on
memory, pp. 155–175. Erlbaum Mahwah, NJ, 2005b.

Philippe Domenech, Sylvain Rheims, and Etienne Koechlin. Neural mechanisms resolving
exploitation-exploration dilemmas in the medial prefrontal cortex. Science, 369(6507):eabb0184,
2020.

Maël Donoso, Anne GE Collins, and Etienne Koechlin. Foundations of human reasoning in the
prefrontal cortex. Science, 344(6191):1481–1486, 2014.

Adam Fishman, Adithyavairavan Murali, Clemens Eppner, Bryan Peele, Byron Boots, and Dieter
Fox. Motion policy networks. In Conference on Robot Learning, pp. 967–977. PMLR, 2023.

Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot. Informed rrt: Optimal
sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic.
In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2997–3004.
IEEE, 2014.

Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot. Batch informed trees (bit):
Sampling-based optimal planning via the heuristically guided search of implicit random geo-
metric graphs. In 2015 IEEE international conference on robotics and automation (ICRA), pp.
3067–3074. IEEE, 2015.

Aurélien Garivier and Eric Moulines. On upper-confidence bound policies for switching bandit
problems. In International Conference on Algorithmic Learning Theory, pp. 174–188. Springer,
2011.

Nika Haghtalab, Simon Mackenzie, Ariel Procaccia, Oren Salzman, and Siddhartha Srinivasa. The
provable virtue of laziness in motion planning. In Proceedings of the International Conference
on Automated Planning and Scheduling, volume 28, pp. 106–113, 2018.

Jianye Hao, Tianpei Yang, Hongyao Tang, Chenjia Bai, Jinyi Liu, Zhaopeng Meng, Peng Liu, and
Zhen Wang. Exploration in deep reinforcement learning: From single-agent to multiagent domain.
IEEE Transactions on Neural Networks and Learning Systems, 2023.

10

Under review as a conference paper at ICLR 2024

Matthew Hausknecht and Peter Stone. Deep reinforcement learning in parameterized action space.
arXiv preprint arXiv:1511.04143, 2015.

Brian Ichter, James Harrison, and Marco Pavone. Learning sampling distributions for robot motion
planning. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 7087–
7094. IEEE, 2018.

Lucas Janson, Edward Schmerling, Ashley Clark, and Marco Pavone. Fast marching tree: A fast
marching sampling-based method for optimal motion planning in many dimensions. The Inter-
national journal of robotics research, 34(7):883–921, 2015.

Sertac Karaman and Emilio Frazzoli. Sampling-based algorithms for optimal motion planning. The
international journal of robotics research, 30(7):846–894, 2011.

Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars. Probabilistic roadmaps for
path planning in high-dimensional configuration spaces. IEEE transactions on Robotics and Au-
tomation, 12(4):566–580, 1996.

Beomjoon Kim, Leslie Kaelbling, and Tomás Lozano-Pérez. Guiding search in continuous state-
action spaces by learning an action sampler from off-target search experience. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Lisa Lee, Emilio Parisotto, Devendra Singh Chaplot, Eric Xing, and Ruslan Salakhutdinov. Gated
path planning networks. In International Conference on Machine Learning, pp. 2947–2955.
PMLR, 2018.

Mike Oaksford and Nick Chater. Précis of bayesian rationality: The probabilistic approach to human
reasoning. Behavioral and Brain Sciences, 32(1):69–84, 2009.

Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for deep reinforcement
learning. Advances in Neural Information Processing Systems, 31, 2018.

Julius Ott, Lorenzo Servadei, Jose Arjona-Medina, Enrico Rinaldi, Gianfranco Mauro,
Daniela Sánchez Lopera, Michael Stephan, Thomas Stadelmayer, Avik Santra, and Robert Wille.
Meet: A monte carlo exploration-exploitation trade-off for buffer sampling. arXiv preprint
arXiv:2210.13545, 2022.

Chris Paxton, Vasumathi Raman, Gregory D Hager, and Marin Kobilarov. Combining neural
networks and tree search for task and motion planning in challenging environments. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6059–6066.
IEEE, 2017.

Ahmed Hussain Qureshi, Yinglong Miao, Anthony Simeonov, and Michael C Yip. Motion plan-
ning networks: Bridging the gap between learning-based and classical motion planners. IEEE
Transactions on Robotics, 37(1):48–66, 2020.

Angela Radulescu, Yeon Soon Shin, and Yael Niv. Human representation learning. Annual Review
of Neuroscience, 44:253–273, 2021.

Markus Rickert, Oliver Brock, and Alois Knoll. Balancing exploration and exploitation in motion
planning. In 2008 IEEE International Conference on Robotics and Automation, pp. 2812–2817.
IEEE, 2008.

Eduardo Rodrigues Gomes and Ryszard Kowalczyk. Dynamic analysis of multiagent q-learning
with ε-greedy exploration. In Proceedings of the 26th annual international conference on machine
learning, pp. 369–376, 2009.

Marlin P Strub and Jonathan D Gammell. Advanced bit (abit): Sampling-based planning with
advanced graph-search techniques. In 2020 IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 130–136. IEEE, 2020.

Anthony Triche, Anthony S Maida, and Ashok Kumar. Exploration in neo-hebbian reinforcement
learning: Computational approaches to the exploration-exploitation balance with bio-inspired
neural networks. Neural Networks, 2022.

11

Under review as a conference paper at ICLR 2024

Dengpeng Xing, Jiale Li, Tielin Zhang, and Bo Xu. A brain-inspired approach for collision-free
movement planning in the small operational space. IEEE Transactions on Neural Networks and
Learning Systems, 33(5):2094–2105, 2021.

Chenning Yu and Sicun Gao. Reducing collision checking for sampling-based motion planning
using graph neural networks. Advances in Neural Information Processing Systems, 34:4274–
4289, 2021.

Clark Zhang, Jinwook Huh, and Daniel D Lee. Learning implicit sampling distributions for motion
planning. in 2018 ieee. In RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 3654–3661, 2018.

12

Under review as a conference paper at ICLR 2024

A MORE RESULTS AND PERFORMANCE ANALYSIS

In this section, we quantitatively evaluate the overall performances of all the methods across var-
ious environments. Each performance metric contains average values and corresponding standard
deviations, which provide insights into the consistency and variability of the results.

Table 1: Success rate. In all environments, HLCA is able to find a collision-free path with a success
rate of 100%.

Easy2 Hard2 Maze3 UR5 Snake7 Kuka7 Kuka13 Kuka14

HLCA 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
GNN+smoother 1.00± 0.00 1.00± 0.00 0.99± 0.00 0.96± 0.00 0.99± 0.00 0.99± 0.00 0.99± 0.00 0.99± 0.00

GNN 1.00± 0.00 1.00± 0.00 0.99± 0.00 0.96± 0.00 0.99± 0.00 0.99± 0.00 0.99± 0.00 0.99± 0.00
NEXT 0.99± 0.00 0.97± 0.00 0.93± 0.00 0.38± 0.00 0.72± 0.01 0.87± 0.01 0.61± 0.01 0.66± 0.00
BIT* 1.00± 0.00 1.00± 0.00 0.98± 0.00 0.99± 0.00 1.00± 0.00 0.99± 0.00 0.99± 0.00 0.99± 0.00

LazySP 1.00± 0.00 1.00± 0.00 0.99± 0.00 0.99± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
informted-RRT* 0.88± 0.00 0.56 ± 0.00 0.62± 0.00 0.40± 0.01 0.69± 0.00 0.83± 0.00 0.67± 0.00 0.70± 0.00

RRT* 0.87± 0.00 0.55 ± 0.00 0.62± 0.00 0.39± 0.00 0.69± 0.00 0.84± 0.00 0.67± 0.01 0.68± 0.00

Suceess rate. The results presented in Table 1 highlight the performance of different methods in
terms of success rate in finding collision-free paths across various test environments. Our proposed
method HLCA achieves a remarkable 100% success rate in all the test environments, indicating
its high reliability and effectiveness. By comparison, RRT* and informed-RRT*, which employ
random extensions with target bias, exhibit lower success rates in certain environments. For instance,
RRT* achieves an 87% success rate in the Easy2 environment, and this rate drops to 55% in the
low-dimensional complex Hard2 environment. The meta-RL-based method NEXT performs well
in low-dimensional spaces but struggles in high-dimensional complex environments, with a success
rate of 37% in the UR5 environment. The state-of-the-art batch-sampling method BIT* consistently
achieves a success rate of no less than 99% across all environments. In addition, employing GNN
to accelerate motion planning algorithms in batch-sampling methods outperforms BIT*. LazySP
also performs well (not less than 99%) in all environments. To sum up, our method outperforms
or performs competitively with existing methods across a range of environments, emphasizing its
effectiveness and superiority in finding collision-free paths.

Table 2: Average collision checks. HLCA is able to achieve the best performance in all environ-
ments.

Easy2 Hard2 Maze3 UR5 Snake7 Kuka7 Kuka13 Kuka14

HLCA 129.05± 3.04 342.35± 13.90 4019.10± 92.49 2175.48± 94.14 955.05± 17.66 479.86± 63.64 500.43± 269.34 508.03±52.56
GNN+smoother 533.71± 9.41 1023.16± 8.71 13018.36± 440.52 5750.87± 250.91 2294.44± 79.87 725.30± 61.47 751.52±66.97 797.20± 89.22

GNN 416.54± 9.23 720.47± 7.46 11280.04± 442.34 3069.73± 225.07 1562.94± 60.27 633.79± 60.39 522.87±64.25 570.51± 90.29
NEXT 272.28± 14.81 1135.6± 37.7 9074.94± 237.82 6461.4± 16.47 4779.74± 22.73 2516.75 ± 45.73 4870.57± 129.12 4557.94 ± 71.22
BIT* 460.24± 5.55 1331.02±19.16 12258.05± 484.30 5270.79± 415.24 1185.82± 218.00 1523.72± 297.33 1382.40±471.56 1668.67 ± 192.56

LazySP 309.64± 4.27 836.80± 8.34 7851.77± 176.01 2533.09± 68.50 1588.88± 34.37 1492.77± 17.43 691.37±295.54 709.22± 32.34
imformted-RRT* 1791.55± 15.26 4080.78 ± 51.50 10134.94± 137.76 3134.25± 10.70 3355.42± 26.53 1685.87 ± 26.92 2991.66±41.12 2801.03±47.42

RRT* 1793.62± 21.49 4065.63 ± 40.78 10078.18± 65.00 3135.39± 9.94 3362.65± 14.35 1695.87± 31.82 2975.61±23.41 2798.55± 9.56

Average collision checks. In Table 2, our method HLCA demonstrates superior performance than
existing methods in terms of collision checks across all tested environments. RRT* and informed-
RRT* require a higher number of collision checks compared with other methods across all tested
environments. NEXT performs well in the Easy2 environment with only 272.28 collision checks, but
it still faces challenges with redundant sampling in higher dimensions, particularly in the UR5 and
Kuka14 environments. LazySP and GNN can significantly reduce collision checks by employing
hand-crafted heuristics and designing path explorers that iteratively predict collision-free edges,
respectively. Notably, HLCA requires only 28%, 25%, 32%, 42%, 93%, 18%, 34%, and 27% of
the collision checks performed by BIT*. GNN requires 322%, 210%, 283%, 141%, 164%, 132%,
104%, and 112% of the collision checks performed by HLCA in various environments. In Kuka14,
only 11% of the collision checks performed by NEXT are required by HLCA. All these results
indicate that HLCA is highly efficient in finding collision-free paths.

13

Under review as a conference paper at ICLR 2024

Table 3: Average path cost. HLCA can achieve a relatively low path cost in all environments, except
for the UR5 environment. Moreover, it achieves the lowest path cost from Kuka7 to Kuka14.

Easy2 Hard2 Maze3 UR5 Snake7 Kuka7 Kuka13 Kuka14

HLCA 1.08± 0.00 2.01± 0.00 1.28± 0.01 8.34± 0.04 5.19± 0.02 6.30± 0.03 9.67± 0.04 9.78± 0.09
GNN+smoother 1.31± 0.00 2.43± 0.01 1.85± 0.00 9.17± 0.19 5.28± 0.03 6.57± 0.05 9.97± 0.10 10.13± 0.05

GNN 1.50± 0.00 2.89± 0.01 2.17± 0.02 13.15± 0.28 6.28± 0.03 9.15± 0.07 17.19± 0.23 16.83± 0.26
NEXT 1.06± 0.00 2.04± 0.00 1.20± 0.00 4.90± 0.04 5.75± 0.02 7.90± 0.05 10.25± 0.11 10.73± 0.09
BIT* 1.40± 0.00 2.54± 0.00 1.85± 0.00 11.44± 0.14 5.96± 0.03 8.27± 0.03 11.39± 0.03 11.53 ± 0.02

LazySP 1.49± 0.00 2.61± 0.00 1.96± 0.00 12.12± 0.19 6.44± 0.02 9.00± 0.04 15.70± 0.11 16.21± 0.17
imformted-RRT* 1.15± 0.00 1.81 ± 0.00 1.10± 0.00 5.36± 0.06 5.04± 0.06 7.04± 0.06 10.03± 0.05 10.66± 0.01

RRT* 1.14± 0.00 1.82 ± 0.00 1.09± 0.00 5.41± 0.04 5.05± 0.04 7.07± 0.01 10.06± 0.05 9.56 ± 0.01

Average path cost. Table 3 presents the average path cost of different methods that successfully
find collision-free paths. Significantly, our method HLCA demonstrates exceptional performance
in terms of path cost. It achieves very low path costs in all environments and outperforms other
methods in Kuka7 to Kuka14. The results highlight the effectiveness of HLCA in finding collision-
free paths with low path costs, making it a promising approach for motion planning in complex
environments. Despite lower success rates and higher numbers of collisions, RRT* and informed-
RRT demonstrate low average path costs in all environments. The results demonstrate the lowest
path cost of 1.81, 1.09, and 5.04 in Hard2, Maze3, and Snake7 environments, respectively. This
can be attributed to the way their target bias is sampled, resulting in relatively simple solution paths
and low path costs. The GNN+smoother method, which incorporates path smoother and barrier
encoding, achieves superior performance in high-dimensional environments compared with other
baselines. However, LazySP, which relies on manually designed heuristics that do not prioritize
path cost reduction, exhibits much higher path costs in all environments.

Table 4: Total running time.
Easy2 Hard2 Maze3 UR5 Snake7 Kuka7 Kuka13 Kuka14

HLCA 5.18 ± 0.04 6.86± 0.11 5.64 ± 0.13 17.18± 0.45 10.20± 0.39 14.13± 0.53 9.52± 0.44 10.78± 0.42
GNN+smoother 1.99± 0.11 3.05± 0.05 7.40± 0.42 2.60± 0.33 1.26± 0.32 5.03± 1.86 1.50 ± 0.54 1.22± 0.31

GNN 1.70± 0.10 2.86± 0.05 7.16 ± 0.42 1.98± 0.32 1.15± 0.32 4.85± 1.86 1.35± 0.54 1.11± 0.31
NEXT 3.17± 0.04 5.13± 0.09 2.62± 0.04 23.49± 0.06 16.67± 0.25 18.57± 1.00 13.02± 0.03 15.89± 0.13
BIT* 0.47± 0.01 0.73± 0.02 2.01± 0.15 1.44± 0.44 0.36± 0.05 2.25± 1.09 0.98± 0.44 0.83 ± 0.43

LazySP 0.84± 0.03 1.48± 0.02 4.22± 0.12 2.27± 0.17 0.36± 0.02 1.93± 0.01 0.69 ± 0.30 0.99± 0.16
imformted-RRT* 1.02± 0.01 1.03 ± 0.02 1.01± 0.02 1.02± 0.02 1.01± 0.01 0.98± 0.02 0.88± 0.01 1.01± 0.16

RRT* 1.00± 0.01 1.00± 0.01 1.00± 0.01 1.00± 0.00 1.00± 0.00 1.00± 0.03 1.00± 0.01 1.00± 0.01

Total running time. Table 4 demonstrated the total running time for 1000 test problems for all
algorithms to find a successful path. A commonly raised issue regarding learning-based algorithms
is the time overhead attributed to the frequent utilization of a large neural network model during
solving problems, such as NEXT. The running time is higher than non-learning algorithms because
our algorithm is improved based on NEXT and runs multiple candidate strategies concurrently.
Nevertheless, our algorithm reduces the running time compared to NEXT. Future work could focus
on using pre-computation or caching, e.g., reusing past results to overcome some of this overhead.

B ABLATION STUDY:VARYING THE MAXIMUM SAMPLING NUMBER

In this section, we investigate the impact of the maximum sampling number NT on CAM and
HLCA, respectively.

CAM. We vary the Maximum sampling numberNT among the values
{200, 500, 1000, 2000, 4000, 6000} and analyze the corresponding impact on three metrics.
The results are presented in Figure 8. The results indicate that a higher value of NT leads to a
higher success rate. This demonstrates the significance of NT in achieving better performance
in planning problems. As the maximum sampling number increases, the robot can explore more

14

Under review as a conference paper at ICLR 2024

0 1000 2000 3000 4000 5000 6000
Maximum Samples

0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

ra
te

200 500 1000 2000 4000 6000
Maximum Samples

0

2

4

6

8

A
ve

ra
ge

 c
ol

lis
io

n
ch

ec
k(

x3
k)

200 500 1000 2000 4000 6000
Maximum Samples

0

2

4

6

8

10

12

A
ve

ra
ge

 p
at

h
co

st

Easy2D Hard2D Maze3D UR5
Snake7 Kuka7 Kuka13 Kuka14

(a) (b) (c)

Figure 8: Performance comparison for CAM with different maximum sampling number. From left
to right: (a) Success rate. (b) Average collision checks. (c) Average path cost.

state spaces and collect more information, which in turn improves the success rate. However, it is
important that increasing the value of NT also results in a higher number of collision checks, which
can affect the efficiency of planning. Therefore, there is a trade-off between samples and efficiency.
In certain environments, such as UR5, setting a specific value for NT , i.e., NT = 1000, is necessary
to achieve a good success rate while maintaining a reasonable level of efficiency. Interestingly, the
path cost remains almost constant for all settings of NT within the given range, which indicates
that the model is robust to changes in the maximum sampling number and that the path cost is not
significantly affected by variations in NT .

0 200 400 600 800 1000
Maximum Samples

0.8

0.85

0.9

0.95

1

Su
cc

es
s

ra
te

50 100 200 500 750 1000
Maximum Samples

0

1

2

3

4

A
ve

ra
ge

 c
ol

lis
io

n
ch

ec
k(

x1
k)

50 100 200 500 750 1000
Maximum Samples

0

2

4

6

8

10

A
ve

ra
ge

 p
at

h
co

st

Easy2D Hard2D Maze3D UR5
Snake7 Kuka7 Kuka13 Kuka14

Figure 9: Performance comparison for HLCA with different maximum sampling number. From left
to right: (a) Success rate. (b) Average collision checks. (c) Average path cost.

HLCA. We vary the maximum sampling number NT among
{50, 100, 200, 500, 750, 1000, 2000, 4000, 6000} on HLCA. To show more clearly the change in
performance before reaching the plateau, the results before 1000 was shown in Figure 9. The results
indicate that performing consistently across different settings of the maximum sampling number
NT . HLCA reaches a plateau in all environments when NT is 500 in success rate and path cost.
When NT is 1000, it achieves the highest success rate and exhibits robustness in various scenarios,
which highlights the effectiveness and adaptability in planning.

The computation cost on the GPU is measured and presented in Figure 10. As the maximum sam-
pling number (NT) increases, the robot needs to perform collision checking on states, resulting in
additional computational time. The results highlight the trade-off between performance and com-
putational cost. It is worth noting that beyond a certain point, increasing the maximum sampling
number does not yield significant improvements in the success rate but only leads to an increase in
the computational resources required. Therefore, it becomes crucial to determine the optimal value
for the maximum sampling number that strikes a balance between achieving desirable performance
and managing computational costs effectively.

15

Under review as a conference paper at ICLR 2024

0 5 10 15 20 25 30

Time

hard2

Snake7

Kuka7

Ur5

E
nv

iro
nm

en
t

0 20 40 60 80 100 120 140 160 180

Time

13D

14D

E
nv

iro
nm

en
t

50 100 200 500 1000 2000 4000 6000

Figure 10: Computation cost in different environments with different sample limits. The runtime for
each environment is normalized based on the result when the maximum sample number is 1000.

C HYPERPARAMETERS

These hyperparameters play a crucial role in determining the efficiency of the planning process.
Here, key hyperparameters are shown in Table C.

Table 5: Hyperparameter settings
Hyperparameters Values

α 0.7
β 0.9

Learning rate 1e-3
Training iteration 20

added m for each epoch 200
k-NN for GNN 20

Training batch size 8
Step size in 2D, 3D 5e-2
Step size in others 5e-1

Maximum sample number 1000
Batch size for GNN, BIT*, LazySP 100

D MORE CHALLENGING ENVIRONMENTS

We generate two groups of new test problems in the 2D environment, i.e., Dense2 and Large2. The
environment settings are as follows:(i) Dense2: size, 15 × 15, obstacle density, no less than 0.60.
(ii) Large2: size, 50 × 50, obstacle density, no less than 0.50. For Hard2, size is 15 × 15, obstacle
density is not less than 0.46. Maintaining consistent parameters across the environments, we tested
for all methods in new problems. The results are shown in D.

Table 6: Results in the more challenging environments
Dense2 Large2

success rate collision checks path cost running time success rate collision checks path cost running time

HLCA 0.99 ± 0.01 1959.04± 22.88 2.56± 0.02 12.18± 0.55 0.05± 0.00 3256.82± 10.25 2.52± 0.04 68.53± 1.26
GNN+smoother 0.96± 0.01 2727.04± 43.06 3.25± 0.02 5.65± 0.12 0.02± 0.00 5135.97± 30.76 2.54± 0.02 378.33± 0.31

GNN 0.96± 0.01 2304.78± 41.51 3.96 ± 0.02 5.45± 0.12 0.02± 0.00 5135.39± 31.31 2.82± 0.08 378.31± 3.38
NEXT 0.82± 0.01 5032.77± 50.21 2.38± 0.02 15.02± 1.89 0.00± 0.00 / / 85.80± 1.28
BIT* 0.95± 0.03 2628.65± 22.39 3.44± 0.01 1.39± 0.03 0.05± 0.00 9843.90± 129.08 3.22± 0.47 9.80± 0.22

LazySP 0.99± 0.01 2001.21± 19.35 3.44± 0.01 3.54± 0.11 0.02± 0.00 3162.30± 15.08 2.12 ± 0.11 93.39± 1.12
informted-RRT* 0.19± 0.01 4911.51± 20.36 1.80± 0.04 1.07 ± 0.02 0.69 ± 0.01 2836.94± 61.29 10.42± 0.03 3.67± 0.07

RRT* 0.19± 0.01 4929.20± 30.44 1.79± 0.04 1.00± 0.00 0.00± 0.00 / / 1.00± 0.03

Compared to Hard2, operating in the Dense2 environment with a high obstacle density demands
increased costs, collision checks, and runtime to reach the goal state. Our method performs best
in terms of success rate and collision checks. While RRT* and informed-RRT* demonstrate a low

16

Under review as a conference paper at ICLR 2024

Algorithm 1 HLCA
Input:V (s;θ), π(a|s;θ)
Parameter:batchsize Nb, training set size m

1: Initialize D0 ← ∅
2: for epoch n = 1, 2, · · · , N do
3: while i < m do
4: Sample a planning problem Ui

5: Obtain local optimal strategy ω∗
i and path ξ

6: Dn ← Dn ∪ (ξ, Ui) and i← i+ 1
7: end while
8: for j = 1, 2, · · · , n ∗m do
9: d← ∅

10: repeat
11: Sample dj from Dn

12: d← d ∪ dj
13: until len(d) > Nb

14: θ ← θ − η
Nb
▽θ

∑Nb

i=1 ℓn(V, π; d)
15: end for
16: end for

Algorithm 2 Reliability Inference
Input:α, Ui, I, Ω
Output:local optimal strategy ω∗

i

1:
2: ωi ← argmaxω∈I λω and obtain λmax

3: if λmax ≥ α then
4: ω∗

i = ωi

5: else
6: Sample probe strategy ωp ∼ Ω \ I
7: ω∗

i = ωp

8: end if

path cost, their success rate lags behind other methods, possibly attributed to their efficacy in solving
easy problems. NEXT exhibits lower path costs compared to other learning-based methods, but the
collision checks are nearly twice as high.

For large environments, all algorithms demonstrate a notable reduction in success rate. Only a
few instances where the distance between the start state and the goal state is not long succeed in
finding a path. The majority of failures may be attributed to the limitation of the maximum number
of samples, set as 1000. Particularly noteworthy is the superior performance of informed-RRT*,
because informed sampling limits the sampling area and reduces the need for samples. For future
work, we will try to set a higher maximum number of samples and introduce informed sampling to
enhance the performance of our algorithm in large environments.

E ALGORITHM

The pseudocodes of all our algorithms are provided in 1, 2, and 3.

F VISUALIZATION

We illustrate the path generated by RRT*, NEXT, and HLCA with 1000 samples in Figure 11, Figure
12 on Hard2 and Maze3 environments, respectively.

17

Under review as a conference paper at ICLR 2024

Algorithm 3 CAM
Input: problem U , threshold β, exploration limit Texplor, probe strategy ωp, local optimal strategy
ω∗

Output: snew
1: Initialize ξ ← ∅, Φ← ∅, S ← ∅
2: for all episode t = 0, 1, · · · , T do
3: Sample candidate states guided by ω∗ Scl ∼ S
4: s′ ← argmaxs∈Sc

l
ϕ(s)) and obtain ϕmax

5: if ϕmax ≥ β then
6: snew = s′

7: else
8: Φ← Φ ∪ ϕmax and S ← S ∪ s′

9: while ϕmax < β and t ≤ Texplor do
10: Sample probe states guided by ωp Spl ∼ S
11: s′ ← argmaxs∈Sp

l
ϕ(s)) and obtain ϕmax

12: Φ← Φ ∪ ϕmax and S ← S ∪ s′

13: t← t+ 1
14: end while
15: Obain index of maxΦ i and snew ← Si

16: end if
17: end for
18: return snew

RRT* NEXT HLCA

RRT* (failed) NEXT HLCA

Figure 11: Planned paths in Hard2. In the top line, the collision checks of RRT*, NEXT, and HLCA
are 2.56k, 1.80k, and 1.60k and the path costs of RRT*, NEXT, and HLCA are 1.40, 1.37, and
1.32. In comparison to RRT* and NEXT, the HLCA finds a successful path with significantly fewer
collisions and lower path costs. In the bottom line, the difference between the HLCA algorithm and
RRT* is particularly noticeable. The HLCA finds an optimal collision-free path, while RRT* fails
to do so. The collision checks of NEXT and HLCA are 1.92k, 1.78k and the path costs of NEXT
and HLCA are 1.36, 1.27. The HLCA demonstrates how it could improve planning effectiveness in
complex environments.

18

Under review as a conference paper at ICLR 2024

13

RRT* (failed) NEXT HLCA

RRT* (failed) NEXT HLCA

Figure 12: Planned paths in Maze3. In high-dimensional environments, the planning performance
of RRT* experiences a notable decline. In the top line, the collision checks of NEXT and HLCA
are 49.71k, 12.23k and the path costs of NEXT and HLCA are 2.78, 2.74. In the bottom line, the
collision checks of NEXT and HLCA are 10.08k, 6.93k and the path costs of NEXT and HLCA
are 2.55, 2.39. The HLCA outperforms both RRT* and NEXT in terms of collision checks and
path costs. This result demonstrates that our method significantly enhances planning performance
in high-dimensional complex environments. The HLCA addresses the limitations of RRT* and
provides a more efficient solution.

19

	Introduction
	Prefrontal foundations of human reasoning
	Preliminaries
	Setting for planning
	Notations

	Method
	Modeling reasoning process in the human PFC
	Neural Guided Concurrent Arbitration
	Harmonized Self-Improving Learning
	Reliability Inference
	Self-Improving Learning

	Experiments
	General Settings
	Overall Performance
	Inference Buffer Capability
	Ablation Study

	Conclusion
	More results and performance analysis
	Ablation Study:varying the Maximum sampling number
	Hyperparameters
	More challenging environments
	Algorithm
	Visualization

