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Abstract

Diffusion models generate high-quality, diverse samples with great generalizability, yet when
overfit to the training objective, they may memorize training data. We analyze memorization
and generalization of diffusion models through the lens of representation learning. Using a
two-layer ReLU denoising autoencoder (DAE) parameterization, we prove that memorization
corresponds to the model learning the raw data matrix for encoding and decoding, yielding
spiky representations; in contrast, generalization arises when the model captures local data
statistics, producing balanced representations. We validate these insights by investigating
representation spaces in real-world unconditional and text-to-image diffusion models, where the
same distinctions emerge. Practically, we propose a representation-basedmemorization detection
method and a training-free editingmethod that allows precise control via representation steering.
Together, our results underscore that learning good representations is central to novel and meaningful
generation.

1 Introduction

Diffusion models have rapidly emerged as the dominant class of generative models, powering
state-of-the-art systems such as Stable Diffusion, Flux, and Veo [Ho et al., 2020, Watson et al.,
2023, Lou et al., 2024, Labs et al., 2025, Google, 2025]. By iteratively denoising random noise, they
achieve unprecedented scalability, controllability, and fidelity. Yet their empirical success raises a
fundamental question: in principle, the standard training objective (e.g., denoising score matching)
admits a closed-form solution that merely memorizes training examples [Yi et al., 2023]; in practice,
however, real-world models consistently produce novel and diverse outputs [Zhang et al., 2024,
Kadkhodaie et al., 2024a]. This stark mismatch between theoretical expectation and observed
behavior exposes a critical gap in our understanding of diffusion model generalization, with direct
implications for privacy, interpretability, and trustworthy deployment [Somepalli et al., 2023a].

Addressing this question has drawn increasing attention in themachine learning community [Gu
et al., 2025, Bonnaire et al., 2025, Bertrand et al., 2025], yet existing explanations remain far from
satisfactory. Early works based on random feature models [Li et al., 2023, George et al., 2025]
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Figure 1: Diffusionmodels generalizewhile learning benign internal representations. Activations
from intermediate network layers form a representation space, within which distinct patterns emerge:
memorized samples produce spiky features that make them detectable, whereas novel generations
yield balanced, information-rich features that support controllable generation via representation
steering.

provide useful insights but necessarily oversimplify model architectures. Analyses of linear models
on Gaussian mixtures [Li et al., 2024, Wang et al., 2024a, Wang, 2025] shed light on generalization
but cannot capturememorization. Another line of research explores inductive biases by constructing
handcrafted closed-form solutions from empirical data to approximate U-Net performance [Kamb
and Ganguli, 2025, Niedoba et al., 2025, Lukoianov et al., 2025, Floros et al., 2025], attributing success
to principles such as locality and equivariance. While these advances are valuable, the findings
remain fragmented and phenomenological, and a more unified account of how diffusion models
both memorize and generalize is still lacking (see Appendix A for a more detailed discussion of
related work).

To address these challenges, we develop a unified mathematical framework based on a theo-
retical analysis of a nonlinear two-layer ReLU denoising autoencoder (DAE). This framework not
only unifies the characterization of memorization and generalization but also bridges distribution
learning with representation learning, offering profound practical implications. Specifically: (i)
Memorization. We prove that when empirical samples are locally sparse, the network weights mem-
orize and store individual training examples, leading to overfitting and hence memorization. (ii)
Generalization. Conversely, when the empirical data are locally abundant, the weights effectively
capture local data statistics, enabling the model to generate novel in-distribution samples.

Crucially, ourwork provides a unique representation-centricperspective on generalization [Tian,
2025], highlighting the pivotal role of bottleneck activations in DAE networks. This view is moti-
vated by recent empirical evidence on the duality between distribution learning and representation
learning in diffusion models [Li et al., 2025, Xiang et al., 2025]: they inherently learn informative
features for downstream tasks [Kwon et al., 2023, Chen et al., 2025a], and representation align-
ment regularization has been shown to accelerate training [Yu et al., 2025]. Our theory makes this
connection explicit: memorized samples are encoded as spiky activations concentrated on a few
neurons, whereas generalized samples yield balanced representations that reflect the underlying
distribution. These contrasting modes of representation learning manifest in distinct generation
behaviors in terms of memorization or generalization, which we comprehensively validated across
a range of models, including EDM [Karras et al., 2022], Diffusion Transformers (DiT) [Peebles and
Xie, 2023], and Stable Diffusion v1.4 [Rombach et al., 2022] (SD1.4).

Moreover, our findings show that the representation space is not a byproduct but a crucial
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and controllable factor for generation. Specifically, we demonstrate two practical implications: (i)
Memorization detection Leveraging the spikiness of representations identified by our theory as
a signature of memorization, we develop a theory-driven detector that achieves highly accurate
and efficient performance in a prompt-free manner. (ii)Model steering. We propose an effective
steering method based on additions in the representation space and reveal distinct behaviors
between memorization and generalization: memorized samples are difficult to steer, whereas
generalized samples are highly steerable owing to their balanced, semantically rich representations.
Together, these applications illustrate the far-reaching implications of our representation-centric
analysis for the privacy, interpretability, and controllability of diffusion models.

Summary of contributions. Our main contributions are as follows:

• Unified framework in a nonlinear ReLU setting. We analyze the optimal solutions of a two-layer
nonlinear ReLU DAE under different empirical data sizes, providing a unified characterization
of memorization and generalization that goes beyond prior random-feature or linear model
analyses.

• A representation-centric understanding of generalization. We establish a rigorous connection
between representation structures and generalization, identifying distinct patterns that separate
memorization from generalization and validating these insights across diverse model settings.

• Theory-inspired tools for memorization detection andmodel steering. Building on our analysis,
we propose simple yet effective methods for memorization detection and representation-space
steering, revealing distinct behaviors of generalized versus memorized samples.

2 Problem Setup

In this section, we first introduce the basics of diffusion models, and then describe our problem
setup for theoretical studies in Section 3.
Basics of diffusionmodels. Diffusionmodels comprise two processes: (i) a forward noising process
and (ii) a reverse denoising/sampling process. The forward process progressively corrupts a clean
sample x0 via xt = x0 + σtεwith ε ∼ N (0, I), while the reverse process (e.g., DDIM [Song et al.,
2021a]) removes noise to generate data:

xt−1 = xt − (σt − σt−1)σt∇ log p(xt), (1)

where ∇ log p(xt) is the score function. To estimate ∇ log p(xt), we use a denoising autoencoder
(DAE) fθ(xt) [Karras et al., 2022, Li and He, 2025] that predicts x0 from xt, so that

∇ log p(xt) = (xt − fgt(xt))/σ
2
t ≈ (xt − fθ(xt))/σ

2
t ,

where fgt(y) := E[x | x+ σtε = y; x ∼ pgt] is the ground-truth denoiser via Tweedies formula
[Efron, 2011]. Thus the ideal (population) objective to learn the DAE is

1

T

T∑
t=0

Ex∼pgt, ε∼N (0,I)

[∥∥fθ(x+ σtε, t)− x
∥∥2] . (2)

Generalization of diffusionmodels. In practice, we only have finitely many empirical samplesX =
{xi}ni=1 withxi ∼ pgt. Accordingly, weworkwith the empirical distribution pemp = 1

n

∑n
i=1 δ(x−xi),
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and Equation (2) reduces to its empirical counterpart. Minimizing this empirical loss leads to the
nonparametric empirical denoiser femp [Gu et al., 2025], which maps a noisy input toward the nearest
training samples:

femp(y) = E[x | x+ σtε = y; x ∼ pemp] =

∑n
i=1N (y;xi, σ

2
t I)xi∑n

i=1N (y;xi, σ2
t I)

. (3)

Sampling with femp can provably reproduce training samples [Baptista et al., 2025]. In practice,
however, this empirical loss is minimized by gradient descent over a parameterized neural network,
which does not always overfit; instead, it can approximate the population denoiser fgt [Niedoba
et al., 2025]. In this paper, we aim to understand when a parameterized network overfits (learns
femp) versus generalizes (learns fgt).
Data assumptions. We assume a K-component mixture of Gaussians (MoG) for the data distribu-
tion:

x ∼ pgt :=

K∑
k=1

ρkN (µk,Σk),

K∑
k=1

ρk = 1, (4)

which is a standard approximation to data manifolds used in recent theoretical studies [Cui and
Zdeborová, 2023, Gatmiry et al., 2025, Biroli et al., 2024, Kamkari et al., 2024, Buchanan et al., 2025,
Li et al., 2025].
Model parameterization and training loss. Following [Vincent, 2011, Chen et al., 2023, Zeno et al.,
2023, Cui et al., 2025], we parameterize the DAE by a two-layer ReLU network:

fW2,W1(x) = W2 [W
>
1 x]+, (5)

withW1,W2 ∈ Rd×p and [·]+ denoting ReLU. Training and sampling can be viewed as operating
with a collection of DAEs across multiple noise levels. Following prior work [Zeno et al., 2025,
Zhang and Pilanci, 2024, Han et al., 2025], we begin with a fixed noise level σ. The `2-regularized
training objective is

min
W2,W1

LX(W2,W1) =
1

n

n∑
i=1

Eε∼N (0,I)

[∥∥fW2,W1(xi + σε)− xi

∥∥2
2

]
+ λ

2∑
l=1

‖Wl‖2F . (6)

Figure 2 illustrates training and sampling across multiple noise levels under this setting; we revisit
the effect of different noise levels after Corollary 3.3.

We adopt (5) as a minimal, tractable model to analyze memorization and generalization. Recent
works [Lukoianov et al., 2025, Li et al., 2024, Wang and Vastola, 2024] suggest that real diffusion
models exhibit approximate piecewise linearity; our ReLU model shares this structure and can be
viewed as a local approximation of such networks. We verify this connection via an SVD analysis of
denoiser Jacobians [Kadkhodaie et al., 2024a, Achilli et al., 2024] for EDM, SD1.4, and ReLU-DAE in
Appendix B.3: around generalized samples, the Jacobian reflects local data statistics as in Cor. 3.3,
whereas around memorized samples it becomes noticeably low-rank and is dominated by the
corresponding data vector, consistent with Cor. 3.2.

3 Main Theorems

Building on the setup in Section 2, this section presents our main theoretical results for a two-layer
ReLU DAE, complemented by experiments on state-of-the-art diffusion models. By characterizing
the optimal solutions of the training loss, we establish:
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Figure 2: Sampling with Mem./Gen. ReLU-DAEs. Left: sampling with a set of memorized ReLU-
DAE produces duplications of training images. Right: sampling with generalized DAEs produces
novel images. Details for training and sampling are provided in Appendix C.1 and single-step
denoising results are shown in Appendix B.2

Two (three) learning regimes of diffusion models

• Memorization (Section 3.1): In over-parameterized models trained on locally sparse data,
memorization arises when network weights store individual training samples, leading to
overfitting and producing distinctively spiky representations.

• Generalization (Section 3.2): In contrast, when the model is under-parameterized and
the data are locally abundant, the weights capture underlying data statistics, enabling
novel sample generation and yielding balanced, semantically rich representations.

• Co-existence of memorization and generalization (Section 3.3): When the dataset con-
tains well-sampled clusters with sufficient diversity alongside isolated samples, we show
the model generalizes on the dense regions while memorizing the isolated ones, mirroring
real-world diffusion models. Moreover, the learned representations can help identify
which region a given input lies in and whether it is memorized.

To substantiate the above results, we first establish a general theorem characterizing the local
minimizers of the training loss (6) for the DAE networks. This theorem then specializes to individu-
ally address the memorization and generalization regimes. To simplify the nonlinear DAE problem
and obtain a more interpretable characterization, we adopt the following separability notion. It is
designed to match bias-free linear layers (as in our ReLU DAE), where cluster structure is naturally
captured by within-cluster concentration and angular separation of cluster means; the definition
can be extended to standard hyperplane separability by allowing affine (biased) layers.

Definition 3.1 ((α, β)-Separability of Training Data). Suppose the training datasetX can be partitioned
intoM clustersX = [X1, . . . ,XM ], whereXk = [xk,1, . . . ,xk,nk

] ⊆ Rd has mean x̄k := 1
nk

∑nk
j=1 xk,j .

We say the dataset is (α, β)-separable if

for all k, j :
‖xk,j − x̄k‖2
‖x̄k‖2

≤ α, and for all k 6= ` :
〈x̄k, x̄`〉
‖x̄k‖2 ‖x̄`‖2

≤ β.

The parameters α and β are not required to be universal constants. Intuitively, tight within-
cluster concentration together with well-separated means yields an inter-cluster margin γ that
quantifies negative alignment between samples from different clusters; γ depends only on α, β,
and the norms of the training data (the explicit expression is given in Appendix D.2). Under this
separability condition, we show that local minimizers of the DAE admit a block-wise structure.
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Theorem 3.1 (Block-wise Structure of Local Minimizers in the DAE Loss). Suppose the training data
X = [X1, . . . ,XM ] is (α, β)-separable according to Definition 3.1 with β < 0. Consider minimizing the
training loss (6) for a DAE trained with a fixed noise level σ ≥ 0 and weight decay λ ≥ 0. Then there exists
a local minimizer with a block-wise structure, where the weights satisfy W ?

2 = W ?
1 where

W ?
1 =

(
WX1 WX2 · · · WXM

)
+R(σ, γ). (7)

Here, WXk
∈ Rd×pk ,

∑M
k=1 pk = p denotes the block-decomposition of W , R(σ, γ) is a small residual term

whose Frobenius norm is bounded by ‖R(σ, γ) ‖2F ≤ C
(
e−c γ2/σ2

)
for universal constants C, c > 0 and a

margin γ > 0 determined by (α, β). Each blockWXk
(1 ≤ k ≤M) is constructed from the Gram matrix

XkX
>
k = UkΛkU

>
k of the k-th data cluster as follows:

WXk
= U

(pk)
k

(
I + nkσ

2
(
Λ

(pk)
k

)−1
)−1

2
(
I − nλ

(
Λ

(pk)
k

)−1
)1

2
O>

k , (8)

where (i) U (pk)
k ∈ Rd×pk is the submatrix of Uk containing its top pk eigenvectors, (ii) Λ(pk)

k ∈ Rpk×pk

contains the corresponding pk eigenvalues, and (iii)Ok ∈ Rpk×pk is an orthogonal matrix accounting for
rotational symmetry. This holds under the condition nλ < mink λmin(Λ

(pk)
k ), which ensures that the matrix

square roots in (8) are well-defined.

Remarks. The proof is deferred to Appendix D.2. The local minimizer (7) consists of a block-
wise main term plus a residualR(σ, γ), which vanishes as σ becomes small relative to the separation
margin γ. This is consistent with the low-noise regimes that are crucial for diffusion-model sampling
and representation learning [Niedoba et al., 2025, Pavlova and Wei, 2025]. Empirically, we observe
this block-wise structure even for relatively large σ (Figure 3). The (α, β)-separability assumption
serves mainly to simplify the proof; similar conclusions hold more generally (see Appendix B.1).
Finally, the optimal solution is not tied to a specific block order, since fW2,W1 is invariant to arbitrary
column permutations of the weight matrices (W1,W2).

For the remainder of this section, we specialize the result to the memorization (Section 3.1)
and generalization (Section 3.2) regimes by varying the training-set size. For clarity, we omit the
residual term R(σ, γ) and focus on the block-wise leading component of the optimal solution.

3.1 Case 1: Memorization with Overparameterization

First, we consider the overparameterized setting where the model parameters are larger than the
number of training samples p ≥ n. In this “sample sparse” regime, each training sample can be
treated as an individual cluster that is sufficiently separated from each other, where α1 = 0 and β1
can be set tomaxi,j〈xi,xj〉. Based on this setup, Theorem 3.1 can be reduced to the following.

Corollary 3.2 (Memorization in Overparameterized DAEs). Under the problem setup of Theorem 3.1,
consider training data X = [x1, . . . ,xn] ⊆ Rd that is (0, β1)-separable (with β1 < 0). Furthermore, let the
two-layer nonlinear DAE fW2,W1(x) be overparameterized with p ≥ n hidden units. If we further assume
the weight decay λ in (6) satisfies nλ < mini∈[n] ‖xi‖22, then there exists a local minimizer of the DAE loss
(6) with the following memorizing block-wise structure:

W ?
2 = W ?

1 =
(
r1x1 · · · rnxn 0 · · · 0

)
=: Wmem, ri =

√
‖xi‖22 − nλ

‖xi‖42 + σ2‖xi‖22
. (9)
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Figure 3: Verification of Corollary 3.2 and Corollary 3.3. We visualize the learned encoder matrix
W1 of a ReLU-DAE trained with noise level σ = 0.2. When trained on 5 CelebA face images, the
model stores training samples in its columns, matching Corollary 3.2. When trained on 10,000
images, the model generalizes and captures data statistics, consistent with Corollary 3.3. Empirically,
the same behavior holds for larger noise, up to σ = 5; additional results are in Appendix B.1.

Moreover, when λ→ 0, this solution attains an empirical loss that is independent of the ambient dimension d:

LX(W ?
2 ,W

?
1 ) =

1

n

n∑
i=1

σ2‖xi‖22
σ2 + ‖xi‖22

< σ2.

Remarks. The proof is deferred to Corollary D.3, and our result implies the following:

• Learning the optimal solutionwith sparse columns. The structured solution with (p−n) trailing
zero columns in (9) is one among many local minimizers, as dense alternatives can arise by
splitting sparse columns. However, empirical evidence and theory [Xie et al., 2025] suggest
that standard optimizers such as Adam [Kingma and Ba, 2015] bias training toward `∞-smooth
solutions of the DAE loss (cf. Corollary D.4). As a result, the solutions observed in practice often
align with the sparse structure we construct (Figure 3).

• Sampling reproduce training samples (memorization). In this regime, the learned DAE closely
approximates the empirical denoiser femp in Eq. (3), achieving low empirical loss and conse-
quently reproducing the training samples under sampling (as shown in Figure 2). This occurs
because the DAE’s projection and reconstruction over the sparse columns of the weights during
the reverse sampling effectively act as a power method, recovering memorized training data
[Weitzner et al., 2024]. Quantitatively, by plugging Corollary 3.2 into the overall denoising score
matching loss, we find that the KL divergence between the sampled and empirical distributions
is bounded by π

2 max1≤i≤n ‖xi‖, confirming strong memorization.

• Spiky representations as a signature of memorization. As a consequence of Corollary 3.2, for
any training sample xi, its learned representation within the DAE exhibits a distinctive sparse
form:

[W>
mem(xi + σε)]+ ≈ (0, . . . , 0, rix

>
i (xi + σε), 0, . . . , 0).

This sparsity arises because xi is negatively correlated with other samples stored in the learned
weight matrixWmem, yielding a nearly one-hot feature vector within the representation space
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Figure 4: Mem./Gen. representations in ReLU-DAEs. Top: Memorized vs. generalized samples can
be separated by the standard deviation (Std) of their representations: memorized models produce
spiky, high-Std features, whereas generalized models do not. Bottom: Representation of a single
training data. The memorized model exhibits large outlier activations (high Std); the generalized
model yields a more balanced representation (lower Std), consistent with our theory. All models
use σ = 0.2. Left: CelebA. Right: MoG. See Appendix C.1 for details.

(Figure 4). Such spikiness could serve as a robust signature of memorization [Hakemi et al.,
2025], which we empirically demonstrate on both synthetic (Figure 4) and real-world (Figure 5)
settings. Building on this insight, we introduce a simple yet effective memorization detection
method that achieves strong results, as detailed later in Section 4.1. Additionally, analogous
correlations between sharp, localized activations and the recall of concrete stored knowledge
have been empirically observed in Large Language Models (LLMs) [Sun et al., 2024], suggesting
our findings could also offer a potential explanation for these phenomena in LLMs.

3.2 Case 2: Generalization with Underparameterization

On the other hand, suppose we have sufficiently many i.i.d. samples {xk,i}nk
i=1 from each Gaussian

mode k ∈ [K] of the MoG distribution (4). Then the empirical mean and Gram matrix of each
cluster k concentrate around their expectations:

xk =
1

nk

nk∑
i=1

xk,i ≈ µk,
1

nk
XkX

>
k ≈ Sk := µkµ

>
k +Σk. (10)

If the component means are incoherent (i.e., 〈µk,µ`〉/(‖µk‖‖µ`‖) < β2 for k 6= `) and the within-
mode variance is small (i.e., ‖Σk‖F /‖µk‖2 < α2), then with high probability the clusters {Xk}Kk=1

satisfy the separability conditions in Definition 3.1 with (α, β) = (α2, β2). In this scenario, as we
demonstrate below, the optimal weights of the DAE network will learn the local data statistics
(specifically, the means and variances of the MoG) from these well-separated, non-degenerate
clusters of training data to enable generalization.

Corollary 3.3 (Generalization in Underparameterized DAEs). Under the problem setup of Theorem 3.1,
we assume the training data satisfy the separability condition in Definition 3.1.1 If the DAE network in (5)

1For simplicity, we take separability as an assumption; given sufficient samples, it can be verified under extra conditions
on the means and covariances of MoG using standard measure concentration tools [Vershynin, 2018].
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is under-parameterized with p =
∑K

k=1 pk � n, then there exists a local minimizer of the DAE training loss
(6) such that

W ?
2 = W ?

1 =
(
WX1 WX2 · · · WXK

)
=: Wgen,

where each block WXk
∈ Rd×pk captures the principal components of the empirical Gram matrix XkX

>
k in

(8), withWXk
W>

Xk
concentrating to the rankpk optimal denoiser for N (µk,Σk):

WXk
W>

Xk
→

[
(Sk −

λ

ρk
I)(Sk + σI)−1

]
rank-pk approx

,

where Sk is introduced in (10) and ρk is the ratio of the k-th mode of MoG. Moreover, when λ → 0, the
expectation of the test loss (which captures generalization error) can be bounded by

EX∼pgt [LX(W ?
2 ,W

?
1 )] .

K∑
k=1

ρk

∑
j≤pk

eigj(Sk) · σ4(
eigj(Sk) + σ2

)2 +
∑
j>pk

eigj(Sk) +
Ck pk
σ2 nk

 ,

where Ck > 0 depends only on σ and spectral properties of Sk. Here, eigj(Sk) denotes the j-th eigenvalue of
Sk which is independent of d.

Remarks. The proof is deferred to Appendix D.5, and our result implies the following:

• Sampling yields novel in-distribution samples (generalization). When the model is under-
parameterized, our results show that the local optimal solution learned from the training data
achieves bounded population loss on the MoG distribution by effectively acting as an optimal
local denoiser for each mode. Consequently, sampling from the trained DAE produces novel,
in-distribution images that are distinct from the training samples, as illustrated in Figure 2.
Moreover, the population loss depends on the spectrum ofSk (equivalently,Σk). WhenΣk has an
approximately low-rank structure [Liang et al., 2025], the loss is small and decays rapidly with the
number of samples per mode nk. This provides a principled explanation for the reproducibility
of diffusion models across disjoint training subsets [Zhang et al., 2024, Kadkhodaie et al., 2024a].

• Balanced representations as a signature of generalization. Unlike the spiky representations
in Corollary 3.2, the underparameterized solution spreads the energy of xi + σε, with xi ∼
N (µk,Σk), across the pk coordinates of the active block (see Figure 4). The representation
behaves like a low-dimensional projection for a Gaussian mode [Tipping and Bishop, 1999]:

[W>
gen(xi + σε)]+ ≈ (0, . . . , 0, W>

Xk,1
(xi + σε), . . . , W>

Xk,pk
(xi + σε), 0, . . . , 0).

Intuitively, generalized samples activate multiple neurons rather than a single spiky unit; the
resulting projections encode information about the underlying distribution, helping to explain
empirical findings on semantic directions [Kwon et al., 2023] that are useful for editing, which
we further explore in Section 4.2.

Concluding Corollary 3.2 and Corollary 3.3, we see the learned structure remains stable across
timesteps, with σ primarily acting as a regularization parameter. Varying σ only slightly perturbs
the solution, which helps explain the empirical success of diffusion models that employ a single
neural network for denoising across multiple noise levels [Sun et al., 2025].
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Figure 5: Mem./Gen. representations in real-world models. memorized samples have spiky
representations while generalized samples have more balanced ones. The layout follows Figure 4
and the results are consistent with it. Representations are extracted at timestep t = 50 (σt ≈ 0.17).
Left: DiT-L/4 pretrained on an ImageNet subset. Right: Stable Diffusion v1.4 pretrained on LAION
[Schuhmann et al., 2022]. Results for EDM pretrained on CIFAR10 and additional details are in
Appendix C.2.

3.3 Case 3: Co-existence of memorization and generalization with Imbalanced Empiri-
cal Data

Large-scale diffusion datasets often contain duplicates due to imperfect curation or heterogeneous
aggregation [Carlini et al., 2023]; such samples are more easily memorized [Somepalli et al., 2023b]
(See Appendix B.4 for more discussions). We model this by allowing duplicated (rank-1) clusters
alongside well-sampled, nondegenerate clusters, so the DAE can admit local minimizers that mix
memorization and generalization blocks:

Corollary 3.4 (DAE memorizes duplicates and generalizes on well-sampled modes). Let X =
[X1, . . . ,XK ] satisfyDefinition 3.1, where for ` = 1, . . . ,m,X` = (x`, . . . ,x`) is rank 1, andXm+1, . . . ,XK

contain distinct empirical samples from the remaining Gaussian modes. Suppose a ReLU DAE is trained
with weight decay λ ≥ 0 and input noise σ > 0. Then there exists a local minimizer of the form

W ?
2 = W ?

1 =
(
r1x1 · · · rmxm WXm+1 · · · WXK

)
,

where the first m columns memorize the duplicated clusters (as in Cor. 3.2), and the remaining blocks WXk

implement generalization on the nondegenerate clusters (as in Cor. 3.3).

This corollary interpolates Cases 1 and 2: duplicated training samples are memorized, while
the model still generalized for the other modes. We verify this in Figure 6 and defer proof to Ap-
pendix D.6.

4 Implications for Memorization Detection and Content Steering

In this section, we demonstrate that our theoretical insights from Section 3 yield profound practical
implications for model privacy and interpretability. Leveraging the identified dual relationship
between representation structures and generalization ability, we present the following two applica-
tions:
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Figure 6: Verification of Corollary 3.4. The model learns both memorizing and generalizing
columns when data duplication is present.

• Representation-based memorization detection (Section 4.1). Leveraging the spikiness of data
representations, we introduce a prompt-free classification method that accurately distinguishes
between generalized and memorized samples produced by diffusion models. We demonstrate
that our approach achieves strong performance with high efficiency and extensibility.

• Representation-space steering for image editing (Section 4.2). We introduce a training-free
editing method that steers generated samples within the representation space. Crucially, we find
that generalized samples are substantially more steerable, whereas memorized samples exhibit
minimal editing effects due to the spikiness of their representations.

4.1 Representation-Based Memorization Detection

Building on our theoretical insights, we investigate whether memorization can be detected directly
from internal representations. Prior work has largely focused on how certain prompts trigger
memorization and often relying on those for detection [Wen et al., 2024, Jeon et al., 2025, Ren
et al., 2024]. Representative approaches include: (i) Density-based: detecting samples that are
generated disproportionately frequently under a prompt [Carlini et al., 2023]; and (ii) Norm-based:
comparing conditional vs. unconditional scores [Wen et al., 2024] and (iii) Attention-based: locating
anomaly in the cross-attention induced by memorized prompts [Hintersdorf et al., 2024, Chen
et al., 2025b]. A notable exception is (iv) a landscape-based method of Ross et al. [2025], which
evaluates memorization using local score-function geometry around a generated sample. Their
method makes detection prompt-free, but is still based on output space.

In contrast, we introduce the first detection method that is both representation-based and
prompt-free. The core intuition is that spiky representations arise when a sample has been internally
stored by the model, whereas generalized samples yield balanced activations. Therefore, our
analysis yields a simple yet effective diagnostic: the standard deviation of intermediate features
serves as a proxy for spikiness. High variance indicates memorization; low variance corresponds
to generalization. We benchmark this detector against existing baselines on pre-trained diffusion
models. As reported in Table 1, our method achieves the highest accuracy and efficiency, thereby
demonstrating the strong informativeness of representation-space statistics. Pseudocode and further
implementation details are provided in Appendix C.3.

4.2 Representation-Space Steering for Interpretable Image Editing

As shown in Corollary 3.3, representations of generalized samples are governed by data statistics,
capturing local semantics and acting as low-dimensional projections of Gaussian modes. This
insight implies an interpretable steering mechanism: we can inject information about a target mode
(e.g., a specific concept or style) by adding its average representation, thereby smoothly guiding
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Table 1: Memorization detection results. We report AUROC, true positive rate (TPR) at 1% false
positive rate, and runtime (s). Evaluated on three datasetmodel pairs: LAIONSD1.4, ImageNetDiT,
and CIFAR10EDM. Sample sizes: 500 memorized and 500 generalized for LAION and ImageNet;
100 each for CIFAR10. (↑ higher is better; ↓ lower is better). See Appendix C.2 for details.

Method Prompt Free? LAION ImageNet CIFAR10

AUC ↑ TPR ↑ Time ↓ AUC ↑ TPR ↑ Time ↓ AUC ↑ TPR ↑ Time ↓

[Carlini et al., 2023] 7 0.498 0.020 3.724 N/A N/A
[Wen et al., 2024] 7 0.986 0.961 0.134 N/A N/A
[Hintersdorf et al., 2024] 7 0.957 0.500 0.009 N/A N/A
[Ross et al., 2025] X 0.956 0.915 0.545 0.971 0.528 0.031 0.713 0.013 0.071
Ours X 0.987 0.961 0.067 0.995 0.912 0.015 0.998 0.984 0.020

generation toward it. Specifically, our proposed steering function is defined as:

f steered
θ (xt, t, c) = hθ(gθ(xt, t, c) + av) , where v =

1

|S|
∑
x̃∈S

gθ(x̃t̃, t̃, c̄). (11)

Here, S denotes samples from the target concept/style, gθ andhθ represent the encoder and decoder
components of the network, respectively, and a ∈ R controls the steering strength, c is the text
prompt and c̄ denotes the desired concept/style prompt.

We evaluate thismethod on StableDiffusion v1.4 using bothmemorized and generalized samples
(Figure 7). As predicted by our theory, generalized samples exhibit smooth and monotonic edits
as a varies, indicative of a well-behaved local geometry in their representation space. In contrast,
memorized samples display brittle, threshold-like responses, making fine-grained control difficult
because of their spiky representations.

We note that we do not intend to compete with existing outstanding steering methods, as
several such approaches have already demonstrated impressive empirical success [Zhang et al.,
2023, Gandikota et al., 2024, Kadkhodaie et al., 2024b, Chen et al., 2024a]. Rather, our focus is on
showing how steering reveals the dual relationship between representation structure and generation
behavior. In particular, when the model generalizes, its representations form compositional and
interpretable spaces, enabling continuous and controllable edits.
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Steering Strength ↑

" A high-resolution front-facing portrait of a man, …, realistic photography"

Steering Strength ↑

" A high-resolution front-facing portrait of a woman, …, realistic photography"

(a) +Old (Gen.)

Steering Strength ↑

"Donna Tartt's <i>The Goldfinch</i> Scores Film Adaptation"

Steering Strength ↑

"Chris Messina In Talks to Star Alongside Ben Affleck in <i>Live By Night</i>"

(b) +Old (Mem.)
Steering Strength ↑

"An image of a lion, high quality, 8k"

Steering Strength ↑

"Emma Watson"

(c) +Oil-painting Style (Gen.)

Steering Strength ↑

"Emma Watson to play Belle in Disney's <i>Beauty and the Beast</i>"

Steering Strength ↑

"Living in the Light with Ann Graham Lotz"

(d) +Oil-painting Style (Mem.)

Figure 7: Image editing via representation steering. We perform image editing on Stable Diffusion
v1.4 using (11). Generalized samples exhibit smooth and progressive style transfer as the editing
strength increases, whereas memorized samples display brittle and threshold-like transfer effects.
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5 Discussion
Our thoughts

We believe diffusion models generalize mainly because, under the self-supervised denoising
objective, neural networks are driven to learn and exploit the underlying structure of the data
distribution. This capability is reflected internally through the emergence of a representation
space (or auto-encoding [Bengio et al., 2013]): the network effectively processes/projects
noisy inputs with respect to learned structures, which underlies its compressing and de-
noising behavior [Li and He, 2025, Kadkhodaie et al., 2024a]. In this sense, learning a good
(balanced and semantic) representation is a useful indicator of generalization.

For theory, we are necessarily restricted to simpler settings. We therefore consider a separable
MoG, where denoising, score learning, and representation learning are all well-defined,
and we can observe the above mechanism in a controlled way. Concretely, our ReLU-MLP
learns to assign inputs from the same Gaussian mode to the same ReLU mask (i.e., the same
subset of neurons). This selectivity [Balestriero et al., 2025, Song et al., 2025] is a simple,
interpretable form of feature learning, and we view it as one fundamental reason neural
networks can adapt to structured data distributions.

In summary, our study establishes that the representation space of diffusion models is not a
secondary artifact of training but a critical factor in how these models operate. Its structure provides
a principled separation between memorization and generalization: spiky, sample-specific codes
signal memorization, while balanced, low-dimensional representations link to generalization. This
perspective allows us not only to detect memorization directly from internal features but also to
leverage representations for practical tasks such as controllable editing via steering. While prior
works have used intermediate activations for downstream applications, our framework highlights
their important role in shaping diffusion behavior itself. By making these structures explicit,
we bridge theoretical analysis with empirical validation, offering a unified view that connects
perception and generation, and opening pathways toward more interpretable and trustworthy
generative models.
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A Additional Related Works

A.1 Analysis on the learning of diffusion models under certain parameterization

There has been a large body of work analyzing the learning of diffusion models [Chen et al., 2023,
Wang et al., 2024b]. Recently, more attention has turned to when and how they overfit or generalize:
Li et al. [2023], Bonnaire et al. [2025] use random-feature assumptions, while Wang et al. [2024a],
Buchanan et al. [2025] study empirical denoiser with learnable attractors; Wu et al. [2025], Chen
[2025] investigate smoothing effects induced by learning rate and weight decay that promote
generalization. These works are theoretically rigorous but often lack real-world validation.

A.2 Memorization and Generalization with analytical DMs

Constrained/regularizedmodels. Recent works characterize how architectural or inductive biases
can push empirical scores toward more generalizable solutions. For instance, Scarvelis et al. [2023],
Lukoianov et al. [2025] construct closed-form diffusion models from data; Niedoba et al. [2025],
Kamb and Ganguli [2025] impose locality or translation-equivariance constraints to mimic U-Net
behavior; and Kadkhodaie et al. [2024a], An et al. [2025] analyze architectural biases of CNNs and
DiTs. Baptista et al. [2025] empirically evaluate the impact of various regularization schemes.

Associative Memory (AM) models. Radhakrishnan et al. [2020], Ambrogioni [2024], Biroli
et al. [2024], Pham et al. [2025] model imperfect training and sampling jointly as an AM recall
process, viewing novel image generation as new attraction basins and memorization as perfect
recalls. However, this perspective can understate the role of learned neural networks in enabling
generalization.

A.3 Diffusion models and representation learning

Concurrent work studies co-emerging representation learning [Kwon et al., 2023, Han et al., 2025]
with distribution learning in diffusion models. As recent work [Chen et al., 2025a] re-emphasize
that the diffusion objective is fundamentally a self-supervised autoencoder loss [Vincent et al., 2010,
Vincent, 2011, Bengio et al., 2013], which induces encoderdecoder behavior [Chen et al., 2025a] and
the model autonomously learn informative features for downstream tasks [Baranchuk et al., 2022,
Xiang et al., 2023]. Moreover, supervising the representations can accelerate training [Yu et al.,
2025, Wang et al., 2025], and different representation behaviors correlate with different degrees of
overfitting [Li et al., 2025].

B Additional Experiments

B.1 Further verification of Theorem 3.1

Verification with MoG data Under a Mixture of Gaussians (MoG) setting, we directly verify
Theorem 3.1 since the separability assumptions can be enforced by construction. We use a two-mode
MoG in a 1000-dimensional space with symmetric means µ1 = −µ2 = 5e1, where e1 = (1, 0, . . . , 0),
and covariance matricesΣ1,Σ2 each having exponentially decaying spectra. We sample 5,000 points
from each mode, yielding two separated clusters. Training a ReLU-DAE with p = 50 hidden units
and σ = 0.2, we find that the model effectively learns a rank-25 approximation of the Wiener filter
for each cluster, as defined in Theorem 3.1, as shown in Figure 8:
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Figure 8: Comparison between the learned ReLU-DAE and the constructed solution from Theo-
rem 3.1 under the MoG setting. They agree in both eigenvalues and eigenvectors.
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Figure 9: training with larger σ will give us less perfect memorization, but the trend holds

Robustness to large noise levels We show here that the vanishing remainder in Theorem 3.1 is
negligible even for large σs. For instance, we train the ReLU-DAE under σ = 0.2, 1, 5 on CelebA
and we find the model still learns the constructed solution as shown in Figure 9.

Robustness beyond separability When the separability assumption is relaxed (β > 0, so training
images overlap), the memorized ReLU-DAE still learns a processed version of the solution in
Theorem 3.1. Empirically, it recovers a denoised/processed data matrix, or approximately an
orthonormal basis for the data span; see Figure 10.

For the generalized ReLU-DAE on CelebA, it is already a non-separable dataset. And the model
continues to (i) generate novel images (Figure 2), (ii) capture dataset statistics (Figure 3), and (iii)
produce balanced representations (Figure 4). Thus, separability mainly simplifies the form of local
minimizers; it is not required for either memorization or generalization.

Robustness to different optimization setups We show that the local minimizer characterized in
Cor. 3.2 is robust to different random seeds and optimizers (RMSProp, Adam, Adam). In all cases,
modern adaptive optimizers converge to a sparse solution that stores individual training samples as
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24

Non-separable 
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Figure 10: When separability breaks, a ReLU-DAE still learns a processed version of the data matrix
(approximately an orthonormal basis of the data span).

columns. We also varied the random seed and found that it essentially only permutes the columns,
and omit those results for brevity.

Tying vs. untying the encoder-decoder matrices Our theorem shows that even when the encoder
and decoder are parametrized independently, training drives them to a symmetric (tied) solution.
We confirm this empirically in Figure 12, consistent with prior observations [Kunin et al., 2019].
Accordingly, for Figures 3 and 4 in the main text we train weight-tied ReLU-DAEs.

B.2 Denoising and Representations of test samples with ReLU DAE

As in [Kadkhodaie et al., 2024a]), the ability to denoise an unseen test image is an equivalent
check for generalization or overfitting, as shown in Figure 13. Memorizing DAE (Corollary 3.3)
perfectly denoises a training image. On a test image, it still produces a training-data like output
(visually clear but discarding input-specific information, producing high test MSE). Generalizing
DAE (Corollary 3.3) denoises both while preserving input-specific structure.

Moreover, we also visualize the representations of test samples for the memorizing and general-
izing DAEs in Figure 14. Since the memorizing DAE learns sparse columns, the representation of a
test image is also sparse: positive activations indicate positive alignment with specific memorized
training samples, and the resulting code is highly spiky. For the generalizing DAE, which learns
statistics reflecting the underlying data distribution, the representations of test samples are as
balanced as those of training samples.

B.3 Connection between ReLU-DAE and Real-World Models

In this section, we demonstrate that our ReLU model exhibits piecewise linearity, consistent with
observations in real-world models [Lukoianov et al., 2025]. Consequently, it can be viewed as
a localized approximation of these counterparts: a large model can implement the mechanisms
of Corollary 3.2 and Corollary 3.3 in distinct local regions [Ross et al., 2025], thereby simultaneously
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Figure 11: The local minimizer from Cor. 3.2 is robust to different random seeds and optimizers.

Figure 12: An untied ReLU-DAE learns (approximately) symmetric encoder-decoder matrices.

generalizing and memorizing. We verify this via SVD analysis of the Jacobian [Kadkhodaie et al.,
2024a, Achilli et al., 2024] for SD1.4, EDM, and our ReLU-DAE:

• Around memorized data, the model’s Jacobian is extremely low-rank and dominated by that
specific data vector. This indicates the model is storing and denoising along the memorized
sample, confirming the results of Cor. 3.2. Moreover, the model denoises with near-perfect
certainty.

• Around generalized samples, the Jacobian matrix reflects the data structures described in corol-
lary 3.3. Accordingly, the model produces a smoothed result, having learned a ground-truth
denoiser that incorporates the constraints of the underlying distribution [Niedoba et al., 2025].

We visualize these findings in Figures 15a, 15b, and 15c.

B.4 Duplication of training data induces memorization

Large-scale diffusion datasets often contain duplicates due to imperfect deduplication or aggregation
from heterogeneous sources [Carlini et al., 2023, Shi et al., 2025]. Such duplicates are disproportion-
ately memorized by generative models [Somepalli et al., 2023b, Chen et al., 2024b]. Interpolating
Corollary 3.2 and Corollary 3.3 suggests that, when a subset is duplicated, the model tends to
memorize those duplicated samples while still generalizing on the rest. We observe this behavior
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(a) Denoising σ = 0.2 with Mem./Gen. DAEs (b) Denoising σ = 1.0 with Mem./Gen. DAEs

Figure 13: One-step denoising result of train/test samples with ReLU-DAE

Train

Test

Figure 14: Representations of train and test samples undermemorizing vs. generalizing ReLU-DAEs.

empirically in Figure 16 for EDM trained on CIFAR10 with a duplicated subset (and similarly for
DiT on ImageNet as in Figure 5 ).

C Technical details

C.1 Training and sampling setup for ReLU-DAEs

Optimization. We train with RMSprop. For memorized models, we use learning rate 1×10−3,
weight decay 1×10−2, and run 5× 105 gradient steps. For generalized models, we use learning rate
1×10−4, weight decay 1×10−4, and run 4×107 steps. Perturbing these choices (e.g., Adam/AdamW
vs. RMSprop, slightly different learning rates or weight decays, or tying vs. untying the encoder-
decoder) can slightly shift the final solution, but the memorization-generalization characterization
remains clear.
Sampling. We train a set of DAEs with VE noise scheduling [Song et al., 2021b] over σ ∈ [0.02, 2]
and run DDIM sampling (Eq. 1).
Data. MoG: In d = 1000, we consider two symmetric modes with means µ1 = −µ2 = 5e1 (where
e1 = (1, 0, . . . , 0)) and covariancesΣ1,Σ2 having exponentially decaying spectra. For the memo-
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Left Singular Vectors (Mem.)

Left Singular Vectors (Gen.)

(a) SD1.4’s Jacobian at t = 200

Left Singular Vectors (Mem.)

Left Singular Vectors (Gen.)

(b) EDM’s Jacobian at σt = 0.2

Left Singular Vectors (Mem.)

Left Singular Vectors (Gen.)

(c) ReLU DAE’s Jacobian at σt = 0.2

Figure 15: Jacobians for SD1.4, EDM, and ReLU DAE at the indicated time/noise settings.

rized model, we use 2 samples per mode; for the generalized model we use 10,000 samples (5,000
per mode). CelebA: We use 5 training images (chosen for clear separability) for the memorized
model and the first 10,000 for the generalized model.
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(a) Bimodal similarity of generated samples to the
training set (CIFAR10) under duplication
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(b) Mem./Gen. representation statistics for an EDM
pretrained on CIFAR10 with a duplicated subset.

Figure 16: Effect of training-set duplication. Duplicates induce a memorization mode while non-
duplicated data continue to support generalization.

C.2 Memorization detection details

Collecting mem./gen. sets. For LAION-Stable Diffusion, we follow Wen et al. [2024] and use
publicly available prompts curated to elicit either memorization or generalization [Webster et al.,
2023]. For CIFAR10-EDM and ImageNet-DiT, we compute the SSCD similarity [Zhang et al., 2024]
between each generated image and its nearest neighbor in the training set; samples with similarity
>0.9 are labeled memorized and those with similarity <0.5 as generalized.
Feature extraction. For EDMwe extract activations at 8x8_block3.norm0 ; for Stable Diffusion v1.4
at up_blocks.0.resnets.2.nonlinearity ; and for DiT-L/4 we use the SiLU activation in block
12 (of 24). We apply global max pooling (spatial for Stable Diffusion v1.4 and EDM; token-wise for
DiT) to obtain compact representations, though detection also works even if not. Unless otherwise
noted, representations are taken at DDPM timestep t = 50, corresponding to an equivalent noise
level σt ≈ 0.17 [Ho et al., 2020].
Algorithm 1: Detection via representation standard deviation
Input: generated image x0, timestep t, threshold THRES
Output: intermediate representation h, detection flag Imem
xt ← AddForwardNoise(x0, t);
h← hθ(xt, t, condition = ∅);

where fθ(xt, t) = gθ[hθ(xt, t,∅)]with g and h the decoder/encoder components;
Imem ←

(
Std(h) > THRES

)
;

return h, Imem;
The detection metric need not be limited to standard deviation; other effective choices include

the `4/`2 ratio [Vershynin, 2018], entropy, and max-min of the representations. We found these
alternatives yield similar separability between memorized and generalized samples.

C.3 Image Editing Details

We use Stable Diffusion v1.4 for our image editing experiments. For each style transfer task, we
first generate 100 images in the target concept/style. We then extract feature representations
at timestep t = 10 (out of 1000) from the conditional path at layers up_blocks.0.resnets.0 ,
up_blocks.0.resnets.1 , up_blocks.0.resnets.2 , up_blocks.1.resnets.0 ,
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Steering Strength ↑

" A high-resolution front-facing portrait of a man, …, realistic photography"

Steering Strength ↑

" A high-resolution front-facing portrait of a woman, …, realistic photography"

Steering Strength ↑

" A high-resolution front-facing portrait of a man, …, realistic photography"

Steering Strength ↑

" A high-resolution front-facing portrait of a woman, …, realistic photography"

(a) +Old (Gen.)

Steering Strength ↑

"Donna Tartt's <i>The Goldfinch</i> Scores Film Adaptation"

Steering Strength ↑

"Chris Messina In Talks to Star Alongside Ben Affleck in <i>Live By Night</i>"

Steering Strength ↑

"Ava DuVernay Won't Direct <i>Black Panther</i> After All"

Steering Strength ↑

"Aaron Paul to Play Luke Skywalker at … of <i>The Empire Strikes Back"

(b) +Old (Mem.)

Figure 17: Image editing via single-layer representation steering. We follow the setup of Figure 7,
but extract and apply the steering vector using only one layer.

up_blocks.1.resnets.1 , and up_blocks.0.resnets.2 . The resulting tensor has size 100×C×
H ×W . We compute the mean across the image, height, and width dimensions, yielding a steering
vector of size 1× C × 1× 1. Representation steering is performed by adding this steering vector to
the conditional path representation of a source image with varying editing strengths. Sampling is
performed with 40 total generation steps, where representation steering is applied during the final
20 steps. All experiments use a classifier-free guidance (CFG) scale of 3.5.

C.4 Exploration on Steering-based Image Editing

In the main body of the paper, we show that a simple representation-based steering method enables
effective image editing. More importantly, the editing outcomes differ systematically between
generalized and memorized images. In this subsection, we evaluate the robustness of this method.

• Using fewer layers. As described in Appendix C.3, the steering results in Figure 7 are obtained by
extracting and applying representation addition across 6 layers of the network. As an ablation, we
find that themethod does not require such depth: even a single layer is sufficient. To illustrate this,
we use up_blocks.1.resnets.1 for both extraction and application, and present the results
in Figure 17. The outputs closely match those in the main paper, and the distinction between
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" A high-resolution interior photograph of an empty bedroom… ."

Steering Strength ↑

(a) +dark

" A high-resolution product photograph of a stylish leather handbag ."

Steering Strength ↑

(b) +Red

Figure 18: Image editing on SD 3.5. We follow the setup of Figure 7 using more recent DiT-based
Stable Diffusion 3.5 model for image editing.

memorized and generalized examples remains evident.

• Stable Diffusion 3.5. The representation space in this architecture is more elusive, likely
due to components such as Adaptive LayerNorm. To investigate this, we applied representa-
tion steering using layers transformer_blocks.10.norm1 , transformer_blocks.11.norm1 ,
transformer_blocks.12.norm1 , transformer_blocks.13.norm1 , and
transformer_blocks.14.norm1 . We generated 200 reference images to extract representations
for each task. Sampling was performed with 40 total generation steps, with steering applied
during steps 35–30. All experiments utilized a CFG scale of 4.5. These results are visualized in
Figure 18.

D Deferred Proofs

D.1 Proof for Lemma D.1

Lemma D.1 (Global minimizers of Regularized LAE). Consider the regularized p-neuron LAE objective
with W1,W2 ∈ Rd×p:

L̂X(W2,W1) := ‖W2W
>
1 X −X‖2F + nσ2‖W2W

>
1 ‖2F + λ′(‖W1‖2F + ‖W2‖2F

)
,

where X = (x1, . . . ,xn) and S := XX> = UΛU>. Assume λ′ < λp, where λ1 ≥ · · · ≥ λd are the
eigenvalues of S. Then every global minimizer has the form

W ?
2 = W ?

1 = U(p)

(
I + nσ2Λ−1

(p)

)−1
2
(
I − λ′Λ−1

(p)

)1
2O> := WX , (12)

where U(p) contains the top-p eigenvectors, Λ(p) the corresponding eigenvalues, and O ∈ Rp×p is any
orthogonal matrix.

Proof. (0) Idea. SetA = W2W
>
1 and replace the separate Frobenius penalties by a nuclear norm

viaminW1,W2:W2W>
1 =A(‖W1‖2F +‖W2‖2F ) = 2‖A‖∗. Rotate to the S-basis and pinch to diagonalize,

yielding d decoupled 1D convex problems with solutions α?
i =

(
λi−λ′

λi+nσ2

)
+
. Keep the top p directions

(largest λi), then factorA? optimally to obtain (12).
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(1) Reduction to a convex objective inA = W2W
>
1 . For anyA with rank(A) ≤ p,

min
W1,W2:W2W>

1 =A

(
‖W1‖2F + ‖W2‖2F

)
= 2‖A‖∗.

Hence

min
W1,W2

L̂X(W2,W1) = min
A∈Rd×d

rank(A)≤p

(
‖AX −X‖2F + nσ2‖A‖2F + 2λ′‖A‖∗

)
=: min

A
F (A),

where F is convex inA (the rank constraint is nonconvex).
(2) Diagonalization in the S-basis. LetA = UÃU> with S = UΛU>. Using

‖AX −X‖2F = Tr(ASA>)− 2Tr(AS) + Tr(S),

we obtain
F (A) = Tr(ÃΛÃ>)︸ ︷︷ ︸

=
∑

j λj
∑

i ã
2
ij

−2
∑
i

λiãii + nσ2‖Ã‖2F + 2λ′‖Ã‖∗ +Tr(Λ).

Zeroing the off-diagonal entries of Ãweakly decreases the quadratic terms and does not increase the
nuclear norm (pinching [Bhatia, 2013]). Thus a minimizer can be chosen diagonal in the U -basis:
A = U diag(α1, . . . , αd)U

>.
(3) Scalar decoupling and positivity. WithA diagonal as above,

F (A) =

d∑
i=1

[
λi(1− αi)

2 + nσ2α2
i + 2λ′|αi|

]
+ const.

For λi ≥ 0, negatives are suboptimal (replacing α by |α| decreases the first term), so we minimize
over αi ≥ 0:

α?
i =

( λi − λ′

λi + nσ2

)
+
.

(4) Rank-p constraint and form of the minimizer. Enforcing rank(A) ≤ p keeps the p indices with
largest λi (equivalently, largest unconstrained α?

i ) and sets the rest to 0. Writing α?
i = s2i on this set,

si =
(
1 + nσ2 λ−1

i

)−1
2
(
1− λ′λ−1

i

)1
2
,

and

W ?
2 = W ?

1 = U(p) diag(si)O
> = U(p)

(
I + nσ2Λ−1

(p)

)−1
2
(
I − λ′Λ−1

(p)

)1
2
O>,

with any orthogonal O ∈ Rp×p. This matches (12). (All inverses/square-roots are taken entrywise
on Λ(p).)

Remark (large λ′ or degenerate S). If some λi ≤ λ′ (including λi = 0), then the unconstrained
coefficients α?

i =
(

λi−λ′

λi+nσ2

)
+
vanish on those indices. In that case, keep the p largest indices with

λi > λ′ (the rank may drop below p if fewer exist), and the same formulas apply entrywise on the
retained eigenvalues; any remaining columns can be set to zero and O is arbitrary.
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D.2 Proof of Theorem 3.1

Definition D.1 ((α, β)-Separability of Training Data). Suppose the training datasetD can be partitioned
intoM clustersX = [X1, . . . ,XM ], whereXk = [xk,1, . . . ,xk,nk

] ⊆ Rd has mean x̄k := 1
nk

∑nk
j=1 xk,j .

We say the dataset is (α, β)-separable if, for some α ∈ (0, 1) and β < 0,

‖xk,j − x̄k‖2
‖x̄k‖2

≤ α for all k, j, 〈x̄k, x̄`〉
‖x̄k‖2 ‖x̄`‖2

≤ β for all k 6= `.

Theorem D.2 (Restatement of Theorem 3.1). Assume (α, β)-separability with β < 0 and nondegenerate
means mink ‖x̄k‖2 ≥ b > 0. Let n =

∑M
k=1 nk and define

W ?
2 = W ?

1 =
(
WX1 · · · WXM

)
.

For each k, let XkX
>
k = UkΛkU

>
k be the eigen-decomposition and let U (pk)

k collect the top pk eigenvectors
(with eigenvalues Λ(pk)

k ). Assume nλ < λmin(Λ
(pk)
k ), so that the block solutions below are well-defined

(real). Then there exist absolute constants C, c > 0 and amargin γ > 0 (defined explicitly below, depending
only on α, β, b, {pk}, and the block scalings, and independent of the noise level) such that, for all

(W2,W1) ∈ Bδ := { ‖W2 −W ?
2 ‖F + ‖W1 −W ?

1 ‖F ≤ δ } and all σ > 0,

we can decompose the DAE loss into LAE losses introduced in Lemma D.1:

LX(W2,W1) =
1

n

M∑
k=1

L̂Xk

(
W2,(k),W1,(k)

)
+ ε(δ, σ, γ), ε(δ, σ, γ) ≤ C

(
δ

γ
+ e−c γ2/σ2

)
,

(13)

where L̂Xk
is the LAE objective in Lemma D.1 for cluster k with noise weight nkσ

2 and weight decay
λ′ = nλ. Moreover, each block is minimized by

W ?
2,(k) = W ?

1,(k) = WXk
:= U

(pk)
k

(
I + nkσ

2Λ
(pk)−1
k

)−1
2
(
I − nλΛ

(pk)−1
k

)1
2O>

k ,

for some orthogonal Ok. Consequently (W ?
2 ,W

?
1 ) is a local minimizer.

(Closeness to an actual minimizer). On Bδ, if we fix the ReLU masks to be those induced by (W ?
2 ,W

?
1 )

at the center (see Steps (1)–(2) below), then the map

(W2,W1) 7→
1

n

∑
k

L̂Xk

is m0-strongly convex around (W ?
2 ,W

?
1 ) with

m0 ≥ c0
(
σ2 + nλ

)
,

for a numerical constant c0 > 0 independent of (δ, σ, γ). Therefore, any local minimizer (Ŵ2, Ŵ1) of the
full DAE loss inside Bδ obeys

∥∥(Ŵ2, Ŵ1)− (W ?
2 ,W

?
1 )
∥∥
F
≤

√
2 ε(δ, σ, γ)

m0
≤

√
2C

c0

(
σ2 + nλ

)−1/2
(
δ

γ
+ e−c γ2/σ2

)1/2

. (14)

In particular, if δ/γ → 0 and σ/γ → 0 (with nλ > 0 fixed), the right-hand side is o(1), giving an explicit
o(1) control on the distance between the constructed solution and the actual local minimizer.

Proof. Let fW2,W1(z) = W2[W
>
1 z]+ and write W ?

1 = [WX1 , . . . ,WXM
], so the columns are parti-

tioned into M blocks. We also use [v]− := [−v]+ entrywise.
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(0) Idea. We compare the nonlinear DAE fW2,W1 with its mask-fixed linearized counterpart
fLAE
W2,W1

. The intended behavior is: block k is active onXk with a positive margin, while all other
blocks are inactive with a negative margin. For small (σ, δ), the ReLU masks are preserved with
high probability; concretely,

fW2,W1(X + σε) = W2

[
W>

1

(
X1 + σε1, . . . ,XM + σεM

)]
+

≈
(
W2,(1) · · · W2,(M)

)[W>
1,(1)(X1 + σε1)]+

. . .
[W>

1,(M)(XM + σεM )]+


(15)

:= fLAE
W2,W1

(X + σε).

With masks fixed to the “correct” ones (block k on Xk, others off), the network reduces to a linear
map

fLAE
W2,W1

(z) = W2,(k)W
>
1,(k)z (z ∈Xk),

i.e., each cluster is reconstructed by a small number of neurons in its corresponding block. Equivalently,
writingAk := W2,(k)W

>
1,(k) andA := blkdiag(A1, . . . ,AM ), we have fLAE

W2,W1
(X+σε) = A(X+σε).

With fixed masks, the loss decouples intoM LAE problems and becomes solvable.

(1) Masks and margins at the block center (no noise). Write WXk
= U

(pk)
k SkO

>
k
2 with Sk =

diag(sk,1, . . . , sk,pk) � 0. Let smin := mink,r sk,r and smax := maxk,r sk,r, and chooseOk so that

O>
k U

(pk)>
k x̄k =

‖U (pk)>
k x̄k‖2√

pk
1pk .

Since
XkX

>
k = nk x̄kx̄

>
k +

∑
t

(xk,t − x̄k)(xk,t − x̄k)
>,

the within-cluster tightness (α) implies the “residual” term has spectral norm∥∥∥∥∥∑
t

(xk,t − x̄k)(xk,t − x̄k)
>

∥∥∥∥∥
op

≤
∑
t

‖xk,t − x̄k‖22 ≤ nk α
2‖x̄k‖22.

Therefore x̄k is well aligned with the top eigenspace of XkX
>
k . In particular, there exists cproj(α) ∈

(0, 1] such that
‖U (pk)>

k x̄k‖2
‖x̄k‖2

≥ cproj(α).

(One explicit choice.) Let uk,1 be the top eigenvector ofXkX
>
k (so uk,1 ∈ span(U

(pk)
k ) for any pk ≥ 1).

A Davis–Kahan/Wedin-type bound gives

sin∠
(
uk,1, x̄k

)
≤ α2

1− α2
=⇒

|〈uk,1, x̄k〉|
‖x̄k‖2

≥
√
1−

(
α2

1−α2

)2
,

hence one may take cproj(α) :=
√
1− (α2/(1− α2))2 (for α < 1).

2Any right-orthogonal choice ofOk yields the same objective value; the choice above maximizes the first-order margin
and is convenient for the mask analysis.
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Hence, for any x ∈Xk and any column w?
k,r of W ?

1,(k),

〈w?
k,r,x〉 ≥ ‖x̄k‖2

(
smin

cproj(α)√
pk
− smaxα

)
.

For any ` 6= k and any unit vector u ∈ span(U
(p`)
` ), (α, β)-separability yields 〈u, x̄k〉 ≤ β + α.

Therefore, for any column w?
`,r,

〈w?
`,r,x〉 ≤ ‖x̄k‖2 smax(β + 2α) ≤ −‖x̄k‖2 smax

|β|
2
,

provided α is sufficiently small compared to |β| (absorbed into constants below). Define the margin

γ := min
k
‖x̄k‖2 ·min

{
smin

cproj(α)√
pk
− smaxα , smax|β|

2

}
> 0. (16)

Then, on Xk, every unit in block k has pre-activation ≥ γ and every unit in ` 6= k has pre-activation
≤ −γ.

(2) Mask stability with noise ε, and loss error. Fix a noise draw ε = (ε1, . . . , εn) and set

e(ε) := fW2,W1(X + σε)− fLAE
W2,W1

(X + σε) =
[
e1 · · · en

]
∈ Rd×n,

where, for a sample xik from the i-th cluster, the deviation is

eik =
∑
6̀=i

W2,(`)

[
W>

1,(`)(xik + σεik)
]
+︸ ︷︷ ︸

off-block, should be 0

−W2,(i)

[
W>

1,(i)(xik + σεik)
]
−︸ ︷︷ ︸

on-block, should be 0

. (17)

Intuitively, eik = 0 unless some pre-activation crosses the margin. Moreover,

‖e(ε)‖2F =

n∑
j=1

‖ej‖22.

Loss difference. For a fixed noise realization ε, define

Lε(W2,W1) :=
1

n

∥∥fW2,W1(X + σε)−X
∥∥2
F

+ λ
(
‖W1‖2F + ‖W2‖2F

)
,

and analogouslyLLAE
ε with fLAE. Writing a := fW2,W1(X+σε)−X and b := fLAE

W2,W1
(X+σε)−X

(so a− b = e(ε)), ∣∣Lε − LLAE
ε

∣∣ = 1

n

∣∣‖a‖2F − ‖b‖2F ∣∣ = 1

n
|〈a+ b, a− b〉|

≤ 1

n

(
‖a‖F + ‖b‖F

)
‖e(ε)‖F

≤ 1

n

(
2‖b‖F + ‖e(ε)‖F

)
‖e(ε)‖F ,

where the last line uses ‖a‖F ≤ ‖b‖F + ‖e(ε)‖F . Thus it remains to bound E‖e(ε)‖2F and E‖b‖F .
We simplify ‖b‖F by splitting out the noise. DenoteAk := W2,(k)W

>
1,(k) andA := blkdiag(A1, . . . ,AM ),

so
‖fLAE

W2,W1
(X + σε)−X‖F = ‖A(X + σε)−X‖F ≤ ‖(A− I)X‖F + σ ‖A‖op ‖ε‖F .
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Taking expectations and using Cauchy–Schwarz with E‖ε‖2F = dn reduces the problem to bounding
E‖e(ε)‖2F .
Bounding E‖e(ε)‖2F . Fix a column eik . The entries in

[
W>

1,(`)(xik + σεik)
]
+
are rectified Gaussians.

By the margin argument in Step (1), at the center (W ?
2 ,W

?
1 ) we haveW ?>

1,(`)xik � −γ1 for ` 6= i and
W ?>

1,(i)xik � +γ1.3
Thus it suffices to control the first and second moments of a rectified Gaussian whose mean is

separated from 0 by γ. Let Z ∼ N (µ, s2) with µ ≤ −γ. A standard Gaussian tail bound (Mills ratio
/ Chernoff) implies

E[Z]+ ≤
s2

−µ
e−µ2/(2s2) ≤ s2

γ
e−γ2/(2s2), E[Z]2+ ≤

s4

µ2
e−µ2/s2 ≤ s4

γ2
e−γ2/s2 ,

and the same bounds hold for within-block terms with [Z]− = [−Z]+.
Now, a generic off-block pre-activation (an entry in (17)) has the form

Z = w>x+ σw>ε, EZ = µ ≤ −γ, Var(Z) = s2 = σ2‖w‖22.

Let

κ := max
r
‖w1,r‖2, L2

2 :=

M∑
j=1

‖W2,(j)‖2op, p :=

M∑
j=1

pj .

Using ‖W2,(`)v‖2 ≤ ‖W2,(`)‖op ‖v‖2 and the second-moment bound above,

E ‖eik‖
2
2 ≤

σ4κ4

γ2
e−γ2/(σ2κ2) L2

2 p.

Since ‖e(ε)‖2F =
∑n

j=1 ‖ej‖22, we obtain

E ‖e(ε)‖2F =
n∑

j=1

E ‖ej‖22 ≤
σ4κ4

γ2
e−γ2/(σ2κ2) nL2

2 p.

Final plug-in. Let A := blkdiag(A1, . . . ,AM ), LA := ‖A‖op, and BLAE := ‖(A − I)X‖F . The
preceding bounds imply∣∣LX(W2,W1)− LLAE

X (W2,W1)
∣∣ ≤ C

(
δ

γ
+ e− c γ2/σ2

)
uniformly on Bδ, for some absolute constants C, c > 0. (Here δ/γ accounts for deterministic mask
changes across Bδ, while the exponential term accounts for noise-induced sign flips.)

(3) Expectation yields the LAE loss. For ε ∼ N (0, I) andAk := W2,(k)W
>
1,(k),

E
∥∥Ak(x+ σε)− x

∥∥2
2
= ‖Akx− x‖22 + σ2‖Ak‖2F .

Summing over x ∈Xk, averaging by n, and adding weight decay gives

Eε

[
L̂X(W2,W1)

]
=

1

n

M∑
k=1

L̂Xk
(W2,(k),W1,(k)),

3On Bδ , the pre-activations shift by at most O(δ) (absorbed into the δ/γ term in the final bound), so we may treat the
mean as ≤ −γ (off-block) or ≥ +γ (on-block) up to constants.
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using λ′ = nλ and
∑

k ‖Wi,(k)‖2F = ‖Wi‖2F for i = 1, 2.

(4) Block solutions and distance to a strict minimizer. By Lemma D.1, each block is minimized
by W ?

2,(k) = W ?
1,(k) = WXk

; concatenating blocks yields (W ?
2 ,W

?
1 ), which minimize the leading

LAE term in (13). The leading term 1
n

∑
k L̂Xk

is quadratic in (W2,W1) on Bδ (with masks fixed).
Its Hessian at (W ?

2 ,W
?
1 ) equals the Hessian of the quadratic reconstruction term plus 2nλ I from

weight decay, together with the positive-semidefinite curvature from σ2‖Ak‖2F . By continuity of
the Hessian, this yields a uniform lower bound

∇2
(

1
n

∑
k

L̂Xk

)
� m0 I on a neighborhood of (W ?

2 ,W
?
1 ), m0 ≥ c0(σ

2 + nλ),

for a numerical c0 > 0 independent of (δ, σ, γ). Hence, for any local minimizer (Ŵ2, Ŵ1) of the full
DAE loss in Bδ,

m0

2

∥∥(Ŵ2, Ŵ1)− (W ?
2 ,W

?
1 )
∥∥2
F
≤ LX(Ŵ2, Ŵ1)− LX(W ?

2 ,W
?
1 ) ≤ ε(δ, σ, γ),

which yields (14). The right-hand side is o(1) whenever δ/γ → 0 and σ/γ → 0, completing the
proof.

D.3 Proof of Corollary 3.2

Corollary D.3 (Restatement of Cor. 3.2). Assume the datasetX = [xi . . . ,xn] ⊂ Rd is 0, cout-separable.
Consider an overparameterized ReLU DAE with p ≥ n hidden units, weight decay λ ≥ 0, and input noise
level σ > 0. Then, by Theorem 3.1 (applied to singleton clusters), there exists a local minimizer of the form

W ?
2 = W ?

1 =
(
r1x1 · · · rnxn 0 · · · 0

)
=: Wmem, ri =

√
‖xi‖22 − nλ

‖xi‖42 + σ2‖xi‖22
. (18)

(The trailing (p− n) columns are zero; see also Corollary D.4 on `∞-smoothness.) Moreover, for λ→ 0 this
solution attains a small empirical loss independent of d:

Lxi(Wmem,Wmem) .
σ2‖xi‖22

σ2 + ‖xi‖22
< σ2, ∀1 ≤ i ≤ n

Proof. (0) Optimal weights align with data. Apply Theorem 3.1 with clustersXk = {xk} of size

nk = 1. The block solution from Thm. 3.1 now yields W ?
Xk

= rk
xk

‖xk‖2 with rk =

√
‖xk‖22−nλ

‖xk‖22+σ2 , so the

corresponding column of W ?
1 (and W ?

2 ) equals rkxk with rk = sk/‖xk‖2, giving (18). Since p ≥ n,
we may set the remaining (p − n) columns to zero without affecting the network output. Other
equivalent parametrizations (e.g., duplicating columns and rescaling) have larger `∞-smoothness;
our choice is the sparsest among these.

(1) Empirical loss bound (case λ→ 0). By Theorem 3.1 and LemmaD.1, with singleton clusters
and λ = 0, the expected denoising loss decouples over samples and, for each i,

min
α∈[0,1]

[
(1− α)2‖xi‖22 + σ2α2

]
=

σ2‖xi‖22
σ2 + ‖xi‖22

, attained at α?
i =

‖xi‖22
‖xi‖22 + σ2

.

Averaging over i gives the stated bound, which is strictly less than σ2 and independent of the
ambient dimension d.
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D.4 Proof of Smoothness with Respect to the Infinity Norm

Corollary D.4 (Sparse solution has the smoothest `∞ local landscape). At the memorized, sparse
solutionW2 = W1 = Wmem from Corollary 3.2, the loss decomposes over singleton clusters as

n∑
i=1

L̂xi(W2,W1) =
∥∥Aixi − xi

∥∥2
2
+ σ2‖Ai‖2F + 2nλ r2i ‖xi‖22, Ai := W2W

>
1 = r 2

i xix
>
i .

With masks frozen (singleton case), the Hessian w.r.t.W1 is block diagonal:

∇2
W1
LX(W2,W1) = blkdiag

(
H(x1) + λI, . . . ,H(xn) + λI, λI, . . . , λI︸ ︷︷ ︸

p−n blocks

)
,

where each active block has rank-1 plus diagonal form

H(xi) = ai xix
>
i , ai > 0 (smooth in σ, λ, ri, ‖xi‖2).

Consequently, the `∞ Lipschitz constant of the gradient atWmem is

L∞ =
∥∥∇2

W1
LX(Wmem,Wmem)

∥∥
∞→∞ = max

{
max
1≤i≤n

‖H(xi) + λI‖∞→∞, λ
}
.

Among all equivalent local minima obtained by orthogonal re-mixingwithin the active span (i.e.,W1 7→W1Q
and W2 7→W2Q with block-orthogonalQ that preserves masks and the LAE optimum), the choice Wmem

minimizes L∞ and hence yields the smoothest local landscape in `∞.

Proof. (1) Block structure. Freezing masks at singleton clusters forces second-order decoupling
across columns, giving the block-diagonal Hessian displayed above. A direct differentiation of the
decomposed objective shows each active block equals ai xix

>
i + λI for some ai > 0.

(2) Bound `∞ via a (1, 1)-norm of Hessian. Recall ‖M‖∞→∞ = max‖u‖∞=1 ‖Mu‖∞ = ‖M>‖1→1;
for symmetric blocks this equals the maximum absolute column sum. Since the Hessian is block
diagonal, ∥∥∇2

W1
LX

∥∥
∞→∞ = max

{
max

i

∥∥ai xix
>
i + λI

∥∥
1→1

, λ
}
.

For a rank-1 matrix, the (1, 1) operator norm is the max column sum:∥∥ai xix
>
i

∥∥
1→1

= ai ‖xi‖1 ‖xi‖∞.

Adding λI increases each (absolute) column sum by at most λ, hence∥∥ai xix
>
i + λI

∥∥
∞→∞ =

∥∥ai xix
>
i + λI

∥∥
1→1

≤ ai ‖xi‖1 ‖xi‖∞ + λ,

which yields the claimed expression for L∞.

(3) Minimality under orthogonal re-mixing. Let an equivalent optimum be obtained by block-
orthogonal mixing that preserves masks. Each active block is conjugated toQ>

i

(
ai xix

>
i + λI

)
Qi.

While eigenvalues are invariant, (1, 1) (hence∞ → ∞) norms are sensitive to densification. The
memorized alignment keeps the block rank-1 plus diagonal along xi, which minimizes absolute
column/row sums; mixing spreads mass across coordinates and (weakly) increases the max colum-
n/row sum. Therefore the memorized choice minimizes L∞ among all such equivalents [Xie and
Li, 2024].
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D.5 Proof of Corollary 3.3

Corollary D.5 (Restatement of Corollary 3.3). Under the setup of Theorem 3.1, assume the training
data satisfy the separability condition in Definition 3.1. If the DAE in (5) is under-parameterized with
p =

∑K
k=1 pk � n, then there exists a local minimizer of (6) of the form

W ?
2 = W ?

1 =
(
WX1 WX2 · · · WXK

)
=: Wgen,

where each block WXk
∈ Rd×pk consists of the leading principal components of XkX

>
k as in (8), and

WXk
W>

Xk
concentrates to the rank-pk optimal denoiser for N (µk,Σk):

WXk
W>

Xk
→

[
(Sk − λ

ρk
I)(Sk + σ2I)−1

]
rank-pk

,

where Sk is introduced in (10) and ρk is the weight of the k-th mixture component. Moreover, when λ→ 0,
the expected test loss (generalization error) satisfies

EX∼pgt [LX(W ?
2 ,W

?
1 )] .

K∑
k=1

ρk

∑
j≤pk

eigj(Sk)σ
4(

eigj(Sk) + σ2
)2 +

∑
j>pk

eigj(Sk) +
Ck pk
σ2 nk

 ,

where Ck > 0 depends on σ and spectral properties of Sk, and eigj(Sk) denotes the j-th eigenvalue of Sk

(independent of d).

Proof. Notation. For a PSD matrix A, define f(A) := (A− λ
ρk
I)(A+ σ2I)−1, and let fpk(A) be f(A)

truncated to its top pk eigendirections. Set

δpk := eigpk(Sk)− eigpk+1(Sk) > 0, reff,k := Tr(Sk)/‖Sk‖op.

All high-probability statements are with respect to the draw of Xk; C > 0 denotes a universal
constant.
(1) Plug in Theorem 3.1. By Theorem 3.1, in a neighborhood of a block-structured point the DAE
loss decouples across clusters, and each block solves a regularized LAE on Xk with effective noise
weight nkσ

2 and decay nλ. Hence the learned denoiser on cluster k is D̂k := WXk
W>

Xk
.

(2)Concentration to the population denoiser. ForGaussian clusters, 1
nk
XkX

>
k concentrates around

Sk. The LAE solution depends smoothly on its Gram matrix; combining this with a Davis-Kahan
perturbation yields ∥∥D̂k − fpk(Sk)

∥∥
F
≤

(
1
σ2 + C

δpk

)∥∥∥ 1
nk
XkX

>
k − Sk

∥∥∥
F
.

Moreover, with probability at least 1− e−t,∥∥∥ 1
nk
XkX

>
k − Sk

∥∥∥
F

. ‖Sk‖op
√

pk (reff,k+t)
nk

.

Combining the last two displays gives the explicit deviation∥∥D̂k − fpk(Sk)
∥∥
F

. ‖Sk‖op
(

1
σ2 + 1

δpk

)√
pk (reff,k+t)

nk
(w.h.p.). (19)

(3) Population rank-pk DAE risk. Let x′ ∼ N (µk,Σk) and ε ∼ N (0, I) be independent. Define

Lpopk (pk) := E
[
‖fpk(Sk)(x

′ + σε)− x′‖22
]
.
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Diagonalizing Sk and using f(A) = A(A+ σ2I)−1 gives

Lpopk (pk) =
∑
j≤pk

eigj(Sk)σ
4(

eigj(Sk) + σ2
)2 +

∑
j>pk

eigj(Sk).

(4) Generalization loss on cluster k. Let D?
k := fpk(Sk). Then

E
[
‖D̂k(x

′ + σε)− x′‖22
]
= Lpopk (pk) + Tr

(
Sk (D̂k −D?

k)
2
)
≤ Lpopk (pk) + ‖Sk‖op ‖D̂k −D?

k‖2F.
Plug (19) into the last inequality to obtain, with probability at least 1− e−t,

E
[
‖D̂k(x

′ + σε)− x′‖22
]
≤ Lpopk (pk) + C ‖Sk‖3op

(
1
σ2 + 1

δpk

)2 pk (reff,k + t)

nk
. (20)

This makes the 1/nk rate and its dependence on σ, δpk and the spectrum of Sk explicit.
(5) From clusters to the mixture (population) bound. Let pgt =

∑K
k=1 ρkN (µk,Σk). By linearity

of expectation,

EX∼pgt [LX(W ?
2 ,W

?
1 )] =

K∑
k=1

ρk E
[
‖D̂k(x

′ + σε)− x′‖22
]
.

Apply (20) to each term and take a union bound over k = 1, . . . ,K by choosing t = log(K/η). With
probability at least 1− η,

EX∼pgt [LX(W ?
2 ,W

?
1 )] ≤

K∑
k=1

ρk

[
Lpopk (pk) + C ‖Sk‖3op

(
1
σ2 + 1

δpk

)2 pk (reff,k + log(K/η))

nk

]
.

Absorbing reff,k and log(K/η) into a cluster-dependent constant Ck yields exactly the last term
in the corollary statement. (If one prefers a bound in expectation without failure probability, the
same inequality holds with the right-hand side plus an O(η) additive term by integrating the tail;
choosing η = n−2 makes this negligible.)

D.6 Proof of Corollary 3.4

Corollary D.6 (Restatement of Corollary 3.4). Let X = [X1, . . . ,XK ] satisfy Definition 3.1, where for
` = 1, . . . ,m, X` = (x`, . . . ,x`) is rank 1, and Xm+1, . . . ,XK contain distinct empirical samples from
the remaining Gaussian modes. Suppose a ReLU DAE is trained with weight decay λ ≥ 0 and input noise
σ > 0. Then there exists a local minimizer of the form

W ?
2 = W ?

1 =
(
r1x1 · · · rmxm WXm+1 · · · WXK

)
,

where the first m columns memorize the duplicated clusters (as in Cor. 3.2), and the remaining blocks WXk

implement generalization on the nondegenerate clusters (as in Cor. 3.3).
Proof. The proof follows by combining Cor. 3.2 and Cor. 3.3 and using the block-wise structure
guaranteed by Thm. 3.1. In particular, Thm. 3.1 allows us to treat each cluster Xk independently at
a local minimizer.

For the first 1 ≤ j ≤ m clusters,Xj is rank 1 and Cor. 3.2 implies that the corresponding columns
of W ?

1 and W ?
2 are simply scaled data vectors rjxj . For the remaining clusters Xm+1, . . . ,XK ,

Cor. 3.3 yields the blocksWXk
that implement generalization on the nondegeneratemodes. Stacking

these columns and blocks gives precisely the stated form of W ?
1 = W ?

2 .
This corollary illustrates the local adaptivity of ReLU-DAE models: they can memorize du-

plicated subsets while simultaneously generalizing on well-sampled regions of the data distribu-
tion.
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