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Reason-and-Execute Prompting: Enhancing MultiModal Large
Language Models for Solving GeometryQuestions

Anonymous Authors

As shown in the figure, use
parallelogram WXYZ to

find ∠∠WZY.

As shown in the figure,
find the area of the

shaded region. Round to
the nearest tenth.

Find the value of x in the
figure below.

answer：：75 answer：：5 answer：：128 answer：：60 answer：：37.4answer：：7

Circle O has a radius of
13 inches. Radius O B is
perpendicular to chord C

D which is 24 inches long.
Find OX.

Find the area of the
figure.

For trapezoid A B C D, S and
T are midpoints of the legs.
If A B = x + 4, C D = 3 x + 2,

and S T = 9, find A B.

Figure 1: Examples of answering various geometry questions using Reason-and-Execute Prompting templates.
ABSTRACT
MultiModal Large LanguageModels (MM-LLMs) have demonstrated
exceptional reasoning abilities in various visual question-answering
tasks. However, they encounter significant challenges when answer-
ing geometry questions. These challenges arise due to the need to
engage in rigorous reasoning and executing precise arithmetic. To
enhance the ability of LLMs to solve multimodal geometric ques-
tions, we propose Reason-and-Execute (RaE) prompting: a new
prompting method specifically designed for enhancing MM-LLMs
to solve geometric questions. Specifically, we first designed a rigor-
ous reasoning process based on domain knowledge of geometry,
using a reverse thinking approach, and obtained the precise arith-
metic steps required for solving the question. Secondly, based on
the analysis of the reasoning process, we designed code blocks in
a programming language to implement the arithmetic functions.
Finally, by executing the contents of the code blocks using an in-
terpreter, we obtained the answers to the geometric questions. We
evaluated the accuracy of 9 models in answering questions on 6
datasets (including four geometry datasets and two science datasets)
using different prompting templates. Specifically, in the main ex-
perimental result, our RaE showed a maximum enhancement of
12.8% compared to other prompting methods, which proves strong
reasoning and arithmetic abilities in solving geometric questions
of our method. Moreover, we analyzed the impact of answering
from the perspective of solving geometric problems by considering
multiple factors, including domain knowledge, geometry shapes,
understanding of the question text, and language. This once again
emphasizes that our method has passed the comprehensive test
of solving geometry questions. The source code and data will be
published in a GitHub repository.
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1 INTRODUCTION

Figure 2: Error answer analysis of 700 geometry questions
with GPT-4V (gpt-4-vision-preview ).

Traditional methods for solving geometry questions typically
focus on mathematical expression[28], while the MultiModal Large
Language Models (MM-LLMs) can better understand the relation-
ship between natural language descriptions and geometry shapes
[10], as shown in Figure 1. Enhancing the efficiency and accuracy of
MM-LLM in solving geometry questions is of great significance for
the development of education and intelligent aided systems [18].

The MM-LLMs have demonstrated exceptional reasoning abili-
ties in various visual question-answering tasks[42]. However, there
are obstacles in the task of automatically solving geometry ques-
tions [22, 28], as shown in Figure 2. The main obstacles include
errors in arithmetic results (36%) and errors in logical reasoning
processes (21%). At present, there are mainly two methods to over-
come these obstacles. One is a fine-tuning method [34, 36, 44]
based on specific downstream tasks. Although some MM LLMs are
already open source and can be fine-tuned based on pre-trained
models [2, 21, 35, 40], they have extremely high requirements for
datasets and devices, making it difficult to perform task fine-tuning.
Especially in the task of solving geometry questions, firstly, the
scale of publicly available high-quality geometry datasets is limited;

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Secondly, MM-LLMs typically have billions to tens of billions of pa-
rameters, which makes the fine-tuning process require a significant
amount of computing resources and time. Compared to this method,
another method that uses some examples as prompts [1, 17, 43] to
solve new questions is easier to implement and achieves impressive
results. Among them, the most representative works are Chain-of-
Thought Prompt (CoT)[38] method and Program-Aided Language
(PAL) [35] Models. While these methods have demonstrated re-
markable performance in various tasks, such as the CoT and PAL
prompt methods achieving accuracy rates of 94.7% and 99.2% in
mathematical natural language reasoning tasks [35], solving geom-
etry questions remains a significant challenge. For example, Figure
3(a) illustrates that the CoT prompting method, when applied to
geometry questions, often misuses data in the reasoning process
due to the complexity of domain knowledge, leading to incorrect an-
swers. Similarly, Figure 3(b) shows that the code block generated by
the PAL prompting method contains excessive reasoning processes,
rendering the program non-executable and unable to provide the
answer. Thus, designing a prompting method that can facilitate
rigorous reasoning and precise arithmetic for solving geometry
questions remains a huge challenge.

To address these challenges, we propose Reason-and-Execute
(RaE) prompting: a new prompting method specifically designed
for enhancing MM-LLMs to solve geometry questions. Specifically,
we first designed a rigorous reasoning process based on domain
knowledge of geometry, using reverse thinking [9] approach, and
obtained the precise arithmetic steps required for solving the ques-
tion. Secondly, based on the analysis of the reasoning process, we
designed code blocks in a programming language to implement
precise arithmetic functions. Finally, by executing the contents of
the code blocks using an interpreter, we obtained the answers to
the geometric questions.

In the analysis of experimental results, we have demonstrated the
ability of the RaE prompting method to perform rigorous reasoning
and precise arithmetic operations. In addition, we also analyzed
the impact of domain knowledge, geometry shapes, understanding
of the question text, and language on our prompt templates for
solving geometry questions. We conclude that rigorous reasoning
and precise arithmetic processes are essential for accurately solving
geometry questions. The contributions of this paper are as follows:

• We propose Reason-and-Execute (RaE) prompting: the first
prompting method specifically designed for enhancing MM-
LLMs to solve geometric questions.

• We have designed a new prompt template that combines
rigorous reasoning with precise arithmetic.

• We analyzed geometric problems from different perspectives
and tested RaE prompting method, ultimately achieving im-
pressive results.

2 RELATEDWORKS
2.1 MultiModal Large Language Models
With the multimodal large language models (MM-LLMs) showing
a strong ability of image-text understanding [42], the research of
math reasoning using MM-LLM combined with images and texts
began to appear [22, 24, 25]. Especially in the study of geomet-
ric question solutions that often appear in multimodal forms [28],

there has been greater vitality [22]. Specifically, solving geometry
questions requires a combination of image and text information to
complete professional domain-knowledge reasoning and precise
arithmetic operations. Although this is a huge challenge for LLMs
[45], the MM-LLMs can fully leverage its advantages [30]. For ex-
ample, GPT-4(Vision)[29]uses a visual encoder with pre-trained
components for visual perception, aligning the encoded visual fea-
tures with the language model, thereby achieving a comprehensive
understanding of geometric problem images and text information;
Qwen VL [2] is a large-scale visual language model launched by
Alibaba [41] Cloud that performs well in tasks such as image de-
scription, question answering, visual positioning, and flexible inter-
action, moreover the baseline model used in our experiment is its
two important models: qwen-vl-chat and qwen-vl-plus; CogVLM
[35] puts visual understanding as a higher priority to achieving the
deep fusion of visual language features; mPLUG Owl [39] can learn
the parameters of the visual encoder in the first stage of training,
to achieve efficient image alignment with this article; InternLM-
XComposer2 [8] proposes a new fine-tuning method of visual and
text alignment, which enhances the visual understanding ability of
the model; Yi Vision Language (Yi-VL) [40] demonstrates its strong
capabilities in complex interdisciplinary tasks with its excellent
ability to understand images and generate dialogue. DeepSeek-VL
[21] is an innovative open-source visual language model that stands
out for its ability to understand real-world scenarios in various ap-
plications such as logic diagrams, web pages, and natural images;
Gemini [18] is a large language model released by Google [3], and
designed specifically for "general-purpose tasks", Gemini Pro, has
performed well in various multimodal processing fields. They have
the potential to solve geometry questions by combining images and
text.

2.2 Prompting Methods
LLMs have achieved tremendous success with the support of com-
puting power and datasets. Computational power enables the model
to be sufficiently large, while also possessing excellent comprehen-
sion, memory, reasoning, and generative abilities[36]. The dataset
provides a learning foundation for the model. LLMs typically adopt
a generative Transformer architecture [44], and in the fine-tuning
stage [34], through the prompting method [1, 17, 43], the model
can be fine-tuned according to task requirements to make it more
suitable for specific tasks and scenarios. The Chain of Thought
(CoT)[38] method is a foundational approach in prompting, which
involves appending multiple reasoning steps before providing the
answer to a question. This simple few-shot prompting strategy[4]
has significantly enhanced the performance of Large Language
Models (LLMs) in complex reasoning tasks [20]. Few-shot prompt-
ing [4] is effective across various tasks and has notably improved
mathematical reasoning tasks. Extensions of CoT [11, 31, 32, 37]
have further expanded the range of reasoning tasks that LLMs can
tackle, improving their performance on various benchmarks. How-
ever, previous approaches have struggled with accuracy in arith-
metic calculations and reasoning errors [12, 19, 26, 27]. To address
complex calculations and reasoning, advanced prompt strategies
like Program of Thought [7], Program-Aided Language (PAL) [35],
MathPrompter [13], Least-to-Most Prompting [46], and Plan-and-
Solve [35] have been developed. Prompt engineering has evolved
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Figure 3: A diagram illustrating RaE: Given a Geometry question, CoT (a) generates intermediate reasoning steps of free-form
text. Additionally, PAL (b) generates the Python code and shifts the role of running the reasoning steps from the language model
to the Python interpreter. In contrast, our work, RaE (c), generates both rigorous reasoning processes and precise execution
programs. The final answer is obtained by running the generated reasoning chain. CoT reasoning is highlighted in green; PAL
is highlighted in gray; RaE is highlighted in orange and beige; the Python interpreter run is highlighted in blue.

from static to dynamic strategies such as Active Prompt, RLPrompt,
and PRewrite[16]. Additionally, LLMs have demonstrated effec-
tiveness in providing automated error feedback, highlighting their
utility in solving math word problems. Among numerous prompt
methods, CoT and PAL are pioneering methods for reason and
algorithm, respectively, and are also the most widely applicable
methods. Therefore, our subsequent research will expand these two
methods into prompt templates suitable for multimodal tasks as
our baseline prompt methods.

3 REASON-AND-EXECUTE PROMPTING
Overview.We introduce RaE prompting, a new prompting method
specifically designed for MM-LLMs to solve geometric questions
𝑞, as shown in Figure 3. It ensures MM-LLMs generate reasoning
processes 𝑟 by utilizing domain knowledge, and generate executable
code blocks 𝑏 to obtain answers. Compared with the few-shot CoT
and PAL methods, the RaE prompting method, designed for more

professional solving of geometric problems, features both rigorous
reasoning processes and precise arithmetic operations. Specifically,
RaE prompting leverages the advantages ofMM-LLMs to solve tasks
with a set of k examples, {(𝑞𝑖 , 𝑟𝑖 , 𝑏𝑖 )}𝑘𝑖=1 ∥ 𝑞𝑡𝑒𝑠𝑡 . Each example in
the RaE prompt is a triplet of < 𝑞𝑖 , 𝑟𝑖 , 𝑏1 >, where 𝑞𝑖 and 𝑏𝑖 are
input-output pairs, and 𝑟𝑖 is an inference process that ensures the
solvability of code block 𝑏𝑖 . Note that the test question 𝑞𝑡𝑒𝑠𝑡 we
input does not directly generate an answer, but is obtained through
the execution of the generated code block 𝑏𝑡𝑒𝑠𝑡 operation by the
interpreter.

Overall, the RaE prompts involve two steps. In step 1, to solve
geometric questions more professionally, we designed prompts
for the inference process 𝑟 based on question-oriented thinking
and domain knowledge, avoiding the interference of redundant
information. In step 2, to obtain a precise arithmetic answer, a code
block 𝑏 that can be executed by the interpreter is generated based
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on the reasoning given in step 1, and the interpreter finally outputs
the answer to the problem through the operation.

3.1 Step 1: Prompting for rigorous reasoning
To solve geometric questions more professionally, we adopted a
Reverse thinking [9] approach, guiding MM-LLMs to start from
the question being solved and gradually identify the known con-
ditions necessary to solve the question, as shown in Figure 4. The
template constructed in this step needs to meet the following three
conditions:

Figure 4: Prompting template for rigorous reasoning
Clarify domain knowledge This template needs to analyze

which theorems, formulas, properties, and other domain knowledge
are needed to solve the geometric question and describe this domain
knowledge in the form of equations combined with the information
of the question. For example, as shown in the figure, to obtain the
degree of ∠𝐶𝐸𝐷 , one can use the complementary property of the
same side inner angles of parallel lines to obtain ∠𝐶𝐸𝐷 = 180 − ∠𝐶 ;
Although the degree of ∠𝐶 here is not a known condition, it can
be obtained through the triangle angle sum theorem that ∠𝐶 =

180 − ∠𝐴 − ∠𝐵. This example involves two domain knowledge: the
property of complementary inner angles on the same side of parallel
lines and the triangle angle sum theorem.

Clarify available data The template needs to identify which
data is needed to solve the question and obtain it from the graphic
and textual content of the problem. For example, as shown in the
figure, after analyzing domain knowledge, solving the problem
requires the degrees of ∠𝐴=80 and ∠𝐵 = 60. Note that sometimes
the required data is not in the text of the question and needs to be
identified from the image of the question.

Clarify the arithmetic process This template needs to inte-
grate the domain knowledge and available data used in the question
and clarify the operational process that needs to be transformed
into program blocks. For example, as shown in this image, based
on the analysis above, the process of performing precise arithmetic
to answer this geometric question is: ∠𝐴 = 80, ∠𝐵 = 60, ∠𝐶 =

180 − ∠𝐴 − ∠𝐵, ∠𝐶𝐸𝐷 = 180 − ∠𝐶 .
In summary, our reasoning prompting template is a process that

starts from the question to obtain the required data and clarifies
the need for precise arithmetic.

3.2 Step 2: Prompting for precise arithmetic
It is easy tomakemistakes whenMM-LLMs rely solely on "memory"
to obtain answers to the questions. To obtain precise answers to
geometric questions, we use the idea of program-assisted problem-
solving to guide MM-LLMs to understand the need for precise
arithmetic from step 1 and generate executable code blocks, as
shown in Figure 5. Finally, the precise answer is obtained by running
the code block through the interpreter. The template constructed
in this step must meet two conditions:

Figure 5: Prompting template for precise arithmetic

Unified block naming The template needs to have a unified
naming of code blocks to ensure that it can detect the generated
executable programs. To obtain the final precise answer to a ques-
tion, we must stably execute code blocks through an interpreter,
and a unified naming of program blocks can enable the model to
smoothly pass the interpreter’s compilation. For example, as shown
in the figure, we named the code block "def solution".

Meaningful variable naming This template requires mean-
ingful variable names to ensure that the program block has high
runtime quality. Meaningful variable naming can to some extent
avoid the problem of invalid program syntax. This is also related
to whether the parameters involved in the arithmetic process in
step 1 are clear. For example, as shown in the figure, based on the
required parameters in step 1, we have designed variable names:
angle_A, angle_B, angle_C, angle_CED.

Overall, to obtain an accurate answer to this geometric question,
we must rely on the interpreter to smoothly execute the generated
code block.

4 EXPERIMENTAL SETUP
4.1 Benchmarks
The proposed method is evaluated on the six benchmark datasets,
as shown in Table 1. Geometry question datasets: (1) the GEOS
[33]dataset contains simple middle school geometry problems with
geometric shapes, (2) the Geometry3K [23] dataset contains nu-
merous geometry questions where semantic information is scarce
and most values need to be obtained from images, (3) the GeoQA
[6] dataset contains rich semantic information for middle and high
school geometry questions, (4) the GeoQA+ [5] dataset is based
on GeoQA, which adds more diverse types of geometry questions
and forms an enhanced benchmark dataset. Other science ques-
tion datasets: (1) the AI2D [14] dataset includes diagram questions
for multiple natural science courses of the elementary school; (2)
the TQA [15] dataset is drawn from middle school science curric-
ula textbooks. The above datasets are all applicable and publicly
available datasets for our work.

Figure 6 illustrates the statistical distribution of question length
in the six benchmark datasets. In the GEOS (a), GeoQA (c), GeoQA
(d), AI2D (e), and TQA (f) datasets, the distribution aligns with
expected patterns, with the majority of questions containing sub-
stantial textual content. Moreover, the textual content appears to
reasonably correspond to the information depicted in the diagram.
Conversely, in the Geometry3K dataset (b), approximately 18% of
all questions contain 3 words or fewer. This indicates a lack of
descriptive information from the text of the question and primarily
provides specific queries, such as ’Find UT’.
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Table 1: Details of datasets being evaluated. The "total" represents the question number of questions in an original dataset,
the "sample" represents the number of questions randomly selected from a dataset in a test, "en" represents the questions in
English, and the "zh" represents the questions in Chinese.

Dataset Total Sample Avg. words Avg. knowledges Domain Level Lange

GEOS 186 62 24.7 1.3 Geometry Middle school en
Geometry3K 3002 1000 12.2 1.6 Geometry Middle/High school en

GeoQA 4998 1666 52.5 2.1 Geometry Middle/High school zh
GeoQA+ 7528 2510 54.5 1.8 Geometry Middle/High school zh
AI2D 4908 1636 11.8 1.0 Science Elementary school en
TQA 15154 5051 9.8 1.4 Science Middle school en

Figure 6: Question length distribution of six benchmark
datasets. The horizontal axis represents the number of ques-
tion words, and the vertical axis represents the number of
questions.

4.2 Baselines
Since geometry questions are mostly multimodal, we adopted seven
multimodal large language models as the baseline: (1) the GPT-
4V [29] is a visually functional GPT-4; (2) the Gemini-Pro [18],
as an upgraded version of Bard, can understand and combine in-
formation from different modalities; (3) the Qwen-VL-Plus [2]
surpasses GPT-4V and Gemini in Chinese question-answering and
text comprehension tasks; (4) the Qwen-VL-Chat [2] is a visual AI
assistant based on a large language model, built based on Qwen-VL.
(5) the CogVLM [35] model differs from the previous approach
of only mapping visual features to the language input space by
adding a visual expert module at each Transformer layer; (6) the In-
ternLM XComponent [8] is a visual language model that features
interleaved text image combinations and multilingual knowledge-
based understanding; (7) the mPLUG-Owl2 [2] is the first MLLM
model to demonstrate modal collaboration phenomena in both
pure text and multimodal scenarios; (8) the Deep-seek [21] is a

model that emphasizes data diversity, model efficiency, and bal-
ance; (9) Yi-VL[40] is a model developed based on the Yi language
model, suitable for massive data analysis, mining, and cross-domain
knowledge fusion. The above MM-LLMs can effectively understand
and process multiple languages and visual information, achieving
more accurate and comprehensive question-answering and text
understanding.

4.3 Implementations
We evaluate the performance of various MM-LLMs on the six bench-
marks, including both closed-source and open-source models. The
closed-source models are evaluated by using their official API,
while open-source models are evaluated by running inferences
on 4-way RTX 4090GPU. For the closed-source models, we select
state-of-the-art models GPT-4V (gpt-4-vision-preview),Gemini-
Pro (gemini-pro-vision), and Qwen-VL-Plus (qwen-vl-plus).
For the open-source models, model sizes vary from 6b to 7b, in-
cluding CogVLM(cogvlm-7b), Qwen-VL-Chat (qwen-vl-chat-
7b), Intern-XCompose (intern-xcomposer-7b), Yi-VL(yi-vl-
6B),DeepSeek-VL(deep-seek-vl-7b), andMPLUG-Owl2(mplug-
owl2-7b). The templates used in the experiment can be found in
"Appendix A". In addition, We performed greedy decoding from the
language model using a temperature of 0. Meanwhile, considering
the real-world usage of the model, we simulated the use of different
MM LLMs by users: randomly selecting the sample size shown in
Table 1 from each dataset for testing. A total of 10 rounds were
selected, and the average accuracy was taken as the accuracy of
the final answer.

5 EXPERIMENTAL RESULTS
5.1 Main Result
The experimental results of applying various prompt methods to
solve geometry and science questions in different MM-LLMs are
shown in Table 2. Due to the weak code generation ability of open-
source models, we only used closed-source models when using PAL
and RaE, while CoT and silent methods used all baseline models. Ex-
perimental results show that RaE outperforms all other prompting
methods across the geometry datasets of GEOS (32.6%), Geometry3k
(32.3%), GeoQA (31.1%), and GeoQA+ (29.3%). However, it performs
less effectively than the COT method on the science datasets, A12D
(79.6%) and the TQA (73.4%), indicating that our method signifi-
cantly improves the accuracy of MM-LLMS in answering geometry
questions.
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Table 2: Answer accuracy comparison on the six benchmark datasets.

Setting Model Geometry Science
GEOS Geometry3K GeoQA GeoQA+ A12D TQA

Without prompting

gpt-4-vision-preview 19.8 20.2 25.2 26.5 78.2 71.0
gemini-pro-vision 9.0 11.4 17.9 14.7 73.9 73.0
qwen-vl-chat-7b 11.2 4.0 13.1 9.5 70.1 49.4

cogvlm-7b 7.4 3.2 9.5 6.4 56.2 39.7
qwen-vl-plus 13.6 9.2 16.7 14.8 75.9 69.5

intern-xcomposer-7b 9.1 3.7 15.5 12.3 30.9 20.4
mplug-owl2-7b. 8.4 2.8 8.9 5.6 27.1 18.7

yi-vl-6B 9.5 3.6 10.1 8.3 64.7 56.3
deep-seek-vl-7b 8.6 3.1 9.0 7.4 56.2 47.0

CoT prompting

𝐶𝑜𝑇(𝑔𝑝𝑡−4−𝑣𝑖𝑠𝑖𝑜𝑛−𝑝𝑟𝑒𝑣𝑖𝑒𝑤 ) 29.5 27.2 28.6 28.2 80.1 74.5
𝐶𝑇(𝑔𝑒𝑚𝑖𝑛𝑖−𝑝𝑟𝑜−𝑣𝑖𝑠𝑖𝑜𝑛) 16.4 4.7 15.4 17.0 76.2 75.7
𝐶𝑜𝑇(𝑞𝑤𝑒𝑛−𝑣𝑙−𝑐ℎ𝑎𝑡−7𝑏 ) 4.4 3.0 8.5 7.7 71.3 51.5

𝐶𝑜𝑇(𝑐𝑜𝑔𝑣𝑙𝑚−7𝑏 ) 2.8 0.9 4.7 5.1 58.2 49.1
𝐶𝑜𝑇(𝑞𝑤𝑒𝑛−𝑣𝑙−𝑝𝑙𝑢𝑠 ) 5.4 2.2 15.3 12.4 79.7 75.3

𝐶𝑜𝑇(𝑖𝑛𝑡𝑒𝑟𝑛−𝑥𝑐𝑜𝑚𝑝𝑜𝑠𝑒𝑟−7𝑏 ) 10.2 2.3 12.4 12.3 31.2 22.1
𝐶𝑜𝑇(𝑚𝑝𝑙𝑢𝑔−𝑜𝑤𝑙2−7𝑏 ) 5.1 8.3 8.3 6.1 29.9 20.3
𝐶𝑜𝑇(𝑦𝑖−𝑣𝑙−6𝐵) 7.2 3.7 9.4 8.9 67.2 60.3

𝐶𝑜𝑇(𝑑𝑒𝑒𝑝−𝑠𝑒𝑒𝑘−𝑣𝑙−7𝑏 ) 5.6 2.1 6.7 7.2 59.8 48.4

PAL prompting
𝑃𝐴𝐿(𝑔𝑝𝑡−4−𝑣𝑖𝑠𝑖𝑜𝑛−𝑝𝑟𝑒𝑣𝑖𝑒𝑤 ) 26.3 25.0 27.7 25.3 50.1 43.7
𝑃𝐴𝐿(𝑔𝑒𝑚𝑖𝑛𝑖−𝑝𝑟𝑜−𝑣𝑖𝑠𝑖𝑜𝑛) 12.4 2.7 8.9 9.1 46.9 42.7
𝑃𝐴𝐿(𝑞𝑤𝑒𝑛−𝑣𝑙−𝑝𝑙𝑢𝑠 ) 8.4 3.7 7.1 6.8 44.5 37.3

RaE prompting (our work)
𝑅𝑎𝐸 (𝑔𝑝𝑡−4−𝑣𝑖𝑠𝑖𝑜𝑛−𝑝𝑟𝑒𝑣𝑖𝑒𝑤 ) 32.6 32.3 31.1 29.3 79.6 73.4
𝑅𝑎𝐸 (𝑔𝑒𝑚𝑖𝑛𝑖−𝑝𝑟𝑜−𝑣𝑖𝑠𝑖𝑜𝑛) 15.7 5.1 17.9 19.8 72.8 71.1
𝑅𝑎𝐸 (𝑞𝑤𝑒𝑛−𝑣𝑙−𝑝𝑙𝑢𝑠 ) 10.4 3.0 11.8 9.5 74.3 68.2

From Table 2, we can also observe that the performance of PAL
is relatively poor in these six datasets. This is because PAL gen-
erates code blocks instead of reasoning through natural language.
However, when solving geometry questions, the "def solution()"
generated code block contains reasoning steps, rendering the en-
tire code block inoperable. Our method separates the reasoning
of geometry questions from the code generation process and uses
the generated rigorous reasoning process to guide MM-LLMs in
generating executable code blocks, thereby achieving precise arith-
metic. In summary, our proposed RaE is more suitable for solving
geometric problems in closed-source MM-LLMs than other prompt
methods and also enhances the ability of MM-LLMs to solve geom-
etry questions.

5.2 Analysis
Solving geometry questions is a comprehensive test of the various
abilities of the MM-LLMs, especially for our proposed RaE prompt-
ing method. For this, we have considered multiple factors from
the perspective of problem-solving, including domain knowledge,
geometry shapes, understanding of the question text, and language
use. We tested the answer performance of GPT-4V models with
RaE, PAL, and CoT prompting methods, and without prompting
methods on these factors. Below are specific experimental analyses
based on GPT-4V.

Which is most important for RaE prompt templates, rea-
soning or executing? Our work proposes a prompting method

Table 3: Ablation experiments of the RaE prompting.

Datasets GEOS Geometry3K GeoQA GeoQA+

RaE w/o Reasoning 25.9 24.7 27.2 25.0
RaE w/o Executing 28.4 29.6 30.1 27.8

RaE 32.6 32.3 31.1 29.3

called RaE, which mainly contributes to the design of a prompting
template with rigorous reasoning and precise arithmetic parts. To
explore the importance of these two parts for RaE prompts, we
conducted ablation experiments using the same experimental setup
as the Main Result. From the data in Table 3, it can be seen that the
rigorous reasoning part has a greater impact on the performance
of RaE. Specifically, the lack of an inference section resulted in a
maximum decrease of 7.6% in RaE’s accuracy in solving geometric
problems (on the Geometry3K dataset), while the maximum de-
crease without an execution section was only 4.2% (on the GEOS
dataset). This indicates that using professional domain knowledge
to guide MM LLMs in answering questions can fundamentally
improve performance while using program solving can assist in
improving limited performance.

Does RaE work withMulti-domain knowledge? In the previ-
ous analysis, we found that rigorous reasoning is crucial in the RaE
template. To achieve this rigorous reasoning, one needs to consider
the domain knowledge required to solve the question. Therefore,
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(a) GeoQA (b) GeoQA+

Figure 7: The distribution of the number of questions in-
volving knowledge from different domains in two datasets,
GeoQA and GeoQA+. 𝐷𝐾_𝑖 indicates that answering a geome-
try question requires at least 𝑖 domain knowledge.

(a) GeoQA (b) GeoQA+

Figure 8: The accuracy of answering geometric problems
with varying numbers of domain knowledge. ’With RaE’,
’With CoT’, ’With PAL’, and ’Without’ respectively represent
GPT4V models with RAE prompting, CoT prompting, PAL
prompting, and no prompting.

we analyzed the domain knowledge involved in the GeoQA and
GeoQA+ datasets and counted the number of questions. The de-
tailed domain-knowledge statistics can be found in "Appendix B". In
these statistics, we found that solving a large number of questions
relies on mixed domain knowledge. That is, solving a geometric
question may require mastering two domain knowledge points, or
it may require mastering 𝑖 domain knowledge. Here, 𝑖 is taken as
1 to 7 in the GeoQA dataset and 1 to 5 in the GeoQA+dataset. As
shown in Figure 7, Approximately 42.3% of geometric problems
can only be solved by combining two domain knowledge and 40.9%
of the questions in GEOQA+ also contain more than one domain
knowledge. To further analyze the impact of domain knowledge on
solving geometry questions, we randomly selected 5 questions for
each type of domain knowledge quantity, for a total of 100 rounds.
The experimental results are shown in Figure 8, when the number of
domain knowledge increases, the accuracy of all methods decreases.
According to Figure 8 (a), RaE performance remains high when
solving questions involving less domain knowledge. PAL’s perfor-
mance is the worst. According to Figure 8 (b), when the number of
domain knowledge increases, its performance is always superior
to other prompting methods. The results show that RaE is more
suitable than other methods for solving geometry questions with
multi-domain knowledge.

Is the error source of RaE prompting templates the reason-
ing or executing? Although our prompting method RaE performs

Table 4: Statistics on the sources of problem-solving errors.𝑅𝑒
represents code execution error, 𝑅𝑟 represents reasoning pro-
cess error

Model GEOS Geometry3K GeoQA GeoQA+
𝑅𝑟 𝑅𝑒 𝑅𝑟 𝑅𝑒 𝑅𝑟 𝑅𝑒 𝑅𝑟 𝑅𝑒

PAL 28.6 45.1 35.2 40.0 17.8 54.5 13.4 61.2
RaE 35.7 32.2 38.3 29.4 37.9 30.7 32.1 38.5

well compared to other prompt methods in solving geometry ques-
tions, there is still room for improvement. Therefore, we analyzed
the probabilities of reasoning errors and code execution errors using
the same experimental setup as the Main Result in four geometry
datasets. As shown in Figure 3, we consider the program output "
SyntaxError: invalid syntax " as a code execution error (𝑅𝑒 ), and
consider the generated answer not being numerically equal to the
true answer as a reasoning process error (𝑅𝑟 ). Since errors in COT
prompt methods are all caused by 𝑅𝑟 , we do not compare them here.
From Table 4, it can be analyzed that the main reason for PAL’s
error in answering questions is due to code execution errors. The
error probability of our proposed RaE method in code execution is
much lower than that of the PAL prompt method. Therefore, for
PAL, to enhance the performance of solving geometric questions,
it is necessary to optimize the generation of code blocks. For our
work, we need to provide a more concise and rigorous reasoning
process to guide MM-LLMs to achieve professional solutions.

(a) (b)

Figure 9: Geometry shape distribution of Geometry3K. (a)
Geometry shape distribution statistics, (b) Statistics of the
number distribution of geometry shapes, 𝐺_𝑖 indicates that
a geometry question includes at least 𝑖 Geometry shape.

How does RaE work with different geometry shapes? The
most important thing in solving geometry questions is to recog-
nize geometric shapes. To analyze the impact of different geometry
shapes on MM-LLms with different prompting methods, we an-
alyzed the distribution of questions with different shapes in the
geometry3k dataset. The analysis results are shown in Figure 9, ac-
cording to Figure 9 (a), questions containing only triangles account
for 40% of the total number, and 17% of the questions contain more
than one shape. Furthermore, as shown in Figure 9 (b), more than
82% of the questions in the dataset geometry3k contain only one
kind of shape. To further analyze the impact of geometry shapes on
solving geometry questions, we randomly selected 5 questions for
each type of geometry shape, for a total of 100 rounds. The experi-
mental results are shown in Figure 10. The experimental results are
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explicit, Our RaE has the best performance in all kinds of geometric
shapes, especially in quadrangles and triangles. The performance
of CoT is only inferior to RaE, and the gap between CoT and RaE is
the largest in the triangle. PAL and no prompt were the worst. To
further analyze the number impact of geometry shapes on solving
geometry questions, we randomly selected 40 questions for each
type of geometry shape quantity, for a total of 50 rounds. The exper-
imental results are shown in Figure 11. According to Figure 11, our
RaE is the best in solving questions with one to three kinds of ge-
ometry shapes. When the number of shapes increases to four, COT
performs better than all other prompting methods. This is caused
by the fact that the reasoning process of RaE’s prompt template did
not fully consider the questions of mixing multiple shapes.

Figure 10: Accuracy of answering with different geometry
shapes

Figure 11: Accuracy of answering with the different number
of geometry shapes.𝐺_𝑖 indicates that a geometry question
includes at least 𝑖 Geometry shape.

What length of question text is suitable for MM-LLMs to
solve under RaE prompts? In addition to mastering relevant do-
main knowledge and understanding geometric shapes, it is more
important to understand the meaning of exercises when solving
geometric problems. To analyze the understanding of exercise ques-
tions by MM LLMs, we randomly selected one question from each
length of the GeoQA dataset and conducted a total of 100 rounds to
test the accuracy of MM-LLMs in answering questions of different
lengths. The test results are shown in Figure 12. When the number
of question words is around 35 to 57, the accuracy of MM LLMs
in answering is at a high level. This indicates that when asking
GPT4V, we should try to keep it within 60 words. The model can
provide a more accurate answer.

Figure 12: Accuracy of answering with the different number
of question words, in the GeoQA dataset. The Avg refers to
the average answering accuracy of GPT4V with RaE, PAL,
CoT prompting method, and no prompting method.

Is RaE more suitable for "zh" or "en"? Due to the presence
of both English and Chinese questions in our original geometry
datasets, to minimize the interference factors of MM-LLMs in an-
swering the questions, we unified the language of the four geo-
metric data. Thus, we analyzed the impact of the language used in
the question on the accuracy of the answer using the same exper-
imental setup as the Main Result in four geometry datasets. The
experimental results are shown in Table 5. The results demonstrate
that our RaE and other prompting methods are more suitable for
English questions, and our answering accuracy reaches the highest
of 32.7% on the GeoA_en dataset.
Table 5: The accuracy statistics of different prompting meth-
ods for geometry questions in different languages.

Model GEOS Geometry3K GeoQA GeoQA+
zh en zh en zh en zh en

CoT 29.5 26.1 27.2 26.7 31.2 28.6 30.4 28.2
PAL 26.3 25.7 25.0 23.3 29.1 27.7 26.5 25.3
RaE 32.6 29.4 32.3 28.7 32.7 31.1 32.0 29.3

6 CONCLUSION
In this paper, We introduce RaE prompting, a new prompting
method specifically designed for MM-LLMs to solve geometric
questions. It ensures MM-LLMs generate reasoning processes by
utilizing domain knowledge, and generate executable code blocks
to obtain answers. Compared with the few-shot CoT and PAL meth-
ods, the RaE prompting method, designed for more professional
solving of geometric problems, features both rigorous reasoning
processes and precise arithmetic operations. From the overall re-
sults of the experiment, our RaE showed impressive performance
on four geometry question datasets. To analyze the influencing
factors of solving geometry questions in more detail, we tested the
answering performance of different prompting methods based on
the GPT4V model, demonstrating rich experimental results. Our
work provides a more comprehensive research approach to im-
proving large language models for solving geometry questions and
points the way for future research.
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