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Abstract

Federated Learning (FL) is a distributed learning scheme to train a shared model
across clients. One fundamental challenge in FL is that the sets of data across
clients could be non-identically distributed. Personalized Federated Learning (PFL)
attempts to solve this challenge. Most methods in the literature of PFL focus on
the data heterogeneity that clients differ in their label distributions. In this work,
we focus on label concept drift which is a broad but relatively unexplored area. We
present a general framework for PFL based on hierarchical Bayesian inference and
propose a variational inference algorithm based on this framework. We demonstrate
our methods through empirical studies on CIFAR100 and SUN397. Experimental
results show our approach significantly outperforms the baselines when tackling
the label concept drift across clients.

1 Introduction

Since the introduction of FL in [12] in 2016, there has been increasing attention for this distributed
learning setting, as it turns out to be a general framework to address the privacy concerns arise from
many different areas. Despite its strength, there are also many challenges in the application of FL. One
of them is the statistical heterogeneity of client data sets. Since clients sit in various environments,
their data exhibit certain concepts that correlate with the local environments and deviate from each
other. As summarized in [8], there exist different kinds of data heterogeneity. In this work, we focus
on the so-called label concept drift. That is, the same label can have different features for different
clients. As a result, the aggregated global model is not optimal for every individual client.

Personalized federated learning (PFL) methods target data heterogeneity issue and intend to achieve
a better local utility via personalized models at the clients’ side. Many of them view the learning
process of PFL through optimization [5; 6; 7; 13], while a few [1; 4; 2] try to understand PFL as a
posterior Bayesian inference problem. However, in the current literature on PFL, the most methods
[1; 3; 7; 15; 13; 5; 6] focus on label distribution skew, i.e. clients have data corresponding to different
labels. In this work we also take a Bayesian perspective, but aim at label concept drift and manage to
capture the common trend while allowing each client to specialize in individual concepts.

Our contributions In this work we provide a variational Bayes framework for PFL to tackle
label concept drift. Extensive experimental results show our method yields consistently superior
performance to main competing frameworks.

2 Method

In this section, firstly we state the problem studied in this work, then we describe the proposed
variational Bayesian framework for PFL under the label concept drift.
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2.1 Problem Formulation

Let the data distribution of client j be Pj(x, y) where x, y denote data and label, we present the
definition of label concept drift following [8].
Definition 2.1 (Label Concept Drift [8]). Let J be the number of clients, label concept drift indicates
that the conditional generating distributions {Pj(x|y)}Jj=1 are different across different clients, but
marginal distributions {Pj(y)}Jj=1 are the same.

In FL a single shared model is used to fit on all clients’ data, instead of doing that in PFL we aim to
solve the following minimization problem:

min
w1:J∈Rd

f(w1:J ;D) :=
1

J

J∑
j=1

fj(wj ;Dj), (1)

where J is the number of clients, Dj is the set of data available in client j, w1:J is a shorthand for the
set of parameters {w1, · · · ,wJ}, wj is the personalized parameter for the j-th client and fj(wj ;Dj)
is the empirical average loss function of the j-th client:

fj(w;Dj) =
1

nj

nj∑
i=1

l(x
(j)
i , y

(j)
i ;w), (2)

where (x
(j)
i , y

(j)
i ) ∈ Dj is one data point of client j, l(·, ·;w) is the loss function using weight

parameter w and nj := |Dj | is the number of data points on the j-th client.

2.2 The Augmented Joint Distribution

To develop a Bayesian framework, we need to obtain a posterior distribution for parameters which
we are interested in. One way to obtain the posterior distribution p(wj |D) is by performing Bayesian
inference on the j-th client locally, i.e. p(wj |D) := p(wj |Dj). Given a vague prior p(wj), one
disadvantage of this approach is the variance of p(wj |Dj) could be high if the number of data points
on client j is small. In another way, since all clients are running similar tasks, D{1,··· ,J}\j should be
able to provide information to form the posterior of wj . Therefore we introduce a global variable w
such that all w1:J depend on w and w captures the correlations between different clients, namely the
common trend of the task. This also implies the conditional independence between wi and wj :

p(wi|w)p(wj |w) = p(wi,wj |w). (3)
Using Bayes’ theorem, the augmented posterior distribution of {w,w1:J} is proportional to the
product of the prior and the likelihood function, thus we have:

p(w,w1:J |D)
3∝ p(w)

J∏
j=1

p(wj |w) exp (−fj(wj ;Dj)) , (4)

where p(w) is the prior of the introduced global variable, fj(wj |Dj) is defined in Equation (2) and
is proportional to the negative of the data log-likelihood on client j. Based on the above augmented
model, two inference algorithms could be used. Maximum a Posteriori Probability (MAP) seeks a
maximizer to the unnormalized posterior and avoids the intractable integration of the model evidence.
However it can be difficult to select a set of hyper-parameters for the conditional priors. To mitigate
this limitation, we present an algorithm based on the principle of maximizing the marginal likelihood
in Section 2.3. The optimization will be conducted using variational expectation maximization.

2.3 Maximize the marginal likelihood

We assume an isotropic Gaussian as the form of conditional prior p(wj |w) and use factorized
variational approximation q(w1:J) :=

∏J
j=1 qj(wj) to the true posterior distribution p(w1:J |D).

Additionally, the axis-aligned multivariate Gaussian is used as the variational family, that is, qj(wj) =
N (wj |µj ,Σj) and Σ is a diagonal matrix. To optimize these approximations {qj(wj)}Jj=1, we
maximize the evidence lower bound (ELBO) of the marginal likelihood:

ELBO(q(w1:J) , ρ
2
1:J ,w) =

J∑
j=1

Eq(wj)[log p(Dj |wj)]−KL[q(wj) ∥ p(wj |w, ρ2j )]. (5)
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The above ELBO can be optimized using variational expectation maximization through blockwise
coordinate descent. To obtain the variational approximation q(wj), we only need to maximize
Eq(wj)[log p(Dj |wj)]−KL[q(wj) ∥ p(wj |w, ρ2j )] using the local set of data on client j.

After these local approximations have been formed, clients upload their own variational parameters to
the server. Given these parameters, the server tries to optimize the ELBO in Equation (5) by updating
the global variable w. Simplifying Equation (5), we obtain the objective function on the server:

ELBO(ρ21:J ,w) ∝
J∑

j=1

Eq(wj)[log p(wj |w, ρ2j )]. (6)

Setting the gradient of Equation (6) w.r.t. w and ρ21:J to be zero, we obtain closed form for the
optimization of the global variable:

w∗ =

∑J
j=1 τjµj∑J
j=1 τj

, τj := 1/ρ2j ; D · ρ2j = Tr(Σj)+ ∥ µj −w ∥2, (7)

where D is the dimension of w and Tr(Σj) is the trace of the variational variance-covariance
parameter. We summarize the update rules in the following Algorithm 1.

Algorithm 1 Variational Expectation Maximization for PFL (pFedVEM)
Input: T rounds, µ0

1:J , Σ0
1:J , w0, ρ01:J , sampling ratio r

Output wT
1:J

1: for t = 0 to T − 1 do
2: Server sends wt to all clients
3: ▷ clients update their personalized variational distributions ◁
4: for j = 1, . . . , J do
5: Update ρt+1

j by ρ2j = (Tr(Σt+1
j )+ ∥ µt+1

j −wt ∥2)/D
6: (µt+1

j ,Σt+1
j ) ∈ argmin(µj ,Σj) Eq(wj)[log p(Dj |wj)]−KL[q(wj) ∥ p(wj |w, ρ2j )]

7: Server select a random subset of clients It of size ⌊J × r⌋
8: Each client j ∈ It sends its updated variational parameters µt+1

j and ρt+1
j to the server

9: ▷ server optimizes the global variable ◁

10: wt+1 =
∑

j∈It
τt+1
j µt+1

j∑
j∈It

τt+1
j

; τ t+1
j = 1/(ρt+1

j )2

3 Experiments

To evaluate our methods, we target image classification tasks and compare our methods against
baselines under various settings. We present results of the following frameworks: 1) Local: all clients
train locally; 2) FedAvg [11]: all clients rely on an aggregated global model; 3) pFedPer [3]: the
network consists of representation model and linear classifier, the representation model participates
in collaboration while every client trains its own linear classifier; 4) pFedHN [14]: the server uses a
hypernetwork and client-specific latent variable to generate a personal network for each client. 5)
pFedME [16]: bi-level optimization of local models and the global model using Moreau envelops.

When applying our method, we follow the treatment in pFedPer, which considers the entire network
comprising a representation model and a linear classifier, we only personalize the linear classifier
layer while let the representation model to be trained via FedAvg to generate a general representa-
tion. Unifying the representation model could have additional profit for the representation model
as it has many parameters while individual client has possibly limited data points. We conduct
experiments on two variants of our method: 1) pFedVEM: our approach of variational inference.
Every client has an estimation of the conditional distribution p(wj |w) over its personalized linear
classifier and the global variable w of linear classifiers w1:J are aggregated w.r.t. the estimated
distributions {p(wj |w)}Jj=1. 2) pFedMAP: We also test a maximum posterior method based on our
hierarchical Bayesian framework under non-informative prior of w and normal distributed p(wj |w)
with predefined variance ρj . We set ρ1:J to be the same to avoid a prohibitive tuning workload. The
resulting algorithm is similar to Ditto [10].
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CIFAR100 SUN397

# Clients 50 100 200 50 100 200
# Samples/Clients 1000 500 250 102 102 102

Local 36.4± 0.3 29.2± 0.4 22.8± 0.3 62.7± 0.5 62.6± 0.6 61.1± 0.7
FedAvg 52.2± 0.1 49.4± 0.8 45.8± 0.1 72.8± 0.1 75.4± 0.2 76.4± 0.1

pFedME 54.9± 0.4 48.9± 0.5 42.2± 0.4 85.1± 0.5 87.1± 0.1 87.0± 0.2
pFedPer 50.9± 0.5 44.6± 0.3 38.9± 0.4 84.4± 0.3 83.9± 0.2 83.7± 0.2
pFedHN 47.6± 0.3 46.2± 0.2 45.7± 0.3 75.9± 0.5 74.5± 0.3 78.3± 0.3

Ours
pFedMAP 58.8± 0.3 53.1± 0.3 47.3± 0.4 84.0± 1.1 86.6± 0.4 88.0± 0.1
pFedVEM 62.6 ± 0.3 57.4 ± 0.5 51.5 ± 0.5 87.7 ± 0.1 88.6 ± 0.2 88.5 ± 0.4

Table 1: Test accuracy (% ± SEM) over 50, 100, 200 clients on CIFAR100 and SUN397. #
Samples/Clients indicates the expected data size of a client.

3.1 Training protocol

To better present label concept drift, i.e. varying Pj(x|y), we use hierarchical datasets CIFAR100 [9]
and SUN397 [17], which contain superclasses and subclasses. We set the classification task to be
superclass prediction, while for every client the data of each superclass is sampled from a random
subclass and hence label concept drift is induced. To get closer to reality, we allow the number of
observations by each client to be different by random sampling without replacement. When running
the experiments the number of communication rounds is set to be 100.1 We adopt the communication
protocol proposed in pFedMe [16], i.e. at the beginning of each round, the server broadcasts the
aggregated model to all clients, while only a subset of clients send their parameters back to the server.
Each client has a probability of 0.1 to be sampled, we evaluate all frameworks with the number of
clients C ∈ {50, 100, 200}.

We use a CNN network with five convolutional layers followed by a fully connected layer. In case
a framework consists of two separate components, the convolutional layers block is used as the
representation model and the fully connected layer as the linear classifer. We run all experiments five
times on a cluster within the same container environment. The the same group of five random seeds
has been used for local data sampling, clients sampling and parameters initialization. We present the
mean and standard error.

3.2 Results

We evaluate all the frameworks over various settings, the results are given in Table 1. We observe
that: 1) Although the label concept drifts among clients, FedAvg still outperforms Local. When
the expected # Sample/Clients is large, e.g. on CIFAR100, FedAvg even outperforms some pFed
frameworks, implying that although label concept drift across clients using a single global model is
still adequate when all participants have sufficient data; 2) Our pFedMAP, which is lightweight and
easy to implement, is competitive compared with previous PFL methods; 3) Our pFedVEM always
achieves the best accuracy and performs significantly better than the baselines over all settings.

4 Conclusions

In this paper, we addressed the problem of personalized federated learning when label concept
distributions differ between clients. We developed an evaluation framework for PFL with concept
drift, and proposed a variational Bayes framework for PFL. Experimental results show our method
yields consistently superior performance to main competing frameworks.

11) When conducting the local framework, we train the model for 100 epochs. 2) pFedHN limits the server
to connect a single client at each iteration, so we let it connect with sampled clients in series at each round. Note
that in reality this leads to a significant higher time complexity than other frameworks.
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