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ABSTRACT

Human-in-the-loop reinforcement learning (HIL-RL) incorporates real-time hu-
man expert intervention and guidance to address the challenges of brittle reward
engineering and learning efficiency. However, existing HIL-RL methods primar-
ily rely on direct action mimicry or rigid value alignment, which inherently suffer
from a teacher-quality ceiling—their performance is fundamentally bounded by
the human expert’s proficiency due to the absence of mechanisms for assessing
guidance quality. To overcome this limitation, we propose a novel framework that
integrates two synergistic innovations—Value-guided Intervention and Quality-
aware Shaping (VIQS)—within a reward-free setting. This design allows the
agent to break the teacher-quality ceiling by learning robustly from sparse and
potentially imperfect expert guidance. First, we propose a value-guided interven-
tion mechanism where expert intervention is triggered precisely when the agent’s
chosen action yields significantly lower estimated long-term value compared to
an expert-derived reference, preserving autonomy for strategic exploration. Sec-
ond, we develop a quality-aware shaping mechanism that employs a discrimina-
tor to dynamically assess and adaptively incorporate expert intervention data, en-
abling the agent to filter suboptimal advice while absorbing high-quality guidance.
Extensive evaluations are conducted on the challenging MetaDrive benchmark,
where pre-trained agents emulate human experts of varying proficiency levels to
guide the learning process. Results show that VIQS significantly outperforms
prior HIL approaches, while requiring up to 5× fewer interventions. Crucially,
it consistently breaks the teacher-quality ceiling across all levels of expert pro-
ficiency. Furthermore, integrating our core mechanisms into existing HIL algo-
rithms yields significant and consistent improvements across baselines.

1 INTRODUCTION

Reinforcement Learning (RL) has delivered remarkable breakthroughs in solving complex sequen-
tial decision-making tasks. Nevertheless, a significant challenge in its successful implementation
stems from the meticulous design of reward functions, a process known as reward engineering.
(Krakovna et al., 2020; Russell, 2022; Leike et al., 2018; Park et al., 2024). Imperfect rewards can
lead to suboptimal policies, subtle misalignments with human intent, and even critical safety failures
(Hadfield-Menell et al., 2017). Furthermore, this reliance on extensive, trial-and-error interaction is
not only prohibitively data-inefficient, particularly for training embodied agents in dynamic envi-
ronments. These challenges underscore a critical need for learning paradigms that can ensure both
efficiency and safety from inception.

A promising paradigm to address these limitations is HIL-RL. By integrating real-time human guid-
ance, HIL-RL offers a potent approach to bypass many reward engineering complexities and sig-
nificantly enhance learning efficiency (Celemin et al., 2022; Spencer et al., 2020; Wu et al., 2022).
Among various HIL approaches, active intervention frameworks, where human experts provide
real-time guidance by taking over control or offering corrective demonstrations, are particularly ef-
fective. This proactive human involvement is crucial for stabilizing learning, curtailing risky explo-
ration, and expediting skill acquisition, especially for embodied agents operating in safety-critical
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domains (Kelly et al., 2019; Saunders et al., 2018; Reddy et al., 2018). Our work is situated in this
practical and interactive active HIL-RL domain.

Despite its great potential, current HIL-RL methods face a dilemma: when human experts should
intervene, and the contradiction with how effectively the agent learns from these interventions.

On one hand, many approaches still rely on naive action-based triggers (Kelly et al., 2019; Li
et al., 2022b; Peng et al., 2021; 2025). This design often forces stylistic mimicry and inadvertently
caps the agent’s performance at the expert’s proficiency level—a phenomenon we term the “teacher-
quality ceiling”. This is particularly problematic in safety-critical domains like autonomous driving,
where human performance can be suboptimal or highly variable due to fatigue, workload, or limited
situational awareness.

On the other hand, a schism exists in the learning paradigm for processing these interventions. Some
methods, while employing sophisticated, value-based triggers to identify strategic inferiority, still
convert the intervention event into an external reward signal (Xue et al., 2023; Gokmen et al.,
2023). This risks signal conflict, reintroduces the very challenge of reward design that HIL-RL aims
to mitigate, and can lead to inefficient knowledge retention under sparse guidance (Zuo et al., 2017).
Conversely, other methods such as PVP (Peng et al., 2023) and PVP4REAL (Peng et al., 2025),
learning without explicit rewards but do so by blindly trusting the human expert. They often
assign fixed proxy values, overlooking the inherent imperfection and variability of human feedback.
This failure to explicitly model human quality further perpetuates the “teacher-quality ceiling” and
hinders the agent’s ability to surpass human performance.

To resolve this dilemma and enable agents to surpass imperfect human performance, we intro-
duce VIQS that synergistically combines an advanced intervention mechanism with a sophisticated,
quality-aware learning paradigm:

• When to intervene: We adopt a value-based intervention mechanism that proactively identifies
when the agent’s estimated value for its action significantly diverges from a more optimal (human)
action. This focuses on strategic inferiority, granting the agent the essential freedom to explore
and potentially discover superior actions, thereby enabling it to surpass its teacher.

• How to learn: We develop a novel quality-aware value shaping mechanism within a reward-free
setting. Instead of blind trust, our approach leverages a GAN-inspired discriminator to dynam-
ically assess the quality of human interventions and adaptively modulate the learning signal for
the agent’s Q-function. This explicitly models human action quality, allowing the agent to learn
robustly from imperfect and low-frequency human guidance via temporal-difference (TD) propa-
gation, requiring only a small number of interventions.

Our unified approach empowers the agent to explore freely, retain knowledge efficiently, and ro-
bustly handle imperfect human guidance, ultimately allowing it to outperform suboptimal experts.

The main contributions of this paper are:

1. VIQS, a new HIL-RL framework that effectively learns from sparse, imperfect human interven-
tions in a reward-free manner, enabling the agent to outperform the guiding expert.

2. A novel, discriminator-guided quality-aware learning mechanism that dynamically assesses and
adaptively incorporates expert feedback into the critic’s value shaping.

3. Rigorous theoretical analysis highlighting our method’s stability and its potential to surpass ex-
pert performance. In addition, extensive experiments in the MetaDrive simulator, demonstrating
VIQS’s superior performance compared to existing HIL-RL baselines, achieving higher safety
and efficiency with fewer human interventions.

2 RELATED WORK

Our work builds upon and distinguishes itself from several key lines of research in learning from
human feedback.

Human-in-the-Loop Reinforcement Learning (HIL-RL). HIL-RL is a distinct paradigm that fo-
cuses on integrating real-time, online human guidance directly into an agent’s training process
(Celemin et al., 2022). Unlike offline preference-based methods like RLHF (Christiano et al., 2017),
which learn from static datasets of human judgments, HIL-RL emphasizes active, sequential inter-
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vention where a human expert can directly take control or provide demonstrations during the agent’s
exploration (Celemin et al., 2022; Saunders et al., 2018). This paradigm is particularly crucial
for safety-critical applications (e.g., autonomous driving, robotics) (Kelly et al., 2019; Peng et al.,
2021), as it allows for immediate correction of dangerous behaviors, dramatically reducing the risks
of unsafe exploration and obviating the need for meticulous reward engineering. For instance, re-
cent systems like HIL-SERL (Luo et al., 2024) have demonstrated remarkable sample efficiency in
complex, real-world robotic manipulation. However, its framework is predicated on a near-optimal
expert, aiming to refine policy rather than surpass a sub-optimal teacher—the core challenge our
work addresses. Moreover, our reward-free design circumvents its reliance on an auxiliary reward
classifier. Our work is situated within this domain of online, interactive HIL-RL, addressing its core
challenge of learning effectively from sparse and potentially imperfect intervention signals.

Intervention Mechanisms in HIL-RL. The design of intervention triggers critically impacts HIL-
RL efficiency. Existing mechanisms fall into three categories: action-based triggers that rely on
behavioral heuristics (Kelly et al., 2019; Li et al., 2022b), uncertainty-based approaches that es-
timate epistemic uncertainty (Hoque et al., 2021), and more advanced value-based methods that
assess strategic suboptimality (Xue et al., 2023; McMahan et al., 2024; Gokmen et al., 2023). Our
method builds upon value-based approaches but introduces a key innovation: using an expert-derived
Q-function as a reference to estimate potential strategic inferiority, while explicitly accounting for
its inherent variability through our quality-aware shaping mechanism.

Learning from Imperfect and Sparse Guidance. Recognizing that human guidance is rarely per-
fect is crucial (Park et al., 2024; Xue et al., 2025). GAIL (Ho & Ermon, 2016) draws an analogy
between imitation learning and generative adversarial networks (GANs), in which a policy (gener-
ator) tries to mimic the expert’s behavior, while a discriminator tries to differentiate between the
expert’s behavior and the policy’s behavior. Our discriminator-based approach is inspired by this
method, but we adapt it to assess quality rather than to mimic distributions. Most relevant to our
work is the PVP family (Peng et al., 2023; 2025), which pioneered reward-free learning from inter-
ventions. However, PVP primarily relies on a trigger mechanism that reacts to human interventions,
implying a direct correction to the agent’s action rather than assessing strategic inferiority. More-
over, it assumes all interventions are equally optimal by using fixed proxy targets, overlooking the
inherent imperfection and variability of human feedback. VIQS advances this line of work by in-
tegrating a value-based trigger and, most importantly, a quality-aware value shaping mechanism,
enabling it to learn ‘wisely’ from imperfect experts.

3 PRELIMINARIES

Before detailing VIQS, we first define the problem setting and introduce the necessary background
on actor-critic algorithms. We model the agent-environment interaction as a Markov Decision Pro-
cess (MDP), defined by a tuple M = ⟨S,A, P, γ, d0⟩, where S is the state space, A is the action
space, P (s′|s, a) is the transition function, γ ∈ [0, 1) is the discount factor, and d0 is the initial state
distribution. The agent’s goal is to learn a policy π that maximizes the expected discounted sum of
rewards Eπ[

∑∞
t=0 γ

tr(st, at)]. However, in our setting, the reward function r(s, a) is unknown to
the agent during training.

Our method builds upon the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm
(Fujimoto et al., 2018), a highly effective off-policy actor-critic algorithm for continuous control
tasks. TD3 is renowned for its robust approach to mitigating overestimation bias in Q-value estima-
tion, extending prior work like DDPG (Lillicrap et al., 2015) by employing twin critics and delayed
policy updates. TD3 maintains an actor πθ(s) and a pair of critic networks {Qϕ1

, Qϕ2
}, relying on a

reward signal provided by the environment to guide its learning. The critics are trained to minimize
the standard Bellman error based on environmental rewards, and the actor is updated by maximizing
the Q-value from the more conservative critic. Our work fundamentally adapts this framework by
modifying the critic’s update rule to explicitly incorporate quality-aware expert guidance instead of
environmental rewards, while the actor’s update mechanism remains largely consistent.
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Figure 1: Pipeline of VIQS. Left (Data Collection): A Q-value Evaluator dynamically selects be-
tween an expert’s action (aE) and the learning agent’s action (aL). Each transition (S, aE , aL, I, S′),
including an intervention indicator I , is stored and then segregated into a Human Buffer (Bh) or
Novice Buffer (Bn) respectively. Right (Training): Data from Bh trains a Discriminator-guided
Evaluator, which provides quality scores (dE , dL) and confidence weights (wE , wL). The critic is
then updated using a combined reward-free Temporal Difference (TD) loss and our novel Quality-
aware Proxy Value (PV) loss, which leverages these quality signals from both Bh and Bn to learn
effectively from imperfect human feedback and overcome the “teacher quality ceiling.”

4 THE VIQS FRAMEWORK

VIQS overcomes the teacher-quality ceiling through two components (Figure 1): value-guided
intervention for strategic intervention timing, and quality-aware shaping for robust learning from
imperfect guidance. Unlike action-level imitation approaches, VIQS focuses on value optimization.
The agent learns not what to do, but why certain actions are valuable, enabling it to discover superior
strategies beyond expert demonstration while maintaining essential exploration autonomy.

4.1 WHEN TO INTERVENE: PROACTIVE, VALUE-BASED INTERVENTION

To break the teacher-quality ceiling, the agent must have the freedom to explore actions that are
stylistically different from the expert’s but strategically sound. We thus employ a value-based trig-
ger instead of a naive action-difference trigger. This principle is illustrated in Figure 2. At each
timestep t, we leverage a reference expert action-value estimator QE (e.g., the critic of a pretrained
expert policy πE) to evaluate both the expert’s proposed action aEt and the learning agent’s action
aLt . An intervention is triggered only if the expert’s action is deemed significantly more valuable:

It = I
(
QE(st, a

E
t )−QE(st, a

L
t ) > τQ

)
. (1)

Here, It is the intervention indicator, I(·) is the indicator function, and τQ is a threshold. While
τQ is a key hyperparameter governing the trade-off between agent autonomy and expert correction,
our analysis in Appendix D.2 demonstrates that VIQS is robust to its choice. More importantly, we
provide a principled heuristic for setting τQ based on the initial value gap, mitigating the need for
extensive hyperparameter tuning. The terms QE(st, aEt ) and QE(st, aLt ) are the estimated Q-values
for the expert’s and agent’s actions, respectively. For brevity in our discussion and figures, we denote
this strategic value difference as ∆Q = QE(st, a

E
t )−QE(st, a

L
t ).

If It = 1, the expert’s action aEt is executed; otherwise, the agent’s action aLt is executed. In either
case, the complete transition tuple (st, a

E
t , a

L
t , st+1, It) is stored in the replay buffer.

4.2 HOW TO LEARN: VALUE SHAPING VIA QUALITY-AWARENESS

Having established when to intervene, we now detail how the agent learns from these critical inter-
actions. We operate in a fully reward-free paradigm, deriving all learning signals directly from the
intervention data itself.
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Figure 2: Illustration of VIQS’s value-based intervention logic, which enables strategic exploration
over simple mimicry. The diagram contrasts three critical scenarios: (A) Necessary Intervention:
The agent proposes a strategically poor action. Since the value gap is large (∆Q > τQ), an inter-
vention is triggered (It = 1) to prevent a mistake. (B) Aligned Exploration: The agent’s action
is strategically sound and aligns with the expert’s, so it acts freely (It = 0). (C) Superior Explo-
ration: This highlights the key advantage over action-based triggers. Although the agent’s action
diverges from the expert’s, which a likelihood-based trigger would flag (∆a > τa), our system cor-
rectly identifies the action as strategically valid (∆Q ≤ τQ) and withholds intervention. Here, ∆a

represents a measure of action divergence (e.g., negative log-likelihood of the agent’s action under
the expert policy πE), and τa is a predefined threshold for such action-based intervention metrics.

4.2.1 DISCRIMINATOR-GUIDED QUALITY EVALUATION

To effectively learn from an imperfect expert, the agent must distinguish between high- and low-
quality advice. We introduce a binary discriminator, Dψ(s, a), to serve this purpose. The discrimi-
nator is trained concurrently with the agent’s policy from scratch, learning to distinguish the expert’s
actions from the agent’s on intervention data (It = 1):

Ldisc(ψ) = −E(s,aE ,aL)∼DI=1

[
logDψ(s, a

E) + log(1−Dψ(s, a
L))

]
. (2)

After a fixed number of training steps, the discriminator’s parameters ψ are frozen. It then
functions as a stationary quality assessor for the remainder of the agent’s training. Its output,
Dψ(s, a), provides a consistent proxy for “expert-likeness.” We transform the discriminator scores
dEt = Dψ(st, a

E
t ) and dLt = Dψ(st, a

L
t ) into adaptive weights and dynamic proxy targets:

wEt = dEt , yEt = 2dEt − 1,

wLt = 1− dLt , yLt = 2dLt − 1.
(3)

The weights wt serve as confidence scores, while the proxy targets yt ∈ [−1, 1] offer a much more
nuanced shaping signal than the fixed targets used in prior work (Peng et al., 2023; 2025).

4.2.2 INTEGRATED CRITIC LOSS

The criticQϕ is trained to minimize an integrated loss function that combines a standard reward-free
TD-learning objective with our quality-aware proxy value (PV) term. The final critic loss is:

Lcritic(ϕ) = LTD(ϕ) + αLPV(ϕ), (4)

where α is a balancing hyperparameter.

5
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The PV loss acts only during interventions (It = 1), using the dynamically derived weights and
targets from Equation 3 to shape the Q-function:

LPV(ϕ) = E(s,aE ,aL)∼DI=1

[
wEt (Qϕ(st, a

E
t )− yEt )

2 + wLt (Qϕ(st, a
L
t )− yLt )

2
]
. (5)

The TD loss ensures temporal consistency across all data:

LTD(ϕ) = E(s,a,s′)∼D

[
Qϕ(s, a)− γ min

i=1,2
Qϕ̄i

(s′, π′(s′))

]2
. (6)

Here, following the TD3 framework, the target action π′(s′) is computed by adding clipped
noise to the target policy’s action: π′(s′) = clip(π̄(s′) + ϵ, alow, ahigh), where the noise is clipped
ϵ ∼ clip(N (0, σ̃),−c, c). This target policy smoothing is a standard technique to prevent Q-value
overestimation.

All expert guidance is integrated into the critic this way. The actor’s update remains identical to the
original TD3 formulation, learning implicitly by maximizing the well-shaped Q-value.

5 THEORETICAL ANALYSIS

In this section, we analyze the core mechanisms of VIQS, establishing the rationale for our design
and proving its properties of stability and performance.

Rationale for a Reward-Free Design. Our reward-free framework directly addresses the signal
conflict and knowledge retention failure common in methods that mix external rewards with sparse
expert guidance. By making expert feedback the sole extrinsic signal, we ensure that knowledge
injected via our PV loss is not overwritten by dense rewards. Instead, this knowledge is preserved
and propagated by standard TD updates, guaranteeing a lasting impact.

Grounding the Quality Signal. Our use of a discriminator for quality assessment is formally
grounded. At optimality, the discriminator learns the policy density ratio (Goodfellow et al., 2014):
D∗
ψ(s, a) = pE(a|s)/(pE(a|s) + πL(a|s)). Substituting this into our proxy target yEt = 2dEt − 1

reveals its true meaning:

yEt =
pE(a

E
t |st)− πL(aEt |st)

pE(aEt |st) + πL(aEt |st)
. (7)

This shows yEt is a normalized policy density contrast. This single, data-driven metric allows us
to implicitly filter expert advice: it is strongly positive (yEt → 1) for superior advice (pE ≫ πL),
negative for poor advice (pE < πL), and near-zero for redundant advice (pE ≈ πL), all judged
against the agent’s current competence.

Stability of Reward-Free Q-Learning. Standard reward-free TD-learning can lead to Q-value di-
vergence due to the lack of a grounding reward signal (Kumar et al., 2019). Our PV loss, LPV, pre-
vents this by functioning as a powerful regularizer, analogous in spirit to Conservative Q-Learning
(CQL) (Kumar et al., 2020). Expanding LPV reveals its dual stabilizing mechanism:

L(s,ax)
PV = wxt (Qϕ(st, a

x
t )− yxt )

2 = −2wxtQϕ(st, a
x
t )y

x
t︸ ︷︷ ︸

(a) Value Anchoring

+wxt (Qϕ(st, a
x
t ))

2︸ ︷︷ ︸
(b) L2 Regularization

+C. (8)

This decomposition shows that LPV simultaneously pulls the Q-function towards the bounded proxy
targets yxt ∈ [−1, 1] (Value Anchoring) and penalizes its magnitude via an explicit L2 term (L2
Regularization). Together, these two effects prevent both Q-value overestimation and unbounded
growth, ensuring stable convergence. ehaved throughout training.

Surpassing the Expert Teacher. The ability to surpass the expert is enabled by our Actor-Critic
design, where the actor maximizes value, not imitation. The critic learns a rich value landscape
through a two-stage process. First, our LPV acts as a value anchor, seeding the critic with founda-
tional knowledge from the expert. Then, the standard LTD loss acts as a value propagator. More
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precisely, this propagation occurs by backing up values temporally along experienced trajectories
(e.g., from state st to st−1). Crucially, it is the inherent generalization capability of the neural net-
work critic that extends this trajectory-specific knowledge to nearby, similar states. The synergy
between temporal propagation via LTD and spatial generalization via the function approximator is
what allows the value function to be estimated over a wider portion of the state space. The stabil-
ity and successful convergence of this entire value learning process are empirically demonstrated
in Appendix E. With this learned Q-function, the actor then simply performs policy improvement.
When our permissive trigger allows a novel, superior action that leads to a high-value state on this
propagated map, the actor’s optimization naturally discovers and selects it, enabling the agent’s per-
formance to exceed its teacher’s.

6 EXPERIMENTS

Our empirical evaluation is designed to rigorously validate VIQS’s central claim: overcoming the
teacher-quality ceiling. We structure our experiments around four key research questions (RQs) that
directly address the challenges outlined in Section 1:

1. RQ1 (Performance & Ceiling Breakthrough): Does VIQS consistently outperform state-of-
the-art HIL methods and, most critically, break the teacher-quality ceiling across a spectrum of
expert proficiencies?

2. RQ2 (Data Efficiency): How efficiently does VIQS learn compared to standard RL algorithms
that require orders-of-magnitude more environmental interaction?

3. RQ3 (Ablative Analysis): What are the individual contributions of our core design principles:
value-guided intervention and quality-aware shaping? Is the reward-free paradigm essential?

4. RQ4 (Generalizability): Can our quality-aware shaping mechanism serve as a general, plug-
and-play module to enhance existing HIL frameworks?

6.1 EXPERIMENTAL SETUP

Environment and Baselines. We conduct all experiments in the challenging METADRIVE au-
tonomous driving simulator (Li et al., 2022a). We benchmark VIQS against leading HIL methods
(HACO (Li et al., 2022b), TS2C (Xue et al., 2023), PVP (Peng et al., 2023), PVP4REAL (Peng
et al., 2025), and HIL-SERL (Luo et al., 2024)) and established from-scratch RL algorithms (SAC,
PPO, and TD3). Further details on the environment configuration and task definitions are provided
in Appendix A.1.

Training Protocol. To simulate a practical, data-constrained scenario, all HIL algorithms (including
all variants for our ablation and generalizability studies) are trained for a concise 40K environment
steps. In contrast, standard RL baselines are trained for a full 1M steps to establish an asymptotic
performance benchmark. For statistical robustness, all reported results are the mean and standard
deviation over 3 independent random seeds. For each run, we select the best performing model
based on validation metrics and report its final performance on a completely held-out test set of
unseen traffic scenarios.

Implementation Details. For a fair comparison within our shared actor-critic framework, we adapt
TS2C to use a single Q-network as per the original authors’ guidance for such cases (detailed in
Appendix A.3). Furthermore, we include HIL-SERL, a state-of-the-art method from robotic manip-
ulation, as a strong cross-domain baseline. To evaluate its effectiveness under our framework’s core
challenge—learning from sub-optimal human guidance—we made specific adaptations regarding
its demonstration data and intervention strategy. A detailed description of this configuration, along
with an in-depth analysis explaining its performance, is provided in Appendix G.

Complete details on network architectures and hyperparameters for all methods are cataloged in
Appendix A.5. The corresponding learning curves for all experiments can be found in Appendix C.

Simulated Experts of Graded Proficiency. To systematically investigate the teacher-quality ceiling
(RQ1), we employ pre-trained SAC agents to simulate experts at three distinct, graded proficiency
levels: High (expert return ≈350), Medium (return ≈270), and Low (return ≈190). The specifics
of this controlled setup are detailed in Appendix A.2.
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6.2 COMPARISON WITH HIL BASELINES (RQ1)

Table 1: Main comparison results. VIQS not only achieves state-of-the-art results but also con-
sistently surpasses the performance of its guiding expert across all quality tiers, demonstrating its
ability to break the teacher-quality ceiling.

Expert Quality Method Training Testing

Human Data
Usage (↓)

Episodic
Return (↑)

Episodic Safety
Cost (↓)

Success
Rate (%) (↑)

High Expert (Return ≈ 350)
SAC / Expert Policy - 348.9 0.76 74.0
HIL-SERL 28.1K ± 4.4K (0.70) 72.5 ± 100.6 18.5 ± 30.3 0.0 ± 0.0
HACO 20.1K ± 0.4K (0.50) 127.9 ± 23.1 37.5 ± 62.4 4.0 ± 6.9
TS2C 15.0K ± 0.7K (0.38) 90.8 ± 9.0 2.8 ± 1.3 0.0 ± 0.0
PVP 21.3K ± 0.1K (0.53) 294.3 ± 6.5 1.2 ± 0.7 54.0 ± 5.3
PVP4REAL 18.3K ± 0.1K (0.46) 348.2 ± 13.2 1.8 ± 0.9 75.3 ± 6.4
VIQS (Ours) 7.6K ± 1.4K (0.19) 357.3 ± 20.7 2.1 ± 1.7 86.7 ± 6.4

Medium Expert (Return ≈ 270)
SAC / Expert Policy - 266.7 0.7 36.0
HIL-SERL 30.7K ± 1.6K (0.77) 75.5 ± 26.9 3.0 ± 3.5 0.0 ± 0.0
HACO 18.4K ± 1.2K (0.46) 106.6 ± 23.7 2.9 ± 1.2 0.0 ± 0.0
TS2C 14.7K ± 1.6K (0.37) 99.9 ± 16.0 5.9 ± 4.9 0.7 ± 1.2
PVP 19.6K ± 0.4K (0.49) 242.1 ± 34.7 31.7 ± 52.7 30.7 ± 11.0
PVP4REAL 15.9K ± 1.0K (0.40) 296.4 ± 45.3 1.3 ± 0.4 54.7 ± 11.7
VIQS (Ours) 4.1K ± 0.3K (0.10) 334.7 ± 13.5 0.6 ± 0.5 70.7 ± 10.3

Low Expert (Return ≈ 190)
SAC / Expert Policy - 186.3 0.76 16.0
HIL-SERL 31.4K ± 0.4K (0.79) 63.5 ± 16.5 7.8 ± 11.6 0.0 ± 0.0
HACO 22.8K ± 1.1K (0.57) 99.3 ± 19.6 18.3 ± 29.4 2.7 ± 4.6
TS2C 17.1K ± 1.1K (0.43) 115.9 ± 26.0 9.7 ± 7.6 3.3 ± 5.8
PVP 21.9K ± 0.1K (0.55) 212.4 ± 14.5 84.9 ± 73.2 27.3 ± 3.1
PVP4REAL 15.0K ± 1.4K (0.38) 270.5 ± 15.4 1.0 ± 0.4 46.7 ± 3.1
VIQS (Ours) 4.0K ± 0.9K (0.10) 265.4 ± 5.1 0.6 ± 0.1 38.7 ± 4.6

Answering RQ1, Table 1 shows that VIQS consistently surpasses its guiding expert, breaking the
quality ceiling that constrains prior methods. The performance of the baselines reveals distinct lim-
itations. For instance, both HACO and TS2C struggle significantly under sub-optimal guidance, re-
sulting in near-zero success rates across all tiers. HIL-SERL, despite its efficacy in its native domain,
also fails to learn effectively in our setup. As analyzed in Appendix G, this is due to a fundamental
mismatch, as its learning paradigm is highly dependent on near-optimal expert guidance, which is
not available here.

The limitations of these approaches become most apparent when facing a high-quality expert. Here,
PVP4REAL’s performance (348.2) is strictly capped by the expert’s proficiency (348.9), clearly hit-
ting the teacher-quality ceiling. In stark contrast, VIQS is the only method to decisively and con-
sistently break this barrier across all expert tiers, achieving a new state-of-the-art return (357.3)
with the high-quality expert. This demonstrates a crucial shift from incidental outperformance to a
systematic discovery of novel, superior solutions.

While other strong baselines like PVP and PVP4REAL are less conservative and demonstrate the
potential to exceed their guiding experts in certain scenarios—for example, both surpass the low-
quality expert, and PVP4REAL surpasses the medium-quality one—their ability to do so appears
inconsistent. PVP, for instance, fails to outperform the medium expert. This suggests that while
promising, their learning mechanism does not guarantee a systematic breakthrough.

This superiority extends to a smarter trade-off between performance, safety, and efficiency across all
expert levels. For instance, with the Low expert, VIQS achieves a competitive return (265.4) but with
4x less human data and better safety (0.6 vs. 1.0 cost) than PVP4REAL. Conversely, while PVP
can achieve a low safety cost (1.2) with a High expert, its performance collapses; VIQS maintains
top-tier returns without excessive risk. Critically, across all settings, VIQS achieves its results with
a 2.4x-4x reduction in human interventions, highlighting an unparalleled return on guidance.
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(a) Medium Expert (Teacher) (b) HACO (Learning Collapse) (c) TS2C (Learning Collapse)

(d) PVP (Stuck at Ceiling) (e) PVP4REAL (Stuck at Ceiling) (f) VIQS (Ours, Breaks Ceiling)

Figure 3: Visualizing the Ceiling Breakthrough: A Qualitative Answer to RQ1. Trajectories of
HIL agents trained with the same suboptimal Medium expert (a). Baselines either fail to learn (b,
c) or are trapped mimicking the teacher’s flawed, high-variance path (d, e). In stark contrast, VIQS
(f) learns a visibly smoother, more optimal policy, providing direct visual evidence of its ability to
filter suboptimal advice and surpass its teacher.

This quantitative leap translates to qualitatively superior policies, as visualized in Figure 3. While
baselines either forget prior knowledge or are trapped mimicking the teacher’s suboptimal path,
VIQS discovers a smoother and more direct trajectory. This visually confirms that our quality-
aware mechanism successfully discerns and discards flawed guidance, liberating the agent to find a
fundamentally better solution.

Generalization to Classic Control Environments. To verify that the advantages of VIQS extend
beyond complex driving scenarios, we evaluate it on the classic LunarLanderContinuous-v2
control benchmark. The results, detailed in Appendix F, reinforce our core findings. Despite being
guided by a suboptimal expert (return ≈130), VIQS not only achieves a significantly higher final
return (150.4) that surpasses its teacher, but does so with unparalleled efficiency. It requires less
than half the expert interventions of PVP4REAL and one-third that of PVP, demonstrating the broad
applicability of our value-guided intervention and quality-aware shaping principles.

6.3 A PARADIGM SHIFT IN SAMPLE EFFICIENCY (RQ2)

To answer RQ2, VIQS redefines sample effi-
ciency when benchmarked against standard RL
agents (Table 2). Guided by a high-quality ex-
pert, it matches the performance of the top base-
line (TD3) using a mere 4% of the data (40k
vs. 1M steps) while achieving a higher success
rate (86.7% vs. 78.7%). This efficiency holds
even with suboptimal guidance, where VIQS
still outperforms strong agents like SAC and
PPO with dramatically improved safety—up to
a 10x lower cost than PPO. Overall, this > 25×
efficiency gain establishes VIQS as a practical
alternative to data-hungry standard RL.

Table 2: Sample efficiency comparison. VIQS
achieves competitive performance with 4% of
standard RL’s data requirements.

Method Return (↑) Cost (↓) Succ. (% ↑)

Standard RL Baselines (1M Steps)
SAC 215.4±69.3 0.8±0.3 24.0±19.7
PPO 188.2±17.5 6.3±1.1 10.0±4.0
TD3 356.9±3.2 2.2±1.8 78.7±2.3

VIQS with HIL Guidance (40k Steps)
+ High Expert 357.3±20.7 2.1±1.7 86.7±6.4
+ Medium Expert 334.7±13.5 0.6±0.5 70.7±10.3
+ Low Expert 265.4±5.1 0.6±0.1 38.7±4.6

6.4 ABLATION AND GENERALIZABILITY ANALYSIS (RQ3 & RQ4)

To isolate the contributions of each component (RQ3) and test the generalizability of our principles
(RQ4), we conduct a series of targeted experiments. Results are summarized in Tables 3 and 4.
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Table 3: Ablation study of VIQS’s components.
We evaluate variants with specific mechanisms
disabled or altered, using the medium-quality ex-
pert and 40k training steps.

Training Testing

Variant
Human Data

Usage (↓)
Return

(↑)
Safety Cost

(↓)
Success
(%) (↑)

VIQS (Full) 4.1K ± 0.3K (0.10) 334.7 ± 13.5 0.6 ± 0.5 70.7 ± 10.3
Ablated Variants
w/o Shaping 4.8K ± 1.5K (0.12) 301.5 ± 30.5 10.0 ± 15.9 57.0 ± 13.9
+ Env. Reward 8.5K ± 3.9K (0.21) 206.1 ± 64.1 2.5 ± 1.3 20.3 ± 2.2
Action-based Trigger 27.3K ± 2.3K (0.68) 86.6 ± 31.4 21.5 ± 27.1 1.3 ± 0.2

Table 4: Generalization of our framework. We
apply our core principles to enhance several ex-
isting HIL methods. The ‘+’ indicates a baseline
algorithm augmented by our contributions.

Training Testing

Method
Human Data

Usage (↓)
Return

(↑)
Safety Cost

(↓)
Success
(%) (↑)

HACO 18.4K ± 1.2K (0.46) 106.6 ± 23.7 2.9 ± 1.2 0.0 ± 0.0
HACO+ 9.5K ± 0.8K (0.23) 172.0 ± 90.8 2.9 ± 1.6 17.3 ± 30.0

PVP 19.6K ± 0.4K (0.49) 242.1 ± 34.7 31.7 ± 52.7 30.7 ± 11.0
PVP+ (VIQS) 4.1K ± 0.3K (0.10) 334.7 ± 13.5 0.6 ± 0.5 70.7 ± 10.3

PVP4REAL 15.9K ± 1.0K (0.40) 296.4 ± 45.3 1.3 ± 0.4 54.7 ± 11.7
PVP4REAL+ 2.3K ± 0.3K (0.06) 316.8 ± 34.4 0.6 ± 0.2 62.7 ± 21.4

Ablation Study (RQ3). Our ablations (Table 3) confirm that each component of VIQS is critical.
Removing quality-aware value shaping (w/o Shaping) cripples policy safety, increasing safety cost
from 0.6 to 10.0. This shows that blindly trusting expert values induces reckless behavior. Further,
adding environmental rewards (+ Env. Reward) is actively harmful; it dilutes the sparse human
guidance, causing the success rate to plummet from 70.7% to 20.3% while doubling human data
usage. Most strikingly, replacing our value-based trigger with an action-based one leads to a catas-
trophic failure: despite using 6.7× more human data, the policy’s success rate is a mere 1.3%. This
highlights that intervention must be based on value discrepancy, not action mismatch, to be effective.

Generalizability Study (RQ4). Our framework’s principles generalize broadly (Table 4). Our
method, VIQS, is simply the PVP baseline enhanced with our principles, slashing its human data
requirement by 79% while achieving state-of-the-art success. This efficiency gain is not isolated;
applying the same principles reduces data needs for HACO and PVP4REAL by 48% and 85%
respectively, with corresponding performance gains. Notably, PVP4REAL+, equipped with our
module, matches its base performance with just 15% of the original human data (2.3k vs. 15.9k).
These results confirm our framework acts as a plug-and-play enhancement to radically boost HIL
efficiency. Further details are in Appendix B.

7 CONCLUSION

We presented VIQS, a reward-free HIL framework that learns effectively from imperfect human
guidance. Its core lies in a novel combination of a value-based intervention trigger and quality-aware
value shaping, a design that enables VIQS to consistently surpass the “teacher-quality ceiling” with
high data efficiency. Crucially, our principles generalize: when applied to other HIL methods, they
act as a plug-and-play enhancement, yielding significant performance gains. VIQS thus offers a
robust and efficient blueprint for learning from flawed human input.

Limitations and Future Work. Our primary limitation lies in the experimental use of a pre-exist-
ing expert value function, QE , to trigger interventions. This setup was instrumental for a controlled
and reproducible analysis of how an agent learns from imperfect guidance. However, a key strength
and core design principle of our framework is the decoupling of this intervention trigger from
the quality-aware learning mechanism. This inherent modularity is precisely what makes VIQS
adaptable to real-world scenarios where an explicit QE is unavailable.

This modularity opens up several practical deployment paths. For instance, the trigger can be re-
placed with QE-free signals, such as direct human commands (e.g., via a button press) or agent-
based metrics like high model uncertainty. Once an intervention is triggered by any such method, our
discriminator-based mechanism proceeds to assess the relative quality of the expert’s and agent’s ac-
tions, enabling the core benefit of VIQS—critical learning from guidance. Alternatively, one could
learn a proxy value function to serve as the trigger. Inspired by advances in preference-based
learning, this proxy could be trained offline on human judgments (e.g., pairwise comparisons via
RLHF) to capture the expert’s latent intent. Future work will focus on empirically validating these
alternative triggers, while also exploring richer feedback modalities, such as natural language, and
developing strategies for scenarios with budgeted human availability.
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A EXPERIMENTAL AND IMPLEMENTATION DETAILS

This section provides a comprehensive account of our experimental setup, including environment
specifications, expert policy generation, baseline modifications, and a full list of hyperparameters,
to ensure the reproducibility of our work.

A.1 ENVIRONMENT AND TASK SPECIFICATION

All experiments are conducted in the MetaDrive Safety Benchmark (Li et al., 2022a), a driving
simulator featuring procedurally generated environments that enables robust evaluation of safety and
generalization.

Training and Test Environments. We leverage MetaDrive’s procedural generation to create dis-
tinct sets of environments for training and testing. The training set consists of 50 unique maps. For
final evaluation, we use a separate, held-out test set of 50 unseen maps, and the performance is av-
eraged over 50 test episodes. This strict separation and evaluation protocol ensures a fair and robust
assessment of each policy’s generalization capability. In each episode, both the environment layout
and initial vehicle placements are randomized to promote robust learning.

State and Action Space. The agent receives a low-dimensional state vector from the simulator,
including ego-vehicle state (speed, heading, etc.), Lidar-like sensor readings, and navigation infor-
mation. We use standard Multi-Layer Perceptron (MLP) networks for all policies and value func-
tions. The action space is a continuous 2D vector [steering, acceleration/braking],
with components normalized to [−1, 1].

Task Reward Formulation. Crucially, the following task reward function is not available to our
method (VIQS) or other reward-free HIL baselines during training. It serves two specific purposes:
1) pre-training the expert policies, and 2) as the ground-truth metric for evaluating task performance
of all methods during the final test phase. The episodic reward is composed of four distinct compo-
nents:

R = cdispRdisp + cspeedRspeed + ccollisionRcollision +Rterm. (9)
The individual components are defined as follows:

• Displacement Reward (Rdisp): A dense reward for longitudinal distance traveled towards the
destination. cdisp = 1.0.

• Speed Reward (Rspeed): A dense reward proportional to the agent’s speed (vt/vmax). cspeed = 0.1.
• Collision Penalty (Rcollision): A large penalty of -5 incurred upon any collision event, meaning
ccollisionRcollision = −5.

• Terminal Reward (Rterm): A sparse reward/penalty at the end of an episode: +10 for reaching
the destination, -5 for driving off-road.

Safety Cost Formulation. To explicitly measure safety, we define a separate cost function based
on discrete violation events. A cost of c = 1.0 is incurred upon the occurrence of a safety violation:

ct =

{
1.0 if out-of-road, crash-vehicle, or crash-object event occurs,
0.0 otherwise.

(10)

This cost signal serves a dual purpose in our experimental framework:

• For Evaluation: During testing, the cumulative episodic cost,
∑
t ct, serves as the primary metric

for safety. It is kept separate from the task reward (Eq. 9) to provide a distinct and clear measure
of a policy’s safety performance, where lower is better.

• For Training: The cost signal is primarily utilized by some baselines during their training phase.
Specifically, each instance of a safety violation (a cost event) is treated as an immediate negative
reward of -1, which is incorporated into the agent’s total reward for that timestep.

A.2 EXPERT POLICY DETAILS

To systematically investigate the “teacher-quality ceiling,” we generated expert policies at three
distinct proficiency tiers: Low, Medium, and High. This was accomplished through a multi-stage

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

training and selection process designed to produce a well-defined spectrum of expert capabilities.
The foundational algorithm for all experts was Soft Actor-Critic (SAC), implemented using the
Stable-Baselines3 (SB3) library (Raffin et al., 2021).For consistency and reproducibility, all training
runs for generating these experts were conducted with a fixed random seed (seed=0).

Generation of Low and Medium-Quality Experts. The Low and Medium experts were derived
from a single, unified training run. We trained an SAC agent for 1 million timesteps in the standard
training environment, which consists of 50 procedurally generated maps. Throughout this process,
model checkpoints were saved periodically. From this single training trajectory, we selected two
distinct experts:

• Low-Quality Expert: We selected the checkpoint saved at approximately 40,000 training steps.
This early-stage model represents a novice policy that has learned basic driving skills but is still
prone to frequent errors and suboptimal decisions.

• Medium-Quality Expert: We identified the best-performing checkpoint from the entire 1-
million-step training run, based on its evaluation performance during training. This model rep-
resents a competent but ultimately suboptimal expert, whose capabilities are constrained by the
diversity of the initial 50-map training environment.

Generation of the High-Quality Expert. Achieving top-tier performance that could truly test the
limits of our framework required an extended, continual training strategy. We found that the initial
1M-step training presented a performance bottleneck. To surpass this, we proceeded as follows:
starting from the best-performing model of the initial 1M-step run (i.e., our Medium-Quality expert),
we continued its training under an enhanced regime.

• The training environment was expanded to 100 unique maps to provide greater scenario diver-
sity.

• The agent was then trained for an additional 2 million timesteps, bringing its total training ex-
posure to 3 million steps.

The best-performing checkpoint from this extended 3M-step training trajectory was then desig-
nated as our High-Quality Expert.

Final Empirical Validation. Crucially, the proficiency tier of each expert was not merely assumed
from its training history. Each of the three selected checkpoints was subjected to a final, rigorous
validation on a held-out test set, which consists of 50 unseen maps. This same test set was used
for the final evaluation of all algorithms in our paper. We averaged their performance over 50 test
episodes, with one episode being run on each of the 50 unique test maps, to obtain a stable and
objective measure of their true, generalizable skill. This empirical validation confirmed our three
distinct quality levels, which correspond to the expert performance baselines reported in our main
experimental results (Table 1):

• High Expert: Achieved an average test return of ≈ 350.
• Medium Expert: Achieved an average test return of ≈ 270.
• Low Expert: Achieved an average test return of ≈ 190.

This multi-stage process ensures that our study is grounded in a controlled and empirically veri-
fied hierarchy of expert qualities, providing a solid foundation for evaluating whether an agent can
surpass its teacher.

A.3 MODIFICATIONS TO BASELINES FOR CONTROLLED COMPARISON

To create a rigorously controlled experimental setting that isolates the core learning mechanism of
each algorithm, we adapted the original TS2C baseline (Xue et al., 2023) in two key aspects.

• Standardization of the Teacher Architecture. The original TS2C employs a “teacher”
model built from an ensemble of Q-networks. To ensure that any observed performance
differences stem from the agent’s learning algorithm itself, rather than from variations in
the expert model’s architecture or capacity, we replaced this ensemble teacher. In our
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Table 5: Hyperparameters for the SAC training run to generate expert candidates.

Hyperparameter Value
Algorithm & Network

Algorithm Soft Actor-Critic (SAC)
Policy Network MlpPolicy
Network Architecture 2 hidden layers, 256 units each, ReLU activation

Training

Optimizer Adam
Learning Rate 1e-4
Batch Size 1024
Buffer Size 1,000,000
Learning Starts 10,000 steps
Discount Factor (γ) 0.99
Target Update Rate (τ ) 0.005
Gradient Steps 1
Train Frequency 1 step
Entropy Coefficient (ent coef) Automatic tuning (’auto’)
Target Entropy Automatic tuning (’auto’)

Environment

Num. Parallel Envs 4 (‘SubprocVecEnv‘)
Num. Training Scenarios 50

setup, all methods, including the modified TS2C, receive guidance from a single, pre-
trained SAC-based Q-network. This standardizes the source of expert knowledge across
all comparisons. The learning agent itself, for all baselines, utilizes a standard twin-critic
architecture to mitigate Q-value overestimation.

• Alignment of the Intervention Trigger. We replaced TS2C’s original intervention trig-
ger, which is based on the agent’s self-perceived value function uncertainty (V πt(s) −
Ea∼πs [Q

πt(s, a)] > ϵ), with the action-centric trigger used across our entire study:
Q(s, ah)−Q(s, an) > τq . This alignment ensures that all agents request and receive help
under identical conditions, based on the same principle of detectable action superiority.

Rationale for Modifications. These modifications are essential for isolating the central scientific
question of this paper: how effectively different algorithms learn from sparse human guidance.
The original TS2C’s trigger (based on value function instability) and our study’s trigger (based
on the comparative superiority of an expert action) represent fundamentally different intervention
philosophies.

By standardizing both the teacher architecture and the intervention trigger, we create an experimen-
tal design that meticulously controls for critical confounding variables. These include (1) the
representational capacity of the teacher model and (2) the philosophical basis for when and why in-
terventions occur. Consequently, any resulting performance differences can be confidently attributed
to the algorithms’ intrinsic mechanisms for processing and internalizing the guidance itself. This
principled approach enables a direct, fair, and interpretable comparison of the core learning strate-
gies at the heart of our work.

A.4 NETWORK ARCHITECTURES

For consistency and fair comparison, all algorithms, including our method (VIQS), use a standard
Multi-Layer Perceptron (MLP) architecture for their respective policy and value networks.

Specifically, unless otherwise noted, all actor and critic networks consist of two hidden layers
with 256 units each. Each hidden layer is followed by a Rectified Linear Unit (ReLU) activation
function. This architecture is consistent across VIQS, HACO, PVP, VIQS, TS2C, SAC, TD3, and
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PPO, as derived from their SB3 MlpPolicy implementations. It is worth noting that for HACO,
we follow its original implementation where the actor and critic networks do not share features
(share features extractor=False). For all other algorithms, we use the standard SB3
defaults for feature extraction.

A.5 HYPERPARAMETERS

We divide the hyperparameters into three tables for clarity. Table 6 lists parameters shared across
all off-policy HIL baselines. Table 7 details the crucial differences between these HIL methods.
Finally, Table 8 outlines the hyperparameters for the standard RL agents trained from scratch.

Table 6: Hyperparameters shared across all HIL off-policy methods (VIQS, HACO, PVP, TS2C,
etc.).

Hyperparameter Value
Discount Factor (γ) 0.99
Target Update Rate (τ ) 0.005
Replay Buffer Size 50,000
Optimizer Adam
Train Frequency 1 step

Table 7: Specific hyperparameters for HIL methods, highlighting key differences in their interven-
tion mechanism and learning strategy. Note that only PVP4REAL uses an explicit BC loss.

Hyperparameter VIQS (Ours) HACO PVP / VIQS PVP4REAL TS2C
Intervention Mechanism

Action Intervention Threshold (αfree) - 0.95 0.95 0.95 -
Value Intervention Threshold (qfree) 1.0 - - - 0.5

Algorithm & Learning

Base Policy TD3-based SAC-based TD3-based TD3-based SAC-based
Learning Rate 1e-4 1e-4 (Actor/Critic/Ent) 1e-4 1e-4 1e-4
Batch Size 1024 1024 1024 1024 1024
Learning Starts 100 100 10 10 10
BC Loss Weight (λBC) 0 0 0 1.0 0
Entropy Coef. (ent coef) N/A ‘auto‘ N/A N/A ‘auto‘

Table 8: Hyperparameters for standard RL baselines trained from scratch for 1M steps.

Hyperparameter SAC TD3 PPO
Learning Rate 1e-4 1e-4 5e-5
Batch Size 1024 100 256
Buffer Size 1,000,000 1,000,000 N/A
Learning Starts 10,000 10,000 N/A

PPO-Specific Parameters

Num. Steps (n steps) N/A N/A 1024
Num. Epochs (n epochs) N/A N/A 500
Clip Range N/A N/A 0.1
Value Func. Coef. (vf coef) N/A N/A 0.5
Entropy Coef. (ent coef) N/A N/A 0.0
Max Grad Norm N/A N/A 10.0

B GENERALIZABILITY OF THE PROPOSED PRINCIPLE

We claim that quality-aware value shaping, our core principle, is a highly generalizable and mod-
ular component. To prove its versatility, we integrate VIQS’s core Value-Shaping Module into
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three distinct existing learning algorithms: HACO (Li et al., 2022b), PVP (Peng et al., 2023),
and PVP4REAL (Peng et al., 2025). The goal is to demonstrate that our module can act as a uni-
versal upgrade, enhancing the performance, safety, and efficiency of various human-in-the-loop and
imitation learning approaches.

Integration Method Overview. The core idea behind our integration is to augment or, in specific
cases, replace the value estimation mechanism within each baseline algorithm with our Quality-
Aware Value Shaping. Instead of directly relying on the baseline’s inherent reward processing, our
module intelligently guides what the agent perceives as “good” or “bad” actions, thereby steering its
learning trajectory away from expert flaws. This makes the integration clean and minimally invasive,
highlighting the module’s plug-and-play nature. Below, we detail the integration into HACO, PVP,
and PVP4REAL.

B.1 INTEGRATION WITH HACO (HACO+)

The Human-AI Copilot Optimization (HACO) algorithm (Li et al., 2022b) employs a dual-value-
function approach to incorporate human guidance. It learns a standard Q-function, Q(s, a), for
task returns, and a separate intervention value function, Qint(s, a), to estimate the long-term cost
of deviating from expert suggestions. The final policy is then optimized to maximize Q while
minimizing Qint.

Our integration, HACO+, introduces a fundamental redesign of HACO’s learning dynamics. Instead
of maintaining two separate and potentially conflicting objectives for the actor, we propose a stream-
lined framework that unifies guidance and task learning within a single, quality-aware Q-function.
This is achieved through two key modifications based on our discriminator Dψ(s, a).

Quality-Aware Critic Shaping. We replace HACO’s original auxiliary critic loss with a more
powerful, discriminator-weighted term reminiscent of Conservative Q-Learning (CQL). At each in-
tervention step (It = 1), we actively shape the Q-function’s landscape by encouraging it to assign
higher values to high-quality expert actions (ah) and lower values to the concurrent, lower-quality
agent actions (an). The total critic loss for each critic Qϕ in the ensemble is:

LHACO+
critic (ϕ) = LTD(ϕ)− λcql · E(st,ah,an)∼BI

[
whQϕ(st, ah)− wnQϕ(st, an)

]
, (11)

where LTD(ϕ) is the standard Mean Squared Bellman Error, and BI is the buffer of intervention
data. The weights wh and wn are derived from our discriminator:

• wh = Dψ(st, ah) represents the perceived quality of the expert’s action.
• wn = 1−Dψ(st, an) represents the “non-quality” or inferiority of the agent’s action rejected by

the human.

By minimizing LHACO+
critic , the optimizer seeks to maximize the term whQh−wnQn, effectively push-

ing up Q-values for good actions and suppressing them for bad ones, weighted by the discriminator’s
confidence. This embeds the expert’s knowledge directly and dynamically into the primary value
function.

Decoupled Actor Objective. A direct consequence of our expressive critic shaping is the simpli-
fication of the actor’s objective. Since all guidance information is now encoded within the main
Q-function, we can completely decouple the actor from the specialized cost-critic Qint. The actor is
no longer required to balance two objectives and is free to optimize a standard, entropy-regularized
policy objective:

max
θ

Est∼B,at∼πθ
[min
i
Qϕi

(st, at)− α log πθ(at|st)]. (12)

Here, the actor simply trusts the (ensembled minimum of) shaped Q-functions learned via Eq. 11.
By removing the explicit penalty term −Qint(s, a), we liberate the agent from the constraint of long-
term imitation. This allows the policy to fully exploit the learned value landscape and discover novel
strategies that may significantly outperform the human expert, a goal that is fundamentally restricted
by HACO’s original formulation. While we still train the Qint network as part of the overall critic
loss for stable learning, its output is not used in the final actor update.
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In essence, HACO+ transforms HACO from a constrained, dual-objective optimization problem into
a more elegant, single-objective framework where expert guidance serves to shape a unified value
function for more effective policy improvement.

B.2 INTEGRATION WITH PVP (PVP+)

The original PVP (Proxy Value Policy Optimization) algorithm (Peng et al., 2023) is a reward-
free HIL-RL method that assigns fixed proxy values to human interventions. Specifically, when
an intervention occurs (It = 1), PVP sets a target value for the Q-function. Its primary goal is to
learn from these interventions to align the agent’s policy with expert demonstrations. Our VIQS
framework, as presented in Section 4, is built upon the foundational idea of reward-free learning
from interventions, just like PVP. However, VIQS critically enhances this by introducing:

• A proactive, value-based intervention trigger (Eq. 1) that focuses on strategic inferiority, allow-
ing the agent to explore and surpass the expert.

• A discriminator-guided quality-aware value shaping mechanism (Eqs. 2, 3, 5) that dynami-
cally assesses human intervention quality and modulates the Q-function’s learning signal. This
replaces PVP’s fixed proxy targets with context-aware, quality-dependent values.

Therefore, integrating our ‘Value-Shaping Module‘ into PVP effectively transforms it into our full
VIQS method. The ‘PVP+‘ in our experiments is precisely VIQS, demonstrating how our inno-
vations overcome PVP’s limitation of blindly trusting human feedback and employing a simpler
intervention trigger.

B.3 INTEGRATION WITH PVP4REAL (PVP4REAL+)

PVP4REAL (Peng et al., 2025) extends PVP by incorporating an additional behavioral cloning (BC)
loss term into the actor’s objective. This BC loss directly encourages the agent’s policy to mimic
the expert’s actions, aiming to further stabilize training and improve efficiency, especially in com-
plex real-world scenarios. When we integrate our ‘Value-Shaping Module‘ into PVP4REAL, we
adapt our critic-shaping mechanism into its reward-free framework, similar to how ‘PVP+‘ becomes
VIQS. However, for ‘PVP4REAL+‘, we retain the original BC loss on the actor. The actor’s objec-
tive for ‘PVP4REAL+‘ therefore becomes:

max
θ

Est∼B,an∼πn(·|st;θ)[min
i
Qi(st, an)− α log πn(an|st; θ)] + λBCLBC(θ), (13)

where LBC(θ) is the behavioral cloning loss between the agent’s policy πn and the expert’s policy
πE (or expert actions aE), typically an MSE loss for continuous actions or a cross-entropy loss
for discrete actions, and λBC is its weighting coefficient. The critic’s updates for ‘PVP4REAL+‘
are identical to those in VIQS, incorporating the discriminator-guided quality-aware value shaping.
This integration demonstrates that our shaping module is compatible with methods that also utilize
auxiliary imitation losses on the actor.

C ADDITIONAL RESULTS AND LEARNING CURVES

This section provides the complete learning curves for all experiments discussed in the main paper.
These plots complement the final performance tables by illustrating the learning dynamics, sample
efficiency, and stability of the algorithms throughout the training process. All curves depict the mean
performance over three random seeds, with the shaded regions representing the standard deviation.
Performance is evaluated periodically on the held-out test set.

C.1 COMPARISON WITH HIL BASELINES ACROSS EXPERT TIERS

Figures 4, 5, and 6 present the learning curves for VIQS and all HIL baselines when guided by
the High-, Medium-, and Low-Quality experts, respectively. These results visually corroborate our
core claim (RQ1). Across all expert tiers, VIQS demonstrates a significantly steeper and more stable
learning trajectory, rapidly achieving high performance and consistently surpassing the expert’s own
performance level (the dashed line). This stands in stark contrast to other baselines, which either
exhibit instability, learn much slower, or clearly plateau at or below the teacher-quality ceiling.
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Figure 4: Learning curves for HIL baselines guided by the High-Quality Expert (Return ≈ 350).
VIQS quickly surpasses the expert’s performance.
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Figure 5: Learning curves for HIL baselines guided by the Medium-Quality Expert (Return ≈
270). VIQS again shows superior learning efficiency and breaks the ceiling.
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Figure 6: Learning curves for HIL baselines guided by the Low-Quality Expert (Return ≈ 190).
Even with poor guidance, VIQS learns effectively and significantly outperforms its teacher.
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Figure 7: Learning curves for the ablation study of VIQS. The full model (‘VIQS‘) significantly
outperforms all ablated variants, confirming the importance of its core components.

C.2 ABLATION STUDY OF VIQS COMPONENTS

Figure 7 provides the learning curves for our ablation study (RQ3), conducted with the Medium-
Quality expert. These plots visually demonstrate the criticality of each component of VIQS. Re-
moving quality-aware shaping (‘w/o Shaping‘) leads to unstable and inferior performance. Re-
introducing environmental rewards (‘+Env. Reward‘) severely impedes learning, showing a flat
curve near zero. Most dramatically, reverting to a naive ‘Action-based trigger‘ results in a complete
learning failure. These curves underscore that the synergy between our value-guided intervention
and quality-aware shaping is essential for success.

C.3 GENERALIZABILITY STUDY OF THE VIQS FRAMEWORK

Figures 8, 9, and 10 showcase the results of our generalizability study (RQ4). We applied our
core quality-aware shaping mechanism to enhance three existing HIL algorithms: HACO, PVP,
and PVP4REAL. In each case, the enhanced version (‘+‘) demonstrates a marked improvement in
learning speed, stability, and final performance compared to its original counterpart. This provides
strong visual evidence that our proposed mechanisms act as a general, plug-and-play module to
significantly boost the performance and efficiency of various HIL frameworks.
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Figure 8: Generalizability on HACO. The enhanced HACO+ (labeled ’HACO Optimized’) shows
faster and more stable learning than the original HACO.
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Figure 9: Generalizability on PVP. The enhanced PVP+ (labeled ’PVP Optimized’), which is equiv-
alent to our full VIQS model, dramatically outperforms the original PVP.
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Figure 10: Generalizability on PVP4REAL. The enhanced PVP4REAL+ (labeled ’PVP4REAL
Optimized’) achieves higher performance with better stability than the original.

D ANALYSIS OF CORE MECHANISMS AND HYPERPARAMETERS

D.1 ANALYSIS OF THE DISCRIMINATOR’S TRAINING DYNAMICS

A key design choice in VIQS is to train the discriminator for a fixed number of initial steps and then
freeze its weights for the remainder of the agent’s training. The rationale is to establish a stable
quality assessor that provides a consistent learning signal, rather than a “moving target” that would
complicate the critic’s convergence.

To validate this choice, we plot the discriminator’s accuracy and loss during the agent’s training
process (Figure 11). The results are shown across all three expert quality tiers and multiple random
seeds. As depicted, in most runs, the discriminator’s loss rapidly decreases and its accuracy quickly
climbs to over 95% within the first 5,000 training steps. After this initial convergence, both metrics
remain remarkably stable.

A notable case is the LowExpert seed600 run, where significant learning begins later, around
the 10,000-step mark. This is not a failure of the discriminator but rather a direct consequence
of our data-efficient intervention mechanism. The discriminator is trained exclusively on inter-
vention data (It = 1). In this specific run, very few interventions were triggered during the early
stages, meaning there was insufficient data for the discriminator to learn from. Once a critical mass
of intervention data was collected, it began learning just as rapidly as in the other runs. This behav-
ior underscores that the discriminator’s training is driven solely by, and is a direct function of, the
sparse human guidance signals.
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(b) Discriminator Loss

Figure 11: Discriminator Training Dynamics. Across all expert levels and random seeds, the
discriminator’s accuracy (a) rapidly converges to near-perfect, and its loss (b) stabilizes at a low
value within the first 5,000 steps. This validates our design choice to freeze the discriminator early
to create a stable quality assessor.

This empirical result strongly supports our design. It demonstrates that the discriminator can very
efficiently learn to distinguish between the expert’s and the novice agent’s actions once data is avail-
able. Freezing the discriminator after its initial convergence thus provides a computationally efficient
and stable mechanism for grounding the agent’s reward-free learning process.

D.2 SENSITIVITY ANALYSIS OF THE INTERVENTION THRESHOLD τQ

We analyze the sensitivity of the intervention threshold τQ, which balances agent autonomy against
expert guidance. Experiments were conducted with the Medium-Quality expert (return ≈ 270).
Figure 12 demonstrates that VIQS is robust to the choice of τQ and that this hyperparameter can be
set in a principled manner.

Performance Robustness (Figure 12a): The agent’s final performance is robust across a broad
range of τQ values from [0.75, 1.25], where it consistently surpasses the expert baseline. This shows
that VIQS does not require meticulous tuning. Thresholds that are too low (τQ = 0.5) or too high
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Figure 12: Sensitivity analysis of the intervention threshold τQ with a Medium-Quality expert.
(a) Agent performance is robust across a wide range of τQ values, consistently surpassing the expert
(dashed line). (b) The intervention cost decreases as τQ increases, showing a clear trade-off. (c) The
Q-value difference converges to zero, demonstrating successful learning and providing a principled
way to set τQ.

(τQ = 1.5) degrade performance due to excessive intervention or insufficient correction, respec-
tively.

Complex Intervention Dynamics (Figure 12b): This panel reveals a nuanced relationship between
τQ and intervention cost. Within the optimal range ([0.75, 1.25]), a lower τQ correctly leads to more
frequent interventions. Notably, the curve for τQ = 1.5 is steeper than for τQ = 1.25 or τQ = 1.0,
indicating a higher cumulative intervention count. This is not contradictory. A threshold set too
high allows the agent’s policy to degrade significantly. Consequently, while the instantaneous prob-
ability of intervention is low, the agent remains in a perpetual state of poor performance, requiring
more cumulative corrections over the long term. This highlights the importance of providing timely
guidance.

Learning Dynamics and Principled Selection (Figure 12c): This panel plots the Q-value differ-
ence from the expert’s perspective, Q(st, a

E
t )−Q(st, a

L
t ), which triggers interventions. The differ-

ence starts at a large positive value (approx. +1.0) and converges toward zero as training progresses.
This directly evidences that the agent successfully internalizes the expert’s guidance, aligning its
value estimates with the expert’s. Crucially, the magnitude of this initial gap (≈ 1.0) corresponds
perfectly to the optimal threshold (τQ = 1.0) found in Panel (a). This provides a powerful and
practical heuristic: τQ can be effectively estimated by measuring this initial Q-value gap, thus
avoiding extensive hyperparameter search.

E EMPIRICAL VALIDATION OF LEARNING STABILITY

To empirically address the reviewer’s query regarding the stability and convergence of our learning
framework, we tracked the evolution of the Q-function throughout the training process. The analysis
was conducted under the guidance of experts with varying quality levels (High, Medium, and Low).
We present the results in Figure 13, which plots the average Q-values for two distinct action types:
the action executed in the environment (Behavioral Action) and the action proposed by the agent’s
policy (Agent Action). The empirical results presented in Figure 13 provide a clear and direct answer
to the question of learning stability: Primary Finding: Universal Stability and Convergence.
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Figure 13: Evolution of average Q-values under guidance from experts of different qualities, aver-
aged over three random seeds. (a) shows the value of the executed actions. (b) shows the value of
the agent’s proposed actions.

The central observation across all experimental conditions is that the Q-value estimates remain
bounded and exhibit clear convergence. Regardless of the expert’s quality—be it High, Medium,
or Low—and across both behavioral and agent-proposed actions, we observe no signs of divergence
or instability. After an initial phase of adaptation, all curves flatten and converge to a steady-state
value. This provides strong empirical evidence that our proposed method, VIQS, ensures a stable
and well-behaved learning process, successfully avoiding the Q-value explosion or collapse that can
plague similar offline or reward-free reinforcement learning algorithms.

F VALIDATION ON THE LUNARLANDERCONTINUOUS-V2 BENCHMARK

To demonstrate the generalizability of VIQS beyond the domain of autonomous driving, we eval-
uated it on the widely-used LunarLanderContinuous-v2 classic control environment from
OpenAI Gym (Brockman et al., 2016). This benchmark is a staple in the field, frequently employed
to validate modern reinforcement and imitation learning algorithms. Its well-understood dynamics
and continuous action space make it an ideal testbed for assessing sample efficiency and the ability
to surpass suboptimal teachers, as demonstrated by its use in recent works such as Shah et al. (2025)
and Zhu et al. (2025).

Experimental Setup. Following a similar protocol to our main experiments, we utilized a pre-
trained SAC agent as the simulated expert teacher. This expert is intentionally suboptimal, achieving
an average evaluation reward of 129.7. All HIL algorithms, including VIQS, PVP, and PVP4REAL,
were trained for a total of 50,000 environment steps.

Table 9: Performance comparison on LunarLanderContinuous-v2. All methods were trained
for 50k steps with guidance from a suboptimal expert (Return ≈ 130). VIQS successfully surpasses
the teacher and requires the fewest interventions.

Expert Quality Method Training Testing
Human Data Usage (↓) Episodic Return (↑)

Suboptimal Expert (Return ≈ 130)
SAC / Expert Policy - 129.7
PVP 35.5K ± 2.4K (0.71) 43.3 ± 67.5
PVP4REAL 23.6K ± 1.1K (0.47) 129.3 ± 30.1
VIQS (Ours) 10.8K ± 0.4K (0.22) 150.4 ± 34.9

Results and Analysis. The results, presented in Table 9 and Figure 14, not only confirm the supe-
riority of VIQS but also clearly illustrate the critical challenge of overcoming the teacher-quality
ceiling in HIL-RL. Our method achieves a final return of 150.4, successfully surpassing the subop-
timal teacher while requiring only 10.8k interventions—less than half that of PVP4REAL.
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Figure 14: Learning curves on LunarLanderContinuous-v2 over 50k training steps. VIQS
demonstrates significantly faster learning and achieves a higher final reward, successfully surpassing
its suboptimal expert teacher (performance indicated by the dashed line).

This success stands in stark contrast to the baseline methods. The conventional approach, PVP,
completely fails; its performance collapses as frequent, unfiltered interventions from the suboptimal
expert fundamentally corrupt the agent’s value function, leading to a divergent policy. To combat
this instability, PVP4REAL incorporates a BC loss into the actor’s objective. While this prevents
divergence, it does so by forcing the agent to mimic the teacher’s actions, thereby erecting a hard
teacher-quality ceiling. The agent is effectively shackled to the expert’s suboptimal behavior, un-
able to explore and discover a superior policy.

Conversely, VIQS is explicitly designed to shatter this ceiling. Our approach decouples learning
from direct policy imitation. Instead of constraining the actor’s action space, we provide high-level,
quality-aware guidance directly to the agent’s value landscape. This liberates the agent from its
teacher’s policy constraints, empowering it to discover a superior solution. This ability to break the
teacher-quality ceiling in a data-efficient manner demonstrates a robust and more practical paradigm
for human-in-the-loop learning.

G IMPLEMENTATION AND ANALYSIS OF HIL-SERL BASELINE

G.1 ADAPTATION FOR OUR FRAMEWORK

Adapting HIL-SERL from robotic manipulation to the class of problems addressed by our frame-
work requires careful consideration of the differences in task structure, data quality, and reward
signals. To maintain a fair and consistent comparison, we configured the HIL-SERL agent under the
following conditions, which deviate from its typical optimal setup:

• Sub-optimal Demonstration Buffer: The core of HIL-SERL’s sample efficiency relies on
bootstrapping from a small set of high-quality expert demonstrations. However, a central
challenge in many real-world applications, such as those targeted by our framework, is
learning from imperfect data. To align with this premise, the demonstration buffer for HIL-
SERL was populated using data from the same sub-optimal expert used for other methods.
This inherently provides a lower-quality and biased starting point. Moreover, such data
often contains inconsistent behavior patterns—where the expert makes different decisions
in similar scenarios—which not only reduces learning efficiency but also introduces signif-
icant instability to the policy optimization process.
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• High-Risk Intervention Strategy: HIL-SERL’s methodology explicitly warns against
providing long, sparse interventions that lead to task success, as this can cause overesti-
mation of the value function and unstable training dynamics (Luo et al., 2024). However,
this is precisely the nature of interventions in many long-horizon, high-stakes tasks. For
instance, a human take-over to avert a critical failure often constitutes a long, sparse event
that comprises a significant portion of the trajectory. When these interventions come from
a sub-optimal expert, they may not even guarantee task success, further exacerbating the
credit assignment problem. Specifically, such long takeovers make it nearly impossible for
the algorithm to distinguish between critical corrective actions and superfluous or stylistic
maneuvers from the expert, effectively diluting the learning signal and hindering effective
policy updates.

• Extremely Sparse Rewards from Simulation: The HIL-SERL paper recommends train-
ing a dedicated binary reward classifier on collected data. In contrast, to maintain consis-
tency across all baselines, we rely solely on the native binary success signal provided by
the environment at the end of each episode. For HIL-SERL, which lacks a pre-trained value
function to provide initial guidance, this extremely sparse, long-horizon reward makes
learning from scratch exceptionally difficult. It forces the agent to rely almost entirely
on the flawed initial demonstrations and interventions for a learning signal.

G.2 PERFORMANCE ANALYSIS

The combination of these challenging factors—sub-optimal prior data, a risky intervention pattern,
and extremely sparse rewards—exposes a key sensitivity of the HIL-SERL framework. Its mech-
anism is optimized to rapidly refine a policy around a high-quality ”nominal trajectory” provided
by expert demonstrations and corrections. When this core assumption of a near-optimal teacher is
violated, its performance degrades substantially.

Therefore, its poor performance in our benchmark is an important finding. It does not refute the
effectiveness of HIL-SERL in its intended domain. Rather, it highlights that its high-performance
paradigm is fundamentally dependent on the availability of high-quality expert guidance. The learn-
ing mechanism is engineered to trust and efficiently leverage this guidance. When the expert is
sub-optimal and provides inconsistent or flawed data, the very foundation of HIL-SERL’s learning
process is undermined. This underscores the need for methods like ours, which are explicitly de-
signed to be robust to expert sub-optimality and sparse rewards, enabling them to learn effectively
even when the teacher is imperfect.
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