Under review as a conference paper at ICLR 2021

BBREFINEMENT: AN UNIVERSAL SCHEME TO
IMPROVE PRECISION OF BOX OBJECT DETECTORS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a conceptually simple yet powerful and flexible scheme for refining
predictions of bounding boxes. Our approach is trained standalone on GT boxes
and can then be combined with an object detector to improve its predictions. The
method, called BBRefinement, uses mixture data of image information and the
object’s class and center. Due to the transformation of the problem into a domain
where BBRefinement does not care about multiscale detection, recognition of the
object’s class, computing confidence, or multiple detections, the training is much
more effective. It results in the ability to refine even COCO’s ground truth labels
into a more precise form. BBRefinement improves the performance of SOTA
architectures up to 2mAP points on the COCO dataset in the benchmark. The
refinement process is fast; it adds 50-80ms overhead to a standard detector using
RTX2080, so it can run in real-time on standard hardware. The code is available
at https://gitlab.com/irafm-ai/bb-refinement.

Input: an image :

/ BBRefinement \

1
1
]
7 Generic object detector NN ™\ Whole f P S—
image 1 v
¥ 1
v ' v
1
¥ 1
---------------- bl ¥
0 Rescaled
image crops

Location of boxes
Centers and classes

¥) \ ‘ /
<Pred|cted boxes) Refined boxes

\#L‘ ’4’<P“’-dided scores Predicted scores
/ i
Predicted classes
\

Figure 1: The figure illustrates the proposed pipeline of prediction. A generic object detector pro-
cesses an image, and then the detected boxes are taken from the original image, updated by BBRe-
finement, and taken as the output predictions.

OUTPUT

Predicted classes

1 PROBLEM STATEMENT

Object detection plays an essential role in computer vision, which attracts a strong emphasis on
this field among the researchers. That leads to a situation when new, more accurate, or faster object
detectors replace the older ones with high frequency. A typical object detector takes an image
and produces a set of rectangles, so-called bounding boxes, which define borders of objects in the
image. The detection quality is measured as an overlap between the detected box and ground truth
(GT), and it is essential for two reasons. Firstly, the criterion used in benchmarks — mean Average
Precision (mAP) — is based on particular thresholds for various values of Intersect over Union (IoU)
between the prediction and the GT. Such thresholds are typically applied to distinguish between
accepted and rejected boxes in detection. Therefore, precision here is crucial to filter valid boxes

Under review as a conference paper at ICLR 2021

from discarded. Secondly, the more precise the detected box is, the more accurate the classification
should be. Although NN-based classifiers can deal with some tolerance in shifted or cropped data,
the higher accuracy in the object detection may lead to the increased accuracy in the classification
process.

Existing solutions for object detection yield accuracy around 0.3-0.5mAP on the COCO dataset
(Lin et al., |2014). Such a score allows the usage in many real applications. On the other hand,
there is space for improvement. A combination of the following may reach such growth: more
precisely distinguish between classes; increase the rate of true-positive detections; decrease false-
positive detections; or increase the IoU of the detections. There are four points on why object
detection may be difficult in general, which blocks further mAP growth. 1) A neural network has to
find all objects in an image. The number may vary from zero to hundreds of objects. 2) A neural
network has to be sensitive to all possible sizes of an object. The same object class may be tiny
or occupy the whole image. 3) A network usually has no a priori information, which should make
the detection easier, like the context of the scene or the number of objects. 4) There is a lack of
satisfactory big datasets. Therefore, the distribution of data is sampled roughly only. In this paper,
we propose BBRefinement, which can suppress the effect of all the four mentioned difficulties.
The proposed inference scheme ’Detection — Refinement’ is achieved by a combination during
prediction phase with a generic detector, and it increases the IoU of the detected boxes with its
ground truth labels, resulting in higher mAP.

Related work. The problem of refinement can be tracked to the origin of two-stage detectors, where
R-CNN (Girshick et al., 2014)) uses a region proposal algorithm that is used to generate a fixed num-
ber of regions. The regions are classified and by bounding box regressor refined. Faster R-CNN (Ren
et al.| 2015) replaces the region proposal generation algorithm with a region proposal network. The
same bounding box regressor can be used iteratively to obtain more precise detections (Gidaris &
Komodakis 20155 |Li et al., 2017). The effect of iterative refinement may be increased by involving
LSTM module (Gong et al., 2019). The aim of refinement can also be anchors; RefineDet (Zhang
et al.| 2018 12020) refines them to obtain customized anchors for each cell. Cascade R-CNN (Cai &
Vasconcelos, 2018) uses a sequence of bounding box regressors to create n-staged object detector.
In Cascade R-CNN, network head & takes proposals from the region proposal network and feeds
the regressed bounding boxes to network head h; and so on. All the heads work over the same
features extracted from a backbone network. The cascade scheme shows that h is dependant on
the quality of hy head. If hy includes some bias, h; balances it. Therefore, all the heads have to
be trained together (part by part), and if hg is retrained, h; should be retrained as well. In contrast,
BBRefinement is a trained standalone, and it is not dependent on the quality of the object detec-
tor with whom it is coupled during inference. That makes BBRefinement universal and able to be
applied on various image detectors without retraining a detector or BBRefinement.

2 EXPLAINING BBREFINEMENT

The main feature of BBRefinement is a transformation of the problem into a simpler scheme, where
an NN can be trained easily. Compared with a standard object detector, BBRefinement is a spe-
cialized, one-purpose neural network working as a single object detector. It does not search for
zero-to-hundreds objects, but it always detects only a single object and does not produce its confi-
dence. It is also missing the part responsible for classification, so it does not assess the object’s class.
The only purpose is to take an image with a single object within a normalized scale and generate a
super-precise bounding box. The training is realized on boxes extracted from a dataset according
to ground truth labels. When BBRefinement is trained, the fixed model can be coupled with an ar-
bitrary detector to realize the inference. Here, the feed for BBRefinement is bounding boxes in the
form of image data produced by the detector.

2.1 PROBLEM WITH A NAIVE SINGLE OBJECT DETECTOR

Let bounding box b be given by its top-left and bottom-right coordinates b = (x1,y1, %2, y2)-
Further, let us suppose a color image f : D C N?> — L C R3. Then a neural network detecting
single object is generally noted as g : f — b. To train such a network, we generally minimize term
|b — g(f)] or its alternatives.

Under review as a conference paper at ICLR 2021

The issue comes when f includes two objects at once, and the network is extended to produce two
bounding boxes. The network should return b; for the first object and b for the second one. How-
ever, a generic solution will predict a box 0.5(by + by) for the both cases, or generally 1/n > | b,
for n if we consider that the boxes have the same frequency of occurrence. A naive solution is to
modify the network to detect a sparse set of objects g : f — B, where B = {by,bs,...,b,}
assumes boxes in a fixed order. Such a detection scheme is not possible in general without a deeper
modification of an architecture leading to the presence of a grid, etc. With no guarantee of a sin-
gle object’s presence only, the naive solution cannot be used. This problem was solved later in
chronological order by a sliding deformable models / window technique (Felzenszwalb et al.,|2009),
two-stage techniques such as (Fast/Faster) R-CNN (Ren et al} [2015), single-stage techniques as
SSD (Liu et al.,[2016) or YOLO (Redmon & Farhadi, |2017) and finally by anchors-free techniques
that are mainly keypoint-based (Law & Deng|, |2018). Every such approach affects the architecture
of the neural network and is related to a specific model.

BBRefinement, as a single object detector, would suffer the shortcomings mentioned above. The
reason is that even if we have an extracted object defined by its bounding box, such bounding box
for a non-rectangular object will also involve some background, which may contain other objects.
The presence of other objects leads to the problem described in the previous paragraph, and in
conclusion, it may confuse the neural network, thus cause improper refinement. The examples from
the COCO dataset are shown in Figure [2] for the easy case and in Figure [3] for the problematic
case. For illustration, the COCO dataset includes 1.7M boxes from which 47% of all boxes have an
intersection with a box with the same class, and 84% of boxes have an intersection with an arbitrary-
class box. To solve the problem, BBRefinement uses information about the object’s class and center

as well.
1 4 L2 Qw/!;
i 2 __ ?

Figure 2: The figure shows crops which can be refined even with the naive way because a crop

Figure 3: The figure shows crops that cannot be refined by the naive way because a crop includes
multiple objects, usually of the same class. Note, precise labeling of such images is a hard task even
for humans.

2.2 THE PRINCIPLE OF BBREFINEMENT

Firstly, we need to define a neural network in more detail, so we suppose a convolutional neural
network F to be set of k layers, F = {f1, fo,..., fx}. Here, all the layers are meant as f; : D C
R™ — L C R™ which are for the sake of simplicity defined as convolutions layers without
poolings/residual connections/batch norms etc, i.e., f;(M;) = a(W; ® M;), where a is activation
function, W, weights and M; is output of the previous layer, or, an input image in the case of
1 = 1. Such a neural network is generally called as a backbone, with the aim to map an input image
iteratively into feature space. Here, we suppose ¢, : D C R™ — L C R to be an embedding of
the k-th layer created as e (fx(My)) = p(frx(Mg)), where p is global average pooling or flattening
operation.

Furthermore, we suppose a fully connected network G to be set of j layers, G = {g1,92,...,9;}.
All layers are meant as g; : D C R% — L C R% as g;(M;) = a(W;M,), where a is activation
function, W; weights and M, is an output of the previous layer, or an input vector in the case of
i =1

According to the motivation, we propose to use mixture data as an input to the suggested scheme
of refinement. Convolution neural network [processes the input image (crop with a fixed resolu-
tion) containing an object, a fully connected neural network G processes a fixed-size vector that

Under review as a conference paper at ICLR 2021

holds information about a class and an expected center of the object. The both networks are de-
signed in order to |eg(fx(Mg))| = |g;(M;)| be valid. Then, both information is mixed together as
z = ex(fu(My)) - g;(M;), where - is a dot product. Finally, we connect 2 with the output layer
o consisting of four neurons and utilizing the sigmoid activation function. Such a neural network
is trained in a full end-to-end supervised scheme. From a practical point of view, we can use an
arbitrary SOTA backbone such as ResNeSt, ResNeXt, or EfficientNet, to mention a few. For BBRe-
finement, we use EfficientNet (Tan & Lel [2019) due to its easy scalability. In the benchmark section,
we are presenting results for versions BO-B4. According to the version, an input image’s resolution
is 2242, 2402, 2602, 3002, and 380%. The version affects |e(fx(Mg)| as well, it is 1280 (BO and
B1), 1408, 1536, and 1792.

The pipeline for the prediction with BBRefinement is illustrated in Figure [T and is as follows. The
boxes detected by a generic object detector are taken (with small padding) from the input image and
rescaled into the BBRefinement input resolution. That has several beneficial consequences. Firstly,
bigger objects are downscaled, and smaller are upscaled to fit the resolution, so all the objects
have the same scale, which is much more effective than train a network for multiscale detection.
Second, one image from the dataset yields multiple boxes. In the case of COCO, a standard detector
uses 0.2M images (one image as an input), while BBRefinement uses 1.7M images (one box as
an input). Also, a standard detector rescales the input images into a specific resolution to fit GPU
memory, so many pixels are thrown out. BBrefinement does not use non-object parts from the
image, but it allows us to use more pixels from the object-are due to a weaker downsample. Third,
thanks to mixture data usage, BBRefinement obtains information about the object’s detected class
and center. Although such data may be imprecise, it is a piece of priory information, making the
task more accessible. Finally, there is a guarantee that each crop includes just one main object.
That explains why BBRefinement can produce more precise coordinates of bounding boxes than a
general object detector. Note, it is necessary to take into account BBRefinement is placed on top
of an object detector, which may be imprecise. As a result, the data fed into BBRefinement may
be ambiguous. Therefore, the crops should not be extracted precisely but surrounded by padding;
during the training, the padding is random. For the same reason, it is beneficial to distort the center
by random shifts for training. Such augmentation is visualized in Figure 4]

Figure 4: Augmentations of a box. The green box represents the GT label. The original crop is
randomly padded. The center’s position is slightly distorted (and visualized as a green dot) as we
suppose BBRefinement will be applied to a generic detector’s predictions, which can produce such
distortion.

To realize the refinement, there are several options on how to define loss function ¢ used for training
BBRefinement. The first option is to compare each coordinate of the box with the GT label using,
e.g., binary cross-entropy (BCE). The second option is to use BCE for comparing top-left points
and then euclidean distance for evaluating the width and height of a box. Such an approach is
used, e.g., in YOLO. The third way is to use coordinates of all points to determine the boxes’ areas
and compute ToU. Let us imagine a situation where a box is shifted by a pixel according to its
label in a vertical and horizontal direction. If we shift the box in the directions separately, we will
observe that the sum of such partial losses will be equal to the loss produced by shifting in both
directions at once. That is not valid behavior; the second loss should be bigger. On the other hand,
the triangle inequality is fulfilled when IoU is used. The next problematic situation is when the
euclidean distance is used: bigger boxes tend to produce bigger differences than small boxes. This
means they produce bigger losses, and a neural network tends to focus on them more than on the
small boxes. IoU is computed as a relative value; therefore, the same difference in width or height
creates a bigger loss for small boxes, which is the desired behavior. Based on these reasons, we
use IoU-based loss for training BBRefinement. We have two available options on how to define
the ToU loss function. Namely ¢ (b, b") = —log(i(b,b")/u(b, b)) for the logarithmized form and
l5(b,b') = 1.0 — i(b,b") /u(b, b’) for the linear form, where 4 represents intersection of two boxes,
u their union, b is GT box, and b’ predicted box.

Under review as a conference paper at ICLR 2021

Logarithmized form. Let us consider a task where the evaluation criterion involves IoU with some
threshold, such as 0.5, which can be found in many real competition websites such as Kaggle or
Signate. Here, it is much more to satisfy the threshold rather than to reach the best possible IoU.
Here, the goal of the BBRefinement is to take unprecise boxes (with IoU<0.5) and push them over
the threshold. The logarithm-shape of IoU loss generates the biggest loss for unprecise boxes, while
the loss is vanishing for high-precision boxes, similar to Focal loss (Lin et al., 2017). That is also
beneficial if we take into account that no dataset is perfect, and labels created by humans are not
accurate. Here, the property of smaller loss for near-perfect detections would be beneficial.

Linear form. The COCO dataset’s official benchmark computes mAP for several IoU thresholds,
such as 0.5, ..., 0.95. Here, the situation is the opposite: by refinement, pushing a box from, e.g.,
0.4 into 0.95, is more beneficial than refine three boxes from 0.4 to 0.54. The reason is that a box
with IoU >0.95 will be taken into account in all the IoU thresholds, while a box with IoU 0.54 will
be taken into account only for the threshold of 0.5; other thresholds will count it as a false positive.
Therefore, we use the linear form in the following benchmarks.

Note, both forms of the loss function can be based on a more efficient version of IoU. The
other choices may be Generalized IoU loss (Rezatofighi et al., 2019), Complete IoU, or Distance
IoU (Zheng et al.l|2020). Generally, these IoUs converge faster and are able to compute loss effec-
tively, even for boxes without overlap.

3 BENCHMARK

The setting of the training: BBRefinement was trained using two different computers with cards
RTX 2060 or 2080. The resolution of models corresponds to the default setting of EfficientNet (Tan
& Le, [2019) version, namely side size of 224, 240, 260, 300, and 380px for version BO-B4 with
the batch size of 7-40 according to the version and memory of the used graphic card. For training,
we used COCO dataset (Lin et al.| 2014) as follows. We merged train 2014, train 2017, and a part
of valid 2014. The unused part (5000 images) of valid 2014 has been used as the valid set. The
testing set is represented by valid 2017. The loss function is linear IoU described above, optimizer
AdaDelta (Zeiler,|2012) with default learning rate, i.e., « = 1.0, and functionality of decrease learn-
ing rate by factor 0.5 with patience equal to two. We also experimented with cyclic LR (Smith}
2017), which converged faster but generally produced significantly worse the best loss than the used
scenario. During one epoch, all training images were processed, and a single random box has been
taken from each one of them. Each such box was augmented by random padding (each side sep-
arately), by linear/non-linear HSV distortion, CLAHE, and by flipping. The information about the
box center has been augmented by distorting the coordinates. The illustration of the augmented box
is shown in Figure[d] Models were trained until loss did not stop decrease, which took approx 70-90
epochs. For illustration, the heaviest used backbone, EfficientNet B4, was trained for nine days on
a computer with an RTX2080Ti. For the comparison, we selected SOTA networks, namely Faster
R-CNN (Ren et al., 2015)), RetinaNet (Lin et al., [2017) (both for two various backbones), and Cas-
cade R-CNN[Cai & Vasconcelos|(2018). All of them are available through Detectron2 framewor
Next, we used DETR (Carion et al., |2020), which is available through official implementatiorﬂ de-
rived from MMDetection framework. We used the reference models trained on the COCO dataset
and realized the inference only.

The detailed results are presented in Table[I] We want to emphasize that BBRefinement improves
the mAP of all but Cascade R-CNN models, considering the standard [ToU=0.50:0.95] setting, while
holds that the heavier backbone of BBRefinement usually brings a stronger boost. Also, it holds that
the worse the baseline model, the bigger increase of mAP. Considering the objects’ size according
to the COCO tools (small-medium-big), the situation is not so straightforward. In the case of small
objects, EfficientNet-B1 can be marked as the best backbone with the claim that it may be beneficial
to refine only the less precise models; otherwise, BBRefinement may even decrease the performance.
For medium objects, BBRefinement EfficientNet-B2 is the best one, and the usage of refinement
leads to an increase of accuracy in all but Cascade R-CNN models. A similar situation is for the large
objects where BBRefinement EfficientNet-B4 is the best one in all the cases. There is a hypothesis
that strong upscaling of small objects leads to a distortion and, therefore, to decreased performance.

"https://github.com/facebookresearch/detectron2
“https://colab.research.google.com/github/facebookresearch/detr/blob/colab/notebooks/detr_demo.ipynb

Under review as a conference paper at ICLR 2021

Table 1: mAP [IoU=0.50:0.95] performance of original and refined predictions on the COCO
dataset. The table shows accuracy in the form of IOU of a generic detector when its official, pre-
trained model is used — marked as a baseline. The right part shows IOU accuracy when the same
pre-trained model is coupled with BBRefinement. All BBRefinement versions are trained only once,
and the same trained version is used for all multiple detectors. For the training of BBRefinement,
we use the same split as it is common and has also been used by the authors of the generic detectors.

BBRefinement, EfficientNet

Model Baseline | BO Bl B2 B3 B4 | Boost
All objects

Faster R-CNN, ResNet-50 C4 1x 35.7 374 377 379 38.0 379 | +2.3

Faster R-CNN, ResNeXt-101 FPN 3x 43.0 43,1 433 43,6 43.6 43.6 | +0.6

RetinaNet, ResNet-50 FPN 1x 374 383 386 388 388 388 | +14

RetinaNet, ResNet-101 FPN 3x 40.4 40.6 408 411 411 411 | +0.7

DETR, ResNet-50 34.3 356 358 36.0 360 36.0 | +1.7

Cascade R-CNN, ResNet-50 FPN 3x 44.3 43.0 432 434 434 435| 0.8
Small objects

Faster R-CNN, ResNet-50 C4 1x 19.2 193 195 19.1 19.1 192 | +03
Faster R-CNN, ResNeXt-101 FPN 3x 27.2 25.8 259 259 257 259 | -13
RetinaNet, ResNet-50 FPN 1x 23.1 22,1 221 221 220 22.0| -1.0
RetinaNet, ResNet-101 FPN 3x 24.0 235 234 234 234 234 | -05
DETR, ResNet-50 14.3 159 16.0 159 159 157 | +1.7

Cascade R-CNN, ResNet-50 FPN 3x 26.6 24.6 245 243 244 244 | 20
Medium objects

Faster R-CNN, ResNet-50 C4 1x 40.9 424 426 430 43.0 431 | +2.2
Faster R-CNN, ResNeXt-101 FPN 3x 46.1 46.6 468 472 47.0 472 | +1.1
RetinaNet, ResNet-50 FPN 1x 41.6 429 4311 43.6 434 434 | +20
RetinaNet, ResNet-101 FPN 3x 443 448 451 455 454 454 | +12
DETR, ResNet-50 36.6 384 387 389 388 389 | +23

Cascade R-CNN, ResNet-50 FPN 3x 47.7 46.7 470 473 472 474 | 03
Large objects

Faster R-CNN, ResNet-50 C4 1x 48.7 52,5 532 535 535 536 | +49
Faster R-CNN, ResNeXt-101 FPN 3x 54.9 56.6 57.1 573 575 577 | +28
RetinaNet, ResNet-50 FPN 1x 48.3 50.7 51.0 513 513 514 | +3.0
RetinaNet, ResNet-101 FPN 3x 52.2 53.8 542 544 544 545 | +23
DETR, ResNet-50 51.5 520 523 527 528 528 | +13

Cascade R-CNN, ResNet-50 FPN 3x 57.7 573 578 580 58.1 585 | +0.8

4 DISCUSSION

Bugs in a dataset: Deep learning, as a data-driven approach, is directly dependent on the quality
of data. On the other hand, it is impossible to create a flawless dataset. The object detection task’s
general issues are incorrect classes, imprecise box boundaries, and missing boxes. BBRefinement
is (as standard object detectors) vulnerable to the first two issues, but (opposite to standard object
detectors) resistant to the third issue. If we consider missing labels as illustrated in Figure[5] we will
penalize a detector during training if the detector will produce predictions for such missing labels.
That will lead to decreased performance. In the case of BBRefinement, the training data are created
from the labels. If some label is missing, a cropped image will not be produced. So, the missing
labels only decrease the training set’s size but do not affect BBRefinement’s performance.

Refinement of a dataset: We also tested the most precise object detector, DetectoRS (Qiao et al.,
2020), which can reach the mAP above 0.5. In that case, we observed a decrease of mAP by 1.3
after the refinement. We analyzed visual outputs and recognized interesting behavior: DetectoRS’s
predictions are closer to GT, but the refined predictions look visually better, even better than the GT.
Therefore, we realized a second experiment. We took GT test labels, refined them, and visualized
both of them into an image. Surprisingly, we can claim that BBRefinement can produce more precise
labels than COCO dataset. On the other hand, because the boxes’ positions are not identical, refined

Under review as a conference paper at ICLR 2021

GOODMAYES BOYS' SCHOOL. APRIL. 1

Figure 5: The figure illustrates two images taken from the COCO dataset, where the boxes are
inpainted ground truth labels. It is evident that some labels are imprecise, and a lot of labels are
missing. Such behavior can be seen mainly in images that include groups, and it is a known issue of
the COCO dataset.

Figure 6: The image illustrated crops with green ground truth and yellow refined inpainted labels.
Here, BBRefinement creates labels with significantly higher precision than is the ground truth. Best
see zoomed-in.

boxes do not yield to IoU of 1.0, and therefore, the mAP can be decreased when BBRefinement is
applied on a high-precise object detector. The reason why an object detector can produce predictions
on a test set closer to GT than the refined version is unclear for us. Figure[6] shows crops from the
test set with inpainted boxes: green color marks GT boxes given by the COCO dataset, and yellow
the labels produced by BBRefinement. We selected the images in Figure[6]as such cases, where it is
obvious that BBRefinement yields more precise boxes. Note, [oU between predictions and GT varies
here around 0.8. Because the dataset is big, and eight selected crops were chosen selectively, we also
selected eight additional crops as follows. The first one has index 100 in the ordered list of images,
the second one 200, the third one 300, etc., so the selection is not affected by our preference. They
are illustrated in Figure[7] We can proudly claim that BBRefinement, although not so significant as
for the previous cases, still produces more precise boxes than GT (see best zoomed-in). Also, we
applied BBRefinement trained on COCO to the Cityscapes dataset. Again, BBRefinement makes
visually more precise labels than the Cityscapes ground truth is. Such a finding leads us to three
conclusions. First, it is ambiguous to compare high-mAP object detectors because the high mAP
does not necessarily mark a better detector in the meaning of real-world truth as the labels are
affected by human subjection and error. Next, thanks to the high number of boxes, BBRefinement
can be trained in such a generalized manner that the labeling error can vanish, so it can be used for
re-labeling a dataset. Finally, there is a hypothesis that IoU between BBRefinement trained on a

Under review as a conference paper at ICLR 2021

Figure 7: The image illustrated crops with green ground truth and yellow refined inpainted labels.
The crops were selected uniformly according to their index to show general cases. Here, BBRefine-
ment proposes slightly higher precision than the ground truth has. Best see zoomed-in.

specific dataset, and its GT labels can be used to express the quality of labels. The verification of
this hypothesis is a theme for future work.

5 ABLATION STUDY

Comparing with a naive refinement without mixture data We have trained BBRefinement with
EfficientNetB1 with the same setting as is used in Section 3| but without mixture data. It means
that only visual information represented by image crops is available during training and inference.
During the inference, we coupled it with *Faster R-CNN, ResNet-50 C4 1x’. It achieved mAP
performance on all/small/medium/big areas of 34.0/15.1/38.9/48.5. That is better than the baseline
performance, 33.1/15.0/38.0/46.3, but worse than the full couple with the mixture data, which yields
34.9/15.5/39.5/50.2. This finding confirms the meaningfulness of the proposed scheme.

Influence of the accuracy of center and class: The
performance of BBRefinement is affected by the accu-
racy of the used object detector. Therefore, we realized
an experiment where GT data were distorted, fed into
BBRefinement, and IOU between the refined and GT
was measured. In the ideal case, IOU would be 1.0.
As we show in Figure [8] we distorted the position of
the center and the correct class separately. The distor-
tion for center c is realized as ¢ = (¢ + da, ¢y + dy),
where d,;,d, ~ U(—d,d) and by d we mean the maxi- Figure 8: Influence of distortions
mum distortion. For the class distortion, we replace n%

of correct classes with random incorrect classes. The figure shows that BBRefinement is robust on
incorrect class, but it is sensitive to center position distortion. Such strong robustness in the dis-
tortion of class may, on the other hand, mean that information about the class is not important for
BBRefinement, and therefore, BBRefinement can be trained even without it.

Distorted position of center by % of width/height

e % of dataset objects have distorted class

0.9 -
0.8 |-
0.7 | | | | | | | | |
0 5 10 15 20 25 30 35 40 45 50

10U between refined and GT

Distorted [%]

Speed of the inference: In some applications, the ability to run in real-time may have the same
importance as high precision. Therefore, BBRefinement should not increase the inference time
significantly. Via a selection of BBRefinement’s backbone, the tradeoff between speed and precision
can be controlled. The BBRefinement’s inference time is consisting of two parts, the preparation of
the crops and the inference itself. While the first part depends on the CPU, the second part relies
on GPU power only. Speaking in numbers, we measured the time of BBRefinement with backbone
EffnetB1 and EffnetB3. For both cases, the non-optimized preparation of crops on CPU costs 32ms

Under review as a conference paper at ICLR 2021

per image, where the image can include multiple crops. The time on GPU is 23ms for B1 and 44ms
for B3. We could predict all crops from a single image in one batch, which helped keep the time
small. The time means that BBRefinement runs 18FPS for the B1 backbone and 13FPS for the
B3 one. The speed can be further increased by parallelizing crops’ preparation and optimizing the
model’s speed by automatic tools.

Influence of crops size We have selected BBRefinement [%" Small Medium Biz
with EfficientNetB2 backbone and trained it for various £ 0°
crops size to reveal the impact. To converge faster, we § 0.3 [
have weakened the setting compared to the *full exper- g‘f =
iment’, namely 3000 steps per epoch, batch size 8, and 5 oLl | ‘ ‘

. < Yo o (=} (=} j=3 =3
patience 1 in reducing the learning rate. During the in- £ IS 3 2 2 3

ference, it was coupled with *Faster R-CNN, ResNet-50
C4 1x’. According to the graph in Figure[9] we can con-
clude the experiment the model is stable, and the crop
size has a minor impact for all sizes but 600, where is a decrease in performance. For the extreme
case of crops size 600, almost all objects, including the big ones, are upsampled, which distorts
them.

Side size of crops [px]

Figure 9: Influence of crops size

6 CONCLUDING REMARKS

We discussed the difficulties of the object detection problem. We shown the difficulties can be
suppressed by the refinement stage coupled with an object detector, if the refinement is given as
a single-object detector. To solve the problem when one bounding box includes more objects, we
propose to use mixture data where the image information is complemented with information about
the object’s class and center, which helps the network to refine the desired object. We showed the
simple scheme could increase the mAP of the SOTA models. Finally, we presented that our scheme,
BBRefinement, is able to produce predictions that are more precise than ground truth labels.

As the refinement process is partially independent of the detector, this approach opens a new re-
search direction. The original research, which is focused on increasing accuracy by proposing new
architectures, etc., can now be complemented with independent research of refinement networks.
The final system, which can be deployed to real productions on various competitions (such as Kag-
gle or Signate), may consist of a combination of the best algorithms from both types of research.

ACKNOWLEDGMENTS

The work is supported by ERDF/ESF “Centre for the development of Artificial Intelligence Methods
for the Automotive Industry of the region” (No. CZ.02.1.01/0.0/0.0/17_049/0008414)

REFERENCES

Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving into high quality object detection. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 6154-6162,
2018.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov,
and Sergey Zagoruyko. End-to-end object detection with transformers. arXiv preprint
arXiv:2005.12872, 2020.

Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan. Object detection
with discriminatively trained part-based models. IEEE transactions on pattern analysis and ma-
chine intelligence, 32(9):1627-1645, 2009.

Spyros Gidaris and Nikos Komodakis. Object detection via a multi-region and semantic
segmentation-aware cnn model. In Proceedings of the IEEE international conference on com-
puter vision, pp. 1134—-1142, 2015.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for ac-
curate object detection and semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 580-587, 2014.

Under review as a conference paper at ICLR 2021

Jicheng Gong, Zhao Zhao, and Nic Li. Improving multi-stage object detection via iterative proposal
refinement. In BMVC, pp. 223, 2019.

Hei Law and Jia Deng. Cornernet: Detecting objects as paired keypoints. In Proceedings of the
European Conference on Computer Vision (ECCV), pp. 734-750, 2018.

Jianan Li, Xiaodan Liang, Jianshu Li, Yunchao Wei, Tingfa Xu, Jiashi Feng, and Shuicheng Yan.
Multistage object detection with group recursive learning. IEEE Transactions on Multimedia, 20
(7):1645-1655, 2017.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollar, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740-755. Springer, 2014.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dolldr. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision, pp.
2980-2988, 2017.

Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and
Alexander C Berg. Ssd: Single shot multibox detector. In European conference on computer
vision, pp. 21-37. Springer, 2016.

Siyuan Qiao, Liang-Chieh Chen, and Alan Yuille. Detectors: Detecting objects with recursive
feature pyramid and switchable atrous convolution. arXiv preprint arXiv:2006.02334, 2020.

Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 7263-7271, 2017.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. In Advances in neural information processing systems,
pp. 91-99, 2015.

Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, lan Reid, and Silvio Savarese.
Generalized intersection over union: A metric and a loss for bounding box regression. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 658—666,
2019.

Leslie N Smith. Cyclical learning rates for training neural networks. In 2017 IEEE Winter Confer-
ence on Applications of Computer Vision (WACV), pp. 464-472. IEEE, 2017.

Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. arXiv preprint arXiv:1905.11946, 2019.

Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

Shifeng Zhang, Longyin Wen, Xiao Bian, Zhen Lei, and Stan Z Li. Single-shot refinement neural
network for object detection. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 4203-4212, 2018.

Shifeng Zhang, Longyin Wen, Zhen Lei, and Stan Z Li. Refinedet++: Single-shot refinement neural
network for object detection. IEEE Transactions on Circuits and Systems for Video Technology,
2020.

Zhaohui Zheng, Ping Wang, Wei Liu, Jinze Li, Rongguang Ye, and Dongwei Ren. Distance-iou
loss: Faster and better learning for bounding box regression. In AAAI, pp. 12993-13000, 2020.

10

	Problem statement
	Explaining BBRefinement
	Problem with a naive single object detector
	The principle of BBRefinement

	Benchmark
	Discussion
	Ablation study
	Concluding remarks

