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ABSTRACT

Due to the limited labeled data, current segmentation models are usually transferred
from ImageNet pretrained models. This pipeline introduces task gaps, where the
pretraining is based on global image-level recognition while the downstream is
focused on local pixel level prediction. In this paper, we aim at mitigating this task
gap and building a segmentation-oriented pretrained model, in this way different
downstream segmentation tasks can be better and easily adapted. Towards this goal,
we combine off-the-shelf annotations from diverse segmentation datasets and make
use of both visual and language supervision for jointly training. The highlight is that
the two kinds of supervision are complementary and can be boosted to better model
the class relation from diverse datasets. The proposed learning framework, termed
as MS3 (short for Multimodal Supervision for Semantic Segmentation), not only
adjusts and improves the quality of language embeddings to fit the segmentation
scene, but also generates momentum-updated visual embeddings for each category
to facilitate better visual representation modeling. Besides, considering that the
original one-by-one pixel-embedding pairing may cause similar classes from other
datasets to be incorrectly pulled away, we further extend the original loss with multi-
label mapping via cross-modal information exchange to better model the class
relations. Experiments conducted on several benchmarks demonstrate that MS3
consistently outperforms the ImageNet pretrained models by a considerable margin
under standard fine-tuning, as well as fitting some rapid deployment scenarios, e.g.,
frozen-backbone fine-tuning or zero shot predicting.

1 INTRODUCTION

As a fundamental task in computer vision, semantic segmentation has witnessed great success over
the past decades. However, training segmentation models usually require a large number of pixel level
annotations, which is time-consuming and difficult to accumulate. Therefore, standard segmentation
frameworks usually rely on transfer learning with models fine-tuned on pretrained weights, e.g.,
training on a large-scale ImageNet dataset (Russakovsky et al., 2015) in a supervised (He et al., 2016;
Dosovitskiy et al., 2020; Liu et al., 2021) or unsupervised (Chen et al., 2020a; He et al., 2020; Chen
et al., 2020b; Grill et al., 2020) manner. While this pipeline can de facto bring performance gain
and avoid overfitting to some extent, it suffers from task gap that the pretraining is based on global
discrimiation while the downstream task is focused on local pixel level prediction. Such discrepancy
limits the transferring ability of the pretrained model.

To mitigate the task gap, it is appealing to directly build a segmentation-based pretrained model.
Some recent works introduce pixel-level contrastive learning (Chen et al., 2020a; He et al., 2020;
Wang et al., 2021b) for semantic segmentation pretraining (Xie et al., 2020; Wang et al., 2021c;
Zhao et al., 2020), which is achieved by pulling close the pixel level embeddings with the same
semantic and pushing apart pixels with different semantics. However, these works are constrained
within a single dataset, and due to the lack of abundant pixel-level annotations, their generalization
ability are still limited. An alternative is to utilize the available annotations off-the-shelf from diverse
segmentation datasets for jointly training. However, Lambert et al. (2020) demonstrates that simply
training on the merged datasets may not drive the desired performance, as different datasets suffer
inconsistent class definitions. Lambert et al. (2020) further proposes to re-label the merged dataset
with a manually created unified label-set, but it requires additional labor costs and is error-prone.
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Table 1: Analysis of similarity for language embeddings between two closely-connected class pairs
and the mean similarity between all the embedding pairs. MI represents the proposed module for
language embedding improvement.

Method Cosine Similarity
’cat’ vs. ’dog’ ’horse’ vs. ’cow’ mean

CLIP 0.92 0.92 0.77
CLIP + MI 0.29 0.17 0.11

In this paper, we follow the idea of unifying multiple datasets for segmentation pretraining and hope
to construct a segmentation-oriented model that benefits from it, diverse downstream tasks can be
efficiently adapted. The core challenge is to associate the relevant class that defined in different
datasets. To this end, we intuitively extend segmentation pretraining with the language embedding
supervision. Since relevant classes can be automatically discovered and better modeled via the
text expression, and thus transferred to the visual branch can reduce conflicts. Though promising,
simply borrowing the text encoder such as CLIP (Radford et al., 2021), which like most previous
language-driven works do (Li et al., 2022; Yin et al., 2022), would bring limited benefits under
the pretraining-finetuning pipeline. As shown in Tab. 1, we find that some closely-connected class
pairs (e.g., ’cat’ vs. ’dog’, ’horse’ vs. ’cow’ ) exhibit very high similarity when directly using
CLIP as embeddings, which makes them indistinguishable. This is possibly due to the restriction
of the human-designed templates that overwhelm the discrepancy of different classes, as well as
the mismatched pretraining objectives, where the CLIP is based on image-level pairing which may
aggregate redundant background information, while the target is focused on pixel level comparison.

To address this issue, we propose a multi-modal supervision scheme to better meet the pre-training
scenarios. We first adapt the vanilla language-driven scheme and improve the quality of CLIP
language embedding to fit the segmentation scene. Different from the original CLIP that conducts
image-sentence pairing and uses human-designed templates like “a photo of a [CLS].” as text
prompts, we introduce learnable textual contexts to the prompts and conduct pixel-language pairing
on segmentation datasets to obtain higher quality language embeddings. Meanwhile, considering that
some language-indistinguishable categories may be more visually discriminative, we additionally
generate a momentum-updated visual embedding for each category as complements to the language
embeddings. With the combined supervision of vision and language, the relevant classes among
different datasets can be well considered. Besides, we also notice that the original pixel-embedding
pairing loss cannot make full use of the refined relationship due to its one-by-one hard pairing
property, as similar class embeddings in other datasets will be incorrectly pushed away. Based on the
multimodal embeddings, we further design a novel cross-modal information exchange module and
generate multi-label mapping to alleviate this problem.

The above proposed framework, termed as MS3 (short for Multimodal Supervision for Semantic
Segmentation), can serve as a pretraining model for standard downstream fine-tuning, and achieves
noticeable performance gains compared to ImageNet pretrained models. Furthermore, since we ex-
plore and exploit the relations between classes during pre-training, MS3 can also achieve satisfactory
performance under frozen-backbone fine-tuning or zero shot learning scenarios for rapid deployment.
Experiments conducted on several benchmarks demonstrate the effectiveness of MS3.

In a nutshell, this paper makes the following contributions:

• We propose a novel multi-dataset pretraining framework for semantic segmentation with the
help of multi-modal supervision, in which modules are designed to both improve the quality
of language embeddings and bring in additional visual embedding supervision for better
pixel-level feature learning.

• A novel cross-modal information exchange module that provides multi-label extension is
also proposed to alleviate the performance bottleneck caused by the one-by-one pairing loss
under the multi-dataset situation.

• Our framework consistently outperforms the pretrained models over ImageNet by a consid-
erable margin under standard fine-tuning. It can also achieve satisfactory performance under
rapid deployment scenarios. We hope our simple but effective framework would shed light
on task adaptive pretraining research.
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2 RELATED WORK

Segmentation-oriented pretraining. Some recent works extend global-level contrastive learning to
the pixel level for segmentation-oriented pretraining. Among them, Zhao et al. (2020) pulls close the
pixel level embeddings with the same class labels and pushes apart embeddings with different labels.
However, the pretraining is only conducted on a single segmentation dataset, and the transferability
is limited by the pre-training scale. DenseCL (Wang et al., 2021c) and PixPro (Xie et al., 2020)
respectively construct positive sample pairs using pixel similarity and pixel distance as pseudo-labels
on a large-scale ImageNet dataset, while the reliability of pseudo-labels restricts the performance.

Multi-dataset semantic segmentation. For multi-dataset segmentation, Wang et al. (2021a) uses
dataset-specific classifiers to alleviate the influence of label differences, while they ignore the label
relationships between different datasets. Some works further conduct manual label unification to
deal with class differences. Liang et al. (2018) builds a semantic concept hierarchy by combining
labels from four datasets and explicitly incorporates the hierarchy into network construction. MSeg
(Lambert et al., 2020) unifies the taxonomies of seven semantic segmentation datasets by manually
identifying a new class label for every segmentation. To avoid the tedious manual operations, Yin et al.
(2022) generates text embedding for each class and uses them as supervision, and the relationships
between categories from different datasets are implicitly modeled in the embedding space. Shi et al.
(2021) changes the original pixel classification objective and designs a supervised contrastive-like loss
and some cross-dataset schemes for multi-dataset learning. Kim et al. (2022) generates multi-label
mapping and purposes a novel Class-relational BCE loss to reduce the gradient conflict issue caused
by label differences. Our work also does not require label unification, but differently, we design a
multimodal scheme and explicitly exploit both cross-dataset and cross-modal category relationships.

Language-driven recognition. CLIP (Radford et al., 2021) is a milestone work for language-driven
recognition, which demonstrates that classic recognition tasks that are not commonly associated with
language can strongly benefit from language assistance. CLIP jointly trains an image encoder and
a text encoder to predict the correct image-text pairings and synthesize extremely robust models
for zero-shot image classification. Recent works have also extended this basic paradigm to perform
flexible object detection (Gu et al., 2021; Gao et al., 2021; Zhong et al., 2021) and segmentation (Rao
et al., 2022). Among them, some language-driven segmentation methods (Li et al., 2022; Yin et al.,
2022) directly leverage high-capacity language models to embed the descriptive input labels and
train the image encoder to maximize the correlation between the image pixel embeddings and their
corresponding text embeddings, which also enables a flexible segmentation. Our work is inspired by
them, but we bring the modeling capacity of multimodal embeddings into the multi-dataset pretraining
scenario and further conduct some targeted designs.

3 METHOD

3.1 OVERVIEW

In this section, we elaborate on the multi-modal supervised pretraining pipeline for the semantic
segmentation model. As illustrated in Fig. 1, we unify multiple segmentation datasets for jointly
training. For vision branch supervision, we choose off-the-shelf annotation for each pixel, and
conduct pixel-embedding pairing with visual embeddings generated for each category. While for
language supervision, considering the representation gap between the general CLIP model and the
merged class labels from multiple segmentation datasets, we first adapt and improve the original
CLIP language embeddings to the target segmentation datasets, and follow the same pixel-embedding
pairing as vision supervision but using the improved language embedding as the objective for each
category. In addition, we further conduct multi-label loss extension by cross-modal information
exchange to better model the inter-class relationship.

Specifically, given multiple segmentation datasets D1,D2, . . . ,DN as well as their corresponding
label space Y1,Y2, . . . ,YN , we first unify them into a large dataset D with a combined label space
Y = Y1 ∪ Y2 . . . ∪ YN ,where N is the number of datasets. Then, we use a pretrained (and then
adapted) text encoder to embed the set of |Y| potential labels into a continuous vector space RC as
learning objective and denote the language embeddings as T ∈ R|Y|×C . Next, given an input image
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Figure 1: MS3 pipeline. Given the union segmentation dataset D with a combined label space Y , we
utilize a pretrained text encoder and a momentum updated image encoder to provide language and
visual embeddings for every classes. Feature maps of the input images can be learned through two
kinds of optimized pixel-embedding pairing losses with multi-label mapping obtained from Eq. 6.

with size H ×W , we send it to an image encoder (with a projection head) F and obtain a dense
embedding map I ∈ RH̃×W̃×C , where H̃ = H

s , W̃ = W
s and s is a downsampling factor determined

by the encoder. For pixel i in I with ground-truth label yi, we pull its embedding Ii close to its
corresponding language embedding, and push it away from all other language embeddings, namely:

Li
l = −1 [yi = j] log

(
exp (Ii · Tj/τ)∑|Y|
k=1 exp (Ii · Tk/τ)

)
, (1)

where τ is a pre-defined temperature parameter and we set it to 0.07 following LSeg (Li et al., 2022).
The loss Ll is averaged over all pixels in I . Note that the text encoder is discarded after obtaining the
language embeddings T while only the visual part is updated during the multi-dataset pretraining.

In addition to the unchanged language embeddings, we also use the image encoder to generate
momentum-updated visual embeddings V for all the categories, which serve as another pixel-level
feature learning objective. Similarly, we also pull the pixel embedding Ii close to its corresponding
visual embedding and push it away from other visual embeddings:

Li
v = −1 [yi = j] log

(
exp (Ii · Vj/τ)∑|Y|
k=1 exp (Ii · Vk/τ)

)
. (2)

The final loss L is a combination of Ll and Lv:

L = Ll + αLv, (3)

where α controls the loss weight of the vision supervision and we simply set it to 1. While we
experimentally confirm that the above straightforward multi-task loss can bring complementary
improvements, this loss still has limitations in multi-dataset scenarios. As mentioned, we also
conduct multi-label extension to Ll and Lv through a novel cross-modal information exchange
module, which will be introduced in detail in Sect. 3.3.

3.2 MULTIMODAL SUPERVISION FOR SEMANTIC SEGMENTATION

Language supervision with improved embeddings. The text encoder of CLIP is powerful for
associating text and image, and previous works (Li et al., 2022; Yin et al., 2022) usually choose it for
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Figure 2: The pipeline for improving language embedding. We adapt the CLIP pretrained model
to the segmentation datasets with learnable textual contexts as input and use the pixel-embedding
pairing loss for feature learning. Then the adapted model can produce higher quality embeddings.

extracting text embeddings. However, these works mostly focus on zero shot learning, and we notice
that directly using these embeddings is not suitable for our multi-dataset pretraining framework, for
it introduces confused embeddings between classes. As shown in Tab. 1, since the original CLIP
uses human-designed templates like “a photo of a [CLS].” as text prompts, the language embeddings
mainly summarize this format information and lead to very high similarities between embeddings.
Also, closely-connected class pairs like ’cat’ vs. ’dog’ and ’horse’ vs. ’cow’ exhibit highest similarity,
and using the CLIP class embedding directly would make these classes confused.

To address this issue and better meet the mutli-dataset pretraining setting, we present a simple adaptive
approach to alleviate the confusion and thus improve language embedding quality. As shown in Fig. 2,
we adapt the CLIP pretrained model on the union segmentation dataset D with the following changes.
First, inspired by CoOp (Zhou et al., 2021), we replace the human-designed templates with learnable
textual contexts and use them as the input of the text encoder. The input of the text encoder then
becomes [W]1[W]2 . . . [W]M [CLS], where [W]m(m ∈ {1, . . . ,M}) represents M context tokens.
Then, we change the image-embedding pairing objective to pixel-embedding pairing using Eq. 1.
Finally, we use the adapted model to generate higher quality language embeddings for MS3. At
this point, as shown in the last row of Tab. 1, the high similarity issue between different classes is
alleviated, while the correlation between categories can still be reflected.

Vision supervision with momentum-updated embeddings. Considering that some categories
which are indistinguishable by the language embeddings may be more visually discriminative, we
additionally introduce visual embeddings as complements. Specifically, we send the input image to
F̂ , which is a momentum updated version of vision encoder F , and obtain dense embedding Î . These
embeddings are stored in a memory bank by categories for querying. Visual embedding for class j,
Vj , is then calculated by the weighted average of all the pixels with label j in the memory bank:

Vj =

∑Nm

i=1 1 [yi = j]WijMi∑Nm

i=1 1 [yi = j]
, (4)

where Mi and yi are the pixel embedding and label for pixel i stored in the memory bank. Nm is
the number of pixels in the memory bank and the weight Wij is simply represented by the cosine
similarity between Mi and the old visual embedding V old

j . In this way, the visual embedding V is
dynamically updated with the memory bank, and we conduct pixel-embedding pairing as in Eq. 4.

3.3 CROSS-MODAL MULTI-LABEL EXTENSION

Although the language and visual embeddings are helpful for modeling the relationship between
categories, the one-by-one pixel-embedding correspondence of Ll and Lv still causes performance
bottlenecks under the multi-dataset situation, since class embeddings with similar meanings in
other datasets will be incorrectly pushed away. From the above consideration, we further provide
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a multi-label extension for Ll and Lv by exchanging the similarity between visual features and
language embeddings through a novel cross-modal information exchange module. Kim et al. (2022)
also designs a multi-label extension strategy, but it is restricted to a single modal and can not well
handle domain differences between datasets. While the advantages of our module come from the
cross-modal alignment, which serves as an agent for reducing the domain gaps, thus introducing
consistent cross-modal information for label mapping generation can make the generated mappings
more comprehensive and reliable. Specifically, for class y ∈ Yi, we first calculate the mean cosine
similarity of all the pixel embeddings belonging to this class with respect to the text embedding of
class y′ ∈ Y and denote it as Sy′

y :

Sy′

y =

∑Np

k=1 1 [yk = y]Fk · Ty′∑Np

k=1 1 [yk = y]
, (5)

where Fk and yk represent the embedding and the label of pixel k and Np is the total pixel number.
Then, the new multi-class label Ỹy ∈ {0, 1}Y for class y is generated by:

Ỹ y′

y = 1[Sy′

y ≥ Sy
y and y′ ∈ Y\Yi] (6)

Note that the relation between y and y′ can be unidirectional, i.e., Ỹ y′

y ̸= Ỹ y
y′ , to deal with inclusion

relationships between categories, e.g., class y can be a subset of class y′. Finally, for pixel i with label
yi in the dense embedding map I , we not only pull it close to its corresponding language embedding
and visual embedding, but also pull it close to the embeddings in Ỹyi

, and the Eq. 1, Eq. 2 and Eq. 3
can be changed to:

L̃i
l = −1 [yi = j] log

exp (Ii · Tj/τ) +
∑|Y|

k=1 1

[
Ỹ k
j

]
exp (Ii · Tk/τ)∑|Y|

k=1 exp (Ii · Tk/τ)

 , (7)

L̃i
v = −1 [yi = j] log

exp (Ii · Vj/τ) +
∑|Y|

k=1 1

[
Ỹ k
j

]
exp (Ii · Vk/τ)∑|Y|

k=1 exp (Ii · Vk/τ)

 , (8)

L̃ = L̃l + αL̃v. (9)

4 EXPERIMENT

4.1 EXPERIMENTAL SETUPS

Datasets. Our experiments are conducted on five widely used segmentation benchmarks, VOC
2012 (Everingham et al., 2015), ADE20K (Zhou et al., 2019), COCO-Stuff (Caesar et al., 2018),
Cityscapes (Cordts et al., 2016) and Mapillary (Neuhold et al., 2017). Details for these datasets are
included in the appendix.

Implementation details. The framework is based on DeepLab-v3+ (Chen et al., 2018) with a
standard ResNet-50 as backbone (He et al., 2016). In practice, we add two 3-layer projection heads
after the ASPP layer of DeepLab-v3+, resulting in two 512-d dense embedding maps respectively
for pairing language and visual embeddings. A SGD optimizer with momentum 0.9 and weight
decay 4e−5 is used for 100 epochs pretraining. The batch size and initial learning rate are set to
128 and 0.8, respectively, over 8 NVIDIA Tesla V100 GPUs. The learning rate is decayed to 0 by
cosine scheduler (Loshchilov & Hutter., 2016). The input size is set to 224× 224 for efficiency. For
data augmentations, we choose random crop, color distortion, and Gaussian blur. For the language
embedding improvement module, following Rao et al. (2022), we set M to 13.

During the fine-tuning, we follow the basic configuration of MMSegmentation1 except using a
standard ResNet-50 backbone and removing the auxiliary head for conveniently comparing with

1https://github.com/open-mmlab/mmsegmentation
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Table 2: Standard fine-tuning results on five typical segmentation benchmarks. ⋆ means the methods
are implemented and fit to our pretraining setting by ourselves.

Method
Pretrained Dataset mIoU

ImageNet VOC ADE20K COCO VOC ADE20K COCO Cityscapes Mapillary
Scratch 44.78 28.67 25.02 54.27 22.23

MoCo-v2 ✓ 71.59 38.29 33.64 77.52 38.16
DenseCL ✓ 72.68 38.12 33.77 77.63 37.71

PixPro ✓ 75.37 39.34 34.87 78.24 39.16
Supervised ✓ 75.63 39.36 35.25 77.60 38.21

LSeg⋆ ✓ ✓ ✓ 76.97 41.19 37.59 79.02 40.96
MDP⋆ ✓ ✓ ✓ 76.87 41.36 37.32 78.65 40.81
MS3 ✓ ✓ ✓ 78.60 42.93 38.63 79.93 42.65

other baselines and purely reflecting the influence of the backbone itself, while MS3 can still bring
performance gains over stronger models, which is further discussed in the ablation study. The fine-
tuning simply follow the common setting of each dataset, i.e., for VOC, we fine-tune the pretrained
model for 40k iterations using 513 × 513 input size, while for ADE20K and COCO-Stuff, the
iterations are set to 80k with 512× 512 input size. For Cityscapes and Mapillary, the iterations are
set to 40k with 512× 1024 and 768× 768 input size, respectively.

Evaluation. We combine the training split of VOC, ADE20K and COCO-Stuff, and obtain around
150K training images with more than 300 classes for pretraining. The performance is evaluated
on the three datasets to validate how multi-dataset pretraining boosts the performance. We also
transfer the pretrained model to Cityscapes and Mapillary, where the model does not see during
the pretraining stage to validate its generalization ability. Following the standard, we use mean
Intersection-over-Union (mIoU) for performance evaluation.

4.2 MAIN RESULTS

Standard fine-tuning. This section reports the standard fine-tuning results on five representative
benchmarks. For a better understanding of the advantages of the proposed framework, we compare
our results with the supervised ImageNet pretraining baseline (Supervised) and some typical self-
supervised pretraining baselines, MoCo-v2 (Chen et al., 2020b), DenseCL (Wang et al., 2021c) and
PixPro (Xie et al., 2020). We also fit LSeg (Li et al., 2022) and MDP (Shi et al., 2021) to our setting
and list their results. From the results shown in Tab. 2, we find that:

• MS3 outperforms ImageNet pretraining baselines for a considerable margin. Specifically, our
method achieves 78.60% mIoU on VOC, which is 7.01%, 5.92%, 3.23% and 2.97% better
than MoCo-v2, DenseCL, PixPro and supervised ImageNet pretraining, respectively. For
ADE20K and COCO-Stuff, the performance gains toward supervised ImageNet pretraining
are 3.57% (42.93%vs.39.36%) and 3.38% (38.63%vs.35.25%), respectively.

• The performance advantages are held on two unseen domains, i.e., Cityscapes and Mapillary.
MS3 achieves 79.93% and 42.65% mIoU on these two benchmarks, which are 2.33% and
4.44% better than supervised ImageNet pretraining, respectively. The benefits also hold
towards other baselines, indicating that our framework enjoys better transferability.

Frozen-backbone fine-tuning. We further try to freeze the pretrained image encoder and only
adjust the classification head during the finetuning stage. As shown in Tab. 3, when freezing
the backbone, our method can achieve 73.63%, 37.39% mIoU on VOC and ADE20K and obtain
36.24% mIoU on unseen Mapillary. The results far exceed freezing supervised ImageNet pretraining
backbone, which demonstrates the effects of modeling inter-category relations and performing pixel-
level discrimination during pretraining. We also notice that the performance of our framework can
still maintain a high level under the freezing setting, which can meet the requirements of some
application scenarios that require rapid adaptation.
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Table 3: Results over VOC, ADE20K and Mapillary with frozen image encoder. † means the image
encoder is frozen.

Method mIoU
VOC ADE20K Mapillary

MoCo-v2 71.59 38.29 38.16
Supervised 75.63 39.36 38.21

MS3 78.60 42.93 42.65
MoCo-v2† 63.51 22.48 29.93

Supervised† 61.97 21.43 28.79
MS3† 73.63 37.39 36.24

Figure 3: Zero-shot visualization. Our pretrained model can conduct some flexible segmentation with
semantic similar labels or hierarchical labels.

Zero-shot prediction. Our pre-trained model can also be used for flexible zero-shot predictions,
benefiting from the text embeddings. As shown in Fig. 3, given different category inputs, our
pretrained model can obtain basically accurate segmentation results by matching pixel embeddings
with the text embeddings of different categories. In addition to the synonymous semantic replacement
of known categories, our model can make correct predictions for some categories that are not defined
in pre-training (e.g., vessel and way), and can also handle some hierarchical annotations.

4.3 ABLATION STUDY

In this section, we conduct extensive ablation studies to verify the effectiveness of the proposed
modules. Unless specified, all models are pretrained over VOC and ADE20K for 100 epochs and
evaluated on VOC for efficiency.

Effects of multi-modal supervision. Tab. 4 verifies the effects of multi-modal supervision. In
addition to the pixel-embedding pairing loss, we also list the results using cross-entropy loss (abbre-
viated as CE) under the multi-dataset scenario for comparison, where ”single-head” means using
one prediction head for all datasets while ”multi-head” means using dataset-specific classifiers. We
confirm that directly using CE loss performs poorly, especially under the single-head setting, due to
class conflicts. Using the language embeddings obtained from the original CLIP pretrained model as
supervision can bring some benefits, i.e., 1.18% better than single-head CE and 0.84% multi-head
CE, while it has no advantage towards our generated visual embedding (71.93%vs.71.98%). The
language embeddings and visual embeddings have complementary effects, and using them together
achieves the best performance (72.60%).
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Table 4: Effects of multi-modal supervision.

Method mIoU
CE (single-head) 70.75
CE (multi-head) 71.09

Visual 71.98
Language 71.93

Visual + Language 72.60

Table 5: Benefits of improving language embedding
quality. MI represents the module for language em-
bedding improvement.

Backbone MI dim mIoU
VIT-B/32 % 512 71.93
VIT-B/32 ! 512 72.65
ResNet50 ! 1024 73.09

Table 6: Effects of multi-label extension.
MC represents the cross-modal information
exchange module. Note that we use the im-
proved language embedding in this ablation.

Method MC mIoU
Visual % 71.98

Language % 72.65
Visual ! 72.95

Language ! 73.27
Visual + Language ! 73.68

Table 7: Results when using better backbones and
auxiliary loss.

Method Backbone mIoU
VOC ADE20K

Supervised Res50-v1c 76.81 42.72
Supervised Res101-v1c 78.62 44.60
Supervised DeiT-B 80.48 45.36

MS3 Res50-v1c 78.92 44.05
MS3 Res101-v1c 79.81 45.41
MS3 DeiT-B 81.86 46.62

Effects of improving language embeddings. Tab. 5 inspects the results when using the improved
language embeddings, and the results are positive. The embeddings got through the adapted VIT-B
backbone can bring 0.72% performance gain, from 71.93% to 72.65%. Higher performance can
be achieved when using language embedding obtained from the adapted ResNet50 backbone, i.e.,
73.09% mIoU on VOC. We analyze that this benefit is due to the higher feature dimension of the
generated embeddings, while considering the learning cost, we keep using 512-d embeddings in MS3.

Effects of cross-modal multi-label extension. Tab. 6 studies the effect of our proposed cross-
modal information exchange module, which provides a multi-label extension to the loss function.
The results are also promising, and we achieve 0.97% and 0.62% performance gains after providing
multi-label maps for visual supervision and language supervision, respectively. The performance
can be further boosted to 73.68% when compatible with all MS3 components including multimodal
supervision, which demonstrates the superiority of our framework.

Results when equipped with better models We also evaluate MS3 with larger backbones and
auxiliary loss. As shown in Tab. 7, when equipped with a Res50-v1c backbone and an auxiliary
head, MS3 achieves 78.92% mIoU on VOC and 44.05% mIoU on ADE20K, which is respectively
2.11% and 1.33% better than supervised ImageNet pretraining, and the result is even comparable
with Res101-v1c based supervised ImageNet pretraining results. When equipped with the Res101-
v1c backbone, MS3 can further boost the performance to 79.81% and 45.41%, respectively. For
transformer-based DeiT (Touvron et al., 2021) backbone2 with UPerhead (Xiao et al., 2018) as
decoder, our MS3 can still bring benefits, i.e., 1.38% gains on VOC and 1.26% gains on ADE20K.
The above results prove that our MS3 can bring consistent benefits when using larger capacity models.

5 CONCLUSION

This paper proposed a multi-dataset pretraining framework for semantic segmentation with multi-
modal supervision. On one hand, we adapt CLIP pretrained text encoder to provide high-quality
language embedding for each class. On the other, we generate momentum-updated visual embeddings
as complements. These two kinds of embeddings are used together to guide feature learning in a
pixel-embedding pairing way. We also additionally design a cross-modal information exchange
module for multi-label loss extension for further improvement. Experiment results show that our
framework consistently outperforms ImageNet pretrained models on several widely used benchmarks.

2For DeiT backbone, we use AdamW optimizer with 3e-4 learning rate for 100 epochs pretraining.
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Table 8: Examples of multi-label mapping. Note that the relation is unidirectional, i.e., pixels in the
former class of one class pairs can be mapped to the embedding of the latter class, while it does not
hold conversely.

Class Pairs Class Pairs
Reliable relations:

stairs stairway hill mountain
land earth ship boat

bulletin board signboard bar counter
toaster oven hovel horse

dirt track path lake water
Typical mistakes:

tree vegetable fountain waterfall
grass gravel sand sea

A DATASET DETAILS

As mentioned, our experiments are based on five segmentation benchmarks, namely:

• VOC 2012 (Everingham et al., 2015) contains 10,582 training (including the annotations
provided by (Hariharan et al., 2011)), 1,449 validation, and 456 test images with pixel level
annotations for 20 foreground object classes and one background class.

• ADE20K (Zhou et al., 2019) is a scene parsing dataset. It contains around 25K images
spanning 150 semantic categories, of which 20K for training, 2K for validation, and another
3K for testing.

• COCO-Stuff (Caesar et al., 2018) is a large scale dataset, which includes 118K training
images and 5k validation images from COCO 2017 (Lin et al., 2014). It provides rich
annotations for 80 object classes and 91 stuff classes.

• Cityscapes (Cordts et al., 2016) is consist of 5,000 finely annotated urban scene images,
with 2,975/500/1,524 for train/val/test, respectively. Its performance is reported on 19
challenging categories.

• Mapillary (Neuhold et al., 2017) is a street-level imagery dataset with pixel-accurate and
instance-specific human annotation. It contains 25K high-resolution images annotated into
66 object categories.

B EXAMPLES FOR MULTI-LABEL MAPPING

This section inspects the generated multi-label mapping for our cross-modal interactive loss. As
shown in Tab. 8, our multi-label mapping can correctly reflect some similar semantics, e.g., ’stairs’
vs. ’stairway’ and ’hill’ vs. ’mountain’. Furthermore, due to the unidirectional characteristic of the
generated mapping, our method can also handle the annotation granularity problem well, e.g., class

’dirty track’ is a subset of class ’path’, so pixels with label ’dirty track’ should be pulled close to
the embedding of ’path’, while it does not hold conversely. The above relationships are correctly
represented in our generated mappings, but inevitably, there are also some errors in our mapping,
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Table 9: Comparing with single dataset pretraining on VOC.
Pretraining Dataset Size mIoU

VOC 10K 69.59
ADE20K 20K 69.90
COCO 118K 77.10

VOC and ADE20K 30K 73.68
VOC, ADE20K and COCO 148K 78.60

including incorrectly mapping some semantically similar but different class pairs (e.g., ’fountain’ vs.
’waterfall’) and some class pairs that usually appear in the same scene at the same time (e.g., ’sand’ vs.
’sea’). Among them, we believe that the reason for the latter mistake is mainly because our framework
uses a small input resolution, and expanding the input resolution can alleviate it to a certain extent.

C COMPARED WITH SINGLE DATASET PRETRAINING

We conduct single dataset pretraining using our MS3 framework to verify the necessity of multi-
dataset pretraining. As shown in Tab. 9, MS3 achieves 69.59% and 69.90% mIoU on VOC,
respectively, when separately using VOC and ADE20K for pretraining, and combining them for
multi-dataset pretraining can boost the performance to 73.68%. We also find that the dataset size
counts for MS3, and merely using the larger COCO-Stuff can achieve 77.10% mIoU, while MS3
can still benefit from introducing other small-size datasets, and combining all three datasets for
pretraining further brings a 1.50% performance gain (78.60%).

D ADDING UNLABELED DATA FOR PRETRAINING

In addition to labeled datasets, our framework can utilize multi-modal embeddings to provide reliable
pseudo labels for unlabelled data for further pretraining. Specifically, for pixel i in the dense
embedding map Iu of an unlabeled input, we calculate the cosine similarity of its pixel embedding
Iiu to all the language embeddings T and all the visual embeddings V . If the most similar language
embedding and visual embedding meet the same category, we regard such pseudo labeling as reliable
and assign pixel i with the corresponding class. Table 10: Studies on adding

unlabeled data. D contains
VOC and ADE20K. U is un-
labeled COCO-Stuff.

D U mIoU
! % 73.68
! ! 74.77

To verify the effectiveness of the above scheme, we use labeled VOC
and ADE20K and add unlabeled COCO-Stuff data for jointly pre-
training. The results are shown in Tab. 10. Using additional unlabeled
data can bring 1.09% performance gain, from 73.68% to 74.77%,
which proves that our framework has the ability to utilize large-scale
unlabeled data for further improvement.

13


	Introduction
	Related Work
	Method
	Overview
	Multimodal Supervision for Semantic Segmentation
	Cross-modal Multi-label Extension

	Experiment
	Experimental Setups
	Main Results
	Ablation Study

	Conclusion
	Dataset Details
	Examples for Multi-label Mapping
	Compared with Single Dataset Pretraining
	Adding Unlabeled Data for Pretraining

