

000 001 002 003 004 005 006 007 008 009 010 011 012 THE INTRICATE DANCE OF PROMPT COMPLEXITY, QUALITY, DIVERSITY, AND CONSISTENCY IN T2I MODELS

013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
Anonymous authors

Paper under double-blind review

ABSTRACT

013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
Text-to-image (T2I) models offer great potential for creating virtually limitless synthetic data, a valuable resource compared to fixed and finite real datasets. Previous works evaluate the utility of synthetic data from T2I models on three key desiderata: quality, diversity, and consistency. While prompt engineering is the primary means of interacting with T2I models, the systematic impact of prompt complexity on these critical utility axes remains underexplored. In this paper, we first conduct synthetic experiments to motivate the difficulty of generalization *w.r.t.* prompt complexity and explain the observed difficulty with theoretical derivations. Then, we introduce a new evaluation framework that can compare the utility of real data and synthetic data, and present a comprehensive analysis of how prompt complexity influences the utility of synthetic data generated by commonly used T2I models. We conduct our study across diverse datasets, including CC12M, ImageNet-1k, and DCI, and evaluate different inference-time intervention methods. Our synthetic experiments show that generalizing to more general conditions is harder than the other way round, since the former needs an estimated likelihood that is not learned by diffusion models. Our large-scale empirical experiments reveal that increasing prompt complexity results in lower conditional diversity and prompt consistency, while reducing the synthetic-to-real distribution shift, which aligns with the synthetic experiments. Moreover, current inference-time interventions can augment the diversity of the generations at the expense of moving outside the support of real data. Among those interventions, prompt expansion, by deliberately using a pre-trained language model as a likelihood estimator, consistently achieves the highest performance in both image diversity and aesthetics, even higher than that of real data. Combining advanced guidance interventions with prompt expansion results in the most appealing utility trade-offs of synthetic data.

1 INTRODUCTION

040
041
042
043
044
045
046
047
048
049
050
051
052
053
Text-to-image (T2I) models have made significant progress in recent years, enabling the generation of high-quality images from textual descriptions (Esser et al., 2024; Labs, 2024). These advancements have opened up new opportunities in several application domains, making it possible for the public to create images easily with their own words. For the research community, the success of T2I models has also unlocked the exploration of synthetic data generated by these models for downstream model training (Hemmat et al., 2024; Askari-Hemmat et al., 2025; Tian et al., 2023; Fan et al., 2024; Dall’Asen et al., 2025) and model self-improvement (Yoon et al., 2024).

Recent studies have yielded in-depth analyses on the utility of synthetic data from off-the-shelf T2I models (Astolfi et al., 2024; Hall et al., 2024c; Lee et al., 2023). The utility of synthetic data from conditional image generative models, such as T2I, has been defined as a set of desiderata (Astolfi et al., 2024; DeVries et al., 2019), including *synthetic image quality* –*i.e.*, aesthetics and realism–, *diversity*, and *conditional consistency* –*i.e.*, alignment with the conditioning prompt. Analyses of these desiderata have revealed that the impressive progress in image quality has come at the expense of generation diversity. As a result, the community has devoted significant work to devise inference-time interventions –*e.g.*, prompt rewriting (Datta et al., 2024) and advanced guidance approaches

054 modifying standard classifier-free guidance (CFG) (Ho & Salimans, 2022) – that improve the diversity
 055 of synthetic data. Although these interventions focus on either changing the prompt conditioning
 056 or the flow of signals from the conditioning, *the effect of the prompt content on the utility of synthetic*
 057 *data remains an open question*. Prompts may be characterized by their complexity, defined as the
 058 amount of details contained in the prompt or the specificity of its concepts, and state-of-the-art T2I
 059 models have been shown to benefit from synthetic and descriptive captions, generated by vision lan-
 060 guage models (VLMs), during training to improve their generation performance (Betker et al., 2023).
 061 It is now common practice to train high performance T2I models on a combination of real and syn-
 062 thetic captions (Esser et al., 2024; Chen et al., 2023; Wu et al., 2025). Yet, these models are known
 063 to produce poor results when sampled out of their training distribution (Betker et al., 2023). Consid-
 064 ering the very descriptive and synthetic captions used to train T2I models, evaluating these models
 065 from the perspective of prompt complexity is crucial to better understand the models’ performance.

066 Therefore, in this paper, we study the effect of prompt complexity on the different utility axes of
 067 synthetic image data. We start by conducting synthetic experiments over mixtures of Gaussians,
 068 conditioning the generation process on prompts of varying complexities. We show that generalization
 069 across prompt complexities is already hard in this toy synthetic setting, especially when attempting
 070 to generalize to more general prompts –*i.e.*, prompts that are shorter or less specific than the ones
 071 used for training. **The results from the synthetic setting motivate** an in-depth evaluation of how
 072 prompt complexity influences different utility axes of synthetic data from T2I models. To do so, **we**
 073 **propose a novel evaluation framework that constructs prompts with different complexities, enabling**
 074 **the evaluation from a prompt complexity perspective over a wide range of commonly used vision and**
 075 **vision-language datasets** –*i.e.*, CC12M (Changpinyo et al., 2021), ImageNet-1k (Deng et al., 2009),
 076 and Densely Captioned Images (DCI) (Urbanek et al., 2024). We use the resulting prompts to con-
 077 dition the generation process of state-of-the-art T2I models –*i.e.*, LDMv1.5 (Rombach et al., 2022),
 078 LDM-XL (Podell et al., 2024), LDMv3.5M (Esser et al., 2024), LDMv3.5L (Esser et al., 2024),
 079 Flux-schnell (Labs, 2024), and Infinity (Han et al., 2025)–, and collect synthetic images with several
 080 inference-time intervention methods including CFG (Ho & Salimans, 2022), condition-annealing
 081 diffusion sampling (CADS) (Sadat et al., 2024), interval guidance (Kynkänniemi et al., 2024),
 082 adapted projected guidance (APG) (Sadat et al., 2025), and prompt expansion (Datta et al., 2024).
 083 Our analysis unlocks comparisons between the utility of real and synthetic data, which are beneficial
 084 to identify potential gaps between real and synthetic image distributions. To the best of our knowl-
 085 edge, ***we are the first to systematically evaluate the effect of prompt complexity on T2I generations.***

086 Our synthetic experiments show that generalizing to more general conditions is harder than general-
 087 izing to more fine-grained conditionings, since the former needs an estimated likelihood that is not
 088 learned by diffusion models. Our large-scale empirical evaluation **enabled by the contributed frame-
 089 work further reveals interesting findings as follows:** 1) The trend of utilities are non-linear, and es-
 090 pecially the aesthetic score exhibits a slope steeper towards shorter prompt lengths and more gradual
 091 for longer ones (Fig. 3c), showing an asymmetry of prompt length generalization. 2) Diversity does
 092 not collapse but plateaus as prompt length increases, as shown in Fig. 2c. This suggests an inherent
 093 “lower bound of diversity” in T2I models. 3) Optimizing for reference-free metrics harms distribu-
 094 tional fidelity. As shown in Figs. 5 and 13, prompt expansion degrades precision and density while
 095 newer models (e.g., LDMv3.5L) degrade in frechet distance with real data. **This suggests a cautious**
 096 **usage of synthetic data generated from T2I models for downstream applications.** 4) By combining
 097 advanced guidance methods (in particular APG) with prompt expansion, we can benefit from the ad-
 098 vantages of both approaches and achieve the most interesting trade-offs. Overall, our study suggests
 099 that prompt complexity is a crucial axis to consider when prompting T2I models, and requires more
 100 investigation especially when generating from very general prompts. In addition, diversity is a key
 101 feature of real-world image distributions, which is still not properly captured by synthetic images
 102 from state-of-the-art T2I models when no explicit prompt expansion is conducted during inference.

2 GENERALIZING TO GENERAL CONDITIONS IS HARD

103 In this section, we use a synthetic setting to build intuition of how T2I models may perform when
 104 evaluated on prompts of different complexities, and notably when evaluated on prompts that are
 105 outside of their training distribution. **motivating the necessity of conducting systematic evaluations**
 106 **of T2I models from a prompt complexity perspective in the following sections.**

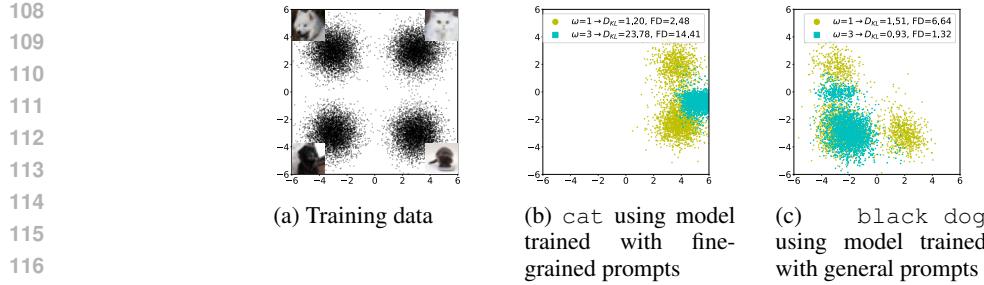


Figure 1: **Generalization to prompts of different complexities during inference.** 1a shows the training data distribution. 1b presents the generated samples using the general prompt `cat` with the model trained with fine-grained prompts. 1c shows the generated samples using the fine-grained prompt `black dog` with the model trained with general prompts. ω is the classifier-free guidance scale. With $\omega > 1$, generalization towards more general prompts is harder in this synthetic setting.

Dataset and model. Let our data be a mixture of four Gaussians (Figure 1a), where each Gaussian represents a different category –e.g., white dog, white cat, black dog, and black cat. We train two conditional U-Net models (Ronneberger et al., 2015; Rombach et al., 2022) using two sets of conditional prompts: one model is trained with fine-grained prompts (white dog, white cat, black dog, and black cat); the other model is trained with general prompts (dog, cat, white and black). We train both models, including their vocabulary dictionary, from scratch using DDPM schedule (Ho et al., 2020). We perform inference in a generalization setting, –i.e., if the model is trained with general prompts, inference is done with fine-grained prompts, and vice versa. We also employ classifier-free guidance (CFG) (Ho & Salimans, 2022) with a guidance scale ω ; $\omega = 1$ refers to the conditional model, –i.e., not using classifier-free guidance–, and $\omega > 1$ refers to higher CFG guidance strengths. More details can be found in the Appendix A.1.

Mathematical derivations. Conditioning on general prompts is analogous to applying an OR operator on fine-grained prompts –e.g., `dog` would be `white dog` OR `black dog`–, while conditioning on fine-grained prompts may be seen as performing an AND operator among general prompts. Following Liu et al. (2022); Du et al. (2023), we have the following derivations. Given a general prompt c_g that can be decomposed into various independent fine-grained prompts $c_f^i, i \in \{1, 2, \dots, K\}$, computing the score function $s_\theta(x_t | c_g)$ at timestep t requires both the score functions and the conditional likelihood $p_\theta(x_t | c_f^i)$ of fine-grained ones. The latter is not available from a diffusion model, as shown in Equation 1. However, given a fine-grained prompt c_f that is composed of several general concepts $c_g^i, i \in \{1, 2, \dots, M\}$, the score function $s_\theta(x_t | c_f)$ at timestep t can be approximately estimated by the score functions of general prompts solely (e.g., `white` and `dog`), as shown in Equation 2. Derivations are in Appendix A.2.

$$\text{OR operator: } s_\theta(x_t | c_g) = \sum_{i \in \{1, 2, \dots, K\}} \left(\underbrace{\frac{p_\theta(x_t | c_f^i)}{\sum_{j \in \{1, 2, \dots, K\}} p(x_t | c_f^j)}}_{\text{not learned by the diffusion model}} s_\theta(x_t | c_f^i) \right) \quad (1)$$

$$\text{AND operator: } s_\theta(x_t | c_f) = s_\theta(x_t) + \sum_{i \in \{1, 2, \dots, M\}} (s_\theta(x_t | c_g^i) - s_\theta(x_t)) \quad (2)$$

Generalizing to general prompts is hard. We use forward KL-divergence (D_{KL}) and Fréchet Distance (FD) to evaluate the generated samples. We also measure reference-free sample diversity using Vendi score (Friedman & Dieng, 2023) (VS)¹, following the empirical evaluation in section 4. On the one hand, Figure 1b shows the generated samples using the general prompt `cat` at inference time with the model trained with fine-grained prompts. When generalizing to general prompts (OR operator), the model tends to generate samples towards the mean of the referenced distributions. In particular, when $\omega > 1$ (a common practice in T2I models), the generated samples cover a region where the training data density is very small, resulting in $D_{\text{KL}} = 23.78$, FD = 14.41, and $\text{VS}_{\text{gen}} = 1.03$ compared to $\text{VS}_{\text{ref}} = 1.82$. Yet, when $\omega = 1$, this phenomenon is reduced, achieving $D_{\text{KL}} =$

¹For the synthetic setting, there is no pre-trained models to evaluate the reference-free quality and consistency. KL-divergence and FD cover both the quality and consistency.

1.20, $FD = 2.48$, and $VS_{gen} = 1.43$ compared to $VS_{ref} = 1.82$. Since diffusion models only learn the score function (and not the likelihood weighting in Equation 1, they may naively add up the score function values of fine-grained conditions together when generalizing to a general condition, hence disregarding the likelihood-based weighting, and leading to generated samples that correspond to the average of the fine-grained conditional training samples. On the other hand, Figure 1c shows the generated samples using fine-grained prompts at inference time with the model trained with general prompts only. In this case, we observe that the model can leverage both general prompts and generate compositional outcomes in a zero-shot manner. The generated samples achieve $D_{KL} = 1.51$, $FD = 6.64$, and $VS_{gen} = 2.04$ compared to $VS_{ref} = 1.10$, when using $\omega = 1$. Note that Equation 2 is similar to CFG, $s_\theta(x_t) + \omega(s_\theta(x_t|c) - s_\theta(x_t))$, when $\omega \approx M$. Empirically, using a larger ω pushes the distributions further towards the fine-grained conditional direction, reaching $D_{KL} = 0.93$, $FD = 1.32$, and $VS_{gen} = 1.33$ compared to $VS_{ref} = 1.10$ when $\omega = 3$. We do not observe severe distributional shift and diversity reduction in this simple synthetic setting. **We further discuss the relationship between synthetic settings and large-scale evaluations in Appendix A.3.**

3 BENCHMARKING FRAMEWORK

We propose a new evaluation framework designed to evaluate the utility (focusing on quality, diversity, and consistency) of synthetic data generated by T2I models as a function of prompt complexity, comparing with that of real data. Comparing the diversity of synthetic images conditioned on a prompt to that of real images in a dataset is challenging, as image-caption pairs in existing datasets are fixed, making it non-trivial to assemble a set of real images that matches a given prompt.

Given an image dataset $\mathcal{X} \subseteq \mathcal{I} \times \mathcal{Y}$, where \mathcal{I} is the image set and \mathcal{Y} is the label set. Each datapoint $X_i \in \mathcal{X}, i \in \{1, 2, \dots, |\mathcal{X}|\}$ is (I_i, y_i) where I_i represents the image sample, and y_i represents the associated label (either class or captions in our experiments). We first synthesize the images using captions with K different levels of complexities. The caption set associated with each complexity is noted as $\mathcal{C}^k, k \in \{1, 2, \dots, K\}$. We then use T2I models to generate synthetic images $\bar{\mathcal{I}}^k$ from the caption sets \mathcal{C}^k . Finally, we employ different evaluation functions $f \in \mathcal{F} : \{\mathcal{I}, \bar{\mathcal{I}}^k\} \times \mathcal{C}^k \rightarrow \mathbb{R}$ to evaluate the utilities of both synthetic and real data, where \mathcal{F} is the set of evaluation functions considered in our analysis and f is an evaluation function. In the following, we describe our framework, which consists of captioning, pairing, alignment, sampling, and generation steps, in detail.

Captioning. This step creates captions of different complexities for each datapoint X_i . Given the complexity level K that we want to consider in our study, we create captions $c_i^k, i \in \{1, 2, \dots, |\mathcal{X}|\}, k \in \{1, 2, \dots, K\}$ of increasing complexities from each datapoint (X_i, y_i) . Thus, we transform the original dataset \mathcal{X} into K different datasets $\tilde{\mathcal{X}}^k, k \in \{1, 2, \dots, K\}$. The dataset $\tilde{\mathcal{X}}^k$ contains all the images in \mathcal{I} and each image I_i is paired with a caption of complexity level- k , c_i^k .

Pairing. Given a certain complexity level $k \in \{1, 2, \dots, K\}$ and a caption $c_i^k, i \in \{1, 2, \dots, |\mathcal{X}|\}$, we search for images that are semantically similar to the caption c_i^k . We note these images as a set $\bar{\mathcal{I}}^{ik}$ with elements $I_j^{ik}, j \in \{1, 2, \dots, |\mathcal{X}|\}$. We only keep the image sets $\bar{\mathcal{I}}^{ik}$ with cardinality ≥ 20 . Thus, across complexity levels, the captions left after filtering are different. We denote the indices of the captions left in each complexity as sets $\mathcal{N}_1^P, \mathcal{N}_2^P, \dots, \mathcal{N}_k^P$.

Alignment. Across complexities, the images left in each complexity $\bigcup_{i \in \mathcal{N}_k^P} \bar{\mathcal{I}}^{ik}, k \in \{1, 2, \dots, K\}$ could be very different due to the filtering performed in the pairing step. This step aligns the image modality across complexities to ensure comparability. Specifically, we iteratively remove images that are not shared across complexities, *i.e.*, not in the set $\bigcap_{k \in \{1, 2, \dots, K\}} \bigcup_{i \in \mathcal{N}_k^P} \bar{\mathcal{I}}^{ik}$. This process is repeated until the following criteria is satisfied, $\bigcap_{k \in \{1, 2, \dots, K\}} \bigcup_{i \in \mathcal{N}_k^P} \bar{\mathcal{I}}^{ik} = \bigcup_{k \in \{1, 2, \dots, K\}} \bigcup_{i \in \mathcal{N}_k^P} \bar{\mathcal{I}}^{ik}$. We denote the indices of the captions left in each complexity as sets $\mathcal{N}_1^a, \mathcal{N}_2^a, \dots, \mathcal{N}_k^a$.

Sampling. Following the alignment step, the number of remaining captions may still be too large for practical evaluation of T2I models. We randomly sample the same number captions per complexity in order to maximize semantic coverage in a consistent manner. This results in sets of indices of captions $\mathcal{N}_1^s, \mathcal{N}_2^s, \dots, \mathcal{N}_k^s$ where $|\mathcal{N}_k^s|$ is the same $\forall k \in \{1, 2, \dots, K\}$. The sampled captions are then used as prompts to collect synthetic data from T2I models.

Generation. For each prompt (caption) $c_i^k, i \in \mathcal{N}_k^s, k \in \{1, 2, \dots, K\}$, we generate as many images as the cardinality of the smallest similar image set across different caption complexity

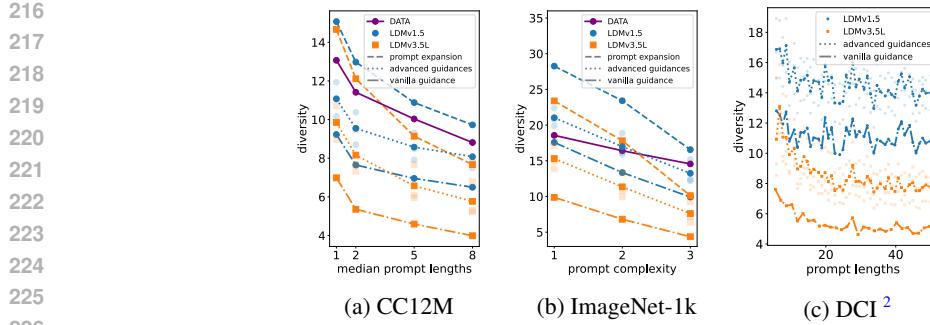


Figure 2: **Reference-free diversity metric.** Diversity (Vendi) of LDMv1.5 and LDMv3.5L generations with CC12M and ImageNet-1k prompts when using: 1) vanilla guidance (CFG), 2) prompt expansion, and 3) advanced guidance methods, for which transparent markers correspond to different methods and the solid marker is the average over methods. Both advanced guidance methods and prompt expansion lead to improved diversity over the vanilla guidance. Prompt expansion from shorter captions can surpass the real data diversity. We further extend to much longer DCI prompts. Diversity of all models first decreases then plateaus which is not observed within shorter prompt length ranges.

$N_{\text{gen}} = \min_{i \in \mathcal{N}_k^s, k \in \{1, 2, \dots, K\}} |\bar{\mathcal{I}}^{ik}|$, ensuring representativeness. The generated image set for prompt c_i^k is noted as $\hat{\mathcal{I}}^{ik}$. With the prompt conditional image sets for both real images and synthetic images, we comprehensively assess each axis of data utility using a suite of representative reference-free metrics, which do not constrain the analysis to any predefined target data distribution. Our framework can also be readily extended to incorporate reference-based evaluation metrics as needed, as shown in section 4.

4 EVALUATION OF SYNTHETIC DATA GENERATED FROM T2I MODELS

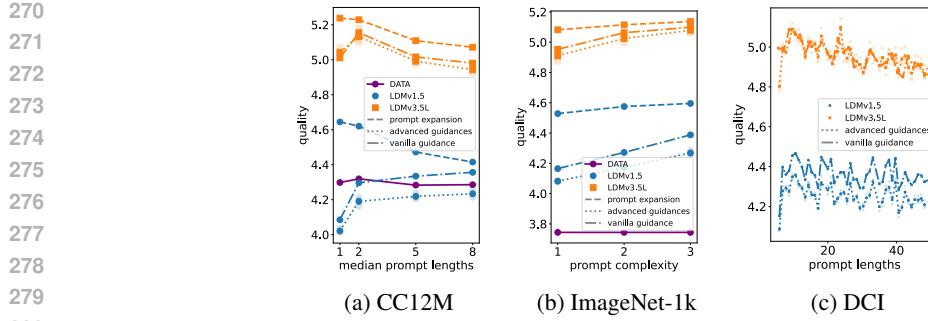
4.1 EXPERIMENTAL SETUP

Datasets. We employ three datasets –CC12M, ImageNet-1k, and DCI– to evaluate the utility of synthetic data generated from T2I models. CC12M (Changpinyo et al., 2021) is a large-scale, internet-crawled image-text dataset containing 12 million image-caption pairs, where we investigate the effect of increasing prompt detail and length on the utility axes of synthetic images. ImageNet-1k (Deng et al., 2009) is a widely used, object-centric, curated dataset with 1,000 classes, where we examine the effect of concept specificity on the utility axes. DCI (Urbanek et al., 2024) is a large-scale, human-curated image-caption dataset featuring detailed, long captions for each image, where we further explore prompt complexity using *very long* prompts. More details are presented in Appendix C.1.

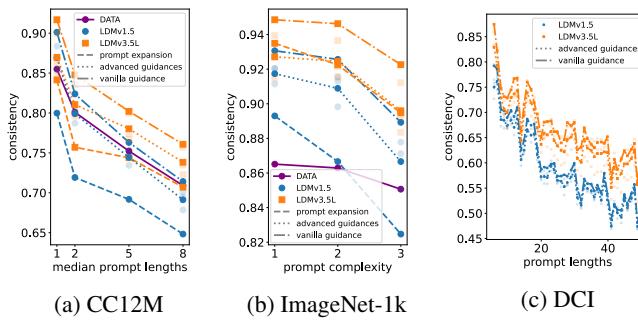
Models. We select LDMv1.5 (Rombach et al., 2022) and LDMv3.5L (Esser et al., 2024) models for the presentation of results. We also include the evaluation results from LDMv3.5M (Esser et al., 2024) and LDM-XL (Podell et al., 2024) in Appendix D. LDMv1.5 is the early high-performing T2I model using the latent diffusion model (LDM) architecture (Rombach et al., 2022), while LDMv3.5L is its latest successor, employing a rectified flow model (Liu et al., 2023). These models are representative of current open-source T2I models and illustrate the trend of model improvement over time. We consider the following guidance techniques: CFG (Ho & Salimans, 2022) (referred to as vanilla guidance), and advanced guidance approaches including CADS (Sadat et al., 2024), interval guidance (Kynkänniemi et al., 2024), and APG (Sadat et al., 2025). We also explore the effect of explicitly expanding prompts by adding information, using large language models to expand each caption to N_{gen} different captions with maximum thirty words. Additionally, we report evaluation results of Flux-schnell (Labs, 2024) and Infinity (Han et al., 2025) to cover more model types, to which advanced guidance methods are not applicable. Considering the limited inference-time interventions, we present the results for these two models in Appendix F. More implementation details are presented in Appendix C.

Metrics. We use the aesthetic score (discus0434 & Goswami, 2023) to assess image quality, the

²We stop at prompt length of 50, given the 77 token limit of text encoders of LDMv1.5. For LDMv3.5 models, we push the prompt length to 100, as shown in Figure 11, Appendix D.3.



281 Figure 3: **Reference-free quality metric.** Quality (aesthetic) of LDMv1.5 and LDMv3.5L
282 generations with CC12M and ImageNet-1k prompts when using: 1) vanilla guidance (CFG), 2)
283 prompt expansion, and 3) advanced guidance methods, for which transparent markers correspond
284 to different methods and the solid marker is the average over methods. Advanced guidance methods
285 slightly impair the quality while prompt expansion increases it. We further extend to much longer
286 DCI prompts. Quality of all models first increases then decreases which is not observed within
287 shorter prompt ranges.



298 Figure 4: **Reference-free consistency metric.** Consistency (DSG) metrics of LDMv1.5 and
299 LDMv3.5L generations with CC12M and ImageNet-1k prompts when using: 1) vanilla guidance
300 (CFG), 2) prompt expansion, and 3) advanced guidance methods, for which transparent markers
301 correspond to different methods and the solid marker is the average over methods. Both advanced
302 guidance methods and prompt expansion lead to lower consistency scores compared to vanilla
303 guidance. We further extend to much longer DCI prompts. Consistency of all models decreases
304 when the prompt lengths increases, which is the same as in the shorter prompt ranges.

305 Vendi score (Friedman & Dieng, 2023) to measure diversity, and the Davidsonian Scene Graph
306 (DSG) score (Cho et al., 2024) to evaluate prompt consistency. **Our human evaluations in Appendix E confirm the validity of the automatic metrics.** We also report widely used reference-based
307 metrics, including FDD (Fréchet distance using DINOv2 (Oquab et al., 2023)) (Stein et al., 2023),
308 precision (Kynkänniemi et al., 2019), density and coverage (Naeem et al., 2020).³

311 4.2 UTILITY AXES MEASURED BY REFERENCE-FREE METRICS

313 **Diversity.** We present results in Figure 2. Our evaluation findings empirically verify that
314 the diversity of synthetic data decreases as we increase prompt complexity for all models and
315 interventions considered (Figures 3a and 3b). As increasing the complexity (either by adding details
316 in CC12M or increasing the class specificity in ImageNet-1k) constrains the generation process, the
317 degree of freedom of the model is reduced. In terms of inference-time interventions, both advanced
318 guidance methods and prompt expansion lead to higher diversity than vanilla guidance. Note that
319 prompt expansion can be considered as an explicit way to sample the likelihood of more fine-grained
320 prompts (Equation 1) using a pre-trained language model (Betker et al., 2023), which effectively
321 increases the diversity. It is possible to obtain higher diversity than the one captured by the real data
322 when the prompt complexity is low, but this comes at the cost of consistency (as indicated in Fig-
323

³Unless otherwise specified, we use the DINOv2 (Oquab et al., 2023) feature space to compute these metrics, since it has been found to correlate well with human judgement (Hall et al., 2024a; Stein et al., 2023).

ure 4). In CC12M, the diversity gap between vanilla guidance and real data slightly decreases with the increase of prompt complexity, indicating that the diversity for more general prompts is harder to be captured, aligning with our synthetic experimental results (Figure 1b). However, ImageNet-1k exhibits a different pattern. This may be due to the construction of the real data prompt-image pairs, as general prompts can cover more subcategories than the ones in ImageNet-1k. For example, the general prompt (complexity=1) stringed instrument can contain mandolin (covered by T2I models as shown in Figure 20, Appendix H), but this class is not part of the ImageNet-1k dataset, leading to an underestimation of the real data diversity. We further push this evaluation towards much longer prompts using DCI dataset. We observe that the diversity decreases and then plateaus as we continuously increase the prompt length, indicating that the models may not be able to follow all the constraints added in the prompts (also reflected in the consistency measurements in Figure 4c). For most LDM models, the plateau starts at a prompt length of ~ 30 words. However, the plateau region of LDMv1.5 seems to occur earlier than its successor models.

Quality. Results across datasets and inference-time intervention methods are shown in Figure 3. In CC12M and ImageNet-1k datasets, where we use relatively shorter prompts, the aesthetics of the synthetic data remains relatively stable across prompt complexities, especially for the most recent model (LDMv3.5L). Further, advanced guidance methods lead to slightly lower performance than vanilla guidance. This is by contrast to prompt expansion, which consistently exhibits higher aesthetics than vanilla guidance. Compared to real data, synthetic data exhibits higher or competitive aesthetic quality. This is perhaps unsurprising given the aesthetics finetuning performed on the most recent models (LDMv3.5L). When we evaluate on the DCI dataset using much longer prompts, image aesthetics first increase and then start to gradually decrease as a function of prompt length for all models. The sharp slope observed towards more general prompts and the gradual decrease observed towards more fine-grained prompts appear aligned with the observation of our synthetic experiments that generalization to longer and fine-grained (higher complexity) prompts is easier than generalization to more general (lower complexity) ones, especially when leveraging CFG.

Consistency. Figure 4 shows the results across datasets and inference-time intervention methods. We observe that the prompt consistency decreases as we increase prompt complexity for all the cases considered. This suggests that T2I models struggle to incorporate the increasing amount of details (objects, attributes, and relations among objects) required by longer prompts, and to faithfully generate very specific concepts. Real data also shows a decrease in consistency across complexities, which is due to the image-text pairing process. The experiments on DCI dataset further consolidate this observation. **We present the 95% confidence interval of these metrics in Appendix G.3, confirming the statistical significance of the observed trends.** The findings connecting different utility axes and prompt complexity are visually captured in Figures 19 and 20 in Appendix H.

4.3 UTILITY AXES MEASURED BY REFERENCE-BASED METRICS

Reference-free metrics are suitable for evaluating the utility of synthetic data in the wild with prompts only. Yet, in our analysis, the prompts are extracted from existing datasets, *containing both images and texts*, therefore enabling the use of reference-based metrics for evaluation too. The CC12M results are presented in Figures 5. We leave the ImageNet-1k results in Figure 13 in Appendix G.1. These figures reveal that as prompt complexity increases, there is an overall tendency for synthetic data to improve its precision, density and coverage in both CC12M and ImageNet-1k datasets, suggesting that more detailed captions, grounded on the real images, help generate data that lies within the support of the reference dataset. This also aligns with our synthetic experimental results showing that generalizing to general (lower complexity) prompts results in mode concentration and larger distributional gap (Figure 1b).

Figures 5 and 13 also show that advanced guidance methods and prompt expansion lead to overall better FDD than vanilla guidance. When it comes to coverage, prompt expansion also exhibits high performance compared to the vanilla guidance in most cases, although its benefits are less pronounced for higher complexity prompts. The improvements in coverage come, in both cases, at the expense of precision and density. This is perhaps expected as 1) prompt expansion may include details via pre-trained language models that are not present in the real images, therefore deviating the generation process from the reference data⁴; and 2) advanced guidance approaches may push

⁴This can be understood as a mis-alignment between the likelihood estimation from the pre-trained language model and from the real image dataset.

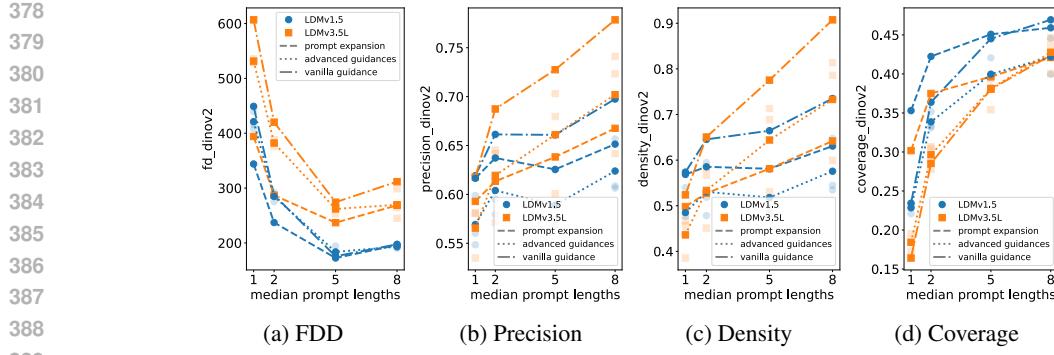


Figure 5: **Reference-based utility metrics of synthetic data using CC12M prompts.** FDD, precision, density and coverage for LDMv1.5 and LDMv3.5L generations with: (1) vanilla guidance (CFG), (2) prompt expansion, and (3) advanced guidance methods, for which transparent markers correspond to different methods and the solid marker is the average over methods. Both advanced guidance methods and prompt expansion lead to better FDD. Although prompt expansion improves coverage and advanced guidance methods match coverage for LDMv3.5, they both sacrifice precision and density. LDMv1.5 has thus better overall performance (lower FDD) than LDMv3.5L.

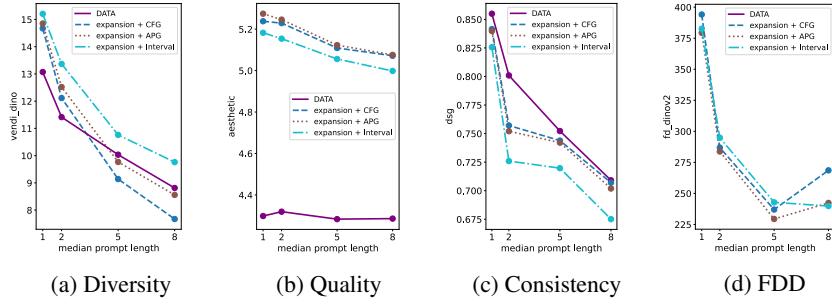


Figure 6: **Effect of combining prompt expansion and guidance methods on the utility of synthetic data from LDMv3.5L using CC12M prompts.** This can further boost the diversity of synthetic images, with comparable quality, consistency, and FDD (especially with APG).

the generation process outside of the real data manifold, resulting in reduced precision *w.r.t.* the vanilla guidance. **The drop in precision and density shows the trade-off of creativity and fidelity to the real data distribution, emphasizing a cautious usage of T2I models for different downstream applications. We give a discussion in Appendix G.2.**

Interestingly, LDMv1.5 model has better overall performance (lower FDD) compared to LDMv3.5L model across different guidance methods, prompt expansion, and prompt lengths. However, as shown in section 4.2, LDMv3.5L performs better than LDMv1.5 on reference-free quality and consistency metrics, only falling short in diversity, as shown in Figures 2a, 3a, and 4a. This suggests that the diversity is a key characteristic of real-world image distributions. Thus, synthetic data from models that fail to capture the diverse nature of the real world may lead to lower general performance in real-world applications even though the models advance the state-of-the-art generation quality in reference-free settings. Similar findings may be observed for the ImageNet-1k dataset, presented in Figures 2b, 3b, 4b, and 13.

4.4 COMBINING PROMPT EXPANSION AND ADVANCED GUIDANCE METHODS

Figure 6 shows the effect of combining prompt expansion and advanced guidance methods on the 3 utility axes of synthetic data, when using prompts from CC12M. We observe that the prompt expansion and advanced guidance methods can be combined to further boost the diversity of synthetic images. We note that in this case, Interval guidance appears to slightly suffer from aesthetic quality and shows considerably lower prompt consistency than both CFG and APG for prompts lengths higher than 1. Finally, when contrasting with real data, we observe that the diversity of the real data may be surpassed by that of synthetic data across prompt complexities, but this again comes at the cost of consistency. A closer look at advanced guidance methods and prompt expansion is provided in Appendix G.4.

432 5 RELATED WORK

434 **Improving the synthetic images utility.** Recent studies have yielded in-depth analyses on
 435 the utility of synthetic data from off-the-shelf T2I models (Astolfi et al., 2024; Hall et al., 2024c;
 436 Lee et al., 2023), and have revealed that the impressive progress in image quality has come at the
 437 expense of generation diversity. Inference-time interventions have been introduced to improve over
 438 classifier free guidance (CFG) sampling (Ho & Salimans, 2022). These techniques involve either
 439 prompt rewriting (Datta et al., 2024), or alternative guidance signals. For example, APG (Sadat
 440 et al., 2025) proposes to adaptively adjust the guidance scale across different directions, CADS (Sa-
 441 dat et al., 2024) implements an annealing strategy that gradually uses less noisier guidance signal
 442 during the sampling process, and Interval-guidance (Kynkänniemi et al., 2024) introduces a
 443 simpler approach by disabling the conditional guidance at the beginning of the sampling process.
 444 Auto-guidance (Karras et al., 2024) uses a bad-version of the model to guide the generations;
 445 however, in the context of open-source models, it is not trivial how to obtain bad-versions of the
 446 models that would provide useful guidance signals. Chamfer guidance (Dall’Asen et al., 2025)
 leverages few examples of real images to guide the sampling process towards high-utility samples.

447 **Evaluation of T2I synthetic data.** Numerous evaluation metrics have been proposed to assess
 448 the performance of T2I models, covering the quality, diversity, consistency utility axes. Many met-
 449 rics need a reference set of real data to compare with. For example, Fréchet Inception Distance
 450 (FID) (Heusel et al., 2017) has been widely used as an overall metric and measures the distance
 451 between the feature distributions of synthetic and real images. Precision and recall (Kynkänniemi
 452 et al., 2019), followed by density and coverage (Naeem et al., 2020) were proposed to evaluate the
 453 realism and diversity of synthetic images. To evaluate T2I models in the wild, researchers have
 454 introduced several reference-free metrics. When it comes to quality, aesthetics score (Schuhmann,
 455 2022; discus0434 & Goswami, 2023) has been built on top of CLIP (Radford et al., 2021) to esti-
 456 mate how visually appealing synthetic images are. For diversity, Vendi score (Friedman & Dieng,
 457 2023) was designed to evaluate the diversity of a set of images. Moreover, in Tang et al. (2024),
 458 a human-calibrated perceptual variability measure was introduced and then used to investigate the
 459 influence of linguistic features in the T2I generation process. This work focuses on the diversity
 460 axes exclusively, does not contrast results with real data, and does not consider any sampling inter-
 461 vention beyond vanilla guidance. For prompt-image consistency, CLIPscore (Hessel et al., 2021)
 462 has been used to measure the alignment between the generated image and the input text prompt.
 463 However, CLIPscore has been shown to be correlated with object numerosity (Ahmadi & Agrawal,
 464 2024) and unable to handle detailed descriptions (Zhang et al., 2024). VQAscore (Lin et al., 2024),
 465 TIFA (Hu et al., 2023) and DSG (Cho et al., 2024) further leverage visual question answering (VQA)
 466 models for image-prompt consistency. Among them, TIFA and DSG decompose the captions into
 467 several granular questions and compute accuracy scores based on the answers to each question. Be-
 468 yond these single-axis utility metrics, several analyses have been performed on T2I models from a
 469 multi-objective perspective (Astolfi et al., 2024; Lee et al., 2023; Hall et al., 2024b). Our study com-
 470 plements previous work by assessing the utility of synthetic data as a function on prompt complexity.

471 6 CONCLUSION

472 **Conclusion.** In this paper, we proposed a new evaluation framework and presented an in-depth
 473 analysis of the utility of synthetic data as a function of prompt complexity, including synthetic and
 474 large-scale real data evaluations. Our synthetic experiments show that generalizing to more general
 475 conditions is harder than the other way round. Our study suggests that prompt complexity is a crucial
 476 axis to consider when sampling from T2I models, and requires more investigation when generating
 477 from very general prompts. Our findings include 1) the trend of utilities are non-linear, showing an
 478 asymmetry of prompt length generalization, 2) diversity does not collapse but plateaus as prompt
 479 length increases, suggesting an inherent “lower bound of diversity” in T2I models, 3) optimizing
 480 for reference-free metrics harms distributional fidelity, 4) combining guidance methods with prompt
 481 expansion achieve the most interesting trade-offs in utilities. In addition, diversity is a key feature
 482 of real-world image distributions, which is still not properly captured by synthetic images from the
 483 state-of-the-art T2I models when no explicit prompt expansion is conducted during inference.

484 **Limitations.** For datasets with long captions, our framework needs to use large and diverse enough
 485 image datasets to build paired image sets, which is not easy to get. Since DCI dataset has only 7805
 image-caption pairs, we did not compare the utilities of synthetic images with real data.

486 REPRODUCIBILITY STATEMENT
487

488 We detailed our experimental setups, including datasets, hyperparameters, training and inference
489 settings, and computing resources, in both main texts (Section 2 and 4.1) and Appendices (Ap-
490 pendix A.1 and C). We provided full derivations of our theoretical results in Appendix A.2. All the
491 datasets used in our paper are open-source and can be downloaded following the instructions given
492 by dataset providers. We detailed the licences of datasets and packages used in Appendix C.5. We
493 provided detailed descriptions of our evaluation framework in Section 3 and Appendix B, and our
494 anonymous codes in supplementary materials for reviewing.

495
496 REFERENCES
497

498 Saba Ahmadi and Aishwarya Agrawal. An examination of the robustness of reference-free image
499 captioning evaluation metrics. In *Findings of the Association for Computational Linguistics: EACL 2024*, pp. 196–208, 2024.

500
501 Reyhane Askari-Hemmat, Mohammad Pezeshki, Elvis Dohmatob, Florian Bordes, Pietro Astolfi,
502 Melissa Hall, Jakob Verbeek, Michal Drozdzal, and Adriana Romero-Soriano. Improving the
503 scaling laws of synthetic data with deliberate practice. *arXiv preprint arXiv:2502.15588*, 2025.

504
505 Pietro Astolfi, Marlene Careil, Melissa Hall, Oscar Mañas, Matthew Muckley, Jakob Verbeek, Adri-
506 ana Romero Soriano, and Michal Drozdzal. Consistency-diversity-realism pareto fronts of condi-
507 tional image generative models. *arXiv preprint arXiv:2406.10429*, 2024.

508
509 James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang, Juntang
510 Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions. *Computer
Science*. <https://cdn.openai.com/papers/dall-e-3.pdf>, 2(3):8, 2023.

511
512 Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu Soricut. Conceptual 12M: Pushing web-
513 scale image-text pre-training to recognize long-tail visual concepts. In *CVPR*, 2021.

514
515 Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
516 Kwok, Ping Luo, Huchuan Lu, et al. Pixart- α : Fast training of diffusion transformer for photore-
517 alistic text-to-image synthesis. *arXiv preprint arXiv:2310.00426*, 2023.

518
519 Jaemin Cho, Yushi Hu, Jason Michael Baldridge, Roopal Garg, Peter Anderson, Ranjay Krishna,
520 Mohit Bansal, Jordi Pont-Tuset, and Su Wang. Davidsonian scene graph: Improving reliability in
521 fine-grained evaluation for text-to-image generation. In *The Twelfth International Conference on
Learning Representations*, 2024.

522
523 Nicola Dall’Asen, Xiaofeng Zhang, Reyhane Askari Hemmat, Melissa Hall, Jakob Verbeek, Adriana
524 Romero-Soriano, and Michal Drozdzal. Increasing the utility of synthetic images through chamfer
525 guidance. *arXiv preprint arXiv:2508.10631*, 2025.

526
527 Siddhartha Datta, Alexander Ku, Deepak Ramachandran, and Peter Anderson. Prompt expansion for
528 adaptive text-to-image generation. In *Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers)*, August 2024.

529
530 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
531 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
532 pp. 248–255. Ieee, 2009.

533
534 Terrance DeVries, Adriana Romero, Luis Pineda, Graham W Taylor, and Michal Drozdzal. On the
535 evaluation of conditional gans. *arXiv preprint arXiv:1907.08175*, 2019.

536
537 discuss0434 and Sayan Goswami. aesthetic-predictor-v2-5: Siglip-based aesthetic score predictor.
538 <https://github.com/discuss0434/aesthetic-predictor-v2-5>, 2023.

539
540 Yilun Du, Conor Durkan, Robin Strudel, Joshua B Tenenbaum, Sander Dieleman, Rob Fergus,
541 Jascha Sohl-Dickstein, Arnaud Doucet, and Will Sussman Grathwohl. Reduce, reuse, recycle:
542 Compositional generation with energy-based diffusion models and mcmc. In *International con-
543 ference on machine learning*, pp. 8489–8510. PMLR, 2023.

540 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 541 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers
 542 for high-resolution image synthesis. In *Forty-first international conference on machine learning*,
 543 2024.

544 Lijie Fan, Kaifeng Chen, Dilip Krishnan, Dina Katabi, Phillip Isola, and Yonglong Tian. Scaling
 545 laws of synthetic images for model training... for now. In *Proceedings of the IEEE/CVF Conference*
 546 *on Computer Vision and Pattern Recognition*, pp. 7382–7392, 2024.

547 Christiane Fellbaum. *WordNet: An electronic lexical database*. MIT press, 1998.

548 Dan Friedman and Adji Bousoo Dieng. The vendi score: A diversity evaluation metric for machine
 549 learning. *Transactions on Machine Learning Research*, 2023. ISSN 2835-8856.

550 Melissa Hall, Samuel J Bell, Candace Ross, Adina Williams, Michal Drozdzal, and Adriana Romero
 551 Soriano. Towards geographic inclusion in the evaluation of text-to-image models. In *Proceedings*
 552 *of the 2024 ACM Conference on Fairness, Accountability, and Transparency*, pp. 585–601, 2024a.

553 Melissa Hall, Oscar Mañas, Reyhane Askari, Mark Ibrahim, Candace Ross, Pietro Astolfi,
 554 Tariq Berrada Ifriqi, Marton Havasi, Yohann Benchetrit, Karen Ullrich, Carolina Braga, Abhishek
 555 Charnalia, Maeve Ryan, Mike Rabbat, Michal Drozdzal, Jakob Verbeek, and Adriana Romero So-
 556 riano. Evalgim: A library for evaluating generative image models, 2024b.

557 Melissa Hall, Candace Ross, Adina Williams, Nicolas Carion, Michal Drozdzal, and Adriana
 558 Romero-Soriano. Dig in: Evaluating disparities in image generations with indicators for geo-
 559 graphic diversity. *Transactions on Machine Learning Research*, 2024c.

560 Jian Han, Jinlai Liu, Yi Jiang, Bin Yan, Yuqi Zhang, Zehuan Yuan, Bingyue Peng, and Xiaobing
 561 Liu. Infinity: Scaling bitwise autoregressive modeling for high-resolution image synthesis.
 562 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 15733–15744,
 563 2025.

564 Reyhane Askari Hemmat, Mohammad Pezeshki, Florian Bordes, Michal Drozdzal, and Adriana
 565 Romero-Soriano. Feedback-guided data synthesis for imbalanced classification. *Transactions on*
 566 *Machine Learning Research*, 2024. ISSN 2835-8856.

567 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. CLIPScore: A
 568 reference-free evaluation metric for image captioning. In *Proceedings of the 2021 Conference*
 569 *on Empirical Methods in Natural Language Processing*, pp. 7514–7528, Online and Punta Cana,
 570 Dominican Republic, November 2021. Association for Computational Linguistics.

571 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 572 Gans trained by a two time-scale update rule converge to a local nash equilibrium. *Advances in*
 573 *neural information processing systems*, 30, 2017.

574 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. In *NeurIPS 2021 Workshop on*
 575 *Deep Generative Models and Downstream Applications*, 2022.

576 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 577 *neural information processing systems*, 33:6840–6851, 2020.

578 Xiwei Hu, Rui Wang, Yixiao Fang, Bin Fu, Pei Cheng, and Gang Yu. Ella: Equip diffusion models
 579 with llm for enhanced semantic alignment. *arXiv preprint arXiv:2403.05135*, 2024.

580 Yushi Hu, Benlin Liu, Jungo Kasai, Yizhong Wang, Mari Ostendorf, Ranjay Krishna, and Noah A
 581 Smith. Tifa: Accurate and interpretable text-to-image faithfulness evaluation with question an-
 582 swering. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.
 583 20406–20417, 2023.

584 Tero Karras, Miika Aittala, Tuomas Kynkänniemi, Jaakko Lehtinen, Timo Aila, and Samuli Laine.
 585 Guiding a diffusion model with a bad version of itself. *Advances in Neural Information Processing*
 586 *Systems*, 37:52996–53021, 2024.

594 Tuomas Kynkänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
 595 precision and recall metric for assessing generative models. *Advances in neural information*
 596 *processing systems*, 32, 2019.

597

598 Tuomas Kynkänniemi, Miika Aittala, Tero Karras, Samuli Laine, Timo Aila, and Jaakko Lehtinen.
 599 Applying guidance in a limited interval improves sample and distribution quality in diffusion
 600 models. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*,
 601 2024.

602 Black Forest Labs. Flux. <https://github.com/black-forest-labs/flux>, 2024.

603

604 Tony Lee, Michihiro Yasunaga, Chenlin Meng, Yifan Mai, Joon Sung Park, Agrim Gupta, Yunzhi
 605 Zhang, Deepak Narayanan, Hannah Teufel, Marco Bellagente, et al. Holistic evaluation of text-
 606 to-image models. *Advances in Neural Information Processing Systems*, 36:69981–70011, 2023.

607 Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia, Graham Neubig, Pengchuan Zhang,
 608 and Deva Ramanan. Evaluating text-to-visual generation with image-to-text generation. *arXiv*
 609 *preprint arXiv:2404.01291*, 2024.

610

611 Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B Tenenbaum. Compositional visual
 612 generation with composable diffusion models. In *European conference on computer vision*, pp.
 613 423–439. Springer, 2022.

614

615 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 616 transfer data with rectified flow. In *The Eleventh International Conference on Learning Representations*, 2023.

617

618 Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh, Yunjey Choi, and Jaejun Yoo. Reliable
 619 fidelity and diversity metrics for generative models. In *International conference on machine*
 620 *learning*, pp. 7176–7185. PMLR, 2020.

621

622 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 623 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 624 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

625

626 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 627 Penna, and Robin Rombach. SDXL: Improving latent diffusion models for high-resolution image
 628 synthesis. In *The Twelfth International Conference on Learning Representations*, 2024.

629

630 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 631 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 632 models from natural language supervision. In *International conference on machine learning*, pp.
 633 8748–8763. PMLR, 2021.

634

635 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 636 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 637 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

638

639 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
 640 ical image segmentation. In *International Conference on Medical image computing and computer-
 641 assisted intervention*, pp. 234–241. Springer, 2015.

642

643 Seyedmorteza Sadat, Jakob Buhmann, Derek Bradley, Otmar Hilliges, and Romann M. Weber.
 644 CADS: Unleashing the diversity of diffusion models through condition-annealed sampling. In
 645 *The Twelfth International Conference on Learning Representations*, 2024.

646

647 Seyedmorteza Sadat, Otmar Hilliges, and Romann M Weber. Eliminating oversaturation and arti-
 648 facts of high guidance scales in diffusion models. In *The Thirteenth International Conference on*
 649 *Learning Representations*, 2025.

650

651 Christoph Schuhmann. Improved-aesthetic-predictor: Clip+mlp aesthetic score predictor. <https://github.com/christophschuhmann/improved-aesthetic-predictor>,
 652 2022.

648 George Stein, Jesse Cresswell, Rasa Hosseinzadeh, Yi Sui, Brendan Ross, Valentin Villecroze,
 649 Zhaoyan Liu, Anthony L Caterini, Eric Taylor, and Gabriel Loaiza-Ganem. Exposing flaws of
 650 generative model evaluation metrics and their unfair treatment of diffusion models. *Advances in*
 651 *Neural Information Processing Systems*, 36:3732–3784, 2023.

652 Raphael Tang, Crystina Zhang, Lixinyu Xu, Yao Lu, Wenyan Li, Pontus Stenetorp, Jimmy Lin,
 653 and Ferhan Türe. Words worth a thousand pictures: Measuring and understanding perceptual
 654 variability in text-to-image generation. In *Proceedings of the 2024 Conference on Empirical*
 655 *Methods in Natural Language Processing*, pp. 5441–5454, 2024.

656 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 657 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
 658 report. *arXiv preprint arXiv:2503.19786*, 2025.

659 Yonglong Tian, Lijie Fan, Phillip Isola, Huiwen Chang, and Dilip Krishnan. Stablerep: Synthetic
 660 images from text-to-image models make strong visual representation learners. *Advances in Neural*
 661 *Information Processing Systems*, 36:48382–48402, 2023.

662 Jack Urbanek, Florian Bordes, Pietro Astolfi, Mary Williamson, Vasu Sharma, and Adriana Romero-
 663 Soriano. A picture is worth more than 77 text tokens: Evaluating clip-style models on dense cap-
 664 tions. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*
 665 (*CVPR*), pp. 26700–26709, June 2024.

666 Chenfei Wu, Jiahao Li, Jingren Zhou, Junyang Lin, Kaiyuan Gao, Kun Yan, Sheng-ming Yin, Shuai
 667 Bai, Xiao Xu, Yilei Chen, et al. Qwen-image technical report. *arXiv preprint arXiv:2508.02324*,
 668 2025.

669 Youngseok Yoon, Dainong Hu, Iain Weissburg, Yao Qin, and Haewon Jeong. Model collapse in the
 670 self-consuming chain of diffusion finetuning: A novel perspective from quantitative trait model-
 671 ing. *arXiv preprint arXiv:2407.17493*, 2024.

672 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 673 image pre-training. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 674 pp. 11975–11986, 2023.

675 Beichen Zhang, Pan Zhang, Xiaoyi Dong, Yuhang Zang, and Jiaqi Wang. Long-clip: Unlocking the
 676 long-text capability of clip. In *European Conference on Computer Vision*, pp. 310–325. Springer,
 677 2024.

678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 703 704 705 706 707 Appendix

708	A Details on the synthetic experiments	15
709	A.1 Experimental settings	15
710	A.2 Derivations	15
711	A.3 Relationship with the real T2I settings	16
712		
713		
714	B Details on the benchmarking framework	17
715	B.1 Captioning step	17
716	B.2 Pairing step	17
717	B.3 Alignment step	17
718	B.4 Evaluation metrics	17
719		
720		
721		
722	C Experimental details	18
723	C.1 Dataset details	18
724	C.2 Guidance methods' hyperparameters	19
725	C.3 Prompt expansion	19
726	C.4 Compute resources	20
727	C.5 Licenses for existing assets	20
728	C.6 New assets	20
729		
730		
731		
732		
733	D Results for LDM-XL and LDMv3.5M	20
734	D.1 Utility axes measured by reference-free metrics	21
735	D.2 Utility axes measured by reference-based metrics	21
736	D.3 DCI results	23
737		
738		
739		
740	E Human evaluation	23
741	E.1 Vendi score	23
742	E.2 DSG score	24
743		
744		
745	F Additional models	25
746		
747	G Additional results	25
748	G.1 Reference-based metrics using ImageNet-1k class labels	25
749	G.2 Trade-off of creativity and fidelity when using inference-time interventions	26
750	G.3 Statistical significance of the trends	27
751	G.4 Closer look at models and guidances	27
752		
753		
754		
755	H Additional qualitative samples	30

756 **A DETAILS ON THE SYNTHETIC EXPERIMENTS**
 757

758 **A.1 EXPERIMENTAL SETTINGS**
 759

760 We use a mixture of four Gaussians as our training distribution. Each Gaussian is in each quadrant
 761 respectively. The means for each Gaussian is $[-3, 3]$, $[-3, -3]$, $[3, 3]$, and $[3, -3]$. The covariance for
 762 each Gaussian is $[[0.7, 0], [0, 0.7]]$. We hypothetically link each Gaussian to a conditional prompt,
 763 *i.e.*, `white cat` for the first quadrant, `white dog` for the second quadrant, `black dog` for the
 764 third quadrant and `black cat` for the fourth quadrant.

765 We train conditional U-Net-based diffusion model with DDPM schedule using two types of condi-
 766 tional prompts: one is fine-grained with `white cat`, `white dog`, `black cat`, `black dog`,
 767 each corresponds to a Gaussian in one quadrant; the other is general with `cat`, `dog`, `white`, and
 768 `black`, each corresponds to two Gaussians.

769 Following [Rombach et al. \(2022\)](#); [Esser et al. \(2024\)](#), we add a pooled conditional information
 770 together with the timestep embedding, and also incorporate the token-wise conditional information
 771 into the U-Net with an Attention mechanism. To get the pooled conditional information, we use
 772 a linear layer, while to get the token-wise embedding, we initialize a vocabulary dictionary from
 773 scratch and train it together with the diffusion model. We train the model with batch size 512, Adam
 774 optimizer, learning rate $1e-4$ with linear warmup and exponential decay ($\gamma = 0.99$), training epochs
 775 250 in total. All training and inference are done using single NVIDIA V100 32GB GPU.

776 During training, we adopt a 50% probability of dropping the conditional information, enabling the
 777 classifier-free guidance (CFG) ([Ho & Salimans, 2022](#)) during inference. We use the ancestral sam-
 778 pler in DDPM ([Ho et al., 2020](#)) with 1000 steps for inference. We conduct the inference in a
 779 generalization setting, *i.e.*, if the model is trained with general prompts, the inference is done with
 780 fine-grained prompts, and vice versa. We use forward Kullback-Leibler divergence and Fréchet
 781 Distance to evaluate the generated samples. We sample 10,000 data points for evaluation.

782 **A.2 DERIVATIONS**
 783

784 **From general conditions to fine-grained conditions.** Given a conditional diffusion model with
 785 parameters θ trained on general conditions, timestep $t \in \{1, 2, \dots, T\}$, independent general condi-
 786 tions $c_g^i, i \in \mathbb{N}$, we have access to their score functions $s_\theta(x_t | c_g^i) = \nabla_{x_t} \log p_\theta(x_t | c_g^i)$. Supposing
 787 that a fine-grained condition c_f comprises of several general conditions $c_g^i, i \in \{1, 2, \dots, K\}$, we
 788 have

$$p_\theta(x_t | c_f) = p_\theta(x_t | \cap_{i \in \{1, 2, \dots, K\}} c_g^i) \quad (3)$$

$$= \frac{p_\theta(x_t, c_g^1, c_g^2, \dots, c_g^K)}{p_\theta(c_g^1, c_g^2, \dots, c_g^K)} \quad (4)$$

$$= \frac{p_\theta(x_t) \prod_{i \in \{1, 2, \dots, K\}} p_\theta(c_g^i | x_t)}{\prod_{i \in \{1, 2, \dots, K\}} p_\theta(c_g^i)} \quad (5)$$

$$= \frac{p_\theta(x_t) \prod_{i \in \{1, 2, \dots, K\}} \frac{p_\theta(x_t | c_g^i) p_\theta(c_g^i)}{p_\theta(x_t)}}{\prod_{i \in \{1, 2, \dots, K\}} p_\theta(c_g^i)} \quad (6)$$

$$= p_\theta(x_t) \prod_{i \in \{1, 2, \dots, K\}} \frac{p_\theta(x_t | c_g^i)}{p_\theta(x_t)} \quad (7)$$

$$s_\theta(x_t | c_f) = \nabla_{x_t} \log p_\theta(x_t | c_f) \quad (8)$$

$$= \nabla_{x_t} \log p_\theta(x_t) + \nabla_{x_t} \sum_{i \in \{1, 2, \dots, K\}} (\log p_\theta(x_t | c_g^i) - \log p_\theta(x_t)) \quad (9)$$

$$= s_\theta(x_t) + \sum_{i \in \{1, 2, \dots, K\}} (s_\theta(x_t | c_g^i) - s_\theta(x_t)) \quad (10)$$

810 **From fine-grained conditions to general conditions.** Given a conditional diffusion model
 811 with parameters θ trained on fine-grained conditions, timestep $t \in \{1, 2, \dots, T\}$, independent fine-
 812 grained conditions $c_f^i, i \in \mathbb{N}$, we have access to their score functions $s_\theta(x_t | c_f^i) = \nabla_{x_t} \log p_\theta(x_t | c_f^i)$.
 813 Supposing that a general condition c_g can be decomposed into different fine-grained conditions
 814 $c_f^i, i \in \{1, 2, \dots, M\}$, we have

$$p_\theta(x_t | c_g) = \sum_{i \in \{1, 2, \dots, M\}} p_\theta(x_t | c_f^i) \quad (11)$$

$$s_\theta(x_t | c_g) = \nabla_{x_t} \log \sum_{i \in \{1, 2, \dots, M\}} p_\theta(x_t | c_f^i) \quad (12)$$

$$= \frac{1}{\sum_{j \in \{1, 2, \dots, M\}} p_\theta(x_t | c_f^j)} \nabla_{x_t} \left(\sum_{i \in \{1, 2, \dots, M\}} p_\theta(x_t | c_f^i) \right) \quad (13)$$

$$= \frac{1}{\sum_{j \in \{1, 2, \dots, M\}} p_\theta(x_t | c_f^j)} \sum_{i \in \{1, 2, \dots, M\}} \nabla_{x_t} p_\theta(x_t | c_f^i) \quad (14)$$

$$= \frac{1}{\sum_{j \in \{1, 2, \dots, M\}} p_\theta(x_t | c_f^j)} \sum_{i \in \{1, 2, \dots, M\}} (p_\theta(x_t | c_f^i) \nabla_{x_t} \log p_\theta(x_t | c_f^i)) \quad (15)$$

$$= \sum_{i \in \{1, 2, \dots, M\}} \left(\frac{p_\theta(x_t | c_f^i)}{\sum_{j \in \{1, 2, \dots, M\}} p_\theta(x_t | c_f^j)} s_\theta(x_t | c_f^i) \right) \quad (16)$$

A.3 RELATIONSHIP WITH THE REAL T2I SETTINGS

We use the synthetic experiment as a motivation to emphasize the importance of studying the axis of prompt complexity in the diffusion / flow model setting. The synthetic experiments clearly show an asymmetry of difficulty w.r.t. conditioning complexity when the probabilistic assumptions hold.

The conditional independence assumption in synthetic setting derivation is a simplification. Real-world text encoders (e.g., CLIP/T5) produce entangled representations where concepts (e.g., “yellow” and “banana”) can be highly correlated and content dependent. However, we believe this distinction does not invalidate our conclusion regarding the asymmetry of difficulty between generalizing to general (“OR”) vs. specific (“AND”) prompts.

On how this affects the “OR is harder than AND” conclusion:

AND Operator (Generalizing to longer prompts):

In our toy example (Ideal Case): The “black” and “dog” concepts are independent. Their guidance vectors are orthogonal. Our Equation (2) is a probabilistically sound formula, and the naive sum works perfectly, as shown by the KL/FD scores (KL divergence of 0.93 and Frechet distance of 1.32).

The violation of the assumption doesn’t make this operator “harder” in the sense of being impractical, but degrades it. It changes Equation (2) from a probabilistic law into a practical but imperfect heuristic, probably leading to some failure modes. For example, the guidance vectors for “white” and “dog” are non-orthogonal if they are correlated as captured by the CLIP / T5 model. Our Equation (2), by naively adding these vectors, leads to an over-magnification of this shared, correlated signal, potentially leading to some artifacts (low diversity, over-saturation, etc.) in the generation.

OR Operator (Generalizing to shorter prompts):

This is already hard in theory as we explain in Eq. 1 in our manuscript, where the score function for “OR” operator is intractable in diffusion models. The fact that tokens in real-world prompts are not perfectly “mutually exclusive” adds another layer of intractability, making this “OR” generalization even more difficult.

Given the theoretical analysis and not over-interpret our empirical results, some of our empirical results also verifies this asymmetry. For aesthetic quality with CC12M and DCI settings (Fig. 3, (a)

864 and (c)), we observe a sharper decrease towards shorter prompts compared to longer prompts, which
 865 empirically supports our statement.
 866

867 **On explaining CC12M vs. ImageNet behaviors:**

868 Our theoretical analysis also helps explain some empirical divergences in results of CC12M and Im-
 869 ageNet. CC12M relies on composition of tokens (similar to the “AND” and “OR” operator logic),
 870 where we see similar trends as in the synthetic experiments. ImageNet experiments rely on speci-
 871 ficity (using semantically richer tokens rather than more tokens) and the ImageNet hierarchy does
 872 not strictly follow the combinatorial logic of these mathematical derivations.
 873

874 **B DETAILS ON THE BENCHMARKING FRAMEWORK**
 875

876 **B.1 CAPTIONING STEP**
 877

878 We use Gemma3 (Team et al., 2025) model (gemma-3-12b-it version) to conduct the captioning
 879 of images from datasets with general captions (e.g., CC12M (Changpinyo et al., 2021)). The sys-
 880 tem prompt is: You strictly follow the user’s instructions. The user prompts
 881 used for captioning to different complexities are as follows:
 882

- 883 1. Mention the main subjects in the image with only 1 word. Do
 884 not use specific identifiers, such as names. Format the
 885 caption as such: <<CAPTION>>.
- 886 2. Write a short caption with 3 or less words. Use only one
 887 adjective. Do not use specific identifiers, such as names.
 888 Format the caption as such: <<CAPTION>>.
- 889 3. Write a caption with 6 or less words, describing at most two
 890 main foreground subjects. Do not use specific identifiers,
 891 such as names. Format the caption as such: <<CAPTION>>.
- 892 4. Write a caption with 8 or less words, describing at most two
 893 main foreground subjects, as well as the background. Do not
 894 use specific identifiers, such as names. Format the caption
 895 as such: <<CAPTION>>.

896 **B.2 PAIRING STEP**
 897

898 For datasets with general captions, we use the SigLip model (Zhai et al., 2023) to embed both
 899 images and texts. Our implementation uses the OpenClip ⁵ library and the SigLip version
 900 ViT-SO400M-14-SigLIP-384.
 902

903 **B.3 ALIGNMENT STEP**
 904

905 We present the alignment step in Algorithm 1.
 906

907 **B.4 EVALUATION METRICS**
 908

909 To compute evaluation metrics, we use the following libraries:
 910

- 911 1. Reference-based metrics: dgm-eval (Stein et al., 2023)
- 912 2. Vendi score: Vendiscore (Friedman & Dieng, 2023)
- 913 3. Aesthetic score: aesthetic-predictor-v2.5 (discus0434 & Goswami, 2023)
- 914 4. DSG score: Eval-GIM (Hall et al., 2024b)

915
 916 ⁵https://github.com/mlfoundations/open_clip
 917

918 **Algorithm 1** Alignment step

```

919
920 1: Input:  $\bar{\mathcal{I}}^{ik}, k \in \{1, 2, \dots, K\}, i \in \mathcal{N}_k^p; N_{\text{gen}}$ .
921 2: breaksignal  $\leftarrow$  False
922 3: while not breaksignal do
923 4:   CommonImagesBefore  $\leftarrow \bigcap_{k \in \{1, 2, \dots, K\}} \bigcup_{i \in \mathcal{N}_k^p} \bar{\mathcal{I}}^{ik}$ 
924 5:   for  $j \in \{1, 2, \dots, K\}$  do
925 6:     for  $l \in \mathcal{N}_j^p$  do
926 7:        $\bar{\mathcal{I}}^{lj} \leftarrow \bar{\mathcal{I}}^{lj} \cap \text{CommonImagesBefore}$ 
927 8:       if  $|\bar{\mathcal{I}}^{lj}| < N_{\text{gen}}$  then
928 9:         del  $l$  from  $\mathcal{N}_j^p$ 
929 10:        end if
930 11:      end for
931 12:    end for
932 13:  CommonImagesAfter  $\leftarrow \bigcap_{k \in \{1, 2, \dots, K\}} \bigcup_{i \in \mathcal{N}_k^p} \bar{\mathcal{I}}^{ik}$ 
933 14:  breaksignal  $\leftarrow \text{len}(\text{CommonImagesBefore}) == \text{len}(\text{CommonImagesAfter})$ 
934 15: end while
935 16: return  $\bar{\mathcal{I}}^{ik}, k \in \{1, 2, \dots, K\}, i \in \mathcal{N}_k^p$ 

```

936
937 **C EXPERIMENTAL DETAILS**
938939 **C.1 DATASET DETAILS**
940

941 *CC12M*. We investigate the effect of increasing prompt detail and length on the utility axes of synthetic data. Following the procedure described in Section 3, we generate captions for randomly sampled one million images at four different complexity levels, each corresponding to a distinct complexity level. Lower complexity prompts are shorter and contain fewer details about the image. We follow the procedure in Section 3 and sample 5,000 captions per complexity for generation. As reference, many widely used evaluation prompt sets contain approximately 1,000 prompts (Cho et al., 2024; Hu et al., 2024). We produce 20 images per prompt, resulting in 100,000 generated images for each prompt complexity. The statistics for different caption complexities are presented in Table 1. We use $c\#$ to represent complexity level of the prompts. We report the caption lengths statistics across complexities, and the number of real images retrieved using the 5,000 selected captions per complexity.

953 Table 1: Statistics on word lengths of different prompt complexities

	c1	c2	c3	c4
Avg # word	1.0007	2.1539	4.9094	7.5410
Std # word	0.0501	0.3621	0.7032	0.8849
Median # word	1.0000	2.0000	5.0000	8.0000
# real images covered	61,334	57,925	55,075	46,066

955 *ImageNet-1k*. We examine the effect of concept specificity on the utility axes of synthetic data. We
956 follow the procedure in Section 3 and extract hyponym relations to vary the specificity of ImageNet-1k class labels. For example, the class *siberian husky* (highest specificity) has the parent
957 class *sled dog* and grandparent class *working dog* (lowest specificity). Since these class labels possess
958 intrinsic semantic complexity, we use class-label specificity as a proxy for complexity. To
959 generate images, we use the prompt “Image of a <CLASS>”. We utilize all 1,000 ImageNet-1k classes and generate 50 images per class, resulting in 50,000 images, matching the size of the
960 ImageNet-1k evaluation set.

961 *DCI*. We further explore prompt complexity using *very long* prompts. DCI’s detailed captions
962 consist of multiple sentences, densely describing various aspects of each image. We construct prompts
963 as described in follow the procedure in Section 3, *i.e.*, progressively concatenating sentences to each

caption. We cap the maximum prompt length at 100 words. We sample 1,000 detailed captions and generate 5,398 prompts of varying complexity. For each prompt, we generate 50 images.

C.2 GUIDANCE METHODS’ HYPERPARAMETERS

For inference, we use Euler discrete sampling for all guidance methods and sample 28 steps. The timestep scale for all models is from 0 to 1. To find hyperparamers for our setting, we start from the original papers’ setting (when the information is available for the models used in our paper) and then empirically test the generation based on a randomly selected set of 10 prompts. Since many methods are tested on class-conditional models, the hyperparameters are not always directly applicable to our setting. Empirically, we find that we should keep more conditional information to achieve enough image-prompt consistency compared to class-conditional models.

APG ([Sadat et al., 2025](#)). This guidance method has three hyperparameters: effect of the parallel component η , effect of the rescaling threshold r , and effect of the momentum strength β . We follow the original paper and set $\eta = 0$ for all settings. Other hyperparameters are presented in Table 2.

Table 2: Hyperparameters for APG guidance method.

params	LDMv1.5	LDM-XL	LDMv3.5M	LDMv3.5L
r	7.5	15	10	10
β	-0.75	-0.5	-0.5	-0.5

Interval ([Kynkäanniemi et al., 2024](#)). This guidance method has two hyperparameters: τ_{lo} and τ_{hi} . The conditional information is only applied between τ_{lo} and τ_{hi} . The hyperparameters used in our analyses are presented in Table 3.

Table 3: Hyperparameters for interval guidance method.

params	LDMv1.5	LDM-XL	LDMv3.5M	LDMv3.5L
τ_{lo}	0.08	0.08	0.3	0.3
τ_{hi}	0.81	0.81	0.95	0.95

CADS ([Sadat et al., 2024](#)). This guidance method has two main hyperparameters to control how the conditional information is annealed: τ_1 and τ_2 , where the guidance scale is set to 0 for time steps between τ_2 and 1.0, then linearly increases between time steps τ_1 and τ_2 from 0.0 to 1.0, and is kept to 1.0 between time steps 0.0 and τ_1 . In addition, CADS also has hyperparameters for noise scale s and for mixing factor ϕ . We keep $\phi = 1$ for all settings following the original paper. We present the hyperparameters’ choice of CADS for different models in Table 4. Some of the τ_2 values are larger than 1.0, which means that we always keep some conditional information during sampling. This can help achieve better image-prompt consistency.

Table 4: Hyperparameters for CADS guidance method.

params	LDMv1.5	LDM-XL	LDMv3.5M	LDMv3.5L
τ_1	0.8	0.6	0.85	0.85
τ_2	1.3	1.0	1.25	1.25
s	0.1	0.3	0.3	0.3

C.3 PROMPT EXPANSION

We use the Gemma3 model ([Team et al., 2025](#)) to expand the prompts. We use the gemma-3-12b-bit version. The prompt used for expansion is as follows:

Table 5: Licences for all the models, datasets and libraries used in our paper.

Asset	Type	Licence
CC12M (Changpinyo et al., 2021)	Dataset	Freely use for any purpose ⁶
Imagenet-1k (Deng et al., 2009)	Dataset	Custom non-commercial license
DCI (Urbaneck et al., 2024)	Dataset	CC BY-NC 4.0 and SA-1B dataset License ⁷
LDMv3.5L (Esser et al., 2024)	Model	Stability Community License
LDMv3.5M (Esser et al., 2024)	Model	Stability Community License
LDM-XL (Podell et al., 2024)	Model	CreativeML Open RAIL++-M License
LDMv1.5 (Rombach et al., 2022)	Model	CreativeML Open RAIL-M License
Gemma3 (Team et al., 2025)	Model	Gemma License
SigLip (Zhai et al., 2023)	Model	Apache-2.0
Openclip ⁸	Library	Openclip License ⁹
Vendi-Score (Friedman & Dieng, 2023)	Library	MIT License
DGM-eval (Stein et al., 2023)	Library	MIT License
Eval-GIM (Hall et al., 2024b)	Library	CC BY-NC 4.0
Aesthetic-predictor-v2.5 (discus0434 & Goswami, 2023)	Library	AGPL-3.0

- **system prompt:** The user will give a sentence that is a caption for an image. Based on the sentence, you will generate 20 different new sentences with around 30 words, that don't violate the original meaning, but with more possible details in that image. You will return the sentences in a list format.
- **user prompt:** The sentence given is: ``CAPTION''.

C.4 COMPUTE RESOURCES

We use our internal cluster to conduct all the experiments. The captioning, pairing and alignment steps are conducted on NVIDIA V100 GPUs with 32GB memory. The image generation is conducted on NVIDIA H100 GPUs with 80GB memory. All the models are run in 16-bit precision and can fit into one GPU. The generation time for 100,000 images is around 175 GPU hours for LDMv3.5L (Esser et al., 2024), 80 GPU hours for LDMv3.5M (Esser et al., 2024), 40 GPU hours for LDM-XL (Podell et al., 2024) and 4 GPU hours for LDMv1.5.

C.5 LICENSES FOR EXISTING ASSETS

We list licenses for all the models, datasets and libraries used in our paper in Table 5.

C.6 NEW ASSETS

Our code is under License CC BY-NC 4.0.

D RESULTS FOR LDM-XL AND LDMv3.5M

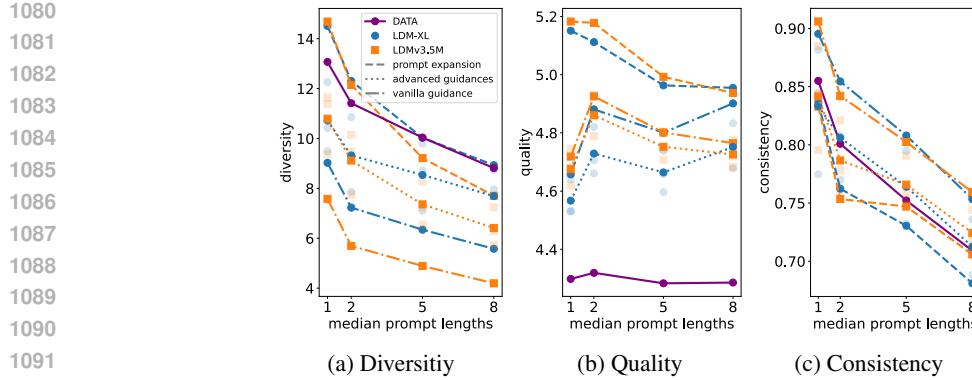
In this section, we present results for LDM-XL (Podell et al., 2024) and LDMv3.5M (Esser et al., 2024) models on CC12M dataset (Changpinyo et al., 2021) and ImageNet-1k dataset (Deng et al., 2009), complementing the results in the main paper.

⁶<https://github.com/google-research-datasets/conceptual-12m?tab=License-1-ov-file#readme>

⁷<https://ai.meta.com/datasets/segment-anything-downloads/>

⁸https://github.com/mlfoundations/open_clip

⁹https://github.com/mlfoundations/open_clip?tab=License-1-ov-file#readme



1093 **Figure 7: Reference-free utility metrics of synthetic data using CC12M prompts.** Diversity
1094 (Vendi), quality (aesthetics) and consistency (DSG) metrics of LDM-XL and LDMv3.5M genera-
1095 tions when using: 1) vanilla guidance (CFG), 2) prompt expansion, and 3) advanced guidance
1096 methods, for which transparent markers correspond to different methods and the solid marker is the
1097 average over methods. Both advanced guidance methods and prompt expansion lead to improved
1098 diversity over the vanilla guidance. Prompt expansion from shorter captions can surpass the real
1099 data diversity. Prompt expansion leads to quality improvements, whereas advanced guidance meth-
1100 ods slightly reduces quality *w.r.t.* vanilla guidance.

D.1 UTILITY AXES MEASURED BY REFERENCE-FREE METRICS

We measure the utility of synthetic data in terms of quality (aesthetics), diversity (Vendi) and prompt consistency (DSG) with reference-free metrics. We present results using the prompts from CC12M in Figure 7 and ImageNet-1k in Figure 8. The results show the same trend as presented in Section 4.2.

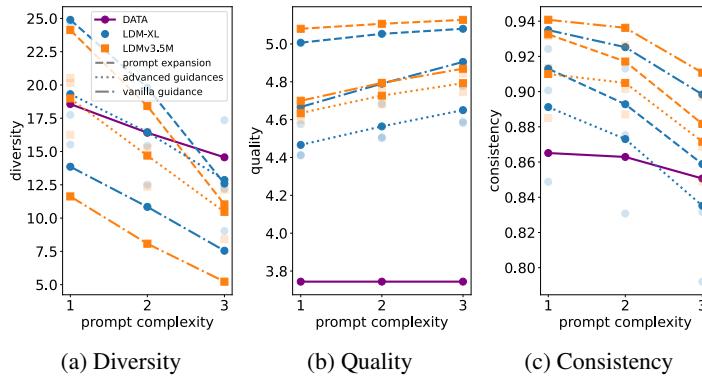
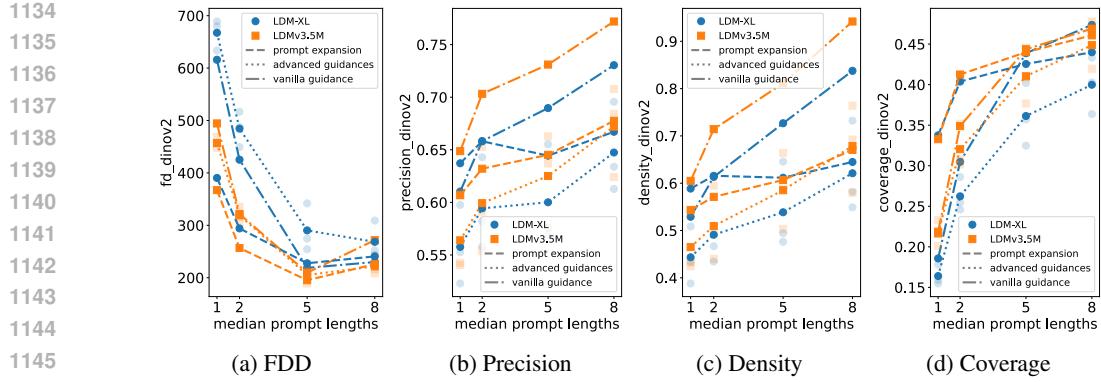


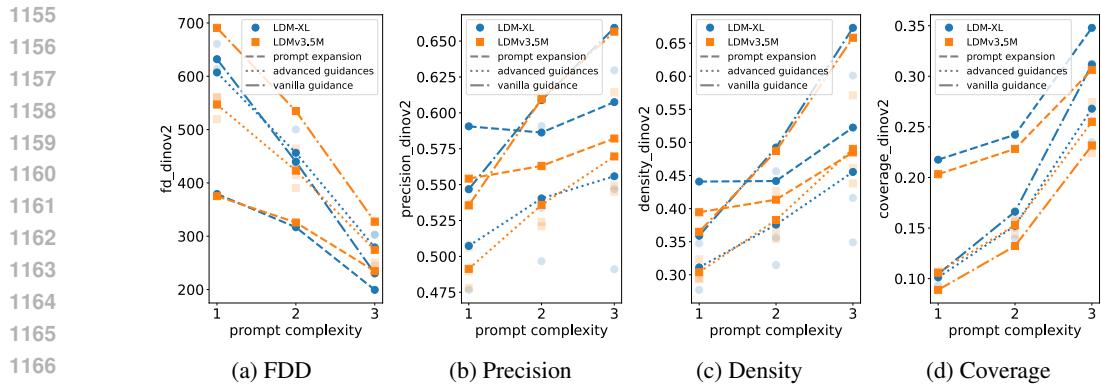
Figure 8: **Reference-free utility metrics of synthetic data using ImageNet-1k class labels.** Di-
versity (Vendi), quality (aesthetics) and consistency (DSG) metrics for LDM-XL and LDMv3.5M
generations with: 1) vanilla guidance (CFG), 2) prompt expansion, and 3) advanced guidance
methods, for which transparent markers correspond to different methods and the solid marker is the
average over methods. Prompt complexity shows the specificity of the class label used for genera-
tion. Both advanced guidance methods and prompt expansion lead to higher diversity, but advanced
guidance methods lead to slightly lower quality. Prompt expansion and advanced guidances with
shorter captions can yield higher diversity compared to the real data. Both prompt expansion and
advanced guidances have a negative impact on consistency.

D.2 UTILITY AXES MEASURED BY REFERENCE-BASED METRICS

Reference-free metrics are suitable for evaluating the utility of synthetic data in the wild. In our analysis, the prompts are extracted from existing dataset, containing both images and texts, and



1147 **Figure 9: Reference-based utility metrics of synthetic data using CC12M prompts.** Fréchet
1148 distance (FDD), precision, density and coverage in the DINOv2 feature space for LDM-XL and
1149 LDMv3.5M generations with: (1) vanilla guidance (CFG), (2) prompt expansion, and (3) advanced
1150 guidance methods, for which transparent markers correspond to different methods and the solid
1151 marker is the average over methods. Prompt expansion lead to better FDD for both models. Both
1152 prompt expansion and advanced guidances sacrifice precision and density.



1168 **Figure 10: Reference-based utility metrics of synthetic data using ImageNet-1k class labels.**
1169 FDD, precision, density, and coverage metrics in the DINOv2 feature space for LDM-XL and
1170 LDMv3.5M with: 1) vanilla guidance (CFG), 2) prompt expansion, and 3) advanced guidance
1171 methods, for which transparent markers correspond to different methods and the solid marker
1172 is the average over methods. Both advanced guidance methods and prompt expansion lead to better
1173 FDD, and improve or match the coverage of vanilla guidance, while sacrificing precision and
1174 density in most cases. For LDMv3.5M, we see a more prominent effect of advanced guidance methods
1175 and prompt expansion than for LDM-XL. Advanced guidance methods do not change the trend of
1176 the metrics w.r.t. prompt complexity, while the prompt expansion shapes the trend of the metrics
1177 differently.

1178
1179
1180
1181 so enabling the use of reference-based metrics for evaluation. Unless otherwise specified, we use
1182 the DINOv2 (Oquab et al., 2023) feature space to compute these metrics, since it has been found
1183 to correlate well with human judgement (Hall et al., 2024a; Stein et al., 2023). The CC12M and
1184 ImageNet-1k results are presented in Figures 9 and 10, respectively.

1185 The results are similar to those for LDMv1.5 and LDMv3.5L presented in Section 4.3. It is worth
1186 noting that we employed more aggressive hyperparameters of advanced guidance methods for LDM-
1187 XL model as shown in Tables 2, 3 and 4. This leads to larger differences for reference-based metrics
1188 since the generated images can be out side of the support of the reference dataset.

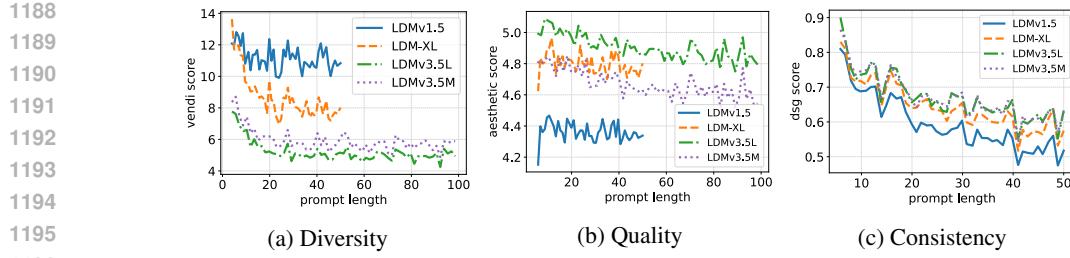


Figure 11: **Reference-free utility metrics of synthetic data using DCI prompts of increasing complexity.** For all models, diversity decreases at first and then plateaus, while consistency score continuously decreases with the increase of the prompt length. The quality of LDMv3.5 decreases as prompt complexity increases.

D.3 DCI RESULTS

DCI dataset opens the possibility to evaluate the utility of synthetic data for notably longer prompts. We perform reference-free evaluations on synthetic data generated from DCI prompts by binning the prompts into different length chunks and computing the average diversity, aesthetic and consistency scores for each bin. We present the results in Figure 11¹⁰. We observe that the diversity decreases and then plateaus as we increase the prompt length. For most LDM models, the plateau starts at a prompt length of ~ 30 words. However, the plateau region of LDMv1.5 seems to occur earlier than for its successor models. However, the consistency tends to decrease as we increase the prompt length. As the prompt becomes increasing detailed, the consistency metric keeps assessing whether all the information is captured, emphasizing the limitations of current T2I models to follow very long and detailed prompts. Interestingly, for the most recent LDMv3.5 models, image aesthetics also seems to slightly decrease as a function of prompt length.

E HUMAN EVALUATION

Grounding our automatic metrics with human evaluation is crucial for validating our findings. We conducted human evaluations, specifically designed to assess whether our automatic diversity metric (Vendi score) and consistency metric (DSG score) aligns with human perception.

E.1 VENDI SCORE

We employed a two-alternative forced-choice (2AFC) task. In each trial, annotators were shown two image mosaics (16 images each), generated from prompts of two different complexity levels. They were asked: “Which set of images is more diverse?” Images were generated from CC12M grounded prompts of different complexities using the LDMv3.5L model. For each trial, we randomly sampled two prompts, each from a distinct complexity level to generate the two mosaics for comparison. The study involved 9 annotators, who collectively provided 900 pairwise comparison annotations, ensuring comprehensive coverage of all complexity level pairs. We calculated the win rate for lower-complexity prompts against higher-complexity prompts. A win rate greater than 0.50 indicates that, on average, humans perceive images from lower-complexity prompts as more diverse. The results are summarized in Table 6.

Our analysis yields two key findings that validate our approach:

1. **Human perception aligns with our main findings.** In all pairwise comparisons, the win rate for the lower-complexity prompts was all above 0.50 (e.g., 0.620 for complexity 1 vs. 3; 0.794 for 0 vs. 3). This proves that humans consistently perceive the sets of images generated from simpler prompts as more diverse, mirroring the trend identified by our automatic metrics.
2. **Vendi score strongly correlates with human preference.** There is a clear positive correlation between the magnitude of the Vendi score difference (values in parentheses) and the human-annotated win rate. For instance, the largest Vendi score difference (3.00, between

¹⁰LDMv1.5 and LDM-XL models stop at prompt length of 50, given the 77 token limit of their text encoder.

1242 levels 0 and 3) corresponds to the most decisive human judgment (0.794 win rate), while
 1243 the smallest difference (0.605, between levels 2 and 3) corresponds to a judgment barely
 1244 above chance (0.531 win rate). This provides strong evidence that the Vendi score used in
 1245 our work is a meaningful and valid proxy for the degree of human-perceived diversity.
 1246

1247
 1248 Table 6: Human evaluation results for diversity. Values represent the win rate of images generated
 1249 from prompts of the row complexity level being judged as more diverse than those from the column
 1250 level. Values in parentheses show the corresponding Vendi score difference between the two levels.
 1251

Complexity level	2	3	4
1	0.589 (1.63)	0.645 (2.40)	0.794 (3.00)
2	-	0.563 (0.77)	0.620 (1.37)
3	-	-	0.531 (0.61)

E.2 DSG SCORE

DSG uses a two-stage process: (1) Decomposition: An LLM (Gemma-3-27B-Instruct, the largest model in the series released in 2025) decomposes the single complex prompt (e.g., "A white dog is playing on the grassy field.") into a set of simple, atomic questions (e.g., "Is there a dog?", "Is the dog white?", "Is the field grassy?", ...). (2) VQA: The VQA model (default as in DSG score paper) is then only required to answer these simple, unit-level yes/no questions, a task it can perform more reliably compared to answering a single long complex question.

To further validate our automatic evaluated results with DSG score, we conduct a human evaluation for both stages.

We give the guideline on how the prompt is decomposed into atomic questions along with an example of decomposition presented to human annotators. Given a prompt, we present the prompt along with the decomposed questions generated by LLM to human evaluators, and ask them to check whether each question is a valid question according to decomposition rules. We ask 4 human annotators, and each of them annotates 25 prompts, yielding 100 sets of answers in total. Among all the decomposed questions, the percentage of correctly decomposed questions is 95.54%, which effectively demonstrates the validity of the decomposed questions using LLM automatic generation.

Given the generated images from the original long prompt, we ask the human annotators to answer each decomposed question generated by LLM from the original long prompt. We ask 10 annotators and each evaluates 50 generated images using DCI prompts and gather in total 500 evaluation results. The human evaluation is small compared to the large-scale automatic evaluation, but it shows the same decreasing trend and a strong correlation between human evaluation results and automatic VLM results. Table 7 shows the human evaluation results for Stage 2.

Table 7: DSG metrics computed using human evaluation and automatic VLM

# words	10	13	18	23	28	35	41	50
# samples	58	54	66	61	65	66	65	75
Human DSG	0.92	0.90	0.85	0.87	0.83	0.82	0.81	0.81
VQA DSG	0.95	0.89	0.81	0.86	0.85	0.81	0.79	0.82
Pearson corr 0.89; R2 0.68								

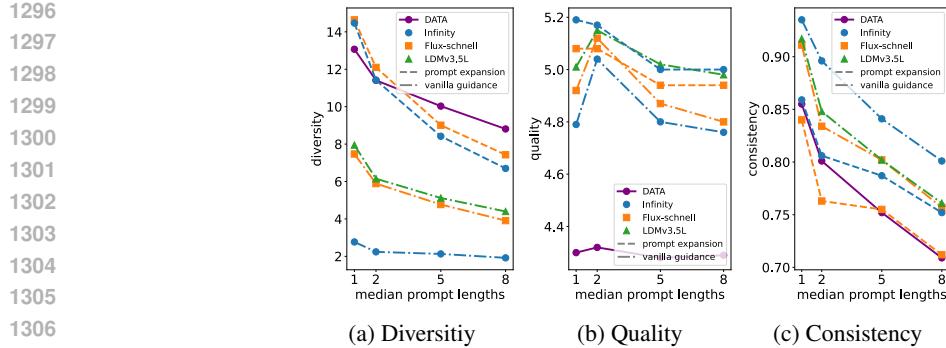


Figure 12: **Reference-free utility metrics of synthetic data using CC12M prompts.** Diversity (Vendi), quality (aesthetics) and consistency (DSG) metrics of Infinity and Flux-schnell generations when using: 1) vanilla guidance (CFG) and 2) prompt expansion. Prompt expansion leads to improved diversity over the vanilla guidance. Prompt expansion from shorter captions can surpass the real data diversity. Prompt expansion leads to quality improvements. Infinity model with vanilla guidance has very low diversity in generations, while prompt expansion can effectively recover the diversity.

F ADDITIONAL MODELS

Our selection of models cover latent diffusion models and flow models with a chronological perspective. We can compare different guidance methods over all these models selected. However, there are some other models that may also raise interests for the research community, *e.g.*, guidance distilled models that uses no classifier-free guidance, and visual autoregressive models. We present the utility of the synthetic data generated from FLUX-schnell (Labs, 2024) (a distilled diffusion model) and Infinity (Han et al., 2025) (a visual autoregressive model) using CC12M prompts in Figure 12. We include vanilla guidance and prompt expansion for both models.

The Infinity model has the lowest diversity compared to the LDM model series. The LDMv3.5L model has a diversity metric of 4.4 as the lowest, while Infinity can only effectively generate 2 different images on average across prompt lengths. Prompt expansion boosts the diversity metric for all the complexities. Similar to the LDM model series, the diversity of the synthetic images generated using level-1 prompts surpass that of the real data. Interestingly, the decrease of the diversity along the prompt complexity axis is more pronounced than the LDMv1.5 and LDMv3.5L models as shown in Figure 2a. This indicates that the prompt may put more constraints on a visual autoregressive model, *e.g.*, Infinity, when exploring the image space compared to diffusion or flow models. Nevertheless, the Infinity model shows good quality that surpasses the real data and the LDMv1.5 model. It is on par with or a bit lower in terms of aesthetic quality compared to the LDMv3.5L model. Consistency-wise, the Infinity achieves the best compared to all the LDM model series. This may also correlate with the low diversity of the Infinity model as the model is more faithful to the prompt and thus limit the exploration in the image space.

As for the FLUX-schnell model, it performs similarly to the LDMv3.5L model on three utility axes, with a small but noticeable drop in utility, especially on the axes of diversity and consistency. The gap tends to become larger when the prompt complexity increases.

G ADDITIONAL RESULTS

G.1 REFERENCE-BASED METRICS USING IMAGENET-1K CLASS LABELS

Figure 13 shows the reference-based metrics using ImageNet-1k class labels. The findings are similar with the CC12M dataset, as presented in section 4.3.

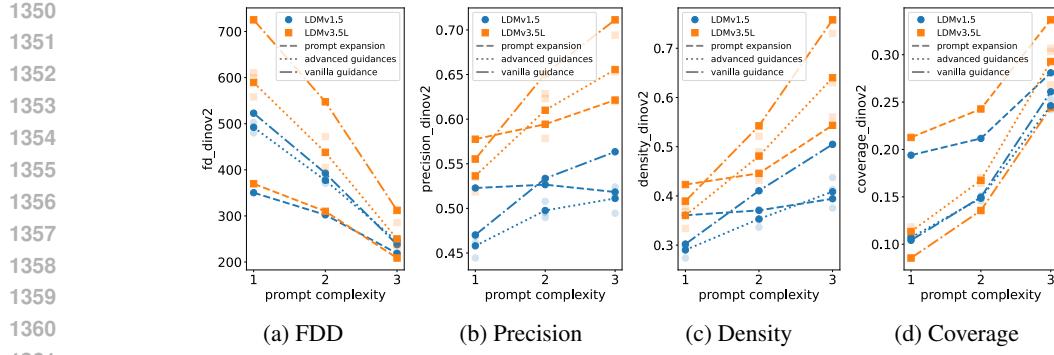


Figure 13: **Reference-based utility metrics of synthetic data using ImageNet-1k class labels.** FDD, precision, density, and coverage metrics in the DINOv2 feature space for LDMv1.5 and LDMv3.5L with: 1) vanilla guidance (CFG), 2) prompt expansion, and 3) advanced guidance methods, for which transparent markers correspond to different methods and the solid marker is the average over methods. Both advanced guidance methods and prompt expansion lead to better FDD, and improve or match the coverage of vanilla guidance, while sacrificing precision and density in most cases. For LDMv3.5L, we see a more prominent effect of advanced guidance methods and prompt expansion than for LDMv1.5. Advanced guidance methods do not change the trend of the metrics w.r.t. prompt complexity, while the prompt expansion shapes the trend of the metrics differently.

G.2 TRADE-OFF OF CREATIVITY AND FIDELITY WHEN USING INFERENCE-TIME INTERVENTIONS

Figs. 5 and 13 show that using prompt expansion and advanced guidance will result in a drop in precision and density, revealing an under-explored but important trade-off between creativity and fidelity. We suggest cautious usage of T2I models when applying to different downstream applications. We provide a discussion over this trade-off in the following.

Beneficial Scenarios:

1. Creative ideation and co-creation. Beyond simple augmentation, prompt expansion acts as an exploratory partner for artists or designers. It uses the LLM’s “imagination” to brainstorm novel, high-aesthetic compositions that diverge from the dataset’s common tropes.
2. Combating prompt-level mode collapse. For simple prompts (e.g., a dog), T2I models can default to a typical representation (e.g., a golden retriever). Prompt expansion explicitly forces intra-class diversity by generating a set of specific instances, preventing the model from settling on a single, average output.
3. Training for OOD Robustness: “hallucinations” create data that is plausible but statistically rare in the reference set, making it a useful source for training downstream models that are robust to out-of-distribution contexts.

Detrimental Scenarios:

1. Bias amplification and stereotype entrenchment: This is a critical risk we will add. The LLM’s prior, used for expansion, is not neutral. It can inject societal biases (e.g., related to gender or race for prompts like “a doctor” or “a CEO”), amplifying stereotypes by hard-coding them into the prompt before the T2I model ever runs.
2. Loss of user intent and control. When a user desires generality (e.g., “a simple icon of a bird”), prompt expansion’s forced specificity is a failure to respect the user’s intent. It overrides their desire for an “average” or “iconic” representation.

1404 G.3 STATISTICAL SIGNIFICANCE OF THE TRENDS
1405

1406 To ensure the statistical significance of the observed trends, we compute the mean and 95% con-
1407 fidence interval of the reference-free metrics across complexities using 5,000 randomly sampled
1408 CC12M prompts. The results are shown in Table 8, 9, and 10 for diversity, quality, and consistency
1409 respectively. The confidence intervals (95% CI) are narrow, indicating high stability in the measure-
1410 ment. Notably, the intervals between consecutive complexity levels are non-overlapping, confirming
1411 that the main trends at each complexity are statistically significant.

1412 Table 8: 95% Confidence Interval for Diversity using CC12M prompts
1413

complexity	1	2	3	4
LDMv1.5 + CFG	9.228 \pm 0.094	7.649 \pm 0.079	6.957 \pm 0.067	6.483 \pm 0.059
+ APG	10.163 \pm 0.093	8.701 \pm 0.081	7.921 \pm 0.070	7.496 \pm 0.063
+ CADS	11.112 \pm 0.095	9.557 \pm 0.081	8.496 \pm 0.072	7.902 \pm 0.064
+ Interval	11.934 \pm 0.089	10.378 \pm 0.082	9.314 \pm 0.070	8.839 \pm 0.066
+ Prompt expansion, CFG	15.074 \pm 0.089	12.977 \pm 0.097	10.882 \pm 0.092	9.725 \pm 0.081
LDMv3.5L + CFG	5.597 \pm 0.053	5.493 \pm 0.044	4.294 \pm 0.032	3.966 \pm 0.028
+ APG	8.978 \pm 0.090	7.331 \pm 0.079	6.089 \pm 0.065	5.302 \pm 0.054
+ CADS	9.864 \pm 0.108	7.690 \pm 0.093	5.954 \pm 0.067	5.214 \pm 0.056
+ Interval	10.707 \pm 0.088	9.463 \pm 0.086	7.668 \pm 0.073	6.788 \pm 0.064
+ Prompt expansion, CFG	14.671 \pm 0.098	12.114 \pm 0.107	9.140 \pm 0.100	7.672 \pm 0.083

1426 Table 9: 95% Confidence Interval for Quality using CC12M prompts
1427

complexity	1	2	3	4
LDMv1.5 + CFG	4.085 \pm 0.011	4.297 \pm 0.013	4.335 \pm 0.012	4.357 \pm 0.012
+ APG	4.035 \pm 0.011	4.213 \pm 0.012	4.214 \pm 0.011	4.233 \pm 0.011
+ CADS	4.013 \pm 0.011	4.195 \pm 0.012	4.239 \pm 0.011	4.254 \pm 0.011
+ Interval	4.017 \pm 0.009	4.163 \pm 0.012	4.204 \pm 0.011	4.213 \pm 0.011
+ Prompt expansion, CFG	4.645 \pm 0.009	4.620 \pm 0.009	4.472 \pm 0.010	4.415 \pm 0.010
LDMv3.5L + CFG	5.011 \pm 0.011	5.155 \pm 0.012	5.016 \pm 0.013	4.981 \pm 0.013
+ APG	5.071 \pm 0.009	5.179 \pm 0.010	5.012 \pm 0.012	4.967 \pm 0.012
+ CADS	5.019 \pm 0.010	5.118 \pm 0.011	4.977 \pm 0.012	4.940 \pm 0.013
+ Interval	5.042 \pm 0.008	5.101 \pm 0.009	4.987 \pm 0.009	4.924 \pm 0.011
+ Prompt expansion, CFG	5.238 \pm 0.008	5.229 \pm 0.009	5.110 \pm 0.010	5.072 \pm 0.010

1440 Table 10: 95% Confidence Interval for Consistency using CC12M prompts
1441

complexity	1	2	3	4
LDMv1.5 + CFG	0.9026 \pm 0.0026	0.8153 \pm 0.0029	0.7630 \pm 0.0025	0.7175 \pm 0.0022
+ APG	0.8853 \pm 0.0028	0.8011 \pm 0.0030	0.7520 \pm 0.0026	0.7036 \pm 0.0023
+ CADS	0.8724 \pm 0.0029	0.7928 \pm 0.0030	0.7438 \pm 0.0026	0.6981 \pm 0.0023
+ Interval	0.8573 \pm 0.0030	0.7788 \pm 0.0031	0.7313 \pm 0.0026	0.6822 \pm 0.0023
+ Prompt expansion, CFG	0.8072 \pm 0.0034	0.7130 \pm 0.0034	0.6902 \pm 0.0028	0.6502 \pm 0.0024
LDMv3.5L + CFG	0.9235 \pm 0.0023	0.8404 \pm 0.0028	0.8001 \pm 0.0024	0.7622 \pm 0.0025
+ APG	0.9063 \pm 0.0025	0.8270 \pm 0.0029	0.7983 \pm 0.0024	0.7606 \pm 0.0021
+ CADS	0.8546 \pm 0.0031	0.7881 \pm 0.0031	0.7636 \pm 0.0025	0.7251 \pm 0.0022
+ Interval	0.8677 \pm 0.0029	0.7901 \pm 0.0031	0.7715 \pm 0.0025	0.7378 \pm 0.0022
+ Prompt expansion, CFG	0.8473 \pm 0.0031	0.7494 \pm 0.0032	0.7432 \pm 0.0026	0.7083 \pm 0.0023

1454 G.4 CLOSER LOOK AT MODELS AND GUIDANCES
1455
1456
1457

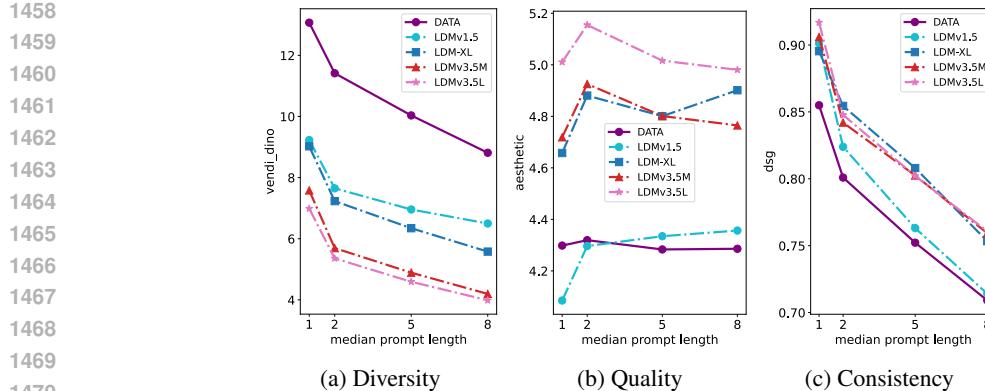
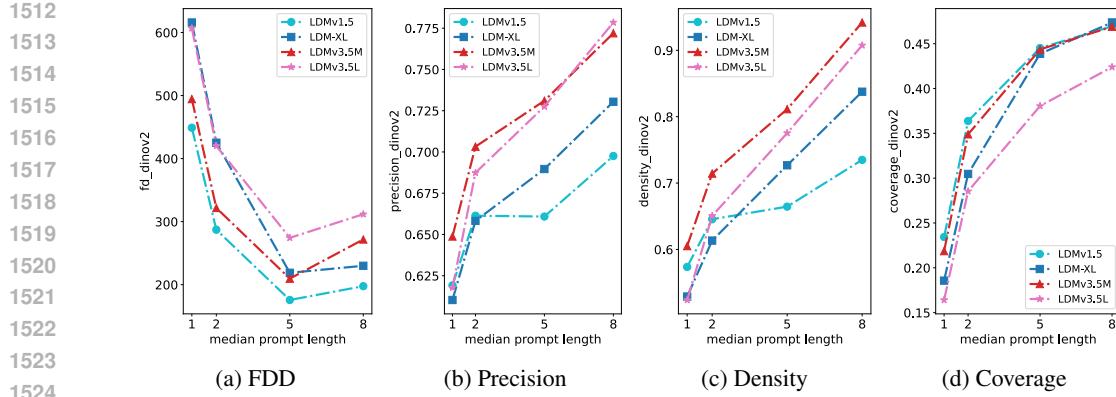


Figure 14: **Reference-free utility metrics of synthetic data from different LDM models using CC12M prompts.** We show Vendi score, aesthetic score, and DSG score using different LDM models with CFG. We see a decrease of diversity across model release time – *i.e.*, more recent models tend to have lower diversity. Interestingly, LDMv3.5L model shows less diversity than LDMv3.5M model. When it comes to image quality (aesthetics score), LDMv3.5L exhibits the best performance, followed by LDM-XL and LDMv3.5M. LDMv1.5 shows the worst aesthetic score, which is however similar to that of the dataset. When it comes to image-prompt consistency, all models show relatively high DSG scores. However, LDMv1.5’s consistency drops more sharply than the consistency of other models.

A closer look at different models. Figure 14 presents reference-free metrics (Vendi, aesthetic, and DSG scores) comparing different LDM models on the CC12M dataset when using CFG guidance. We observe that Vendi score and aesthetics score follow opposite model ranking trends, with LDMv3.5L showing the best aesthetic quality and the lowest diversity performance. As for image-prompt consistency, we observe that LDMv1.5 model falls short from other models by a large margin.

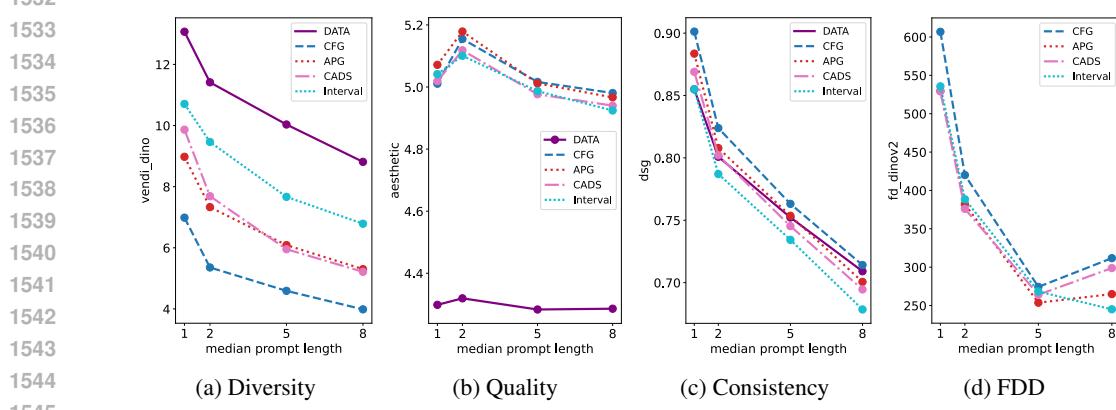
Figure 15 presents reference-based metrics comparing the same models. LDMv3.5M model works surprisingly well in terms of FDD compared to LDMv3.5L, considering that they both show similar reference-free diversity and that LDMv3.5M has a lower aesthetic quality than LDMv3.5L. Looking into precision, density and coverage, we can better understand why this happens. LDMv3.5M model shows similar precision and higher density than LDMv3.5L, while also showing higher coverage, leading to an overall better FDD. Our results on CC12M dataset show that LDMv3.5M may better represent the real data distribution than LDMv3.5L.

A closer look at advanced guidance methods. We now shift our focus to study the effect of different advanced guidance approaches on the utility axes of synthetic data. Figure 16 presents the results of reference-free metrics from LDMv3.5L model using CC12M prompts of increasing complexity. All advanced guidance methods lead to substantially higher diversity than the baseline CFG (previously referred to as vanilla guidance), with a stable aesthetic quality across different approaches. This is observed consistently across different prompt complexities. It is worth noting that APG leads to the lowest consistency drops *w.r.t.* CFG. APG primarily addresses the over-saturation problem in synthetic images by reducing the perpendicular direction guidance but still uses the conditional information at all inference steps, which might help the method achieve higher consistency than other the advanced guidance methods. However, CADS and Interval are more aggressive in removing the conditional information during the generation process, leading to overall lower consistencies across prompt complexities. As for reference-based metrics, all advanced guidance methods lead to better FDD. These results suggest that the advanced guidance methods may effectively improve the diversity of synthetic images while maintaining a stable quality and sufficiently good consistency, without sacrificing the overall reference-based metric (FDD). Finally, when contrasting with real data utility, we observe that: 1) None of the advanced guidance techniques bridges the gap between the diversity resulting from vanilla CFG guidance and the real data diversity for LDMv3.5L model. 2) All advanced guidance techniques have similar aesthetics, which is in all cases superior to the



1525
1526
1527
1528
1529
1530
1531

Figure 15: Reference-based utility metrics of synthetic data from different LDM models using CC12M prompts. FDD, precision, density, and coverage metrics in the DINOv2 feature space for different LDM models when using CFG guidance scale 5. For FDD, LDMv1.5 shows the best performance. Interestingly, LDMv3.5M has better FDD than LDMv3.5L. As for precision and density, more recent models tend to have better performances. LDMv3.5M and LDMv1.5 models show similar coverage, with LDM-XL slightly falling behind, and LDMv3.5L presenting the lowest coverage.



1546
1547
1548
1549
1550

Figure 16: Effect of guidance methods on the utility of synthetic data from LDMv3.5L using CC12M prompts. Diversity (Vendi), quality (aesthetics), consistency (DSG), and FD in DINOv2 feature space. All advanced guidance methods lead to higher diversity than the CFG baseline. APG has the smallest negative effect on consistency compared to CADS and Interval guidance. All advanced guidance methods lead to better FDD.

1551
1552
1553
1554
one of the real data. 3) Among advanced guidance methods, APG appears to sacrifice prompt-image consistency the least.

1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
A closer look at guidance scales. In this paragraph, we study how guidance scale affects the utility of synthetic data. We present diversity (Vendi score) and aesthetic quality for LDMv1.5 and LDMv3.5L with guidance scales 3.0, 5.0, 7.0, and 9.0 in Figure 17. Perhaps unsurprisingly, we observe that increasing the guidance scale results in decreasing the diversity of synthetic images. However, the diversity captured by Vendi score increases for LDMv3.5L model when using very large guidance scale (e.g., 9.0 in Figure 17b). We hypothesize that this increase in Vendi score is due to the oversaturation in the synthetic images and the color range exceeding the color jittering range employed in the data augmentation process of DINOv2, making the DINOv2 features color-sensitive. For different models and different metrics, the sensitivity to the guidance scale varies. For example, LDMv1.5 is more sensitive towards diversity while LDMv3.5L is more sensitive towards aesthetic quality as the guidance scale changes. Interestingly, LDMv1.5 has better aesthetic quality with higher guidance scales while LDMv3.5L shows the opposite trend.

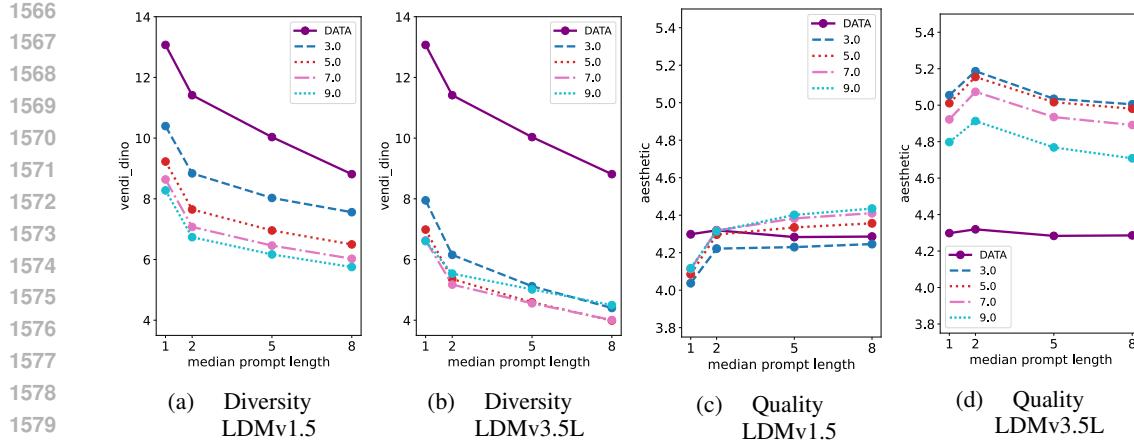


Figure 17: **Effect of guidance scale on diversity (Vendi) and quality (aesthetic) of synthetic images from CC12M prompts.** Metrics are computed in the DINOv2 feature space. For LDMv1.5, the diversity decreases as we increase the guidance scale, while for LDMv3.5L, the diversity first decreases and then increases again when using the highest guidance scale. LDMv1.5 shows better aesthetic quality when increasing the guidance scale while LDMv3.5L shows the opposite trend.

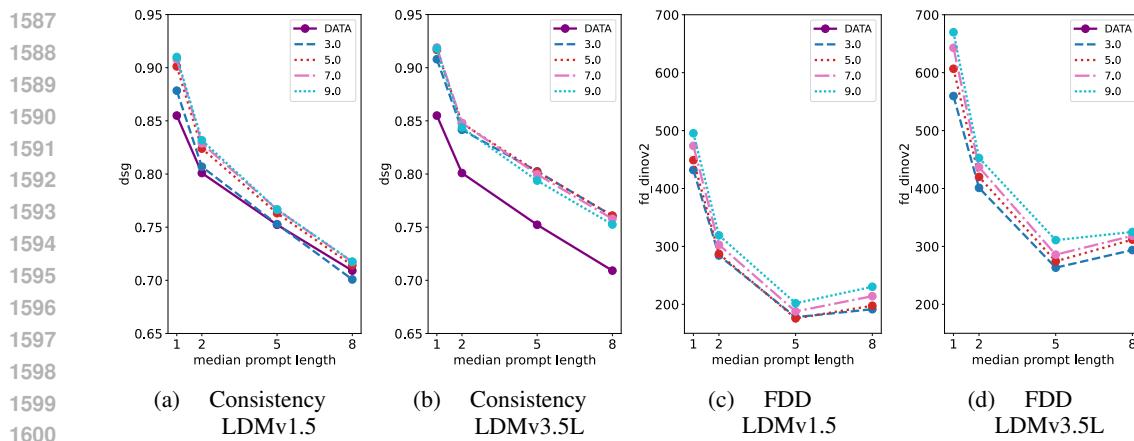


Figure 18: **Effect of guidance scale on image-prompt consistency (DSG) and FDD of synthetic images from CC12M prompts.** DSG score is not sensitive to guidance scale, especially for LDMv3.5L model. For LDMv1.5 model, the consistency slightly increases when employing larger guidance scales. As for FDD, both LDMv1.5 and LDMv3.5L models exhibit increase of FDD when generating images with larger guidance scale.

We also depict consistency and FDD metrics using different guidance scales in Figure 18. Image-prompt consistency does not appear too sensitive to guidance scale, especially for LDMv3.5L. For LDMv1.5, the consistency slightly increases when employing larger guidance scales. As for FDD, both LDMv1.5 and LDMv3.5L exhibit increases of FDD when generating images with larger guidance scales.

H ADDITIONAL QUALITATIVE SAMPLES

In Figure 19, we show qualitative samples for LDMv3.5L model using vanilla guidance (CFG), CADS, and prompt expansion with prompts extracted from CC12M. Notably, we observe that as we increase prompt complexity, the generations appear closer to the real data and exhibit lower diversity, slightly lower prompt consistency, and similar image aesthetics. Moreover, inference-time

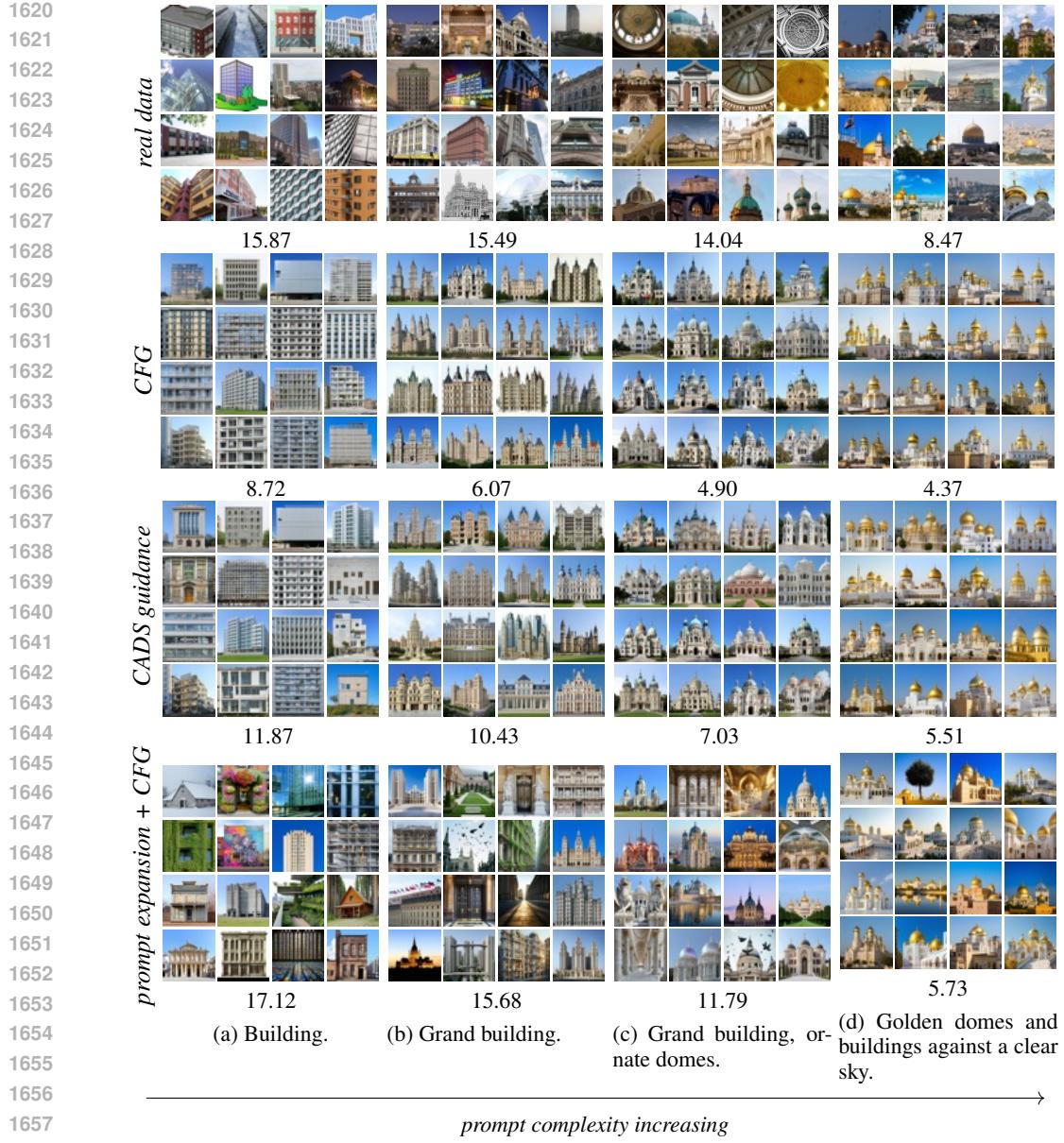


Figure 19: **Synthetic images across prompt complexity (row-wise) and sampling methods (column-wise).** The number below each mosaic corresponds to the diversity metric (Vendi score) of that set of images. Diversity decreases both visually and quantitatively as we increase prompt complexity. Advanced sampling methods (CADS and prompt expansion) improve the diversity of synthetic data. Image quality is not significantly affected by the prompt complexity, but prompt consistency decreases as we increase prompt complexity. CFG: classifier-free guidance.

interventions and their combinations (rows 3, 4) result in synthetic data with higher diversity than the CFG baseline (row 2).

We show qualitative samples in Figure 20 for LDMv3.5L model using vanilla guidance (CFG), CADS, and prompt expansion with class labels extracted from ImageNet-1k. According to WordNet (Fellbaum, 1998), ‘‘stringed instrument’’ includes harp, violin, cello, guitar, piano, etc., ‘‘guitar’’ includes acoustic guitar and electric guitar.

We also show more qualitative samples in Figures 21 to 28 using all sampling intervention methods, generated by all four T2I models (LDMv1.5, LDM-XL, LDMv3.5M, and LDMv3.5L), complement-

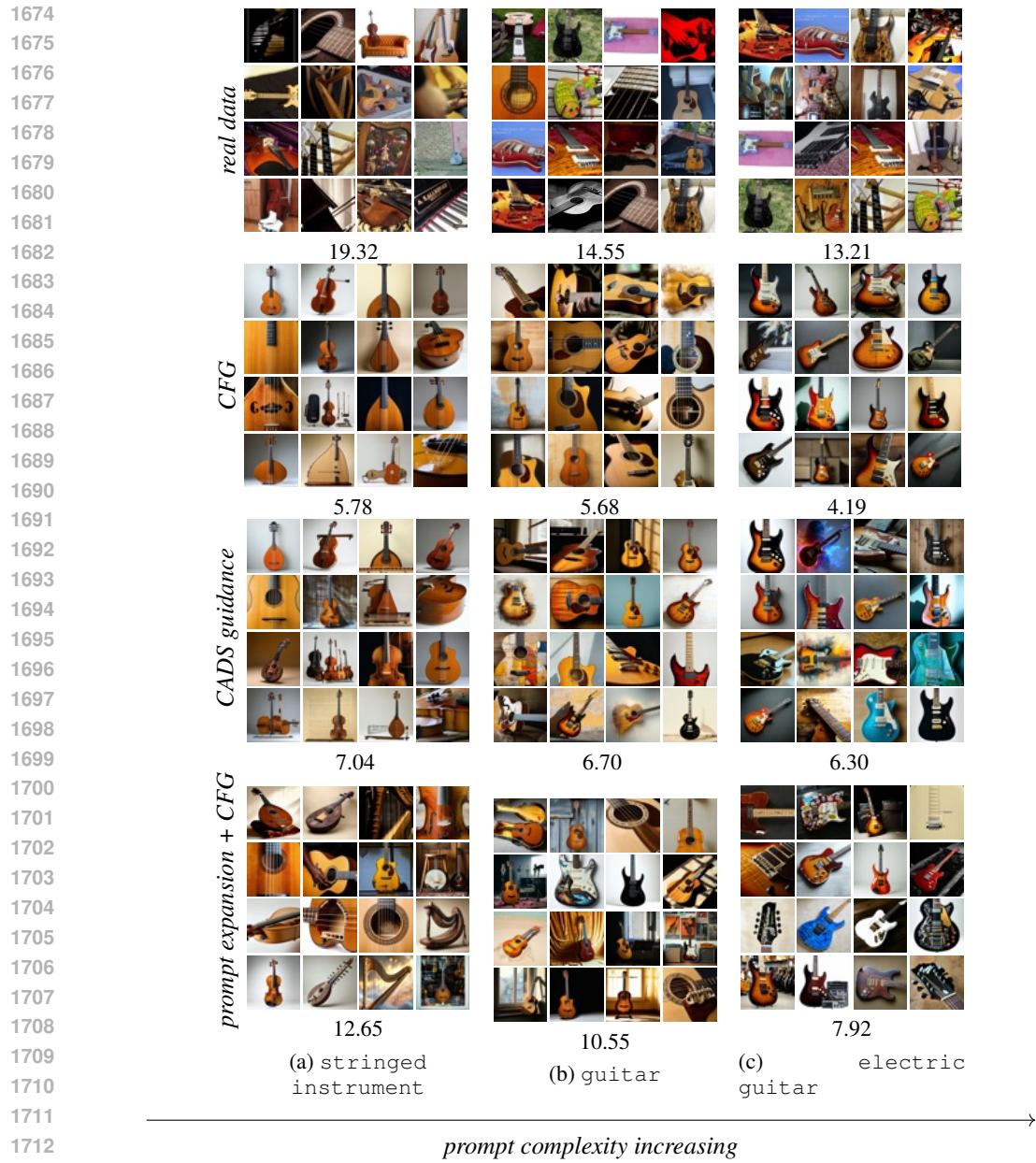


Figure 20: **Synthetic images across prompt complexity (row-wise) and sampling methods (column-wise) using prompts from ImageNet-1k.** The number below each mosaic corresponds to the diversity metric (Vendi score) of that set of images. Diversity decreases both visually and quantitatively as we increase prompt complexity. Advanced sampling methods (CADS and prompt expansion) improve the diversity of synthetic data. Image quality is not significantly affected by the prompt complexity, but prompt consistency decreases as we increase prompt complexity. CFG: classifier-free guidance.

ing the results in Figure 19. We observe qualitatively that prompt expansion and advanced guidance methods lead to more diverse images than the vanilla guidance.

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

(a) Dataset

(b) Vanilla guidance

(c) Prompt expansion

(d) CADS guidance

(e) Interval guidance

(f) APG guidance

Figure 21: Qualitative visuals for the prompt ‘‘Trees frame a peaceful building’’ using the LDMv3.5L model with different sampling settings.

1753

1754

1755

1756

1757

(a) Dataset

(b) Vanilla guidance

(c) Prompt expansion

(d) CADS guidance

(e) Interval guidance

(f) APG guidance

Figure 22: Qualitative visuals for the prompt ‘‘Trees frame a peaceful building’’ using the LDMv1.5 model with different sampling settings.

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

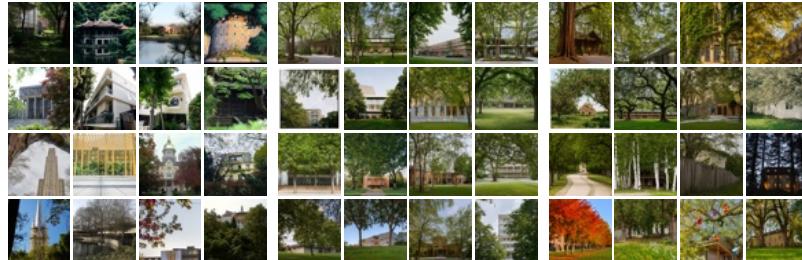
1807

1808

1809

1810

1811



(a) Dataset

(b) Vanilla guidance

(c) Prompt expansion

(d) CADS guidance

(e) Interval guidance

(f) APG guidance

Figure 23: Qualitative visuals for the prompt ‘‘Trees frame a peaceful building’’ using the LDMv3.5M model with different sampling settings.

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

(a) Dataset

(b) Vanilla guidance

(c) Prompt expansion

(d) CADS guidance

(e) Interval guidance

(f) APG guidance

Figure 24: Qualitative visuals for the prompt ‘‘Trees frame a peaceful building’’ using the LDM-XL model with different sampling settings.

Figure 25: **Qualitative visuals for the prompt ‘‘Cars and a grand building’’ using the LDMv3.5L model with different sampling settings.**

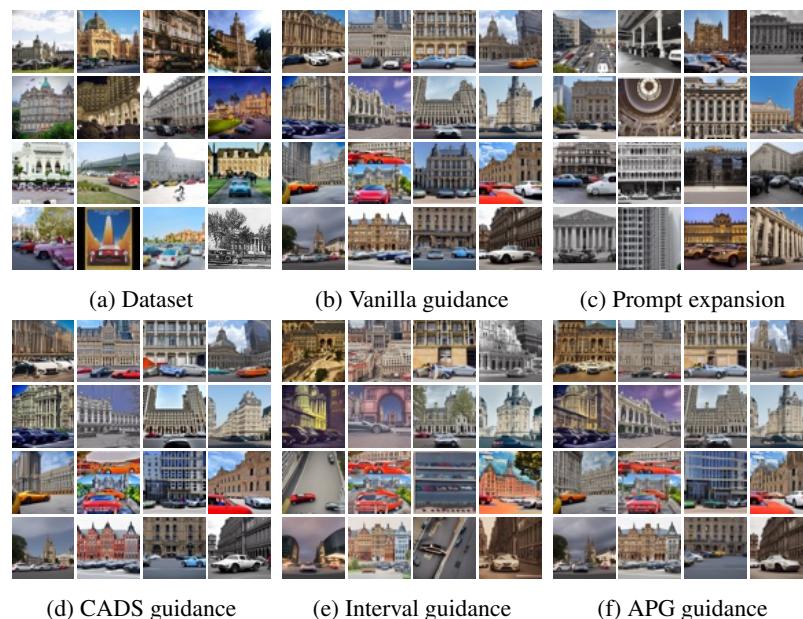


Figure 26: **Qualitative visuals for the prompt ‘‘Cars and a grand building’’ using the LDMv1.5 model with different sampling settings.**

Figure 27: **Qualitative visuals for the prompt ‘‘Cars and a grand building’’ using the LDMv3.5M model with different sampling settings.**

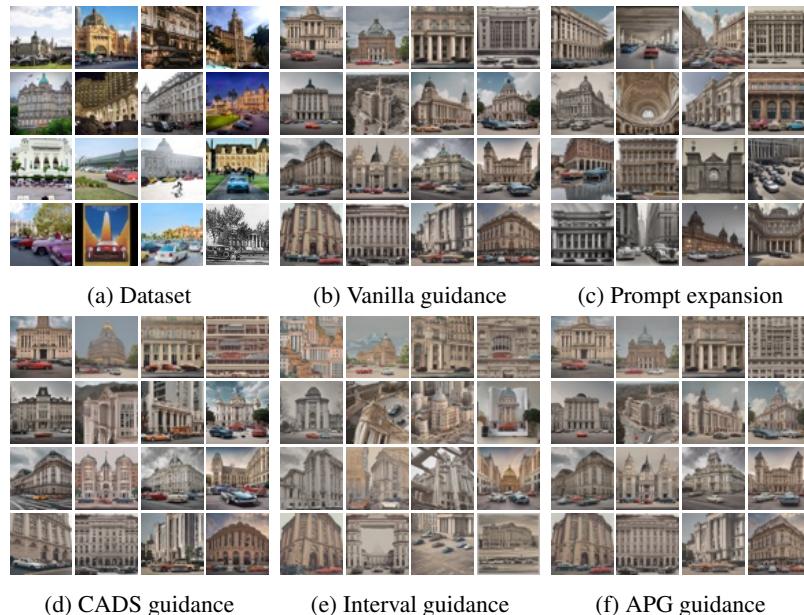


Figure 28: **Qualitative visuals for the prompt ‘‘Cars and a grand building’’ using the LDM-XL model with different sampling settings.**